The present invention is related to microelectronic devices and methods for packaging microelectronic devices. Several aspects of the present invention are directed toward packaging microelectronic imaging devices that are responsive to radiation in the visible light spectrum or radiation in other spectrums.
Microelectronic imagers are used in digital cameras, wireless devices with picture capabilities, and many other applications. Cell phones and Personal Digital Assistants (PDAs), for example, incorporate microelectronic imagers for capturing and sending digital images. The use of microelectronic imagers in electronic devices has been steadily increasing as imagers become smaller and produce higher quality images with increased pixel counts.
Microelectronic imagers include image sensors that use Charged Coupled Device (CCD) systems, Complementary Metal-Oxide Semiconductor (CMOS) systems, or other systems. CCD image sensors have been widely used in digital cameras and other applications. CMOS image sensors are also becoming very popular because they have low production costs, high yields, and small sizes. CMOS image sensors provide these advantages because they are manufactured using technology and equipment developed for fabricating semiconductor devices. CMOS image sensors, as well as CCD image sensors, are accordingly “packaged” to protect their delicate components and provide external electrical contacts.
The die 10 includes an image sensor 12 and a plurality of bond-pads 14 electrically coupled to the image sensor 12. The interposer substrate 20 is a dielectric member having a plurality of interior pads 22, a plurality of ball-pads 24, and a plurality of traces 26 electrically coupling the interior pads 22 to corresponding ball-pads 24. The ball-pads 24 are arranged in an array for surface mounting the imager 1 to a board or module of another device. The bond-pads 14 on the die 10 are electrically coupled to corresponding interior pads 22 on the interposer substrate 20 by a plurality of wire-bonds 28 to provide electrical pathways between the bond-pads 14 and the ball-pads 24.
One problem with conventional packaged microelectronic imagers is that they have relatively large footprints and occupy a significant amount of vertical space (i.e., high profiles). For example, the footprint of the imager 1 in
Another problem with conventional microelectronic imagers is the manufacturing costs for packaging the dies. For example, forming the wire-bonds on the imager shown in
A. Overview
The following disclosure describes several embodiments of microelectronic imaging devices and methods of packaging microelectronic imaging devices. Specific details of several embodiments of the invention are described below with reference to CMOS imagers to provide a thorough understanding of these embodiments, but other embodiments can be CCD imagers or other types of imaging devices. Several details describing well-known structures often associated with microelectronic devices are not set forth in the following description to avoid unnecessarily obscuring the description of the disclosed embodiments. Additionally, several other embodiments of the invention can have different configurations and/or components than those described in this section. As such, a person of ordinary skill in the art will accordingly understand that the invention may have other embodiments with additional elements or without several of the elements shown and described below with reference to
Several aspects of the invention are directed to a plurality of microelectronic imaging devices formed at the wafer level. In one embodiment, the microelectronic imaging devices include a microfeature workpiece having a plurality of microelectronic dies. The individual dies include an integrated circuit, an image sensor electrically coupled to the integrated circuit, and a plurality of bond-pads electrically coupled to the integrated circuit. The microelectronic imaging devices further include a cover substrate over the image sensors of the dies. The cover substrate is transmissive to radiation for the image sensors and has a plurality of electrically conductive interconnects electrically coupled to corresponding bond-pads on the dies. In one aspect of this embodiment, the interconnects extend through the cover substrate. Alternatively, the interconnects can extend along the surface of the cover substrate that faces the image sensors. Individual interconnects can be electrically connected to a pair of bond-pads of adjacent dies to couple the cover substrate to the workpiece, or the individual interconnects can be electrically coupled to corresponding individual bond-pads. For example, an interconnect can be directly connected to a bond-pad, or an interconnect can be indirectly connected to a bond-pad via a solder ball or other conductive element.
Another aspect of the invention is directed to individual microelectronic imaging devices. In one embodiment, a microelectronic imaging device includes a microelectronic die having an integrated circuit, an image sensor electrically coupled to the integrated circuit, and a plurality of bond-pads electrically coupled to the integrated circuit. The imaging device further includes a cover over the image sensor and a plurality of interconnects in and/or on the cover to provide external electrical contacts electrically connected to the bond-pads of the die. In one aspect of this embodiment, the interconnects wrap around corresponding ends of the cover. Alternatively, the interconnects can extend through the cover and be aligned with the corresponding bond-pads. In another aspect of this embodiment, the microelectronic imaging device further includes a substrate having an opening and an optics unit disposed at least partially within the opening. The cover is disposed between the substrate and the microelectronic die, and the optics unit is aligned with the image sensor on the die.
Another aspect of the invention is directed to methods of packaging microelectronic imaging devices. In one embodiment, a method includes providing a microelectronic die having an integrated circuit, an image sensor electrically coupled to the integrated circuit, and a plurality of bond-pads electrically coupled to the integrated circuit. The method further includes providing a cover having a first surface, a second surface opposite the first surface, and a plurality of interconnects extending from the first surface to the second surface. The method further includes coupling the cover to the microelectronic die with the cover over the image sensor and with the interconnects electrically coupled to corresponding bond-pads.
B. Embodiments of Methods of Forming Cover Substrates
In the illustrated embodiment, the cover substrate 140 includes a first surface 142, a second surface 144 opposite the first surface 142, and a plurality of apertures 146 extending from the first surface 142 to the second surface 144. The apertures 146 can be arranged in arrays, with individual arrays corresponding to individual arrays of bond-pads on a microelectronic die. More specifically, the apertures 146 can be arranged so that each aperture 146 is aligned with a bond-pad on a die when the cover substrate 140 is placed over the dies in proper alignment, as described in greater detail below. The apertures 146 can be formed in the cover substrate 140 by laser drilling, etching, and/or other suitable processes. Although the cover substrate 140 illustrated in
In the illustrated embodiment, the interconnects 160 include a first cap 156a projecting from the first surface 142 and a second cap 156b projecting from the second surface 144. The caps 156a-b provide external contacts to electrically couple the interconnects 160 to other devices. In additional embodiments, the interconnects 160 can have different configurations and/or be formed by other suitable processes. For example, the interconnects 160 may not include caps 156a-b projecting away from the cover substrate 140, and/or the interconnects 160 may not include all of the first conductive layer 150, the second conductive layer 152, and the conductive material 154. Moreover, the interconnects 160 may also extend at least partially along the first and/or second surface 142 and/or 144. Furthermore, as described below with reference to
C. Embodiments of Microelectronic Imaging Devices
In the illustrated embodiment, a partial underfill material 132 is deposited around the periphery of each image sensor 112. The underfill material 132 can be deposited between rows of bond-pads 114 of adjacent bond-pad arrays. The underfill material 132 flows between the bond-pads 114 and the conductive elements 130. The underfill material 132 enhances the integrity of the joint between the cover substrate 140 and the microelectronic dies 110 and protects the image sensors 112 from moisture, chemicals, and other contaminants. In other embodiments, such as those described below with reference to
In the illustrated embodiment, the interconnects 160 are aligned with the bond-pads 114 of the dies 110 when the cover substrate 140 is attached to the microfeature workpiece 102. As such, the interconnects 160 are positioned outboard the image sensors 112 so as not to obstruct radiation from passing through the cover substrate 140 toward the image sensors 112. After attachment, the microfeature workpiece 102 and the cover substrate 140 can be cut along lines ArAi to singulate individual microelectronic imaging devices 100. The microelectronic imaging devices 100 can pass through the reflow process to melt the conductive elements 130 and securely join the interconnects 160 to the bond-pads 114, and/or the underfill material 132 can be cured before and/or after singulation.
One feature of the illustrated embodiment is, that the microelectronic imaging devices 100 can be tested at the wafer level before the devices 100 are singulated. For example, a testing device can contact the second caps 156b of the interconnects 160 to simultaneously test all or at least many of the microelectronic imaging devices 100. Microelectronic imaging devices that do not function properly can be segregated and discarded after singulation. An advantage of this feature is that it is more efficient in terms of cost and time to test the microelectronic imaging devices 100 at the wafer level (i.e., before singulation) than to test each device 100 individually.
Another feature of the illustrated embodiment is that the cover substrate 140 is attached to the microfeature workpiece 102 before singulation. An advantage of this feature is that the image sensors 112 are covered by the cover substrate 140, and consequently protected from the debris and other material that are generated during the singulation process.
Another feature of the illustrated embodiment is that the interconnects 160 of the cover substrate 140 provide external electrical contacts for the individual microelectronic imaging devices 100. An advantage of this feature is that forming interconnects in the cover substrate 140 is less complex and exposes the imaging devices 100 to less heat than forming interconnects through the workpiece 102, from the bond-pads to the back side of the imaging devices.
In the illustrated embodiment, the substrate 120 includes an opening 128 over the image sensor 112, and an optics unit 170 is disposed at least partially within the opening 128. The optics unit 170 is attached to the cover 140a and/or the substrate 120, and the optics unit 170 is aligned with the image sensor 112. The optics unit 170 can include a stand off 172 and an optic member 174 on the stand off 172 to transmit at least the desired spectrum of radiation to the image sensor 112. The optic member 174 can be a lens for focusing the light, a pinhole for reducing higher order refractions, and/or other optical structures for performing other functions. Suitable optics units and methods of attaching optics units are disclosed in U.S. patent application Ser. No. 10/723,363, entitled Packaged Microelectronic Imagers and Methods of Packaging Microelectronic Imagers, filed on Nov. 26, 2003, which is hereby incorporated by reference in its entirety. In additional embodiments, the microelectronic imaging device 100 may not be attached to the substrate 120 and/or optics unit 170, or the substrate 120 and/or optics unit 170 can be attached in a different arrangement.
An advantage of the embodiment illustrated in
Another feature of the illustrated embodiment is that the interconnects 160 electrically couple the bond-pads 114 to the interior pads 122 and therefore eliminate the need for wire-bonds. An advantage of this feature is that without wire-bonds, the footprint of the substrate 120 can be smaller because the interconnects 160 are coupled to the substrate 120 directly over the die 110. The reduced footprint allows the illustrated device to be used in smaller electronic devices. In prior art devices, such as the device illustrated in
D. Additional Embodiments of Microelectronic Imaging Devices
In the illustrated embodiment, the cover substrate 240 further includes a plurality of recesses 243 in the first surface 242 over corresponding image sensors 112. The recesses 243 create a gap G between the cover substrate 240 and the image sensors 112. An underfill material 232 can be deposited in the gap G and across the microfeature workpiece 102 to substantially fill the void between the workpiece 102 and the cover substrate 240. The underfill material 232 is a transmissive material to permit light and/or other electromagnetic radiation to pass through the underfill material 232 and contact the image sensors 112. For example, the underfill material 232 can be an optical-grade material with a high transparency and a uniform mass density to allow maximum light transmission. The underfill material 232 can also be a highly pure material to minimize contamination and thereby reduce or eliminate the loss of images and/or light scattering. In other embodiments, the underfill material 232 may not be deposited in the gap G.
In the illustrated embodiment, the individual interconnects 360 have a width W sized to contact a pair of conductive elements 330 on adjacent dies 110. For example, a first end 361a of a first interconnect 360a can be coupled to a first conductive element 330a on a first bond-pad 114a of a first die 110a and a second conductive element 330b on a second bond-pad 114b of a second die 110b adjacent to the first die 110a. To singulate the microelectronic imaging devices 300, the microfeature workpiece 102, the cover substrate 340, and the interconnects 360 can be cut along lines A2-A2. Accordingly, each singulated microelectronic imaging device 300 includes a cover (i.e., a section of the cover substrate 340) with interconnects (i.e., sections of the interconnects 360) that extend along corresponding ends of the cover.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, the microelectronic imaging devices can have any combination of the features described above with reference to
This application is a divisional of application Ser. No. 10/925,502, filed Aug. 24, 2004 now U.S. Pat. No. 7,115,961, the disclosure of which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3345134 | Heymer et al. | Oct 1967 | A |
4534100 | Lane | Aug 1985 | A |
4906314 | Farnworth et al. | Mar 1990 | A |
5130783 | McLellan | Jul 1992 | A |
5371397 | Maegawa et al. | Dec 1994 | A |
5424573 | Kato et al. | Jun 1995 | A |
5435887 | Rothschild et al. | Jul 1995 | A |
5505804 | Mizuguchi et al. | Apr 1996 | A |
5593913 | Aoki | Jan 1997 | A |
5605783 | Revelli et al. | Feb 1997 | A |
5672519 | Song et al. | Sep 1997 | A |
5694246 | Aoyama et al. | Dec 1997 | A |
5708293 | Ochi et al. | Jan 1998 | A |
5771158 | Yamagishi et al. | Jun 1998 | A |
5776824 | Farnworth et al. | Jul 1998 | A |
5811799 | Wu | Sep 1998 | A |
5821532 | Beaman et al. | Oct 1998 | A |
5857963 | Pelchy et al. | Jan 1999 | A |
5861654 | Johnson | Jan 1999 | A |
5877040 | Park et al. | Mar 1999 | A |
5897338 | Kaldenberg | Apr 1999 | A |
5914488 | Sone | Jun 1999 | A |
5977535 | Rostoker | Nov 1999 | A |
5998862 | Yamanaka | Dec 1999 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6104086 | Ichikawa et al. | Aug 2000 | A |
6114240 | Akram et al. | Sep 2000 | A |
6143588 | Glenn | Nov 2000 | A |
6236046 | Watabe et al. | May 2001 | B1 |
6259083 | Kimura | Jul 2001 | B1 |
6266197 | Glenn et al. | Jul 2001 | B1 |
6274927 | Glenn | Aug 2001 | B1 |
6285064 | Foster | Sep 2001 | B1 |
6351027 | Giboney et al. | Feb 2002 | B1 |
6372548 | Bessho et al. | Apr 2002 | B2 |
6407381 | Glenn et al. | Jun 2002 | B1 |
6411439 | Nishikawa | Jun 2002 | B2 |
6483652 | Nakamura | Nov 2002 | B2 |
6492699 | Glenn et al. | Dec 2002 | B1 |
6503780 | Glenn et al. | Jan 2003 | B1 |
6512219 | Webster et al. | Jan 2003 | B1 |
6515269 | Webster et al. | Feb 2003 | B1 |
6541762 | Knag et al. | Apr 2003 | B2 |
6560047 | Choi et al. | May 2003 | B2 |
6566745 | Beyne et al. | May 2003 | B1 |
6603183 | Hoffman | Aug 2003 | B1 |
6617623 | Rhodes | Sep 2003 | B2 |
6661047 | Rhodes | Dec 2003 | B2 |
6667551 | Hanaoka et al. | Dec 2003 | B2 |
6670986 | Ben Shoshan et al. | Dec 2003 | B1 |
6686588 | Webster et al. | Feb 2004 | B1 |
6703310 | Mashino et al. | Mar 2004 | B2 |
6864172 | Noma et al. | Apr 2004 | B2 |
6734419 | Glenn et al. | May 2004 | B1 |
6759266 | Hoffman | Jul 2004 | B1 |
6774486 | Kinsman | Aug 2004 | B2 |
6778046 | Stafford et al. | Aug 2004 | B2 |
6791076 | Webster | Sep 2004 | B2 |
6795120 | Takagi et al. | Sep 2004 | B2 |
6797616 | Kinsman | Sep 2004 | B2 |
6800943 | Adachi | Oct 2004 | B2 |
6813154 | Diaz et al. | Nov 2004 | B2 |
6825458 | Moess et al. | Nov 2004 | B1 |
6828663 | Chen et al. | Dec 2004 | B2 |
6828674 | Karpman | Dec 2004 | B2 |
6844978 | Harden et al. | Jan 2005 | B2 |
6882021 | Boon et al. | Apr 2005 | B2 |
6885107 | Kinsman | Apr 2005 | B2 |
6934065 | Kinsman | Aug 2005 | B2 |
6946325 | Yean et al. | Sep 2005 | B2 |
20020006687 | Lam | Jan 2002 | A1 |
20020057468 | Segawa et al. | May 2002 | A1 |
20020089025 | Chou | Jul 2002 | A1 |
20020096729 | Tu et al. | Jul 2002 | A1 |
20020113296 | Cho et al. | Aug 2002 | A1 |
20020145676 | Kuno et al. | Oct 2002 | A1 |
20030062601 | Harnden et al. | Apr 2003 | A1 |
20040012698 | Suda et al. | Jan 2004 | A1 |
20040023469 | Suda | Feb 2004 | A1 |
20040038442 | Kinsman | Feb 2004 | A1 |
20040041261 | Kinsman | Mar 2004 | A1 |
20040082094 | Yamamoto | Apr 2004 | A1 |
20040214373 | Jiang et al. | Oct 2004 | A1 |
20040245649 | Imaoka | Dec 2004 | A1 |
20050052751 | Liu et al. | Mar 2005 | A1 |
20050067681 | De Villeneuve et al. | Mar 2005 | A1 |
20050095835 | Humpston et al. | May 2005 | A1 |
20050104228 | Rigg et al. | May 2005 | A1 |
20050110889 | Tuttle et al. | May 2005 | A1 |
20050127478 | Hiatt et al. | Jun 2005 | A1 |
20050151228 | Tanida et al. | Jul 2005 | A1 |
20050184219 | Kirby | Aug 2005 | A1 |
20050236708 | Farnworth et al. | Oct 2005 | A1 |
20050254133 | Akram et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
0 886 323 | Dec 1998 | EP |
1 157 967 | Nov 2001 | EP |
2 835 654 | Aug 2003 | FR |
59-101882 | Jun 1984 | JP |
59-191388 | Oct 1984 | JP |
07-263607 | Oct 1995 | JP |
2001-077496 | Mar 2001 | JP |
WO-9005424 | May 1990 | WO |
WO-02075815 | Sep 2002 | WO |
WO-02095796 | Nov 2002 | WO |
WO-2004054001 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060255418 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10925502 | Aug 2004 | US |
Child | 11409058 | US |