The present disclosure relates generally to wafer level packaging of opto-electronic assemblies, particularly to the utilization of a molded glass lid in the fabrication process.
Many types of opto-electronic modules comprise a number of separate optical and electrical components that require precise placement relative to one another. A silicon (or glass) carrier substrate (sometimes referred to as an interposer) is generally used as a support structure to fix the location of the components and may, at times, also provide the desired electrical or optical signal paths between selected components. As the components are being assembled on the interposer, active optical alignment may be required to ensure that the integrity of the optical signal path is maintained. In most cases, these opto-electronic modules are built as individual units and, as a result, the need to perform active optical alignment on a unit-by-unit basis becomes expensive and time-consuming.
Indeed, as the demand for opto-electronic modules continues to increase, the individual unit assembly approach has become problematic. Wafer level packaging is considered to be a more efficient and cost-effective approach, with one exemplary arrangement of wafer level packaging disclosed in our co-pending application Ser. No. 13/463,408, filed May 3, 2012 and herein incorporated by reference.
In our co-pending application, a silicon wafer is utilized as a “platform” (i.e. interposer) upon which all of the components for a multiple number of opto-electronic modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. The use of a single silicon wafer as a platform for a large number of separate modules allows for a wafer level assembly process to efficiently assemble a large number of modules in a relatively short period of time. Some prior art arrangements describe the use of a glass interposer in place of a silicon wafer interposer, while retaining the ability to assemble multiple opto-electronic modules at the same time. See, for example, U.S. Patent Publication 2012/0106117 authored by V. V. Sundaram and published on May 3, 2012, which discloses a three-dimensional interconnect structure based upon a glass interposer.
In most cases, a “lid” needs to be placed over and attached to the populated interposer component. In one exemplary prior art arrangement, a lid is formed as two separate piece parts, a “sidewall” portion that attaches to the interposer top surface and a flat “top” portion that is bonded to the sidewall portion. The height of the sidewall is generally defined by the space required for the components disposed on the interposer, as well as a layer of adhesive material used to bond the sidewall to the interposer. In other cases, the sidewall is defined by a combination of a “rim” formed on the interposer and a “rim” formed on the lid, where the two rims are later joined to form the sidewall. Heretofore, the manufacture of lids provided with rims was considered to be expensive and required mechanical machining of a glass plate. This subtractive technique is expensive and ill-suited to a wafer level assembly process.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various embodiments of the present invention. In the drawings:
An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon (or glass) wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar elements. While embodiments of the invention may be described, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be modified by substituting, reordering, or adding stages to the disclosed methods. Accordingly, the following detailed description does not limit the invention. Instead, the proper scope of the invention is defined by the appended claims.
A sealing layer 22 is shown as being formed around the perimeter of interposer 20. This sealing layer, which may comprise a glass frit material, a AuSn solder, or any other suitable material, is used to bond molded glass lid 10 to populated interposer 20. As shown in
In the particular embodiment as shown in
In order for optical signals to be transmitted from the optical components on interposer 20 to optical connector 40, it is preferable that sidewall portion 14 of molded glass lid 10 be optically smooth and limit scattering and other types of optical signal loss (referred to, at times, as an “optical grade” surface).
In most cases, it is desirable to control the ingress/egress of optical signals between the components encapsulated within lid 10 and various external components. Referring to
As mentioned above, a significant improvement in fabrication efficiency, without sacrificing the integrity of the necessary precise optical alignments between various individual elements, is provided by utilizing a wafer level assembly technique, employing a silicon or glass wafer as a carrier substrate (also referred to herein as an interposer) upon which a plurality of opto-electronic modules are formed at the same time. Since a typical wafer has a diameter on the order of eight inches, this wafer can support the creation of multiple modules (e.g., tens of die across the wafer surface. In accordance with the present invention, a similar benefit is derived by utilizing a wafer-sized glass substrate to form multiple lids that are bonded to the multiple modules formed on the inter-poser wafer in a single fabrication step. Indeed, by utilizing a low-temperature glass material that is capable of being molded, a glass substrate can be inexpensively processed to form lids for these opto-electronic modules.
In a preferred embodiment of the present invention, a micromolding process is used to soften and mold glass substrate 100 to include the various cavities and openings required for the specific lid configuration.
Once molded glass substrate 100 is joined to the component wafer, the bonded structure is diced to form the final, individual opto-electronic modules. A laser dicing process is preferred, but it is to be understood that any other suitable process for separating the bonded wafers into separate transceiver modules may also be used.
While the invention has been described in terms of different embodiments, those skilled in the art will recognize that the invention can be practiced with various modifications that are considered to fall within the spirit and scope of the invention as best defined by the claims appended hereto. Furthermore, while the specification has been described in language specific to structural features and/or methodological acts, the claims are not limited to the features or acts described above. Rather, the specific features and acts described above are disclosed as examples for embodiments of the invention.
This application is a divisional of co-pending U.S. patent application Ser. No. 13/656,528, filed Oct. 19, 2012, which claims the benefit of U.S. Provisional Application No. 61/548,974, filed Oct. 19, 2011. The aforementioned related patent applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4558171 | Gantley et al. | Dec 1985 | A |
5023447 | Masuko et al. | Jun 1991 | A |
5024883 | SinghDeo et al. | Jun 1991 | A |
6417552 | Van Arendonk | Jul 2002 | B1 |
6555904 | Karpman | Apr 2003 | B1 |
6660564 | Brady | Dec 2003 | B2 |
7388285 | Heschel et al. | Jun 2008 | B2 |
7681306 | Heschel et al. | Mar 2010 | B2 |
7888758 | Lake | Feb 2011 | B2 |
20050063649 | Fukuda et al. | Mar 2005 | A1 |
20050111797 | Sherrer | May 2005 | A1 |
20050241135 | Heschel | Nov 2005 | A1 |
20060113906 | Ogawa | Jun 2006 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20080029879 | Tuckerman et al. | Feb 2008 | A1 |
20090014055 | Beck | Jan 2009 | A1 |
20090217516 | Pawlowski et al. | Sep 2009 | A1 |
20090321867 | Leib et al. | Dec 2009 | A1 |
20100142886 | Warashina et al. | Jun 2010 | A1 |
20110249534 | Fukuda et al. | Oct 2011 | A1 |
20120199920 | Zhang et al. | Aug 2012 | A1 |
20130209751 | Zhang et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1778568 | May 2006 | CN |
101083255 | Dec 2007 | CN |
10147648 | Apr 2003 | DE |
1109 041 | Jun 2001 | EP |
EP 1109041 | Jun 2001 | JP |
2007134622 | May 2007 | JP |
9600920 | Jan 1996 | WO |
WO 9600920 | Jan 1996 | WO |
Entry |
---|
GP-10000HT SPIE PW11 Presentation, 2011, pp. 1-10; Dyna Technologies. |
Gilleo, et al., “Injection Molded & Micro Fabrication Electronic Packaging”, Molding 2005, pp. 1-14. |
Chung, et al., “New Approach to Low Cost Cavity Packaging”, pp. 1-8. |
Gilleo, et al., “Low Ball BGA: A New Concept in Thermoplastic Packaging”, SemiConWest04, pp. 1-11. |
100738 Office Action dated Jun. 1, 2015 from Chinese Patent Application No. 201280062753.4. |
Number | Date | Country | |
---|---|---|---|
20150277068 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61548974 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13656528 | Oct 2012 | US |
Child | 14687119 | US |