This disclosure relates generally to electronic memory, for example, the disclosure describes a monolithically integrated resistive memory that can be fabricated using integrated-circuit foundry compatible processes.
Resistive memory devices represent a recent innovation within the field of integrated circuit technology. While much of this technology is in the development stages, various technological concepts for proposed resistive memory devices and fabrication of the same have been demonstrated by the inventors. The inventors believe that various resistive memory technologies and various techniques for fabricating various resistive memory devices show compelling evidence to hold substantial advantages over competing technologies in the semiconductor electronics industry.
Over time, advancement in technology has provided an increase in a number of semiconductor devices, such as transistors, that can be fabricated on a given geometric area of a semiconductor chip. An implication of increasing the number of semiconductor devices is increasing memory capacity and processing power for the semiconductor chip and associated electronic devices.
In light of the above, the inventors desire to continue developing practical utilization and fabrication of resistive memory technology.
The following presents a simplified summary of the specification in order to provide a basic understanding of some aspects of the specification. This summary is not an extensive overview of the specification. It is intended to neither identify key or critical elements of the specification nor delineate the scope of any particular embodiments of the specification, or any scope of the claims. Its purpose is to present some concepts of the specification in a simplified form as a prelude to the more detailed description that is presented in this disclosure.
Aspects of the subject disclosure provide for a monolithically integrated resistive memory using integrated-circuit foundry compatible processes. An embodiment relates to a memory device that can include a substrate comprising one or more complementary metal-oxide semiconductor devices and a first insulator layer formed on the substrate. The memory device also includes a monolithic stack that can include multiple layers fabricated as part of a monolithic process over the first insulator layer. The multiple layers can include a first metal layer (e.g., a first metallization layer), a second insulator layer, and a second metal layer (e.g., a second metallization layer). A resistive memory device structure can be formed within the second insulator layer. In various embodiments, the resistive memory device is formed within a thermal budget of the one or more complementary metal-oxide semiconductor devices. In further embodiments, the resistive memory device structure can be implemented at least in part as a pillar device. In additional embodiments, at least a first portion of the first metal layer can be coupled to at least a second portion of the second metal layer.
According to some implementations, a defined distance between the first metal layer and the second metal layer can be substantially similar to a distance between the second metal layer and a third metal layer. In other words, a thickness of the interlayer dielectric is not changed to accommodate the formation of the resistive memory device structure in the second insulator layer. Accordingly, embodiments discussed herein are compatible with current integrated-circuit (IC) designs.
In some implementations, the resistive memory device structure can be fabricated at a temperature of 450 degrees Celsius or lower. In some embodiments, the complementary metal-oxide semiconductor circuitry layer can utilize a gate dielectric material that has a high relative dielectric constant compared to silicon dioxide. In one embodiment, the gate dielectric material employed for the complementary metal-oxide semiconductor devices may be Applied Materials Producer® Black Diamond® (HBD3) low-k dielectric (e.g. k<=3.0).
In embodiments where the memory device structure is implemented at least in part as a pillar device, the pillar device can include a pillar-type structure (of a contact material) formed on the first metal layer and a collar-type structure disposed on top of the pillar-type structure. The collar-type structure can include two or more layers of materials arranged in a stack-like structure above the pillar-type structure. The cross-section of the collar-type structure can be larger than the pillar-type structure in one or more embodiments. In some embodiments, the two or more layers can include a first layer in a cylinder-type structure disposed above a second cylinder-type structure. The second cylinder-type structure contacts the second metal layer at a first surface, and a second surface coupled to the first cylinder-type structure. Further to this implementation, the first cylinder-type structure has a first side that contacts the pillar-type structure and a second side that contacts the second surface of the second cylinder-type structure. The first surface and the second surface can be located on opposite sides of the second cylinder-like structure.
Another embodiment relates to a method of fabricating a memory device. In various embodiments, the method can be a foundry-compatible method (e.g., consistent with a fabrication process of at least one integrated circuit foundry, whether currently existing or future variants). The method can include fabricating a monolithic stack that can include multiple layers. Fabricating the multiple layers can be performed within a thermal budget of a substrate. In an embodiment, the substrate can be a substrate comprising one or more CMOS devices formed therein or thereon. Further, fabricating the multiple layers can include providing the substrate comprising one or more complementary metal-oxide semiconductor devices and fabricating a first insulator layer over the substrate. The method can also include fabricating a first metal layer over the first insulator layer. Further, the method can include fabricating an interlayer dielectric material layer over the first metal layer and fabricating a resistive memory device structure within the interlayer dielectric material layer, which can include forming a pillar device. Further, the method can include fabricating a second metal layer over the resistive memory device structure.
In accordance with another implementation, fabricating the monolithic stack can include fabricating the monolithic stack at a temperature of about 450 degrees Celsius. The temperature can be about 450 degrees Celsius or lower in further embodiments. In various embodiments, fabrication of the monolithic stack can include fabricating the monolithic stack at a range of temperatures selected from a range group consisting of: about 450 degree and about 400 degrees Celsius, about 400 degrees and about 350 degrees Celsius, and about 300 degrees and about 350 degree Celsius.
A further embodiment relates to a memory cell that can include a substrate comprising one or more complementary metal-oxide semiconductor devices and a first insulator layer formed on the substrate. The memory cell can also include a monolithic stack comprising multiple layers fabricated as part of a monolithic process over the first insulator layer. The multiple layers can include a first metal layer formed on a top surface of the substrate, a first conductive layer formed on the first metal layer, a second insulator layer, and a second metal layer. A resistive memory device structure can be formed within the second insulator layer and within a thermal budget of the one or more complementary metal-oxide semiconductor devices. Further, the first metal layer is coupled to the second metal layer.
Yet another embodiment relates to a memory device that includes a substrate comprising one or more complementary metal-oxide semiconductor devices and a first insulator layer formed on the substrate. The memory device also includes a monolithic stack comprising multiple layers fabricated as part of a monolithic process over the first insulator layer. The multiple layers can include a first metal layer, a second insulator layer, and a second metal layer. A resistive memory device structure can be formed within the second insulator layer and within a thermal budget of the one or more complementary metal-oxide semiconductor devices. The resistive memory device structure can be implemented as a via device. Further, the first metal layer can be coupled to the second metal layer.
Another embodiment relates to a method of fabricating a memory device. The method can include fabricating a monolithic stack that comprises multiple layers, wherein the fabricating is performed within a thermal budget of a substrate. The fabricating can include providing the substrate comprising one or more complementary metal-oxide semiconductor devices and fabricating a first insulator layer over the substrate. Further, the fabricating can include fabricating a first metal layer over the first insulator layer and fabricating an interlayer dielectric material layer over the first metal layer. Also included can be fabricating a resistive memory device structure within the interlayer dielectric material layer comprising forming a via device and fabricating a second metal layer over the resistive memory device structure.
Still another embodiment relates to a memory cell that includes a substrate comprising one or more complementary metal-oxide semiconductor devices, a first insulator layer formed on the substrate, and a monolithic stack comprising multiple layers fabricated as part of a monolithic process over the first insulator layer. The multiple layers comprise a first metal layer formed on a top surface of the substrate, a first conductive layer formed on the first metal layer, a second insulator layer, and a second metal layer. A resistive memory device structure is formed within the second insulator layer and within a thermal budget of the one or more complementary metal-oxide semiconductor devices. The resistive memory device structure is implemented as a via device. In addition, the first metal layer is coupled to the second metal layer.
The following description and the drawings set forth certain illustrative aspects of the specification. These aspects are indicative, however, of but a few of the various ways in which the principles of the specification may be employed. Other advantages and novel features of the specification will become apparent from the following detailed description of the specification when considered in conjunction with the drawings.
Numerous aspects, embodiments, objects, and advantages of the instant invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout. In this specification, numerous specific details are set forth in order to provide a thorough understanding of this disclosure. It should be understood, however, that certain aspects of the subject disclosure may be practiced without these specific details, or with other methods, components, or materials. In other instances, well-known structures and devices are shown in block diagram form to facilitate describing the subject disclosure.
This disclosure relates to two-terminal memory cells employed for digital or multi-level information storage. In some embodiments, the two-terminal memory cells can include a resistive technology, such as a resistive-switching two-terminal memory cell. Resistive-switching two-terminal memory cells (also referred to as resistive-switching memory cells or resistive-switching memory), as utilized herein, comprise circuit components having conductive contacts with an active region between the two conductive contacts. The active region of the two-terminal memory device, in the context of resistive-switching memory, exhibits a plurality of stable or semi-stable resistive states, each resistive state having a distinct electrical resistance. Moreover, respective ones of the plurality of states can be formed or activated in response to a suitable electrical signal applied at the two conductive contacts. The suitable electrical signal can be a voltage value, a current value, a voltage or current polarity, an electric or magnetic field, or the like, or a suitable combination thereof. An example of a resistive switching two-terminal memory device, though not exhaustive, can include a resistive random access memory (RRAM).
Embodiments of the subject disclosure can provide a filamentary-based memory cell. One example of a filamentary-based memory cell can comprise: a contact material layer (e.g., a p-type (or n-type) silicon (Si) bearing layer (e.g., p-type or n-type polysilicon, p-type polycrystalline SiGe, etc.)), a resistive switching layer (RSL) including a plurality of defect locations, and an active metal layer to facilitate generation of particles (e.g., metal ions, atoms capable of being ionized in response to a suitable field, or other suitable stimulus, or like particles) within, or at a boundary of, the RSL. Under suitable bias conditions (e.g., programming voltage), the particles (e.g., metal ions, atoms capable of being ionized, etc.) can migrate to the defect locations within the RSL to provide filament forming ions to the RSL. Upon removal of the bias condition a conductive filament formed by the ions within the RSL at least in part deforms. In some embodiments, deformation of the filament can comprise the particles (e.g., metal ions)—trapped within the defect locations—becoming neutral particles (e.g., metal atoms) in absence of the bias condition that have a high electrical resistance. In other embodiments, deformation of the filament can comprise dispersion (or partial dispersion) of the particles within the RSL, breaking a conductive electrical path provided by the filament in response to the bias condition. In still other embodiments, deformation of the filament can be in response to another suitable physical mechanism, or a suitable combination of the foregoing.
The RSL (which can also be referred to in the art as a resistive switching media (RSM)) can comprise, for example, an undoped amorphous Si layer, a semiconductor layer having intrinsic characteristics, a Si sub-oxide (e.g., SiOx wherein x has a value between 0.1 and 2) a non-stoichiometric oxide, a metallic oxide (e.g. Zinc Oxide) and so forth. Other examples of materials suitable for the RSL could include SiXGeYOZ (where X, Y, and Z are respective suitable positive integers), a silicon oxide (e.g., SiON, where N is a suitable positive integer), amorphous Si (a-Si), amorphous SiGe (a-SiGe), TaOB (where B is a suitable positive integer), HfOC (where C is a suitable positive integer), TiOD (where D is a suitable positive integer), and so forth, or a suitable combination thereof.
Examples of the active metal layer can include, among others: silver (Ag), gold (Au), titanium (Ti), titanium-nitride (TiN) or other suitable compounds of titanium, nickel (Ni), copper (Cu), aluminum (Al), chromium (Cr), tantalum (Ta), iron (Fe), manganese (Mn), tungsten (W), vanadium (V), cobalt (Co), platinum (Pt), and palladium (Pd). Other suitable conductive materials, as well as compounds or combinations of the foregoing or similar materials can be employed for the active metal layer in some aspects of the subject disclosure. In some embodiments, a thin layer of barrier material composed of Ti, TiN, or the like, may be disposed between the RSL and the active metal layer (e.g., Ag, Al, and so on). Details pertaining to additional embodiments of the subject disclosure similar to the foregoing example(s) can be found in the following U.S. patent applications that are licensed to the assignee of the present application for patent: application Ser. No. 11/875,541 filed Oct. 19, 2007, application Ser. No. 12/575,921 filed Oct. 8, 2009, and the others cited herein, each of which are incorporated by reference herein in their respective entireties and for all purposes.
According to various disclosed embodiments, disclosed resistive switching devices can be fabricated consistent with foundry compatible processes. As utilized herein, foundry compatible refers to consistency with physical constraints associated with fabrication of a semiconductor-based device in a commercial semiconductor fabrication foundry, such as Taiwan Semiconductor Manufacturing Corporation, among others. Physical constraints include a thermal budget (e.g., maximum operating temperature) of a die, and of materials and metals constructed on the die prior to a given process step. For example, where a die comprises one or more metal layers or constructs, and viability of device models require the metal layers to maintain tight position tolerance, the thermal budget may be set by the softening temperature of the metal(s) to avoid loss of metal rigidity. Other physical constraints can include, CMOS, nMOS or pMOS fabrication constraints, where suitable, fabrication toolset limitations of a particular metallization scheme (e.g., etching/masking/grooving toolsets available for Aluminum, Copper, etc.), physical properties requiring special process handling (e.g., dispersion properties of Cu, oxidation properties of metals, semi-conducting materials, etc.), or the like, or other constraints of commercial foundry. Accordingly, the phrase “foundry compatible” implies consistency with process limitations of at least one commercial semiconductor fabrication foundry.
To program a filamentary-based resistive switching memory cell, a suitable program voltage(s) can be applied across the memory cell causing a conductive path or a filament of varying width and length to form within a relatively high resistive portion of the memory cell (e.g., the resistive switching layer). This causes the memory cell to switch from a relatively high resistive state, to one or more relatively low resistive states. In some resistive-switching devices, an erase process can be implemented to deform the conductive filament, at least in part, causing the memory cell to return to the high resistive state from the low resistive state(s). This change of state, in the context of memory, can be associated with respective states of a binary bit or multiple binary bits. For an array of multiple memory cells, a word(s), byte(s), page(s), block(s), etc., of memory cells can be programmed or erased to represent zeroes or ones of binary information, and by retaining those states over time in effect storing the binary information. In various embodiments, multi-level information (e.g., multiple bits) may be stored in respective memory cells.
Although resistive memory is still in the development stages, the inventors believe that resistive memory will replace conventional NAND and NOR FLASH memory devices, as well as other memory devices. The inventors have observed that development of resistive memory has encountered a pragmatic fabrication obstacle: thermal budget constraints of associated devices (e.g., frontend of line fabrication products). Thermal budget refers to an amount of thermal energy transferred to a wafer during a particular temperature operation. During the process of manufacturing the resistive memory, for example, there is a desire to not adversely affect complementary metal oxide semiconductor (CMOS) devices by application of excess heat, or the like. Accordingly, CMOS devices within a substrate can impose a thermal budget constraint to the manufacture of memory components upon a CMOS chip or substrate (e.g., by way of a backend of line fabrication process). Likewise, thermal budget constraints should be considered during the manufacture of a resistive memory device in an integrated circuit, for instance. To address the thermal budget constraints, some techniques have attempted to make a resistive memory separate from the CMOS circuitry. Thus, in some cases the resistive memory is formed on a separate wafer from that on which the CMOS circuitry is formed. After forming the resistive memory, the wafer can be (flipped upside down and) bonded to the CMOS circuitry. The inventors realize that this imposes additional overhead costs and other challenges related to fabricating the resistive memory.
Another challenge associated with resistive memory integration is plasma damage from the resistive memory process. There can be a large amount of complex plasticating process(es) that might impact the CMOS circuitry from a plasma damage standpoint. The inventors believe that at least some plasma damage concerns have not been successfully addressed.
Another challenge or constraint with respect to monolithic integration of a resistive memory on top of a CMOS circuit includes the ability to use existing backend of line processes. The use of existing backend of line processes can mitigate or avoid alteration of the RC delays (where “R” is the metal wire resistance and “C” is the inter-layer dielectric capacitance) in the backend wiring during fabrication of the resistive memory. Variation in the RC delays can void the electrical models, for instance. For example, some techniques use a custom process to integrate memory fabrication into a backend of line process. The CMOS circuitry can have multiple layers of wiring in the backend and some techniques known to the inventors attempt to integrate memory elements into the backend. This process is complex and, until now, could not be performed without significant changes to the backend of line processes. The one or more disclosed aspects herein can incorporate at least a subset of existing backend of line processes, or improvements thereon. Further, the disclosed aspects can comply with thermal budget constraints of such processes.
An integrated circuit (IC) foundry includes various equipment and processes that are leveraged in order to incorporate the resistive memory into the backend of line process. The inventors of the present disclosure are familiar with backend material compatibility issues associated there with. The one or more disclosed aspects can perform the process of fabricating the resistive memory device in a relatively simple manner compared to other resistive memory fabrication processes. For example, a memory stack, as discussed herein, can add as few as one or two additional layers in some embodiments, compared to the twenty or thirty additional layers used by other memory fabrication processes. This can significantly reduce cost, complexity, and process overhead associated with manufacturing a resistive memory as a backend of line process. Further, various disclosed aspects can be readily scalable to a subsequent generation node (e.g., facilitating smaller memory cells and therefore greater die density), as compared to other processes.
Further, one or more disclosed aspects can enable smaller die sizes and lower costs through one or more disclosed processes for monolithic integration of resistive memory onto a product of a frontend of line process (e.g., a CMOS substrate). Further, the fabrication of the resistive memory devices may be performed using standard IC foundry-compatible fabrication processes. Various embodiments can also be implemented without design changes after monolithic integration (e.g., over a CMOS device) to account for changes in parasitic structure. A parasitic structure is a portion of the device (e.g., memory device) that resembles in structure a different semiconductor device, which might cause the device to enter an unintended mode of operation. Further, in at least one disclosed embodiment, there is provided a product (e.g., a memory device) of a fabrication process that can comprise monolithic integration of resistive memory over a CMOS circuitry. Further, the fabrication process can comprise IC foundry-compatible processes in a further embodiment (e.g., new or different processes are not necessary, though in alternative embodiments future improvements to such processes should not be excluded from the scope of various aspects of the present disclosure). In addition, the disclosed aspects can be performed without exceeding a temperature of about 450 degrees Celsius. For example, the temperature can be about 450 degrees Celsius or lower. Various aspects can be performed at a range of temperatures selected from a range group consisting of about 450 degree and 400 degrees Celsius, about 400 degrees and 350 degrees Celsius, about 300 degrees and 350 degree Celsius, and so on.
Referring now to the drawings,
For example, in one embodiment, a substrate could be provided that includes one or more CMOS devices formed therein. In an alternative embodiment, the one or more CMOS devices can be fabricated on, or within, the substrate. In another embodiment, the substrate can be provided with one or more CMOS devices formed therein and further comprising a fabrication of one or more additional CMOS devices on, or within, the substrate.
Prior to fabrication of the monolithic stack 104, a first insulating layer 106 can be formed over CMOS layer 102. The monolithic stack 104 can include multiple layers that are fabricated in sequence over CMOS layer 102. In some embodiments, monolithic stack 104 can be formed over first insulating layer 106 as well, whereas in at least one alternative embodiment monolithic stack 104 can be formed at least in part within first insulating layer 106. Further, one or more additional layers, not specifically depicted, can be included in the monolithic stack 104 according to alternative embodiments (e.g., see
According to some embodiments, the multiple layers of the monolithic stack 104 can include a first metal layer 108, a second insulating layer 110, and a second metal layer 112. The first metal layer 108 can be formed of a first metal (e.g., W, Al, Ag, Au, a noble metal, or a similar metal, or a suitable alloy of the foregoing). The second metal layer 112 can be formed of a second metal (e.g., Al with TiN in one embodiment). Further, a resistive memory device structure 114 can be fabricated within the second insulating layer 110. The resistive memory device structure 114 can create a contact between the first metal layer 108 and the second metal layer 112.
The resistive memory device structure 114 can be fabricated within a thermal budget of the CMOS layer 102. For example, the resistive memory device structure 114 can be fabricated at a temperature of about 450 degrees Celsius. According to an embodiment, the temperature can be about 450 degrees Celsius or lower. In various embodiments, the resistive memory device structure can be fabricated at a range of temperatures selected from a range group consisting of about 450 degree and 400 degrees Celsius, about 400 degrees and 350 degrees Celsius, about 300 degrees and 350 degree Celsius, and so on.
The inventors believe the dielectric constant imposes a constraint and therefore constructing a resistive memory device with a low thermal budget can provide lower fabrication costs as compared to other high temperature memory fabrication processes that have high temperature components and that must be fabricated separate from the CMOS, as discussed above, and not as a monolithic process over the CMOS chip. As one example, a gate dielectric material employed for CMOS devices can be Applied Materials Producer Black Diamond (HBD3) low-k dielectric (e.g., k<=3.0), although the subject disclosure is not limited to this example.
In an implementation, the resistive memory device structure 114 can retain a defined distance between the first metal layer 108 and the second metal layer 112. For example, as the resistive memory device structure 114 is formed, a distance between the first metal layer 108 and the second metal layer 112 stays approximately the same. In other words, the distance between the first metal layer 108 and the second metal layer 112 does not become appreciably larger, if at all, within an established fabrication process as a result of the inclusion of the resistive memory device structure 114. In some embodiments, the distance between the first metal layer 108 and the second metal layer 112 is the same as the distance between the second metal layer 112 and a third metal (not depicted, but see, e.g.,
In an aspect, the resistive memory device structure 114 can be implemented in a pillar-type device. For example, the pillar-type device can include a first portion of the resistive memory device structure 114 that is formed on the first metal layer 108. The pillar-type device can also include a second portion (e.g., oversized layer) that is formed of a plurality of adjacent materials (e.g., the second portion comprising layers of multiple adjacent materials). In some embodiments, the layers of materials are cylindrical-shaped and are approximately concentric, such as a first cylinder and a second cylinder; however the subject disclosure is not limited to this embodiment. The second portion of the pillar-type device can contact the second metal layer 112. Moreover, in at least one embodiment the first portion can have a cross-section (e.g., viewed from the top or bottom) that is cylindrical or approximately cylindrical, polygonal or approximately polygonal, or the like, having a defined perimeter. Further, the second portion can have a cross-section having a larger perimeter (e.g., larger diameter, larger radius, etc.) than the defined perimeter of the first portion. In one or more embodiments, the first portion can be a cylinder (or approximate cylinder) having a first diameter, and the second portion can comprise a sequence of cylinders (or approximate cylinders) formed of one or more of the plurality of adjacent materials above the first portion and having at least one additional diameter(s) that is larger than the first diameter of the first portion of the pillar-type device.
In other embodiments, as utilized herein, a structure or device referred to with the term “cylinder” can alternatively or additionally comprise a polygonal shape, or an approximately polygonal shape. In another example, the structure or device referred to with the term cylinder can alternatively or additional comprise an ovoid or approximately ovoid shape, or the like. Further, such a structure or device can alternatively have a cone shape, an approximation of a cone, and so on. In another example, such a structure or device can be approximately a multiple sided polygon (for instance, a polygon having at least one partially rounded edge, or a polygon having at least one partially rounded corner, or multiple partially rounded edges, or multiple partially rounded corners, or a combination of the foregoing). In another example, the structure or device can have at least one side that is non-linear, such as a curved side. In a further example, the structure or device can have some non-sharp edges or some non-sharp sides. In yet another example, the structure or device can be an object that is approximately polygonal, an extruded polygon having at least one non-linear side, or an extruded polygon having at least one non-sharp edge. In some embodiments, an area of the cross-sections may be substantially similar, or different. Thus, it should be appreciated that reference to a particular geometry for a structure or device should be considered as illustrative and not to be construed as limiting.
In one example, the second portion of the pillar-type device can comprise (e.g., a collar having larger diameter or perimeter than the first portion of the pillar-type device) a first cylinder that can have a first side and a second side, located on opposite ends of the first cylinder. The pillar-type device can comprise a second cylinder that can have a first surface and a second surface, located on opposite sides of the second cylinder. A first side of the first cylinder can contact the first portion of the pillar-type device (e.g., pillar) and the second side of the first cylinder can contact the second surface of the second cylinder. The first side of the second cylinder can contact the second metal layer 112 (see, e.g., cut-out section 318 of
According to an embodiment, the resistive memory device structure 114 can be implemented in a pillar-like device that includes a pillar structure. The pillar structure can be formed of conducting material. In some embodiments, the pillar structure can include a prism structure (parallel bases) with a cross-sectional pattern such as a circle, approximately polygonal, ovoid, or the like. In one example, a first cylinder is formed of switching material and a second cylinder is formed of another conducting material. In an aspect, the conducting material of the pillar structure and the second cylinder are different materials. However, according to some aspects, the material of the pillar structure and the second cylinder can be the same material or a similar material.
According to an implementation, a pillar-type device can be formed at least in part from a via—created by forming a hole, void, etc., from another material—that is filled with one or more materials or layers of materials (and in such case may also be referred to herein as a via device). In one embodiment, a pillar-type device can be formed at least in part by a material that fills at least a subset of the via (e.g., fills a subset of the hold, void, etc.). In a further embodiment, the pillar-type device can comprise a via liner formed of a material deposited over a surface of the other material exposed by the via. The via liner material can be selected from, among others: Silicon Oxide (SiOx), a compound of SiOx and Titanium Oxide (TiOx), and a compound of SiOx and Aluminum Oxide (AlOx), or a similar material(s), or suitable combinations thereof. In accordance with an implementation, the via device can be filled (e.g., over the via liner material) with a material selected from, among others: Al, Al and Cu, Al with TiN, Al with Ti or TiN, TiN, Al and Cu or TiN, or suitable combinations thereof, or a similar material(s).
In some implementations, referring back to the second portion of the pillar-type device, the first cylinder can have a first thickness and the second cylinder can have a second thickness, different from the first thickness. Thus, the first cylinder can be thicker than the second cylinder. However, according to other aspects, the first cylinder can be thinner than the second cylinder.
In various embodiments, the CMOS layer 102 may include memory driver circuitry, processing logic, gate arrays, or the like. For example, in one embodiment, a substrate 202 could be provided that includes one or more CMOS devices formed therein. In an alternative embodiment, the one or more CMOS devices can be fabricated at least in part within, and at least in part above, the substrate. In another embodiment, the substrate can be provided with one or more CMOS devices formed therein and further comprising a fabrication of one or more additional CMOS devices on, or within, the substrate.
In some embodiments, a first conductive plug 208 can be formed within the first insulating layer 204. The first conductive plug 208 (e.g., W) can electrically connect the substrate 202 and the first metal layer 206.
Formed on a top surface of the first metal layer 206 can be a second insulating layer 210. Formed over the second insulating layer 210 can be a second metal layer 212. The first metal layer 206, the second metal layer 212, and subsequent metal layers can be formed of metals. Further, a resistive memory device structure 214 can be formed within the second insulating layer 210. Further, as illustrated, the resistive memory device structure 214 can be formed within the first metal layer 206 and at least a portion of the first insulating layer 204. The resistive memory device structure 214 can create a contact between the first metal layer 206 and the second metal layer 212. The resistive memory device structure 214 can be formed using integrated-circuit foundry compatible processes (e.g., using existing integrated-circuit foundry tooling), according to the various aspects discussed herein.
In accordance with an aspect, forming the resistive memory device structure 214 can include retaining a defined distance between the first metal layer 206 and the second metal layer 212. For example, while forming the resistive memory device structure 214 the distance that separates the first metal layer 206 and the second metal layer 212 stays about the same as the distance before the resistive memory device structure 214 is formed.
According to another implementation, the resistive memory device structure 214 can be implemented in a via-type device. The via-type device can be one of a multitude of difference structures, including, but not limited to, a via structure (e.g., a hole, a void, etc.), a channel, a trough, and so on. The via structure can be lined with aluminum, copper, silver, a suitable compound thereof, or suitable combinations of the foregoing. In some embodiments, the lining of the via structure can be a deposition having a substantially uniform thickness over a surface(s) exposed by the via structure/channel/trough, etc. The thickness can be 20 nm or less, in some embodiments, can be a range of thicknesses selected from a group of ranges comprising: about 15 nm to about 20 nm, about 10 nm to about 15 nm, about 5 nm to about 10 nm, and less than about 1 nm to about 5 nm. Further, the via structure can include at least a portion that is fabricated with conducting material.
It is noted that the memory architecture 300 is shown built between a first set of metals, M3 metal layers 302, and a second set of metals, M6 metal layers 304. Various components of the memory architecture 300 that are included below the M3 metal layers 302 (e.g., metals M1, metals M2, gate level components, CMOS circuitry, and so on) are not illustrated or described for purposes of simplicity. Further, additional metal layers above the M6 metal layers 304 can be included in the memory architecture 300, but are not illustrated or described for purposes of simplicity.
A first set of vertical contacts, V3 contacts 306, connect portions of the M3 metal layers 302 to portions of a third set of metals, M4 metal layers 308. Further, a second set of vertical contacts, V4 contacts 310, can connect portions of the M3 metal layers 302 to portions of a fourth set of metals, M5 metal layers 312. Further, another set of the V4 contacts 310 can connect portions of the M4 metal layers 308 to portions of the M5 metal layers 312. For example, see
Illustrated between portions of the M4 metal layers 308 and portions of the M5 metal layers 312, is a memory element 318. In accordance with an implementation, the memory element can be a pillar-type device 316. It is noted that although the pillar-type device 316 is illustrated between the M4 metal layers 308 and the M5 metal layers 312, one or more pillar-type devices can be formed in other places within the memory architecture 300. For example, one or more pillar-type devices can be formed between the M3 metal layers 302 and the M4 metal layers 308, between the M5 metal layers 312 and the M6 metal layers 304, or between other sets of metals, or other metal backend layers (not shown).
Further, pillar-type devices can be formed between multiple sets of metals. For example, at least one pillar-type device can be formed between the M4 metal layers 308 and the M5 metal layers 312 and at least another pillar-type device can be formed between the M5 metal layers 312 and the M6 metal layers 304, or between other metals. Thus, the pillar-type device(s) can be sandwiched between any suitable metal layers including any suitable further backend metal layers, although such metal layers are not illustrated or described for purposes of simplicity.
During the process of fabricating the memory element between sets of the metals (e.g., between the M4 metal layers 308 and the M5 metal layers 312), fabrication of memory element 318 can be provided without having to alter the spacing (e.g., defined in a backend of line process model, or the like) between the metal layers in at least some disclosed embodiments. For example, in such embodiments, the height between the respective M4 metal layers 308 and the respective M5 metal layers 312 can be substantially the same as the height between the M3 metal layers 302 and the M4 metal layers 308. Further, in an embodiment where a pillar-type device forms memory element 318 (which, e.g., can include a pillar (PL) and a collar (CL) in at least one such embodiment), a total height of the pillar-type device can be the same, or substantially the same, as a gap between the respective M4 metal layers 308 and the respective M5 metal layers 312 before placement of the memory element. In such a manner, existing dielectrics (e.g., the dielectric used before placement of the memory element, or pillar-type device, between the respective metal layers) can continue to be utilized. Further, various other existing processes used in an integrated circuit can continue to be utilized to manufacture the example memory architecture 300.
In various disclosed embodiments, the resistive memory device can be integrated monolithically on top of a substrate. In further embodiments, the substrate can be a CMOS substrate having one or more CMOS-compatible devices. In one or more other embodiments, disclosed memory device(s) can be resistive-switching two-terminal memory devices compatible in part or in full with existing CMOS fabrication techniques. Accordingly, some or all of the disclosed memory devices can be fabricated with low fabrication costs, limited retooling, and the like, resulting in high density and high efficiency two-terminal memory that the inventors believe can be fabricated and brought to market with fewer fabrication problems than can exist with other memory devices or process technologies.
To illustrate, some processes used to integrate a resistive memory might cause a change to the dielectric thicknesses or to critical dimensions in the backend and, therefore, a capacitance of a memory device can change. Therefore, the electrical design documents for these other processes have to be changed, resulting in the consumption of valuable resources (e.g., time, costs, and so on). The one or more aspects disclosed herein minimize these changes by adding or forming the resistive memory on top of the CMOS circuitry. Further, the inter-layer dielectric (ILD) thickness is maintained the same (or similar) between backend metal layers (e.g., the M4 metal layers 308 and the M5 metal layers 312, as illustrated) to mitigate or avoid changes in metal layer capacitances compared with capacitances assumed by an associated electrical design model.
Further, as illustrated by the cut-out section (dotted circle) of memory element 318, a pillar-type device, which can be placed between respective sets of the metals, can include a pillar 320 (labeled as PL) and a collar 322 (labeled as CL). For example, the pillar 320 can be placed, followed by a collar 322 comprising one or more components (e.g., one or more collar components). In one example, the collar components can be a cylinder, a polygonal cross-section, a three-dimensional object having a cylindrical cross-section, and so on. In one aspect the collar can comprise a single three-dimensional object formed of a single material. In another aspect, the collar can have multiple objects stacked or placed on top of each other comprising at least one disparate material. In another aspect, the collar can have multiple objects, at least one of which approximates a geometric cross-section (e.g., a cylinder) but is not a true geometric shape.
In various embodiments, as illustrated in
In an implementation, the cylinders or other objects of the collar can be different sizes. For example, a first cylinder can be thicker than a second cylinder. In another example, the first cylinder can be thinner than the second cylinder. In such embodiments, breaking the pillar-type device 318 into multiple subsets having different diameter (or perimeter, for non-geometric shapes) layers can be to minimize leakage paths along sidewalls and better encapsulation of materials. In at least one embodiment, pillar 320 can be formed of multiple materials, of the same size, approximately same size, or of different size.
The pillar 320 can comprise conducting material, such as a p-type polycrystalline silicon p-type polycrystalline, SiGe, and the like. In some embodiments, the bottom layer of the collar 322 (e.g., at least a portion of a first cylinder) is a switching material (e.g., an RSL or RSM, as described herein). However, in other embodiments the switching material can be at a different layer of the collar 322 (e.g., middle layer, etc.). Further, at the top of the collar 322 (e.g., at least a portion of a second cylinder) can be a conducting connection, formed of a conducting material.
According to one or more of the disclosed aspects, the materials used are low thermal budget materials that do not impact IC foundry CMOS at sub 45 nm nodes (e.g., High K gate dielectric metal gate process, or others). For instance, materials selected for pillar 320 and collar 322 can be processed within a thermal budget of CMOS circuitry associated with memory architecture 300. Additionally, the materials can be processed within existing spatial models for the metal layers. Further, the unit processes are compatible with small nodes without impacting the CMOS circuitry.
In an embodiment, memory architecture 300 can be fabricated by forming a first insulating layer over a CMOS substrate, and forming M3 metal layer 302 over the first insulating layer. M3 metal layer 302 can be formed into one or more segments of M3 metal layer 302, by patterning and etching, grooving and filling, via etching and filling, or the like. A second insulating layer is formed above M3 metal layer 302, and one or more via holes are formed within the second insulating layer. The one or more via holes can be filled with conductive material to form a first set of conductive plugs 306. A M4 metal layer 308 can be formed above the second insulating layer and conductive plugs 306. In a first embodiment, respective layers of pillar-type device(s) 316 can be deposited, patterned and etched above M4 metal layer 408 to form the pillar-type devices 316, which can be buried in a third insulating layer and polished so that a top surface of the third insulating layer and of pillar-type devices 316 is substantially co-planar. In a second embodiment, a third insulating layer can be formed over M4 metal layers 308, and a set of vias, trenches, grooves, etc., can be formed within the third insulating layer. The vias/trenches/grooves can be iteratively deposited with respective layers of pillar-type devices 316. Additional insulating material can be deposited and polished to a top surface of the respective layers of pillar-type devices 316, or alternatively the respective layers of pillar-type devices 316 can be polished flat to a top surface of the third insulating layer. M5 metal layer 312 can then be deposited and segmented to form segments of M5 metal layer 312. A fourth insulating layer can be deposited above M5 metal layers, and one or more additional conductive vias 314 formed within the fourth insulating layer. Additionally, M6 metal layer 304 can then be deposited and segmented to form segments of M6 metal layer 304.
With reference to
In the art, this dimension establishing the technology node of a memory cell is generally referred to as a critical dimension. This term is utilized with the same meaning throughout this disclosure; however it should be appreciated that the term is not to be construed to limit the disclosure or appended claims to a particular embodiment or a particular dimension, as some embodiments will have a technology node established by one critical dimension (e.g., electrical contact surface area between pillar 320 and collar 322) whereas other embodiments will have a technology node established by another critical dimension (e.g., electrical contact surface area shared by a metal layer serving as an electrode for the memory device and a switching layer of the memory device; see
Further, scaling to smaller geometries for a two-terminal memory cell (e.g., RRAM, and so on) can become expensive. With the one or more aspects disclosed herein, it is possible to extend the scalability of the two-terminal memory cell in a manufacturing facility without the need for advanced lithography. For example, an architecture that is formed by a pillar changed to a via can be utilized wherein the device size is controlled by a contact area between a thin bottom electrode layer (e.g., controlled by film thickness) and a via liner (e.g., controlled by film thickness). The one or more aspects disclosed herein can also effectively enable scaling two-terminal memory on CMOS by using the same, or a lower, cost and lower resolution lithography tools.
In various embodiments, one or more of metal layers 402, 404, 410 can be segmented into multiple segments of the respective metal layer(s) 402, 404, 420. For instance, metal layer M5 404 (or metal layer M3 402, metal layer M4 410, or other metal layers not depicted by
Memory architecture 400 can comprise a substrate having one or more CMOS devices formed therein or thereon (not depicted). One or more metal layers and intervening insulator layers can be formed (e.g., deposited, etc.) on a top surface of the substrate and below metal layer M3 402, in some disclosed embodiments. These metal layers and intervening insulator layers can be patterned, etched, polished, grooved, etc., to form suitable electronic devices or electronic circuitry. The circuitry can provide electrical contact for subsets of the CMOS devices, in some embodiments, peripheral electronic devices or functionality for subsets of the CMOS devices, and so on. In other embodiments, however, memory architecture 400 can have no intervening layers between the substrate and metal layer M3 402, some but not all of the above intervening layers, or some but not all of the suitable electronic devices or electronic circuitry, to achieve a desired electronic device.
In further embodiments, a first insulating layer 408 can be formed (e.g., deposited, and so on) above metal layer M3 402. One or more conductive plugs 406 (e.g., W) can be formed within first insulating layer 408. The conductive plug(s) 406 can connect a respective portion(s) of the M3 metal layers 402 with an associated portion(s) of another set of metals, M4 metal layers 410. In an embodiment, conductive plug(s) 406 can be formed by creating a via within first insulating layer 408, and filling the via at least in part with a selected conductive material (e.g., W, etc.). Other mechanisms for forming the conductive plug(s) 406 are considered within the scope of the subject disclosure, such as forming a groove(s) in first insulating layer 408 and filling the groove(s) with material selected for conductive plug(s) 406, or the like. Although conductive plug(s) 406 is depicted as having vertical sides, it should be appreciated that this is for illustrative purposes only, and other geometries (or non-geometric shapes) can be implemented as well, such as slanted sides, curved sides, irregular sides, non-geometric sides, and so forth, as suitable.
An additional metal layer, metal layer M4 410 can be formed over first insulating layer 408. At least a subset(s) of metal layer M4 410 can be formed in direct electrical contact with conductive plug(s) 406, in an embodiment. In further embodiments, metal layer M4 410 can be segmented into multiple metal layer segments, as described above. In various embodiments, M4 metal layers 410 may be a conductive layer formed of various metal materials (e.g., TiN, W, Al, or the like), or conductive silicon-containing material (e.g., p-type polycrystalline silicon, p-type SiGe, doped SiGe, or the like).
A second insulating layer 412 can be formed (e.g., deposited) over the M4 metal layers 410. Formed within the second insulating layer 412 can be a via-type device 414 (e.g., a via, a channel, a trough, and so on). The via-type device 414 can also be formed through the M4 metal layer 410 and into the first insulating layer 408, in one or more embodiments. It is noted that although the via-type device 414 is illustrated between a portion of the M4 metal layers 410 and a portion of the M5 metal layers 404, one or more via-type devices can be included in other places within the memory architecture 400. For example, one or more via-type devices can be located between the M3 metal layers 402 and the M4 metal layers 410, between the M3 metal layers 402 and the M5 metal layers 404, between the M5 metal layers 404 and a M6 metal layer (not shown), or between other sets of metal backend layers (not shown), between a disclosed metal layer and a non-disclosed metal layer, or in at least one embodiment between a metal layer and a metal interconnect (e.g., in electrical contact with a conductive plug 406 and a metal layer, or between two conductive plugs, or some other suitable orientation).
Further, additional via-type devices can be included between multiple sets of metal layers. For example, at least one via-type device can be formed between the M4 metal layers 410 and the M5 metal layers 404 and at least another via-type device can be formed between the M5 metal layers 404 and a M6 metal layers (not shown), or between other metals or metal layers. Thus, the via-type device(s) can be sandwiched between any metal layers including any further backend metal layers, although such metal layers are not illustrated.
The via-type device(s) can be formed with suitable etching techniques, grooving techniques, or similar techniques for removing at least a subset of material of stacked semiconductor films or layers. Similar to the memory architecture 300 described with respect to
As depicted, via-type device 414 can comprise a vertical portion (or approximately vertical portion) intersecting a horizontal portion (or approximately horizontal portion), in some disclosed embodiments. In a first embodiment, second insulating layer 412 can be formed to an initial height, substantially equal to a bottom surface of the horizontal portion of via-type device 414. After formation of via-type device 414, a further depositing of second insulating layer 412 can bring second insulating layer 412 to a bottom surface of M5 metal layers 404. Other embodiments can utilize other steps to achieve this or similar orientation.
Upon formation of second insulating layer 412, a via (or, e.g., a trench, groove, and so on) can be formed within the second insulating layer 412 to form a gap where the vertical portion is depicted. The via-type device 414 (or multiple via devices), can result in exposed sidewall portions of respective ones of the insulating layers or metal layers. By filling at least a subset of the exposed sidewall portions with respective layers of via-type device 414, a two-terminal memory cell(s) can be formed along a non-vertical direction (e.g., horizontal direction, substantially horizontal direction, oblique direction, and so forth) with respect to the orientation of
In various embodiments, the second portion 418 is a resistive switching material layer, such as undoped amorphous silicon material layer, non-stoichiometric silicon oxide, or the like. The resistive switching material layer can serve as a non-volatile switching component of two-terminal memory cells 422A, 422B, in an embodiment. The first portion 416 may be an active metal layer (e.g., Ag, Au, Al, or the like) that serves as a common first electrode for two-terminal memory cells 422A, 422B. The via-type device 414 may also include a thin barrier material layer between the first portion 416 and the second portion 418, such as Ti, W, TiN, or the like. Further, respective subsets of M4 metal layers 410 can be independently controlled, senses, etc., to provide separate and respective second electrodes for two-terminal memory cells 422A, 422B, enabling individual operation thereon.
In various embodiments, a plug 420 may be formed between the via-type device 414 and the M5 metal layers 404. The plug 420 may be formed of a conductive material (e.g., Ti, W, TiN, or the like). According to an aspect, the via-type device can be formed using a W plug process to connect aluminum (Al), copper (Cu), a suitable compound or alloy thereof, or any other suitable metallization scheme. For example, as discussed herein, a W plug can be used for making a metal contact. According to an aspect, second insulating layer 412 can be formed to a height substantially equivalent to a bottom surface of M5 metal layers 404 (whether before or after formation of via-type device 414), and a via hole can be formed within the second insulating layer 412 down to and exposing a top surface of via-type device 414. The W plug can be formed by filling the via hole with W, such that the top surface of via-type device 414 can make direct electrical contact with the plug 420. A top surface of second insulating layer 412 can then be polished, in some embodiments, to provide a top surface of plug 420 to be flat or substantially flat with the top surface of second insulating layer 412. M5 metal layer 404 can then be deposited above the top surfaces of plug 420 and second insulating layer 412 so that at least a subset of M5 metal layer 404 is in electrical contact with plug 420. Thus, at least the subset of M5 metal layer 404 can be in electrical contact with the top surface of via-type device 414 by way of plug 420.
As mentioned above, the via-type device 414 can form one or more two-terminal memory cells 422A, 422B oriented along a non-vertical angle (e.g., oblique angle, etc.). The memory cells 422A, 422B can be created at respective junctions of first portion 416, second portion 418 and a left subset of M4 metal layer 410 and a right subset of M4 metal layer 410. As a result, a critical dimension of two-terminal memory cells 422A, 422B can be established by a smallest common surface area facilitating electrical conductivity through respective ones of the junctions. In one embodiment, the smallest electrical contact surface area can be a (respective) side-wall surface of M4 metal layer 410 in direct electrical contact with respective subsets of second portion 418 of via-type device 414 (as depicted within the respective dotted ovals). Accordingly, controlling a thickness of M4 metal layer can effectively scale the respective two-terminal memory cells 422A, 422B. Further, this thickness can be controlled with thin film thickness techniques, and in at least some embodiments can be implemented without scaling printed features utilizing lithographic techniques. As compared to
Further, the pillar-type device 316 of
As illustrated, the via can be both through (or partially through, in some embodiments) the second electrode metal (e.g., the M4 metal layers 410). The critical dimension can be a surface area in direct electrical contact between the second electrode metal (e.g., M4 metal layer 410) and via-type device 414. Further, this surface area can affect electrical resistivity of two-terminal memory cells 422A, 422B, by restricting current density through the cells. Because a via can be formed having a variety of cross-section shapes or sizes, the shape/size of the via utilized for via-type device 414 can also affect this critical dimension surface area, and thus the electrical resistivity of two-terminal memory cells 422A, 422B. Thus, in at least one embodiment, the critical dimension can be modulated at least in part by control a size or a shape of the via utilized for via-type device 414.
According to some implementations, a via can be drilled through a multiple bottom electrode (BE) stack (e.g., multiple metal layers), which can allow for three (or another number) of devices to be included on the same via. According to some aspects, the bottom electrode can be a semiconductor. In further embodiments, an oblique angle along which two-terminal memory cells 422A, 422B are oriented can be selected to provide for an enhanced electrical field (E-field) that can reduce the via form (e.g., width or length) as compared to a planar device.
According to one or more of the disclosed aspects, the memory device architecture utilizes smaller CMOS devices and can improve memory efficiency. Further, the memory device architecture of the various aspects disclosed herein can be made using materials that are already existing in most IC foundry facilities. Further, the integration scheme can enable device scaling to 5 nm without the need to use a manufacturing toolset that is typical of a 5 nm (or smaller) technology node (e.g., no retooling is needed). For example, with 44 nm or 193 nm lithography toolset, a sub 20 nm device can be made using the disclosed aspects.
According to an implementation, the pillar-type device or via-type device may include one or more materials representing a selector device, such as a Crossbar FAST™ selection device. In some embodiments, the selector device can include a selector layer the can be a non-stoichiometric material having volatile, bipolar switching characteristics. Examples of suitable materials for selector layer can include SiOX, TiOX, AlOX, WOX, TiXNYOZ, or the like, or suitable combinations thereof, where x, y and z can be suitable non-stoichiometric values. In at least one embodiment of the present disclosure, the selector layer can be doped with a metal(s) during fabrication, to achieve a target resistance or conductance characteristic. Further to the above, the selector device can comprise an ion conductor layer1 or an ion conductor layer2. Ion conductor layer1 or ion conductor layer2 can comprise a solid electrolyte (e.g., Ag—Ge—S, Cu—Ge—S, Ag—Ge—Te, Cu—Ge—Te, etc.), a metal-oxide alloy (e.g., AgSiO2, and so forth), or the like.
In view of the exemplary diagrams described above, process methods that can be implemented in accordance with the disclosed subject matter will be better appreciated with reference to the following flow charts. While for purposes of simplicity of explanation, the methods are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks are necessarily required to implement the methods described herein. Additionally, it should be further appreciated that the methods disclosed throughout this specification are capable of being stored on an article of manufacture to facilitate transporting and transferring such methodologies to an electronic device. The term article of manufacture, as used, is intended to encompass a computer program accessible from any computer-readable device, device in conjunction with a carrier, or storage medium.
Thus, fabricating the monolithic stack can include, at 504, providing a substrate that includes one or more complementary metal-oxide semiconductor (CMOS) devices. For example, in one embodiment, the substrate could be provided that includes one or more CMOS devices formed therein. In an alternative embodiment, the one or more CMOS devices can be fabricated at least in part within and at least in part above, the substrate. In another embodiment, the substrate can be provided having one or more pre-existing CMOS devices, and method 500 can further comprise fabricating one or more additional CMOS devices in, on, or above, the substrate.
At 506, a first insulator layer is fabricated over the substrate and a first metal layer is fabricated, at 508, over the first insulator layer. The first insulator layer can be configured to electrically isolate the substrate from the first metal layer.
At 510, an interlayer dielectric material layer is fabricated over the first metal layer. Further, a resistive memory device structure is fabricated, at 512, within the interlayer dielectric material layer. For example, the resistive memory device may be implemented as a pillar-type device in electrical contact with at least the first metal layer. According to another example, the resistive memory device may be implemented as a via-type device. Further, to this example, the via device can be formed in electrical contact with at least the first metal layer.
A second metal layer is fabricated, at 514, over the resistive memory device structure. In various embodiments, a distance between the first metal layer and the second metal layer can be substantially similar to a distance between the second metal layer and a third metal layer. In other embodiments, method 500 can form the resistive memory device structure while maintaining a target distance (e.g., a predetermined distance established by an electrical design model) between the first metal layer and the second metal layer.
According to an implementation, fabricating the monolithic stack can include fabricating the monolithic stack at a temperature of about 450 degrees Celsius or lower. In one specific implementation, the monolithic stack can be fabricated at a temperature between about 400 and 450 degrees Celsius. In another implementation, the monolithic stack can be fabricated at a temperature between about 350 and 400 degrees Celsius. In yet another implementation, the monolithic stack can be fabricated at a temperature between about 300 and 350 degrees Celsius.
Method 600 begins, at 602, when a substrate is provided. The substrate can be the CMOS 102 of
At 604, a first metal layer is provided over the substrate. In some implementations, the first metal layer can be a subset of the CMOS 102 of
The first metal layer can be covered with an interlayer dielectric, at 606. The interlayer dielectric can be the first insulating layer 106 of
At 608, a via can be formed through (or within) the interlayer dielectric. The via can be, for example, a contact, a vertical contact, a conductor, and so forth. In one implementation, a via can be formed within at least a portion of the interlayer dielectric. The via can be filled with a conductive material, at 610. For example, the via filled with the conductive material can be the V3 contacts 306 of
At 612, a second metal layer can be formed over the interlayer dielectric and the via. The second metal layer can be the M4 metal layers 308 of
According to some implementations, forming the second metal layer can include forming one or more discontinuities (e.g., segments) in the second metal layer. The discontinuities can be created in one embodiment by creating one or more vias between subsets of the second metal layer to create the discontinuities. In another embodiment, the discontinuity can be formed by patterning the second metal layer, for example, a mask can be provided over the second metal layer (e.g., the M4 layer), except over areas of the second metal layer comprising the discontinuity. The second metal layer can then be etched to remove material uncovered by the mask, thereby providing the discontinuity. Afterward, the mask can be removed. The discontinuities in the second metal layer can be filled with a dielectric material, according to an embodiment.
A conductive material layer can be formed, at 614. At 616 the conductive pillar material layer can be patterned to form a conductive structure (e.g., pillar device, pillar-type device, etc.). At 618, the patterned conductive structure can be filled with an interlayer dielectric. Further, at 620, the interlayer dielectric can be planarized to expose at least a top surface of the conductive structure.
At 622, a material stack is deposited comprising respective layers of materials. For example, the material stack can include a resistive switching material layer, such as undoped amorphous silicon material layer, a non-stoichiometric silicon oxide, or the like. The material stack can also include an active metal layer (e.g., Ag, Au, Al, or the like). Further, the material stack can include a barrier material layer between the resistive switching material and the active metal material layer, such as Ti, W, TiN, or the like. In various embodiments, a top cap may be of a conductive material (e.g., Ti, W, TiN, or the like). The material stack can be patterned, at 624, to create a collar-type structure. In one or more embodiments, the material stack can be patterned and etched to form a material stack structure on top of the conductive structure formed at reference numbers 616 and 618, above. Further, the material stack structure can be formed to have a first perimeter that is of different length than a second perimeter of the conductive structure. This difference in perimeter lengths—the material stack structure having a first perimeter length stacked on top of the conductive structure having a second perimeter length—can reduce leakage current about the material stack structure, and provide better encapsulation of materials within an insulating dielectric layer.
At 626, method 600 can comprise filling with another interlayer dielectric layer. Then, at 628, planarize to expose a top surface of the material stack structure. Further, at 630, a third metal layer (e.g., M5 metal layers 312 of
As described herein, a pillar material layer can include a pillar device that can include a pillar-type structure (of a contact material) formed on a metal layer and a collar-type structure disposed on top of the pillar-type structure. The collar-type structure can include two or more layers of materials arranged in a stack-like structure above the pillar-type structure. The cross-section of the collar-type structure can be larger than the pillar-type structure (e.g., having a larger perimeter, as mentioned above). In some embodiments, the two or more layers can include a first layer in a cylinder-type structure disposed above a second cylinder-type structure. The second cylinder-type structure contacts the metal layer at a first surface, and a second surface coupled to the first cylinder-type structure. Further to this implementation, the first cylinder-type structure has a first side that contacts the pillar-type structure and a second side that contacts the second surface of the second cylinder-type structure. The first surface and the second surface can be located on opposite sides of the second cylinder-like structure.
According to another implementation, the resistive memory device structure can include a pillar device. The pillar device can include a pillar structure that includes conducting material and a first overlying material layer that includes a switching material and a second overlying material layer that includes an active conductor material. Further to this implementation, the first overlying material layer is characterized by a first thickness and the second overlying material layer is characterized by a second thickness different from the first thickness.
At 702 and a substrate is provided. In one embodiment, the substrate provided has one or more CMOS devices formed therein. In an alternative embodiment, the one or more CMOS devices can be fabricated on or within the substrate. In a further embodiment, the substrate can be provided with one or more CMOS devices formed therein and further, one or more additional CMOS devices can be fabricated on or within the substrate.
A first metal layer is provided over the substrate, at 704. In some implementations, the first metal layer is the M3 metal layers 404 of
A first interlayer dielectric can be formed over the first metal layer, at 706. The interlayer dielectric is used to electrically insulate the metal layers. In further, detail the interlayer dielectric is a dielectric material used to electrically separate closely spaced interconnect lines (e.g., metal layers). The interlayer dielectric can comprise an insulator that has a dielectric constant k that is as low as possible (e.g., as close to 1 as possible). Having a low dielectric constant k can minimize capacitive coupling (e.g., cross talk) between adjacent metal lines. According to an aspect, a low k dielectric is a dielectric material that has a dielectric constant k that is lower than 3.9, which is k of silicon dioxide (SiO2).
At 708, a via can be formed through the interlayer dielectric. According to various implementations, the via can be formed with suitable etching techniques, grooving techniques, or similar techniques for removing material of stacked semiconductor films or layers. The via can be, for example, a contact, a vertical contact, a conductor, and so forth. In one implementation, a via can be formed within at least a portion of the interlayer dielectric. The via can be filled with a conductive material, at 710. For example, the via filled with the conductive material can be the V3 contacts 406 of
A second metal layer can be formed over the interlayer dielectric and the via, at 712. The second metal layer can be the M4 metal layers 408 of
Another interlayer dielectric layer can be formed at 714. The other interlayer dielectric layer can be formed over the second metal layer and can be utilized to electrically isolate the second metal layer from subsequent layers.
At 716, a second via is formed through a portion of the other interlayer dielectric layer and a portion of the second metal layer. Sidewalls of the second via are lined, at 718. According to an implementation, the sidewalls are lined with a resistive switching material layer.
A remaining portion of the second via is filled with a metal material, at 720. In one embodiment, the metal material used to fill the remaining portion of the second via can be an active metal. In another embodiment, second metal layer can be formed of the active metal, and in such case the material used to fill the remaining portion of the second via can be a material selected from Al, Al and Cu, Al with Tin, Al with Ti or TiN, TiN, Al and Cu or TiN, or suitable combinations thereof. A top of the other interlayer dielectric and second via are planarized, at 722.
The planarized interlayer dielectric and second via can be covered with a third interlayer dielectric, at 724. Further, a third via is formed in the third interlayer dielectric at 726. The third via can be formed down toward the top surface of the filled second via.
At 728, the third via is filled with metal material. For example, the metal material can be W or a similar material. The third interlayer dielectric and third via are planarized to expose the W material, at 730. Further, a third metal layer is formed, at 732. The third metal layer can be patterned according to an aspect.
As discussed herein provided is a monolithic integration of resistive memory with CMOS using IC foundry processes. The disclosed aspects are thermal budget acceptable and plasma damage acceptable, which can be based on various design considerations. Further, the connection scheme as discussed herein is provided with IC foundry process for multiple schemes using W plug process to connect to aluminum, copper, or any other metallization scheme, according to an aspect. Further, through utilization of the disclosed aspects, there is little, if any, impact to design rule and electrical mode for other devices in the circuitry. In addition, the one or more disclosed aspects have a lower cost, lower parasitic considerations, and smaller chip sizes as compared to other processes.
In various embodiments of the subject disclosure, disclosed memory architectures can be employed as a standalone or integrated embedded memory device with a CPU or microcomputer. Some embodiments can be implemented, for instance, as part of a computer memory (e.g., random access memory, cache memory, read-only memory, storage memory, or the like). Other embodiments can be implemented, for instance, as a portable memory device. Examples of suitable portable memory devices can include removable memory, such as a secure digital (SD) card, a universal serial bus (USB) memory stick, a compact flash (CF) card, or the like, or suitable combinations of the foregoing. (See, for example,
NAND FLASH is employed for compact FLASH devices, USB devices, SD cards, solid state drives (SSDs), and storage class memory, as well as other form-factors. Although NAND has proven a successful technology in fueling the drive to scale down to smaller devices and higher chip densities over the past decade, as technology scaled down past 25 nanometer (nm) memory cell technology, several structural, performance, and reliability problems became evident. Such considerations have been addressed by the disclosed aspects.
In order to provide a context for the various aspects of the disclosed subject matter,
A row controller 804 or a column controller 806 can be formed adjacent to memory cell array 802. Moreover, column controller 806 can be electrically coupled with bit lines of memory cell array 802. Column controller 806 can control respective bitlines, applying suitable program, erase or read voltages to selected bitlines.
The row controller 804 can be formed adjacent to column controller 806, and electrically connected with word lines of memory cell array 802. Row controller 804 can select particular rows of memory cells with a suitable selection voltage. Moreover, row controller 804 can facilitate program, erase or read operations by applying suitable voltages at selected word lines.
A clock source(s) 808 can provide respective clock pulses to facilitate timing for read, write, and program operations of row controller 804 and column controller 806. Clock source(s) 808 can further facilitate selection of word lines or bit lines in response to external or internal commands received by operating and control environment 800. An input/output buffer 812 can be connected to an external host apparatus, such as a computer or other processing device (not depicted, but see, for example, computer 902 of
Commands received from the host apparatus can be provided to a command interface 814. Command interface 814 can be configured to receive external control signals from the host apparatus, and determine whether data input to the input/output buffer 812 is write data, a command, or an address. Input commands can be transferred to a state machine 816.
State machine 816 can be configured to manage programming and reprogramming of memory cell array 802. State machine 816 receives commands from the host apparatus via input/output buffer 812 and command interface 814, and manages read, write, erase, data input, data output, and similar functionality associated with memory cell array 802. In some aspects, state machine 816 can send and receive acknowledgments and negative acknowledgments regarding successful receipt or execution of various commands.
To implement read, write, erase, input, output, etc., functionality, state machine 816 can control clock source(s) 808. Control of clock source(s) 808 can cause output pulses configured to facilitate row controller 804 and column controller 806 implementing the particular functionality. Output pulses can be transferred to selected bit lines by column controller 806, for instance, or word lines by row controller 804, for instance.
In connection with
With reference to
The system bus 908 can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, or a local bus using any variety of available bus architectures including, but not limited to, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Card Bus, Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Firewire (IEEE 1394), and Small Computer Systems Interface (SCSI).
The system memory 906 includes volatile memory 910 and non-volatile memory 912, which can employ one or more of the disclosed memory architectures, in various embodiments. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer 902, such as during start-up, is stored in non-volatile memory 912. In addition, according to present innovations, codec 935 may include at least one of an encoder or decoder, wherein the at least one of an encoder or decoder may consist of hardware, software, or a combination of hardware and software. Although, codec 935 is depicted as a separate component, codec 935 may be contained within non-volatile memory 912.
By way of illustration, and not limitation, non-volatile memory 912 can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or Flash memory. Non-volatile memory 912 can employ one or more of the disclosed memory architectures, in at least some disclosed embodiments. Moreover, non-volatile memory 912 can be computer memory (e.g., physically integrated with computer 902 or a mainboard thereof), or removable memory. Examples of suitable removable memory with which disclosed embodiments can be implemented can include a secure digital (SD) card, a compact Flash (CF) card, a universal serial bus (USB) memory stick, or the like. Volatile memory 910 includes cache memory, or random access memory (RAM), which acts as external cache memory, and can also employ one or more disclosed memory architectures in various embodiments. By way of illustration and not limitation, RAM is available in many forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and enhanced SDRAM (ESDRAM), and so forth.
Computer 902 may also include removable/non-removable, volatile/non-volatile computer storage medium.
It is to be appreciated that
A user enters commands or information into the computer 902 through input device(s) 928. Input devices 928 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processing unit 904 through the system bus 908 via interface port(s) 930. Interface port(s) 930 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 936 use some of the same type of ports as input device(s) 928. Thus, for example, a USB port may be used to provide input to computer 902 and to output information from computer 902 to an output device 936. Output adapter 934 is provided to illustrate that there are some output devices, such as monitors, speakers, and printers, among other output devices, which require special adapters. The output adapter 934 can include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device 936 and the system bus 908. It should be noted that other devices or systems of devices provide both input and output capabilities such as remote computer(s) 938.
Computer 902 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 938. The remote computer(s) 938 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device, a smart phone, a tablet, or other network node, and typically includes many of the elements described relative to computer 902. For purposes of brevity, only a memory storage device 940 is illustrated with remote computer(s) 938. Remote computer(s) 938 is logically connected to computer 902 through a network interface 942 and then connected via communication connection(s) 944. Network interface 942 encompasses wire or wireless communication networks such as local-area networks (LAN) and wide-area networks (WAN) and cellular networks. LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks such as Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 944 refers to the hardware/software employed to connect the network interface 942 to the system bus 908. While communication connection 944 is shown for illustrative clarity inside computer 902, it can also be external to computer 902. The hardware/software necessary for connection to the network interface 942 includes, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and wired and wireless Ethernet cards, hubs, and routers.
The illustrated aspects of the disclosure may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules or stored information, instructions, or the like can be located in local or remote memory storage devices.
Moreover, it is to be appreciated that various components described herein can include electrical circuit(s) that can include components and circuitry elements of suitable value in order to implement the embodiments of the subject disclosure. Furthermore, it can be appreciated that many of the various components can be implemented on one or more IC chips. For example, in one embodiment, a set of components can be implemented in a single IC chip. In other embodiments, one or more of respective components are fabricated or implemented on separate IC chips.
As utilized herein, terms “component,” “system,” “architecture” and the like are intended to refer to a computer or electronic-related entity, either hardware, a combination of hardware and software, software (e.g., in execution), or firmware. For example, a component can be one or more transistors, a memory cell, an arrangement of transistors or memory cells, a gate array, a programmable gate array, an application specific integrated circuit, a controller, a processor, a process running on the processor, an object, executable, program or application accessing or interfacing with semiconductor memory, a computer, or the like, or a suitable combination thereof. The component can include erasable programming (e.g., process instructions at least in part stored in erasable memory) or hard programming (e.g., process instructions burned into non-erasable memory at manufacture).
By way of illustration, both a process executed from memory and the processor can be a component. As another example, an architecture can include an arrangement of electronic hardware (e.g., parallel or serial transistors), processing instructions and a processor, which implement the processing instructions in a manner suitable to the arrangement of electronic hardware. In addition, an architecture can include a single component (e.g., a transistor, a gate array, and so on) or an arrangement of components (e.g., a series or parallel arrangement of transistors, a gate array connected with program circuitry, power leads, electrical ground, input signal lines and output signal lines, and so on). A system can include one or more components as well as one or more architectures. One example system can include a switching block architecture comprising crossed input/output lines and pass gate transistors, as well as power source(s), signal generator(s), communication bus(ses), controllers, I/O interface, address registers, and so on. It is to be appreciated that some overlap in definitions is anticipated, and an architecture or a system can be a stand-alone component, or a component of another architecture, system, etc.
In addition to the foregoing, the disclosed subject matter can be implemented as a method, apparatus, or article of manufacture using typical manufacturing, programming or engineering techniques to produce hardware, firmware, software, or any suitable combination thereof to control an electronic device to implement the disclosed subject matter. The terms “apparatus” and “article of manufacture” where used herein are intended to encompass an electronic device, a semiconductor device, a computer, or a computer program accessible from any computer-readable device, carrier, or media. Computer-readable media can include hardware media, or software media. In addition, the media can include non-transitory media, or transport media. In one example, non-transitory media can include computer readable hardware media. Specific examples of computer readable hardware media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, and so on), optical disks (e.g., compact disk (CD), digital versatile disk (DVD), and so forth), smart cards, and flash memory devices (e.g., card, stick, key drive, and so on). Computer-readable transport media can include carrier waves, or the like. Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the disclosed subject matter.
What has been described above includes examples of the subject innovation. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject innovation, but one of ordinary skill in the art can recognize that many further combinations and permutations of the subject innovation are possible. Accordingly, the disclosed subject matter is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the disclosure. Furthermore, to the extent that a term “includes”, “including”, “has” or “having” and variants thereof is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Moreover, the word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Additionally, some portions of the detailed description have been presented in terms of algorithms or process operations on data bits within electronic memory. These process descriptions or representations are mechanisms employed by those cognizant in the art to effectively convey the substance of their work to others equally skilled. A process is here, generally, conceived to be a self-consistent sequence of acts leading to a desired result. The acts are those requiring physical manipulations of physical quantities. Typically, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, or otherwise manipulated.
It has proven convenient, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise or apparent from the foregoing discussion, it is appreciated that throughout the disclosed subject matter, discussions utilizing terms such as processing, computing, replicating, mimicking, determining, or transmitting, and the like, refer to the action and processes of processing systems, or similar consumer or industrial electronic devices or machines, that manipulate or transform data or signals represented as physical (electrical or electronic) quantities within the circuits, registers or memories of the electronic device(s), into other data or signals similarly represented as physical quantities within the machine or computer system memories or registers or other such information storage, transmission or display devices.
In regard to the various functions performed by the above described components, architectures, circuits, processes and the like, the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., a functional equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the embodiments. In addition, while a particular feature may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. It will also be recognized that the embodiments include a system as well as a computer-readable medium having computer-executable instructions for performing the acts or events of the various processes.
This application claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 61/937,412, filed Feb. 7, 2014, and entitled “MONOLITHICALLY INTEGRATED RESISTIVE MEMORY USING INTEGRATED-CIRCUIT FOUNDRY COMPATIBLE PROCESSES”, and is related to U.S. patent application Ser. No. 14/034,390 filed Sep. 23, 2013, which is a continuation of U.S. patent application Ser. No. 13/585,759 filed Aug. 14, 2012, now U.S. Pat. No. 8,569,172 issued Oct. 29, 2013; each of the foregoing are expressly incorporated by reference herein in their respective entireties and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
680652 | Leonard | Aug 1901 | A |
4433468 | Kawamata | Feb 1984 | A |
4684972 | Owen et al. | Aug 1987 | A |
4741601 | Saito | May 1988 | A |
4994866 | Awano | Feb 1991 | A |
5139911 | Yagi et al. | Aug 1992 | A |
5242855 | Oguro | Sep 1993 | A |
5278085 | Maddox, III et al. | Jan 1994 | A |
5315131 | Kishimoto et al. | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5457649 | Eichman et al. | Oct 1995 | A |
5499208 | Shoji | Mar 1996 | A |
5538564 | Kaschmitter | Jul 1996 | A |
5541869 | Rose et al. | Jul 1996 | A |
5594363 | Freeman et al. | Jan 1997 | A |
5596214 | Endo | Jan 1997 | A |
5614756 | Forouhi et al. | Mar 1997 | A |
5627451 | Takeda | May 1997 | A |
5645628 | Endo et al. | Jul 1997 | A |
5673223 | Park | Sep 1997 | A |
5707487 | Hori et al. | Jan 1998 | A |
5714416 | Eichman et al. | Feb 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5763898 | Forouhi et al. | Jun 1998 | A |
5840608 | Chang | Nov 1998 | A |
5900644 | Ying et al. | May 1999 | A |
5923587 | Choi | Jul 1999 | A |
5970332 | Pruijmboom et al. | Oct 1999 | A |
5973335 | Shannon | Oct 1999 | A |
5998244 | Wolstenholme et al. | Dec 1999 | A |
6002268 | Sasaki et al. | Dec 1999 | A |
6037204 | Chang et al. | Mar 2000 | A |
6122318 | Yamaguchi et al. | Sep 2000 | A |
6128214 | Kuekes et al. | Oct 2000 | A |
6143642 | Sur, Jr. et al. | Nov 2000 | A |
6180998 | Crafts | Jan 2001 | B1 |
6181587 | Kuramoto et al. | Jan 2001 | B1 |
6181597 | Nachumovsky | Jan 2001 | B1 |
6259116 | Shannon | Jul 2001 | B1 |
6288435 | Mei et al. | Sep 2001 | B1 |
6291836 | Kramer et al. | Sep 2001 | B1 |
6436765 | Liou et al. | Aug 2002 | B1 |
6436818 | Hu et al. | Aug 2002 | B1 |
6489645 | Uchiyama | Dec 2002 | B1 |
6492694 | Noble et al. | Dec 2002 | B2 |
6511862 | Hudgens et al. | Jan 2003 | B2 |
6552932 | Cernea | Apr 2003 | B1 |
6627530 | Li et al. | Sep 2003 | B2 |
6724186 | Jordil | Apr 2004 | B2 |
6731535 | Ooishi et al. | May 2004 | B1 |
6740921 | Matsuoka et al. | May 2004 | B2 |
6762474 | Mills, Jr. | Jul 2004 | B1 |
6768157 | Krieger et al. | Jul 2004 | B2 |
6815286 | Krieger et al. | Nov 2004 | B2 |
6816405 | Lu et al. | Nov 2004 | B1 |
6821879 | Wong | Nov 2004 | B2 |
6838720 | Krieger et al. | Jan 2005 | B2 |
6848012 | Leblanc et al. | Jan 2005 | B2 |
6849891 | Hsu et al. | Feb 2005 | B1 |
6858481 | Krieger et al. | Feb 2005 | B2 |
6858482 | Gilton | Feb 2005 | B2 |
6864127 | Yamazaki et al. | Mar 2005 | B2 |
6864522 | Krieger et al. | Mar 2005 | B2 |
6867618 | Li | Mar 2005 | B2 |
6881994 | Lee et al. | Apr 2005 | B2 |
6897519 | Dosluoglu | May 2005 | B1 |
6927430 | Hsu | Aug 2005 | B2 |
6939787 | Ohtake et al. | Sep 2005 | B2 |
6946719 | Petti et al. | Sep 2005 | B2 |
6977181 | Raberg | Dec 2005 | B1 |
7020006 | Chevallier et al. | Mar 2006 | B2 |
7023093 | Canaperi et al. | Apr 2006 | B2 |
7026702 | Krieger et al. | Apr 2006 | B2 |
7087454 | Campbell et al. | Aug 2006 | B2 |
7102150 | Harshfield et al. | Sep 2006 | B2 |
7122853 | Gaun et al. | Oct 2006 | B1 |
7167387 | Sugita et al. | Jan 2007 | B2 |
7187577 | Wang et al. | Mar 2007 | B1 |
7221599 | Gaun et al. | May 2007 | B1 |
7238607 | Dunton et al. | Jul 2007 | B2 |
7238994 | Chen et al. | Jul 2007 | B2 |
7251152 | Roehr | Jul 2007 | B2 |
7254053 | Krieger et al. | Aug 2007 | B2 |
7274587 | Yasuda | Sep 2007 | B2 |
7289353 | Spitzer et al. | Oct 2007 | B2 |
7324363 | Kerns et al. | Jan 2008 | B2 |
7345907 | Scheuerlein | Mar 2008 | B2 |
7365411 | Campbell | Apr 2008 | B2 |
7405418 | Happ et al. | Jul 2008 | B2 |
7426128 | Scheuerlein | Sep 2008 | B2 |
7433253 | Gogl et al. | Oct 2008 | B2 |
7460389 | Hsu et al. | Dec 2008 | B2 |
7474000 | Scheuerlein et al. | Jan 2009 | B2 |
7479650 | Gilton | Jan 2009 | B2 |
7499355 | Scheuerlein et al. | Mar 2009 | B2 |
7515454 | Symanczyk | Apr 2009 | B2 |
7521705 | Liu | Apr 2009 | B2 |
7534625 | Karpov et al. | May 2009 | B2 |
7541252 | Eun et al. | Jun 2009 | B2 |
7550380 | Elkins et al. | Jun 2009 | B2 |
7561461 | Nagai et al. | Jul 2009 | B2 |
7566643 | Czubatyi et al. | Jul 2009 | B2 |
7571012 | Gibson | Aug 2009 | B2 |
7606059 | Toda | Oct 2009 | B2 |
7615439 | Schricker et al. | Nov 2009 | B1 |
7629198 | Kumar et al. | Dec 2009 | B2 |
7667442 | Itoh | Feb 2010 | B2 |
7692959 | Krusin-Elbaum et al. | Apr 2010 | B2 |
7704788 | Youn et al. | Apr 2010 | B2 |
7719001 | Nomura et al. | May 2010 | B2 |
7728318 | Raghuram et al. | Jun 2010 | B2 |
7729158 | Toda et al. | Jun 2010 | B2 |
7746601 | Sugiyama et al. | Jun 2010 | B2 |
7746696 | Paak | Jun 2010 | B1 |
7749805 | Pinnow et al. | Jul 2010 | B2 |
7764536 | Luo et al. | Jul 2010 | B2 |
7772581 | Lung | Aug 2010 | B2 |
7776682 | Nickel et al. | Aug 2010 | B1 |
7778063 | Brubaker et al. | Aug 2010 | B2 |
7786464 | Nirschl et al. | Aug 2010 | B2 |
7786589 | Matsunaga et al. | Aug 2010 | B2 |
7791060 | Aochi et al. | Sep 2010 | B2 |
7824956 | Schricker et al. | Nov 2010 | B2 |
7829875 | Scheuerlein | Nov 2010 | B2 |
7830698 | Chen et al. | Nov 2010 | B2 |
7830700 | Chen et al. | Nov 2010 | B2 |
7835170 | Bertin et al. | Nov 2010 | B2 |
7858468 | Liu et al. | Dec 2010 | B2 |
7859884 | Scheuerlein | Dec 2010 | B2 |
7869253 | Liaw et al. | Jan 2011 | B2 |
7875871 | Kumar et al. | Jan 2011 | B2 |
7881097 | Hosomi et al. | Feb 2011 | B2 |
7883964 | Goda et al. | Feb 2011 | B2 |
7897953 | Liu | Mar 2011 | B2 |
7898838 | Chen et al. | Mar 2011 | B2 |
7920412 | Hosotani et al. | Apr 2011 | B2 |
7924138 | Kinoshita et al. | Apr 2011 | B2 |
7927472 | Takahashi et al. | Apr 2011 | B2 |
7968419 | Li et al. | Jun 2011 | B2 |
7972897 | Kumar et al. | Jul 2011 | B2 |
7984776 | Sastry et al. | Jul 2011 | B2 |
8004882 | Katti et al. | Aug 2011 | B2 |
8018760 | Muraoka et al. | Sep 2011 | B2 |
8021897 | Sills et al. | Sep 2011 | B2 |
8045364 | Schloss et al. | Oct 2011 | B2 |
8054674 | Tamai et al. | Nov 2011 | B2 |
8054679 | Nakai et al. | Nov 2011 | B2 |
8067815 | Chien et al. | Nov 2011 | B2 |
8068920 | Gaudiani | Nov 2011 | B2 |
8071972 | Lu et al. | Dec 2011 | B2 |
8084830 | Kanno et al. | Dec 2011 | B2 |
8088688 | Herner | Jan 2012 | B1 |
8097874 | Venkatasamy et al. | Jan 2012 | B2 |
8102018 | Bertin et al. | Jan 2012 | B2 |
8102698 | Scheuerlein | Jan 2012 | B2 |
8143092 | Kumar et al. | Mar 2012 | B2 |
8144498 | Kumar et al. | Mar 2012 | B2 |
8164948 | Katti et al. | Apr 2012 | B2 |
8168506 | Herner | May 2012 | B2 |
8183553 | Phatak et al. | May 2012 | B2 |
8187945 | Herner | May 2012 | B2 |
8198144 | Herner | Jun 2012 | B2 |
8207064 | Bandyopadhyay et al. | Jun 2012 | B2 |
8227787 | Kumar et al. | Jul 2012 | B2 |
8231998 | Sastry et al. | Jul 2012 | B2 |
8233308 | Schricker et al. | Jul 2012 | B2 |
8237146 | Kreupl et al. | Aug 2012 | B2 |
8243542 | Bae et al. | Aug 2012 | B2 |
8258020 | Herner | Sep 2012 | B2 |
8265136 | Hong et al. | Sep 2012 | B2 |
8274130 | Mihnea et al. | Sep 2012 | B2 |
8274812 | Nazarian et al. | Sep 2012 | B2 |
8305793 | Majewski et al. | Nov 2012 | B2 |
8315079 | Kuo et al. | Nov 2012 | B2 |
8320160 | Nazarian | Nov 2012 | B2 |
8351241 | Lu et al. | Jan 2013 | B2 |
8369129 | Fujita et al. | Feb 2013 | B2 |
8369139 | Liu et al. | Feb 2013 | B2 |
8374018 | Lu | Feb 2013 | B2 |
8385100 | Kau et al. | Feb 2013 | B2 |
8389971 | Chen et al. | Mar 2013 | B2 |
8394670 | Herner | Mar 2013 | B2 |
8399307 | Herner | Mar 2013 | B2 |
8441835 | Jo et al. | May 2013 | B2 |
8456892 | Yasuda | Jun 2013 | B2 |
8466005 | Pramanik et al. | Jun 2013 | B2 |
8467226 | Bedeschi et al. | Jun 2013 | B2 |
8467227 | Jo | Jun 2013 | B1 |
8502185 | Lu et al. | Aug 2013 | B2 |
8569104 | Pham et al. | Oct 2013 | B2 |
8587989 | Manning et al. | Nov 2013 | B2 |
8619459 | Nguyen et al. | Dec 2013 | B1 |
8658476 | Sun et al. | Feb 2014 | B1 |
8659003 | Herner et al. | Feb 2014 | B2 |
8675384 | Kuo et al. | Mar 2014 | B2 |
8693241 | Kim et al. | Apr 2014 | B2 |
8759807 | Sandhu et al. | Jun 2014 | B2 |
8853759 | Lee et al. | Oct 2014 | B2 |
8934294 | Kim et al. | Jan 2015 | B2 |
8937292 | Bateman | Jan 2015 | B2 |
8946667 | Clark et al. | Feb 2015 | B1 |
8946673 | Kumar | Feb 2015 | B1 |
8947908 | Jo | Feb 2015 | B2 |
8999811 | Endo et al. | Apr 2015 | B2 |
9093635 | Kim et al. | Jul 2015 | B2 |
9166163 | Gee et al. | Oct 2015 | B2 |
9209396 | Narayanan | Dec 2015 | B2 |
9543512 | Ohba et al. | Jan 2017 | B2 |
9590013 | Jo et al. | Mar 2017 | B2 |
20020048940 | Derderian et al. | Apr 2002 | A1 |
20020101023 | Saltsov et al. | Aug 2002 | A1 |
20030006440 | Uchiyama | Jan 2003 | A1 |
20030036238 | Toet et al. | Feb 2003 | A1 |
20030052330 | Klein | Mar 2003 | A1 |
20030141565 | Hirose et al. | Jul 2003 | A1 |
20030174574 | Perner et al. | Sep 2003 | A1 |
20030194865 | Gilton | Oct 2003 | A1 |
20030206659 | Hamanaka | Nov 2003 | A1 |
20030234449 | Aratani et al. | Dec 2003 | A1 |
20040026682 | Jiang | Feb 2004 | A1 |
20040036124 | Vyvoda et al. | Feb 2004 | A1 |
20040159835 | Krieger et al. | Aug 2004 | A1 |
20040170040 | Rinerson et al. | Sep 2004 | A1 |
20040192006 | Campbell et al. | Sep 2004 | A1 |
20040194340 | Kobayashi | Oct 2004 | A1 |
20040202041 | Hidenori | Oct 2004 | A1 |
20040240265 | Lu et al. | Dec 2004 | A1 |
20050019699 | Moore | Jan 2005 | A1 |
20050020510 | Benedict | Jan 2005 | A1 |
20050029587 | Harshfield | Feb 2005 | A1 |
20050041498 | Resta et al. | Feb 2005 | A1 |
20050052915 | Herner et al. | Mar 2005 | A1 |
20050062045 | Bhattacharyya | Mar 2005 | A1 |
20050073881 | Tran et al. | Apr 2005 | A1 |
20050101081 | Goda et al. | May 2005 | A1 |
20050162881 | Stasiak et al. | Jul 2005 | A1 |
20050175099 | Sarkijarvi et al. | Aug 2005 | A1 |
20060017488 | Hsu et al. | Jan 2006 | A1 |
20060054950 | Baek et al. | Mar 2006 | A1 |
20060134837 | Subramanian et al. | Jun 2006 | A1 |
20060154417 | Shinmura et al. | Jul 2006 | A1 |
20060215445 | Baek et al. | Sep 2006 | A1 |
20060231910 | Hsieh et al. | Oct 2006 | A1 |
20060246606 | Hsu et al. | Nov 2006 | A1 |
20060279979 | Lowrey et al. | Dec 2006 | A1 |
20060281244 | Ichige et al. | Dec 2006 | A1 |
20060286762 | Tseng et al. | Dec 2006 | A1 |
20070008773 | Scheuerlein | Jan 2007 | A1 |
20070015348 | Hsu et al. | Jan 2007 | A1 |
20070025144 | Hsu et al. | Feb 2007 | A1 |
20070035990 | Hush | Feb 2007 | A1 |
20070042612 | Nishino et al. | Feb 2007 | A1 |
20070045615 | Cho et al. | Mar 2007 | A1 |
20070069119 | Appleyard et al. | Mar 2007 | A1 |
20070087508 | Herner et al. | Apr 2007 | A1 |
20070090425 | Kumar et al. | Apr 2007 | A1 |
20070091685 | Guterman et al. | Apr 2007 | A1 |
20070105284 | Herner et al. | May 2007 | A1 |
20070105390 | Oh | May 2007 | A1 |
20070133250 | Kim | Jun 2007 | A1 |
20070133270 | Jeong et al. | Jun 2007 | A1 |
20070159869 | Baek et al. | Jul 2007 | A1 |
20070159876 | Sugibayashi et al. | Jul 2007 | A1 |
20070171698 | Hoenigschmid et al. | Jul 2007 | A1 |
20070205510 | Lavoie et al. | Sep 2007 | A1 |
20070228414 | Kumar et al. | Oct 2007 | A1 |
20070284575 | Li et al. | Dec 2007 | A1 |
20070285971 | Toda et al. | Dec 2007 | A1 |
20070290186 | Bourim et al. | Dec 2007 | A1 |
20070291527 | Tsushima et al. | Dec 2007 | A1 |
20070295950 | Cho et al. | Dec 2007 | A1 |
20070297501 | Hussain et al. | Dec 2007 | A1 |
20080002481 | Gogl et al. | Jan 2008 | A1 |
20080006907 | Lee et al. | Jan 2008 | A1 |
20080007987 | Takashima | Jan 2008 | A1 |
20080019163 | Hoenigschmid et al. | Jan 2008 | A1 |
20080043521 | Liaw et al. | Feb 2008 | A1 |
20080048164 | Odagawa | Feb 2008 | A1 |
20080083918 | Aratani et al. | Apr 2008 | A1 |
20080089110 | Robinett et al. | Apr 2008 | A1 |
20080090337 | Williams | Apr 2008 | A1 |
20080106925 | Paz de Araujo et al. | May 2008 | A1 |
20080106926 | Brubaker et al. | May 2008 | A1 |
20080165571 | Lung | Jul 2008 | A1 |
20080185567 | Kumar et al. | Aug 2008 | A1 |
20080192531 | Tamura et al. | Aug 2008 | A1 |
20080198934 | Hong et al. | Aug 2008 | A1 |
20080205179 | Markert et al. | Aug 2008 | A1 |
20080206931 | Breuil et al. | Aug 2008 | A1 |
20080220601 | Kumar et al. | Sep 2008 | A1 |
20080232160 | Gopalakrishnan | Sep 2008 | A1 |
20080278988 | Ufert | Nov 2008 | A1 |
20080278990 | Kumar et al. | Nov 2008 | A1 |
20080301497 | Chung et al. | Dec 2008 | A1 |
20080304312 | Ho et al. | Dec 2008 | A1 |
20080311722 | Petti et al. | Dec 2008 | A1 |
20090001341 | Breitwisch et al. | Jan 2009 | A1 |
20090001343 | Schricker et al. | Jan 2009 | A1 |
20090001345 | Schricker et al. | Jan 2009 | A1 |
20090003717 | Sekiguchi et al. | Jan 2009 | A1 |
20090014703 | Inaba | Jan 2009 | A1 |
20090014707 | Lu et al. | Jan 2009 | A1 |
20090052226 | Lee et al. | Feb 2009 | A1 |
20090091981 | Park et al. | Apr 2009 | A1 |
20090095951 | Kostylev et al. | Apr 2009 | A1 |
20090109728 | Maejima et al. | Apr 2009 | A1 |
20090122591 | Ryu | May 2009 | A1 |
20090134432 | Tabata et al. | May 2009 | A1 |
20090141567 | Lee et al. | Jun 2009 | A1 |
20090152737 | Harshfield | Jun 2009 | A1 |
20090168486 | Kumar | Jul 2009 | A1 |
20090173930 | Yasuda et al. | Jul 2009 | A1 |
20090227067 | Kumar et al. | Sep 2009 | A1 |
20090231905 | Sato | Sep 2009 | A1 |
20090231910 | Liu et al. | Sep 2009 | A1 |
20090250787 | Kutsunai | Oct 2009 | A1 |
20090251941 | Saito | Oct 2009 | A1 |
20090256130 | Schricker | Oct 2009 | A1 |
20090257265 | Chen et al. | Oct 2009 | A1 |
20090267047 | Sasago et al. | Oct 2009 | A1 |
20090268513 | De et al. | Oct 2009 | A1 |
20090272962 | Kumar et al. | Nov 2009 | A1 |
20090283736 | Kanzawa et al. | Nov 2009 | A1 |
20090283737 | Kiyotoshi | Nov 2009 | A1 |
20090298224 | Lowrey | Dec 2009 | A1 |
20090321706 | Happ et al. | Dec 2009 | A1 |
20090321789 | Wang et al. | Dec 2009 | A1 |
20100007937 | Widjaja et al. | Jan 2010 | A1 |
20100012914 | Xu et al. | Jan 2010 | A1 |
20100019221 | Lung et al. | Jan 2010 | A1 |
20100019310 | Sakamoto | Jan 2010 | A1 |
20100032637 | Kinoshita et al. | Feb 2010 | A1 |
20100032638 | Xu | Feb 2010 | A1 |
20100032640 | Xu | Feb 2010 | A1 |
20100034518 | Iwamoto et al. | Feb 2010 | A1 |
20100038791 | Lee et al. | Feb 2010 | A1 |
20100039136 | Chua-Eoan et al. | Feb 2010 | A1 |
20100044708 | Lin et al. | Feb 2010 | A1 |
20100044798 | Hooker et al. | Feb 2010 | A1 |
20100046622 | Doser et al. | Feb 2010 | A1 |
20100067279 | Choi | Mar 2010 | A1 |
20100067282 | Liu et al. | Mar 2010 | A1 |
20100025675 | Yamazaki et al. | Apr 2010 | A1 |
20100084625 | Wicker et al. | Apr 2010 | A1 |
20100085798 | Lu et al. | Apr 2010 | A1 |
20100085822 | Yan et al. | Apr 2010 | A1 |
20100090192 | Goux et al. | Apr 2010 | A1 |
20100101290 | Bertolotto | Apr 2010 | A1 |
20100102290 | Lu et al. | Apr 2010 | A1 |
20100110767 | Katoh et al. | May 2010 | A1 |
20100118587 | Chen et al. | May 2010 | A1 |
20100140614 | Uchiyama et al. | Jun 2010 | A1 |
20100155784 | Scheuerlein | Jun 2010 | A1 |
20100157651 | Kumar et al. | Jun 2010 | A1 |
20100157656 | Tsuchida | Jun 2010 | A1 |
20100157659 | Norman | Jun 2010 | A1 |
20100157710 | Lambertson et al. | Jun 2010 | A1 |
20100163828 | Tu | Jul 2010 | A1 |
20100171086 | Lung et al. | Jul 2010 | A1 |
20100176367 | Liu | Jul 2010 | A1 |
20100176368 | Ko et al. | Jul 2010 | A1 |
20100182821 | Muraoka et al. | Jul 2010 | A1 |
20100203731 | Kong et al. | Aug 2010 | A1 |
20100219510 | Scheuerlein et al. | Sep 2010 | A1 |
20100221868 | Sandoval | Sep 2010 | A1 |
20100237314 | Tsukamoto et al. | Sep 2010 | A1 |
20100243983 | Chiang et al. | Sep 2010 | A1 |
20100258781 | Phatak et al. | Oct 2010 | A1 |
20100271885 | Scheuerlein et al. | Oct 2010 | A1 |
20100277969 | Li et al. | Nov 2010 | A1 |
20100321095 | Mikawa et al. | Dec 2010 | A1 |
20110006275 | Roelofs et al. | Jan 2011 | A1 |
20110007551 | Tian et al. | Jan 2011 | A1 |
20110033967 | Lutz et al. | Feb 2011 | A1 |
20110063888 | Chi et al. | Mar 2011 | A1 |
20110066878 | Hosono et al. | Mar 2011 | A1 |
20110068373 | Minemura et al. | Mar 2011 | A1 |
20110069533 | Kurosawa et al. | Mar 2011 | A1 |
20110089391 | Mihnea et al. | Apr 2011 | A1 |
20110122679 | Chen et al. | May 2011 | A1 |
20110128779 | Redaelli et al. | Jun 2011 | A1 |
20110133149 | Sonehara | Jun 2011 | A1 |
20110136327 | Han et al. | Jun 2011 | A1 |
20110151277 | Nishihara et al. | Jun 2011 | A1 |
20110155991 | Chen | Jun 2011 | A1 |
20110183525 | Purushothaman et al. | Jul 2011 | A1 |
20110193051 | Nam et al. | Aug 2011 | A1 |
20110194329 | Ohba et al. | Aug 2011 | A1 |
20110198557 | Rajendran et al. | Aug 2011 | A1 |
20110204312 | Phatak | Aug 2011 | A1 |
20110204314 | Baek et al. | Aug 2011 | A1 |
20110205780 | Yasuda et al. | Aug 2011 | A1 |
20110205782 | Costa et al. | Aug 2011 | A1 |
20110212616 | Seidel et al. | Sep 2011 | A1 |
20110215396 | Tang et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110284814 | Zhang | Nov 2011 | A1 |
20110299324 | Li et al. | Dec 2011 | A1 |
20110305064 | Jo et al. | Dec 2011 | A1 |
20110310656 | Kreupl et al. | Dec 2011 | A1 |
20110312151 | Herner | Dec 2011 | A1 |
20110317470 | Lu et al. | Dec 2011 | A1 |
20120001145 | Magistretti et al. | Jan 2012 | A1 |
20120001146 | Lu et al. | Jan 2012 | A1 |
20120003800 | Lee et al. | Jan 2012 | A1 |
20120007035 | Jo et al. | Jan 2012 | A1 |
20120008366 | Lu | Jan 2012 | A1 |
20120012806 | Herner | Jan 2012 | A1 |
20120012808 | Herner | Jan 2012 | A1 |
20120015506 | Jo et al. | Jan 2012 | A1 |
20120025161 | Rathor et al. | Feb 2012 | A1 |
20120033479 | Delucca et al. | Feb 2012 | A1 |
20120043519 | Jo et al. | Feb 2012 | A1 |
20120043520 | Herner et al. | Feb 2012 | A1 |
20120043621 | Herner | Feb 2012 | A1 |
20120043654 | Lu et al. | Feb 2012 | A1 |
20120044751 | Wang et al. | Feb 2012 | A1 |
20120074374 | Jo | Mar 2012 | A1 |
20120074507 | Jo et al. | Mar 2012 | A1 |
20120076203 | Sugimoto et al. | Mar 2012 | A1 |
20120080798 | Harshfield | Apr 2012 | A1 |
20120087169 | Kuo et al. | Apr 2012 | A1 |
20120087172 | Aoki | Apr 2012 | A1 |
20120091420 | Kusai et al. | Apr 2012 | A1 |
20120104344 | Kakehashi | May 2012 | A1 |
20120104351 | Wei et al. | May 2012 | A1 |
20120108030 | Herner | May 2012 | A1 |
20120120712 | Kawai et al. | May 2012 | A1 |
20120122290 | Nagashima | May 2012 | A1 |
20120140816 | Franche et al. | Jun 2012 | A1 |
20120142163 | Herner | Jun 2012 | A1 |
20120145984 | Rabkin et al. | Jun 2012 | A1 |
20120147657 | Sekar et al. | Jun 2012 | A1 |
20120155146 | Ueda et al. | Jun 2012 | A1 |
20120173795 | Schuette et al. | Jul 2012 | A1 |
20120176831 | Xiao et al. | Jul 2012 | A1 |
20120205606 | Lee et al. | Aug 2012 | A1 |
20120205793 | Schieffer et al. | Aug 2012 | A1 |
20120218807 | Johnson | Aug 2012 | A1 |
20120220100 | Herner | Aug 2012 | A1 |
20120224413 | Zhang et al. | Sep 2012 | A1 |
20120235112 | Huo et al. | Sep 2012 | A1 |
20120236625 | Ohba et al. | Sep 2012 | A1 |
20120241710 | Liu et al. | Sep 2012 | A1 |
20120243292 | Takashima et al. | Sep 2012 | A1 |
20120250183 | Tamaoka et al. | Oct 2012 | A1 |
20120250395 | Nodin | Oct 2012 | A1 |
20120252183 | Herner | Oct 2012 | A1 |
20120269275 | Hannuksela | Oct 2012 | A1 |
20120305874 | Herner | Dec 2012 | A1 |
20120305879 | Lu et al. | Dec 2012 | A1 |
20120315725 | Miller et al. | Dec 2012 | A1 |
20120320660 | Nazarian et al. | Dec 2012 | A1 |
20120326265 | Lai et al. | Dec 2012 | A1 |
20120327701 | Nazarian | Dec 2012 | A1 |
20130001494 | Chen et al. | Jan 2013 | A1 |
20130020548 | Clark et al. | Jan 2013 | A1 |
20130023085 | Pramanik et al. | Jan 2013 | A1 |
20130026440 | Yang et al. | Jan 2013 | A1 |
20130065066 | Sambasivan et al. | Mar 2013 | A1 |
20130075685 | Li et al. | Mar 2013 | A1 |
20130075688 | Xu et al. | Mar 2013 | A1 |
20130119341 | Liu et al. | May 2013 | A1 |
20130134379 | Lu | May 2013 | A1 |
20130166825 | Kim et al. | Jun 2013 | A1 |
20130207065 | Chiang | Aug 2013 | A1 |
20130214234 | Gopalan et al. | Aug 2013 | A1 |
20130235648 | Kim et al. | Sep 2013 | A1 |
20130248795 | Takahashi et al. | Sep 2013 | A1 |
20130264535 | Sonehara | Oct 2013 | A1 |
20130279240 | Jo | Oct 2013 | A1 |
20130308369 | Lu et al. | Nov 2013 | A1 |
20140015018 | Kim | Jan 2014 | A1 |
20140029327 | Strachan et al. | Jan 2014 | A1 |
20140070160 | Ishikawa et al. | Mar 2014 | A1 |
20140103284 | Hsueh et al. | Apr 2014 | A1 |
20140145135 | Gee et al. | May 2014 | A1 |
20140166961 | Liao et al. | Jun 2014 | A1 |
20140175360 | Tendulkar et al. | Jun 2014 | A1 |
20140177315 | Pramanik et al. | Jun 2014 | A1 |
20140192589 | Maxwell et al. | Jul 2014 | A1 |
20140197369 | Sheng et al. | Jul 2014 | A1 |
20140233294 | Ting et al. | Aug 2014 | A1 |
20140264236 | Kim et al. | Sep 2014 | A1 |
20140264250 | Maxwell et al. | Sep 2014 | A1 |
20140268997 | Nazarian et al. | Sep 2014 | A1 |
20140268998 | Jo | Sep 2014 | A1 |
20140269002 | Jo | Sep 2014 | A1 |
20140312296 | Jo et al. | Oct 2014 | A1 |
20140335675 | Narayanan | Nov 2014 | A1 |
20150070961 | Katayama et al. | Mar 2015 | A1 |
20150228334 | Nazarian et al. | Aug 2015 | A1 |
20150228893 | Narayanan | Aug 2015 | A1 |
20150243886 | Narayanan | Aug 2015 | A1 |
20160111640 | Chang et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
101131872 | Feb 2008 | CN |
101170132 | Apr 2008 | CN |
101501850 | Aug 2009 | CN |
101568904 | Oct 2009 | CN |
101636792 | Jan 2010 | CN |
102024494 | Apr 2011 | CN |
102077296 | May 2011 | CN |
102544049 | Jul 2012 | CN |
102804277 | Nov 2012 | CN |
103262171 | Aug 2013 | CN |
0290731 | Nov 1988 | EP |
1096465 | May 2001 | EP |
2405441 | Jan 2012 | EP |
2408035 | Jan 2012 | EP |
2005506703 | Mar 2005 | JP |
2006032951 | Feb 2006 | JP |
2006253667 | Sep 2006 | JP |
2007067408 | Mar 2007 | JP |
2007281208 | Oct 2007 | JP |
2007328857 | Dec 2007 | JP |
2008503085 | Jan 2008 | JP |
2008147343 | Jun 2008 | JP |
2008177509 | Jul 2008 | JP |
2009021524 | Jan 2009 | JP |
2009043873 | Feb 2009 | JP |
2011023645 | Feb 2011 | JP |
2011065737 | Mar 2011 | JP |
2012504840 | Feb 2012 | JP |
2012505551 | Mar 2012 | JP |
2012089567 | May 2012 | JP |
2012533195 | Dec 2012 | JP |
10-2005-0053516 | Jun 2005 | KR |
20090051206 | May 2009 | KR |
20110014248 | Feb 2011 | KR |
382820 | Feb 2000 | TW |
434887 | May 2001 | TW |
476962 | Feb 2002 | TW |
200625635 | Jul 2006 | TW |
03034498 | Apr 2003 | WO |
2005124787 | Dec 2005 | WO |
2009005699 | Jan 2009 | WO |
2009078251 | Jun 2009 | WO |
2009118194 | Oct 2009 | WO |
2009125777 | Oct 2009 | WO |
2010026654 | Mar 2010 | WO |
2010042354 | Apr 2010 | WO |
2010042732 | Apr 2010 | WO |
2011005266 | Jan 2011 | WO |
2011008654 | Jan 2011 | WO |
2011133138 | Oct 2011 | WO |
Entry |
---|
Notice of Allowance dated Dec. 19, 2014 for U.S. Appl. No. 13/529,985, 9 pgs. |
Notice of Allowance dated Jul. 1, 2016 for U.S. Appl. No. 14/213,953, 96 pages. |
Notice of Allowance dated Jul. 17, 2014 for U.S. Appl. No. 12/861,432, 25 pages. |
Notice of Allowance for U.S. Appl. No. 14/213,953 dated Feb. 16, 2016, 21 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Feb. 12, 2016, 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Jun. 8, 2016, 57 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Sep. 10, 2015, 13 pages. |
Notice of Allowance dated Jun. 19, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010. |
Notice of Allowance for U.S Appl. No. 14/509,967 dated Feb. 17, 2016, 18 pages. |
Notice of Allowance for U.S Appl. No. 14/509,967 dated Jun. 16, 2016, 96 pages. |
Notice of Allowance for U.S. Appl. No. 13/912,136 dated Aug. 3, 2015, 15 pages. |
Notice of Allowance for U.S. Appl. No. 13/952,467 dated May 20, 2016, 19 pages. |
Notice of Allowance for U.S. Appl. No. 14/027,045 dated Jun. 9, 2015, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/383,079 dated Jan. 4, 2016, 27 pages. |
Notice of Allowance for U.S. Appl. No. 14/887,050 dated Jun. 22, 2016, 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/946,367 dated Jul. 13, 2016, 23 pages. |
Notice of Allowance dated Sep. 4, 2014 for U.S. Appl. No. 13/761,132, filed Feb. 6, 2013. |
Notice of Allowance dated Oct. 5, 2011 for U.S. Appl. No. 12/940,920, filed Nov. 5, 2010. |
Notice of Allowance dated Feb. 6, 2012 for U.S. Appl. No. 12/835,699, filed Jul. 13, 2010. |
Notice of Allowance dated Feb. 6, 2013 for U.S. Appl. No. 13/118,258, filed May 27, 2011. |
Notice of Allowance dated Aug. 8, 2013 for U.S. Appl. No. 13/733,828, filed Jan. 3, 2013. |
Notice of Allowance dated Jan. 8, 2013 for U.S. Appl. No. 12/814,410, filed Jun. 11, 2010. |
Notice of Allowance dated Oct. 8, 2013 for U.S. Appl. No. 13/769,152, filed Feb. 15, 2013. |
Notice of Allowance dated Oct. 8, 2013 for U.S. Appl. No. 13/905,074, filed May 29, 2013. |
Notice of Allowance dated Apr. 9, 2013 for U.S. Appl. No. 13/748,490, filed Jan. 23, 2013. |
Notice of Allowance dated Sep. 9, 2014 for U.S. Appl. No. 13/620,012, filed Sep. 14, 2012. |
Notice of Allowance dated Sep. 9, 2014 for U.S. Appl. No. 13/870,919, filed Apr. 25, 2013. |
Notice of Allowance dated Oct. 10, 2013 for U.S. Appl. No. 13/452,657, filed Apr. 20, 2012. |
Notice of Allowance dated Jan. 11, 2013 for U.S. Appl. No. 12/894,087, filed Sep. 29, 2010. |
Notice of Allowance dated May 11, 2012 for U.S. Appl. No. 12/939,824, filed Nov. 4, 2010. |
Notice of Allowance dated Jan. 11, 2016 for U.S. Appl. No. 14/613,299. |
Notice of Allowance dated Mar. 12, 2012 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010. |
Notice of Allowance dated Jan. 20, 2016 for U.S. Appl No. 14/034,390. |
Notice of Allowance dated Nov. 13, 2013 for U.S. Appl. No. 13/461,725, filed May 1, 2012. |
Notice of Allowance dated Nov. 14, 2012 for U.S. Appl. No. 12/861,666, filed Aug. 23, 2010. |
Notice of Allowance dated Nov. 14, 2012 for U.S. Appl. No. 13/532,019, filed Jun. 25, 2012. |
Notice of Allowance dated Mar. 15, 2013 for U.S. Appl. No. 12/894,098, filed Sep. 29, 2010. |
Notice of Allowance dated Jan. 16, 2014 for U.S. Appl. No. 13/921,157, filed Jun. 18, 2013. |
Notice of Allowance dated Oct. 16, 2013 for U.S. Appl. No. 13/174,264, filed Jun. 30, 2011. |
Notice of Allowance dated Apr. 17, 2012 for U.S. Appl. No. 13/158,231, filed Jun. 10, 2011. |
Notice of Allowance dated Jan. 17, 2014 for U.S. Appl. No. 13/725,331, filed Dec. 21, 2012. |
Notice of Allowance dated Mar. 17, 2014 for U.S. Appl. No. 13/592,224, filed Aug. 22, 2012. |
Notice of Allowance dated May 17, 2013 for U.S. Appl. No. 13/290,024. |
Notice of Allowance dated Sep. 17, 2013 for U.S. Appl. No. 13/679,976, filed Nov. 16, 2012. |
Notice of Allowance dated Sep. 17, 2014 for U.S. Appl. No. 13/960,735, filed Aug. 6, 2013. |
Notice of Allowance dated Sep. 17, 2014 for U.S. Appl. No. 13/462,653, filed May 2, 2012. |
Notice of Allowance dated Sep. 18, 2012 for U.S. Appl. No. 12/900,232, filed Oct. 7, 2010. |
Notice of Allowance dated Sep. 18, 2014 for U.S. Appl. No. 13/920,021, filed Jun. 17, 2013. |
Notice of Allowance dated Sep. 18, 2014 for U.S. Appl. No. 13/586,815, filed Aug. 15, 2012. |
Office Action dated Apr. 18, 2016 for U.S. Appl. No. 14/573,770. |
Office Action dated Apr. 19, 2011 for U.S. Appl. No. 12/582,086, filed Oct. 20, 2009. |
Sune J., et al., “Nondestructive Multiple Breakdown Events in Very Thin Si02 Films,” Applied Physics Letters, 1989, vol. 55, pp. 128-130. |
Office Action dated Jun. 19, 2012 for U.S. Appl. No. 13/149,757, filed May 31, 2011. |
Office Action dated Mar. 19, 2013 for U.S. Appl. No. 13/465,188, filed May 7, 2012. |
Office Action dated Mar. 19, 2013 for U.S. Appl. No. 13/564,639, filed Aug. 1, 2012. |
Office Action dated May 20, 2013 for U.S. Appl. No. 13/725,331, filed Dec. 21, 2012. |
Office Action dated Nov. 20, 2012 for U.S. Appl. No. 13/149,653, filed May 31, 2011. |
Office Action dated Sep. 20, 2013 for U.S. Appl. No. 13/481,600, filed May 25, 2012. |
Office Action dated Mar. 21, 2014 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012. |
Office Action dated May 21, 2014 for U.S. Appl. No. 13/764,698, filed Feb. 11, 2013. |
Office Action dated Sep. 21, 2011 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Office Action dated Jul. 22, 2010 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action dated Jul. 22, 2011 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010. |
Office Action dated Sep. 22, 2013 for U.S. Appl. No. 13/189,401, filed Jul. 22, 2011. |
Terabe K., et al., “Quantized Conductance Atomic Switch,” Nature, 2005, vol. 433, pp. 47-50. |
Office Action dated Aug. 24, 2011 for U.S. Appl. No. 12/835,699, filed Jul. 13, 2010. |
Office Action dated Apr. 25, 2012 for U.S. Appl. No. 13/149,653, filed May 31, 2011. |
Office Action dated Apr. 25, 2014 for U.S. Appl. No. 13/761,132, filed Feb. 6, 2013. |
Office Action dated Jan. 25, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010. |
Office Action dated Oct. 25, 2012 for U.S. Appl. No. 13/461,725, filed May 1, 2012. |
Office Action dated Sep. 25, 2013 for U.S. Appl. No. 13/194,479, filed Jul. 29, 2011. |
Office Action dated Nov. 26, 2012 for U.S. Appl. No. 13/156,232. |
Office Action dated Aug. 27, 2013 for U.S. Appl. No. 13/436,714, filed Mar. 30, 2012. |
Office Action dated Dec. 27, 2013 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012. |
Office Action dated Mar. 27, 2012 for U.S. Appl. No. 13/314,513, filed Dec. 8, 2011. |
Office Action dated Feb. 28, 2014 for U.S. Appl. No. 12/625,817, filed Nov. 25, 2009. |
Office Action dated Jan. 29, 2014 for U.S. Appl. No. 13/586,815, filed Aug. 15, 2012. |
Office Action dated Jul. 29, 2013 for U.S. Appl. No. 13/466,008, filed May 7, 2012. |
Office Action dated Mar. 29, 2013 for U.S. Appl. No. 12/861,432, filed Aug. 23, 2010. |
Office Action dated Jul. 30, 2012 for U.S. Appl. No. 12/900,232, filed Oct. 7, 2010. |
Office Action dated Jun. 30, 2014 for U.S. Appl. No. 13/531,449, filed Jun. 22, 2012. |
Office Action dated Mar. 30, 2011 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action dated Sep. 30, 2013 for U.S. Appl. No. 13/189,401, filed Jul. 22, 2011. |
Office Action dated Sep. 30, 2013 for U.S. Appl. No. 13/462,653, filed May 2, 2012. |
Office Action dated Apr. 6, 2015 for U.S. Appl. No. 14/034,390. |
Office Action dated May 20, 2016 for U.S. Appl. No. 14/613,299. |
Office Action dated Jul. 9, 2015 for U.S. Appl. No. 14/573,817. |
Owen A.E., et al., “Electronic Switching in Amorphous Silicon Devices: Properties of the Conducting Filament”, Proceedings of 5th International Conference on Solid-State and Integrated Circuit Technology, IEEE, 1998, pp. 830-833. |
Owen A.E., et al., “Memory Switching in Amorphous Silicon Devices,” Journal of Non-Crystalline Solids, 1983, vol. 50-60 (Pt.2), pp. 1273-1280. |
Owen A.E., et al., “New Amorphous-Silicon Electrically Programmable Nonvolatile Switching Device,” Solid-State and Electron Devices, IEEE Proceedings, 1982, vol. 129 (Pt. 1), pp. 51-54. |
Owen A.E., et al., “Switching in Amorphous Devices,” International Journal of Electronics, 1992, vol. 73 (5), pp. 897-906. |
Rose M.J., et al., “Amorphous Silicon Analogue Memory Devices,” Journal of Non-Crystalline Solids, 1989, vol. 115, pp. 168-170. |
Russo U., et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Devices, 2009, vol. 56 (2), pp. 193-200. |
Scott J.C., “Is There an Immortal Memory?,” American Association for the Advancement of Science, 2004, vol. 304 (5667), pp. 62-63. |
Shin W., et al., “Effect of Native Oxide on Polycrystalline Silicon CMP,” Journal of the Korean Physical Society, 2009, vol. 54 (3), pp. 1077-1081. |
Stikeman A., Polymer Memory—The Plastic Path to Better Data Storage, Technology Review, Sep. 2002, pp. 31. Retrieved from the Internet. |
Suehle J.S., et al., “Temperature Dependence of Soft Breakdown and Wear-out in Sub-3 Nm Si02 Films”, 38th Annual International Reliability Physics Symposium, San Jose, California, 2000, pp. 33-39. |
Office Action for U.S. Appl. No. 14/887,050 dated Mar. 11, 2016, 12 pages. |
Office Action for U.S. Appl. No. 15/046,172 dated Apr. 20, 2016, 8 pages. |
Office Action dated Apr. 1, 2013 for U.S. Appl. No. 13/174,077, filed Jun. 30, 2011. |
Office Action dated Aug. 1, 2012 for U.S. Appl. No. 12/894,098, filed Sep. 29, 2010. |
Office Action dated Mar. 1, 2012 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Office Action dated Aug. 2, 2013 for U.S. Appl. No. 13/594,665, filed Aug. 24, 2012. |
Office Action dated Sep. 2, 2014 for U.S. Appl. No. 13/705,082, 41 pages. |
Office Action dated Apr. 3, 2014 for U.S. Appl. No. 13/870,919, filed Apr. 25, 2013. |
Office Action dated Oct. 3, 2013 for U.S. Appl. No. 13/921,157, filed Jun. 18, 2011. |
Office Action dated Apr. 5, 2012 for U.S. Appl. No. 12/833,898, filed Jul. 9, 2010. |
Office Action dated Oct. 5, 2011 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action dated Feb. 17, 2011 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010. |
Office Action dated Dec. 6, 2013 for U.S. Appl. No. 13/564,639, filed Aug. 1, 2012. |
Office Action dated Jun. 17, 2014 for U.S. Appl. No. 14/072,657, filed Nov. 5, 2013. |
Office Action dated Feb. 6, 2014 for U.S. Appl. No. 13/434,567, filed Mar. 29, 2012. |
Office Action dated Mar. 6, 2013 for U.S. Appl. No. 13/174,264, filed Jun. 30, 2011. |
Office Action dated Mar. 6, 2013 for U.S. Appl. No. 13/679,976, filed Nov. 16, 2012. |
Office Action dated Sep. 6, 2011 for U.S. Appl. No. 12/582,086, filed Oct. 20, 2009. |
Office Action dated Dec. 7, 2012 for U.S. Appl. No. 13/436,714, filed Mar. 30, 2012. |
Office Action dated Mar. 7, 2013 for U.S. Appl. No. 13/651,169, filed Oct. 12, 2012. |
Office Action dated Mar. 17, 2015 for U.S. Appl. No. 14/573,770. |
Office Action dated Aug. 8, 2012 for EP Application No. EP11005207 filed Jun. 27, 2011. |
Office Action dated Jan. 8, 2014 for U.S. Appl. No. 12/861,432, filed Aug. 23, 2010. |
Office Action dated Jun. 8, 2012 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action dated Aug. 9, 2013 for U.S. Appl. No. 13/764,710, filed Feb. 11, 2013. |
Office Action dated Jul. 9, 2013 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012. |
Office Action dated Jul. 9, 2014 for U.S. Appl. No. 14/166,691, filed Jan. 28, 2014. |
Office Action dated Oct. 9, 2012 for U.S. Appl. No. 13/417,135, filed Mar. 9, 2012. |
Office Action dated Jan. 10, 2014 for U.S. Appl. No. 13/920,021, filed Jun. 17, 2011. |
Office Action dated Apr. 11, 2014 for U.S. Appl. No. 13/143,047, filed Jun. 30, 2011. |
Office Action dated Feb. 11, 2014 for U.S. Appl. No. 13/620,012, filed Sep. 14, 2012. |
Office Action dated Jul. 11, 2013 for U.S. Appl. No. 13/764,698, filed Feb. 11, 2013. |
Office Action dated Sep. 11, 2014 for U.S. Appl. No. 13/739,283, filed Jan. 11, 2013. |
Office Action dated Aug. 12, 2013 for U.S. Appl. No. 13/077,941, filed Mar. 31, 2011. |
Office Action dated Mar. 12, 2014 for U.S. Appl. No. 13/167,920, filed Jun. 24, 2011. |
Office Action dated Sep. 12, 2014 for U.S. Appl. No. 13/426,869, filed Mar. 22, 2012. |
Office Action dated Sep. 12, 2014 for U.S. Appl. No. 13/756,498. |
Office Action dated Dec. 3, 2015 for U.S. Appl. No. 14/253,796. |
Office Action dated Feb. 13, 2014 for U.S. Appl. No. 13/174,077, filed Jun. 30, 2011. |
Office Action dated Mar. 14, 2012 for U.S. Appl. No. 12/815,369, filed Jun. 14, 2010. |
Office Action dated Mar. 14, 2014 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Office Action dated Apr. 15, 2016 for U.S. Appl. No. 14/597,151. |
Office Action dated Apr. 16, 2012 for U.S. Appl. No. 12/834,610, filed Jul. 12, 2010. |
Office Action dated Jan. 16, 2014 for U.S. Appl. No. 13/739,283, filed Jan. 11, 2013. |
Office Action dated May 16, 2012 for U.S. Appl. No. 12/815,318, filed Jun. 14, 2010. |
Office Action dated Oct. 16, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010. |
Office Action dated Apr. 17, 2012 for U.S. Appl. No. 12/814,410, filed Jun. 11, 2010. |
Advisory Action dated Jun. 8, 2012 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Avila A., et al., “Switching in Coplanar Amorphous Hydrogenated Silicon Devices,” Solid-State Electronics, 2000, vol. 44 (1), pp. 17-27. |
Cagli C., et al., “Evidence for Threshold Switching in the Set Process of Nio-based Rram and Physical Modeling for Set, Reset, Retention and Disturb Prediction”, 2008 IEEE International Electron Devices Meeting (IEDM), Dec. 15-17, 2008, pp. 1-4, San Francisco, CA, USA. |
Chang P.H., at al., “Aluminum Spiking at Contact Windows in Al/Ti—W/Si,” Applied Physics Letters, 1988, vol. 52 (4), pp. 272-274. |
Chen Y., et al., “Nanoscale Molecular-switch Crossbar Circuits,” Nanotechnology, 2003, vol. 14, pp. 462-468. |
Chinese Office Action (English Translation) for Chinese Application No. 201180050941.0 dated Apr. 3, 2015, 8 pages. |
Chinese Office Action (English Translation) for Chinese Application No. 201280027066.9 dated Nov. 23, 2015, 6 pages. |
Chinese Office Action (English Translation) for Chinese Application No. 201110195933.7 dated Jul. 31, 2014, 4 pages. |
Chinese Office Action (English Translation) for Chinese Application No. 201110195933.7 dated May 18, 2015, 4 pages. |
Chinese Office Action (English Translation) for Chinese Application No. 201180050941.0 dated Dec. 9, 2015, 5 pages. |
Chinese Office Action (with English Translation) for Chinese Application No. 201280027066.9 dated Jul. 4, 2016, 5 pages. |
Chinese Office Action (with English Translation) for Chinese Application No. 201290000773.4 dated Jun. 9, 2014, 3 pages. |
Chinese Seach Report (English Translation) for Chinese Application No. 201180050941.0 dated Mar. 25, 2015, 1 page. |
Chinese Search Report (English Translation) for Chinese Application No. 201280027066.9 dated Nov. 13, 2015, 2 pages. |
Choi J.W., “Bistable [2]Rotaxane Based Molecular Electronics: Fundamentals and Applications”, Dissertation, Chapter 3, California Institute of Technology, Pasadena, 2007, pp. 79-120. Retrieved from the Internet. |
Chou S.Y., et al., “Imprint Lithography With 25-Nanometer Resolution,” Science, 1996, vol. 272, pp. 85-87. |
Collier C.P., et al., “Electronically Configurable Molecular-based Logic Gates ,” Science, 1999, vol. 285 (5426), pp. 391-395. |
Corrected Notice of Allowability dated Nov. 20, 2014 for U.S. Appl. No. 13/594,665, 5 pages. |
Corrected Notice of Allowability dated Jun. 15, 2016 for U.S. Appl. No. 13/952,467, 10 pages. |
Corrected Notice of Allowability dated Oct. 1, 2013 for U.S. Appl. No. 13/733,828, dated Jan. 3, 2013. |
Corrected Notice of Allowance dated Jan. 11, 2013 for U.S. Appl. No. 12/861,666 dated Aug. 23, 2010. |
Dehon A., “Array-Based Architecture for FET-Based, Nanoscale Electronics,” IEEE Transactions on Nanotechnology, 2003, vol. 2 (1), pp. 23-32. |
Del Alamo J., et al., “Operating limits of Al-alloyed High-low Junction for BSF Solar Cells,” Solid-State Electronics, 1981, vol. 24, pp. 415-420. |
Den Boer W., “Threshold Switching in Hydrogenated Amorphous Silicon,” Applied Physics Letters, 1982, vol. 40, pp. 812-813. |
Dey S.K., “Electrothermal Model of Switching in Amorphous Silicon Films,” Journal of Vacuum Science Technology , 1980, vol. 17 (1), pp. 445-448. |
Dong Y., et al., “Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches,” Nano Letters, 2008, vol. 8 (2), pp. 386-391. |
European Search Report for Application No. EP09819890.6 dated Mar. 27, 2012. |
European Search Report for Application No. EP11005207.3 dated Oct. 12, 2011. |
European Search Report for Application No. EP14000949, dated Jun. 4, 2014, 7 pages. |
European Search Report for European Application No. EP11005649 dated Oct. 15, 2014, 2 pages. |
Ex parte Quayle Action mailed May 8, 2012 for U.S. Appl. No. 12/826,653, filed Jun. 29, 2010. |
Final Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/692,677, 21 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/040242, dated Jan. 31, 2013, 9 pages. |
Final Office Action dated Feb. 1, 2016 for U.S. Appl. No. 14/573,817. |
Final Office Action dated May 20, 2016 for U.S. Appl. No. 14/253,796. |
Final Office Action dated Aug. 13, 2014 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012. |
Gangopadhyay S., et al., “Memory Switching in Sputtered Hydrogenated Amorphous Silicon (a-Si:H),” Japanese Journal of Applied Physics, 1985, vol. 24 (10), pp. 1363-1364. |
Goronkin H., et al., High-Performance Emerging Solid-State Memory Technologies, MRS Bulletin, Nov. 2004, pp. 805-813. Retrieved from the Internet. |
Hajto J., et al., “Amorphous & Microcrystalline Semiconductor Devices: Materials and Device Physics”, Artech House Publishers, Mar. 1, 2004, vol. 2, pp. 640-700. |
Hajto J., et al., “Analogue Memory and Ballistic Electron Effects in Metal-amorphous Silicon Structures,” Philosophical Magazine, 1991, vol. 63 (1), pp. 349-369. |
Hajto J., et al., “Electronic Switching in Amorphous-Semiconductor Thin Films”, Chapter 14, 1992, pp. 640-701. |
Hajto J., et al., “The Programmability of Amorphous Silicon Analogue Memory Elements,” Materials Research Society Symposium Proceedings , 1990, vol. 192, pp. 405-410. |
Holmes A.J., et al., “Design of Analogue Synapse Circuits using Non-Volatile a-Si:H Memory Devices”, Proceedings of IEEE International Symposium on Circuits and System, 1994, pp. 351-354, vol. 6. |
Hu J., et al., “AC Characteristics of Cr/p.sup.+a-Si:H/V Analog Switching Devices,” IEEE Transactions on Electron Devices, 2000, vol. 47 (9), pp. 1751-1757. |
Hu X.Y., et al., “Write Amplification Analysis in Flash-based Solid State Drives”, SYSTOR'09; May 4 2009-Apr. 6, 2009, May 4, 2009, pp. 1-9. |
Hudgens S., et al., “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, Nov. 2004, pp. 829-832. Retrieved from the Internet. |
International Search Report and Written Opinion for Application No. PCT/US2011/040362, dated Jan. 19, 2012, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/US2011/046035, dated Mar. 27, 2012, 6 pages. |
Office Action dated Aug. 12, 2016 for U.S. Appl. No. 14/667,346, 27 pages. |
Office Action dated Aug. 12, 2016 for U.S. Appl. No. 14/613,301, 43 pages. |
Office Action dated Aug. 23, 2016 for U.S. Appl. No. 14/613,585, 9 pages. |
Notice of Allowance dated Sep. 14, 2016 for U.S. Appl. No. 14/588,202, 119 pages. |
Notice of Allowance dated Oct. 5, 2016 for U.S. Appl. No. 14/887,050, 113 pages. |
Notice of Allowance dated Oct. 7, 2016 for U.S. Appl. No. 14/213,953, 43 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Oct. 26, 2016, 41 pages. |
Notice of Allowance for U.S. Appl. No. 14/383,079 dated Aug. 17, 2016, 71 pages. |
Notice of Allowance for U.S. Appl. No. 14/509,967 dated Oct. 24, 2016, 42 pages. |
Notice of Allowance for U.S. Appl. No. 13/952,467 dated Sep. 28, 2016, 128 pages. |
Notice of Allowance for U.S. Appl. No. 15/046,172 dated Oct. 4, 2016, 116 pages. |
Notice of Allowance for U.S. Appl. No. 14/612,025 dated Oct. 19, 2016, 108 pages. |
Office Action for U.S. Appl. No. 14/597,151 dated Oct. 20, 2016, 52 pages. |
Office Action for U.S. Appl. No. 14/588,136 dated Nov. 2, 2016, 132 pages. |
Notice of Allowance for U.S. Appl. No. 14/692,677 dated Nov. 21, 2016, 97 pages. |
Corrected Notice of Allowability dated Dec. 6, 2016 for U.S. Appl. No. 14/383,079, 33 pages. |
Notice of Allowance for U.S. Appl. No. 14/194,499 dated Dec. 12, 2016, 125 pages. |
Taiwanese Office Action dated Dec. 6, 2016 for Taiwanese Application No. 102129266, 7 pages (with English translation). |
Office Action for U.S. Appl. No. 14/667,346 dated Feb. 9, 2017, 29 pages. |
Japanese Office Action dated Aug. 9, 2016 for Japanese Application No. 2014-513700, 8 pages (including translation). |
Chinese Office Action dated Sep. 1, 2016 for Chinese Application No. 201380027469.8, 8 pages (including translation). |
International Search Report and Written Opinion for Application No. PCT/US2012/044077, dated Jan. 25, 2013, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/045312, dated Mar. 29, 2013, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/042746, dated Sep. 6, 2013, 7 pages. |
Notice of Allowance dated Dec. 16, 2014 for U.S. Appl. No. 12/835,704, 47 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/061244, dated Jan. 28, 2014, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/077628, dated Apr. 29, 2014, 12 pages. |
International Search Report for Application No. PCT/US2009/060023, dated May 18, 2010, 3 pages. |
International Search Report for Application No. PCT/US2009/061249, dated May 19, 2010, 3 pages. |
International Search Report for Application No. PCT/US2011/040090, dated Feb. 17, 2012, 5 pages. |
International Search Report for Application No. PCT/US2011/045124, dated May 29, 2012, 3 pages. |
International Search Report for Application No. PCT/US2011/046036, dated Feb. 23, 2012, 3 pages. |
Jafar M., et al., “Switching in Amorphous-silicon Devices,” Physical Review, 1994, vol. 49 (19), pp. 611-615. |
Japanese Office Action and English Translation for Japanese Patent Application No. 2011-153349 dated Feb. 24, 2015, 9 pages. |
Japanese Office Action and English Translation for Japanese Patent Application No. 2011-153349 dated Mar. 24, 2015, 9 pages. |
Japanese Office Action (English Translation) for Japanese Application No. 2011-153349 dated Feb. 24, 2015, 3 pages. |
Japanese Office Action (English Translation) for Japanese Application No. 2013-525926 dated Mar. 3, 2015, 4 pages. |
Japanese Office Action (English Translation) for Japanese Application No. 2014-513700 dated Jan. 12, 2016, 4 pages. |
Japanese Search Report (English Translation) for Japanese Application No. 2013-525926 dated Feburary 9, 2015, 11 pages. |
Japanese Search Report (English Translation) for Japanese Application No. 2011-153349 dated Feburary 9, 2015, 11 pages. |
Japanese Search Report (English Translation) for Japanese Application No. 2014-513700 dated Jan. 14, 2016, 25 pages. |
Jian Hu., et al., “Area-Dependent Switching in Thin Film-Silicon Devices,” Materials Research Society Symposium Proceedings, 2003, vol. 762, pp. A 18.3.1-A 18.3.6. |
Jian Hu., et al., “Switching and Filament Formation in hot-wire CVD p-type a-Si:H devices,” Thin Solid Films, Science Direct, 2003, vol. 430, pp. 249-252. |
Jo S.H., et al., “A Silicon-Based Crossbar Ultra-High-Density Non-Volatile Memory”, SSEL Annual Report, 2007. |
Jo S.H., et al., “Ag/a-Si:H/c-Si Resistive Switching Nonvolatile Memory Devices,” Nanotechnology Materials and Devices Conference, 2006, vol. 1, pp. 116-117. |
Jo S.H., et al., “CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory,” Nano Letters, 2008, vol. 8 (2), pp. 392-397. |
Jo S.H., et al., “Experimental, Modeling and Simulation Studies of Nanoscale Resistance Switching Devices”, 9.sup.th Conference on Nanotechnology, IEEE, 2009, pp. 493-495. |
Jo S.H., et al., “High-Density Crossbar Arrays Based on a Si Memristive System,” Nano Letters, 2009, vol. 9 (2), pp. 870-874. |
Jo S.H. et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Supporting Information, 2009, pp. 1-4. |
Jo S.H., et al., “Si Memristive Devices Applied to Memory and Neuromorphic Circuits”, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 13-16. |
Jo S.H., et al., “Si-Based Two-Terminal Resistive Switching Nonvolatile Memory”, IEEE, 2008. |
Jo S.H., et al., “Nanoscale Memristive Devices for Memory and Logic Applications”, Ph. D Dissertation, University of Michigan, 2010. |
Jo S.H., et al., “Nanoscale Memristor Device as Synapse in Neuromorphic Systems,” Nano Letters, 2010, vol. 10, pp. 1297-1301. |
Jo S.H., et al., “Nonvolatile Resistive Switching Devices Based on Nanoscale Metal/Amorphous Silicon/Crystalline Silicon Junctions,” Materials Research Society Symposium Proceedings , 2007, vol. 997. |
Jo S.H., et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Nano Letters, 2009, vol. 9 (1), pp. 496-500. |
Jo S.H., et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Supporting Information, 2009, pp. 1-4. |
Kuk-Hwan Kim et al., “Nanoscale Resistive Memory with Intrinsic Diode Characteristics and Long Endurance,” Applied Physics Letters, 2010, vol. 96, pp. 053106-1-053106-3. |
Kund M., et al., “Conductive Bridging Ram (cbram): An Emerging Non-volatile Memory Technology Scalable to Sub 20nm”, IEEE, 2005. |
Le Comber P.G., et al., “The Switching Mechanism in Amorphous Silicon Junctions,” Journal of Non-Crystalline Solids, 1985, vol. 77 & 78, pp. 1373-1382. |
Le Comber P.G., “Present and Future Applications of Amorphous Silicon and Its Alloys,” Journal of Non-Crystalline Solids, 1989, vol. 115, pp. 1-13. |
Lee S.H., et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM”, 2004 Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2004, pp. 20-21. |
Liu M et al., “rFGA: CMOS-Nano Hybrid FPGA Using RRAM Components”, IEEE CB3 N171nternational Symposium on Nanoscale Architectures, Anaheim, USA, Jun. 12-13, 2008, pp. 93-98. |
Lu. W., et al., “Nanoelectronics from the Bottom Up,” Nature Materials, 2007, vol. 6, pp. 841-850. |
Lu W., et al., “Supporting Information”, 2008. |
Marand, “Materials Engineering Science,” MESc. 5025 Lecture Notes: Chapter 7. Diffusion, University of Vermont. Retrieved from the Internet on Aug. 8, 2016. |
Moopenn A. et al., “Programmable Synaptic Devices for Electronic Neural Nets,” Control and Computers, 1990, vol. 18 (2), pp. 37-41. |
Muller D.A., et al., “The Electronic Structure at the Atomic Scale of Ultrathin Gate Oxides,” Nature, 1999, vol. 399, pp. 758-761. |
Muller G., et al., “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEEE, 2004, pp. 567-570. |
Newman R.C., “Defects in Silicon,” Reports on Progress in Physics, 1982, vol. 45, pp. 1163-1210. |
Notice of Allowance dated Nov. 26, 2013 for U.S. Appl. No. 13/481,696, 15 pages. |
Office Action for U.S. Appl. No. 14/613,301 dated Mar. 31, 2015, 58 pages. |
Notice of Allowance dated Apr. 2, 2013 for U.S. Appl. No. 13/149,757, filed May 31, 2011. |
Notice of Allowance dated Feb. 20, 2014 for U.S. Appl. No. 13/468,201, filed May 10, 2012. |
Notice of Allowance dated Mar. 20, 2014 for U.S. Appl. No. 13/598,550, filed Aug. 29, 2012. |
Notice of Allowance dated Mar. 20, 2014 for U.S. Appl. No. 13/461,725, filed May 1, 2012. |
Notice of Allowance dated Oct. 21, 2011 for U.S. Appl. No. 12/582,086, filed Oct. 20, 2009. |
Notice of Allowance dated Oct. 21, 2014 for U.S. Appl. No. 13/426,869, filed Mar. 22, 2012. |
Notice of Allowance dated Feb. 10, 2015 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012. |
Notice of Allowance dated May 22, 2012 for U.S. Appl. No. 12/815,369, filed Jun. 14, 2010. |
Notice of Allowance dated Dec. 23, 2015 for U.S. Appl. No. 14/573,770. |
Notice of Allowance dated Oct. 23, 2013 for U.S. Appl. No. 13/417,135, filed Mar. 9, 2012. |
Notice of Allowance dated Jan. 24, 2013 for U.S. Appl. No. 13/314,513, filed Dec. 8, 2011. |
Notice of Allowance dated Jul. 24, 2012 for U.S. Appl. No. 12/939,824, filed Nov. 4, 2010. |
Notice of Allowance dated Oct. 25, 2012 for U.S. Appl. No. 12/894,087, filed Sep. 29, 2010. |
Notice of Allowance dated Sep. 25, 2014 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012. |
Notice of Allowance dated Sep. 26, 2014 for U.S. Appl. No. 13/594,665, filed Aug. 24, 2012. |
Notice of Allowance dated Aug. 27, 2014 for U.S. Appl. No. 13/077,941, filed Mar. 31, 2011. |
Notice of Allowance dated Nov. 28, 2012 for U.S. Appl. No. 13/290,024, filed Nov. 4, 2011. |
Notice of Allowance dated Oct. 28, 2013 for U.S. Appl. No. 13/194,500, filed Jul. 29, 2011. |
Notice of Allowance dated Oct. 28, 2013 for U.S. Appl. No. 13/651,169, filed Oct. 12, 2012. |
Notice of Allowance dated Nov. 29, 2012 for U.S. Appl. No. 12/815,318, filed Jun. 14, 2010. |
Notice of Allowance dated Oct. 29, 2012 for U.S. Appl. No. 13/149,807, filed May 31, 2011. |
Notice of Allowance dated May 30, 2012 for U.S. Appl. No. 12/833,898, filed Jul. 9, 2010. |
Notice of Allowance dated Sep. 30, 2013 for U.S. Appl. No. 13/481,696, filed May 25, 2012. |
Notice of Allowance dated Aug. 31, 2012 for U.S. Appl. No. 13/051,296, filed Mar. 18, 2011. |
Notice of Allowance dated Apr. 20, 2016 for U.S. Appl. No. 14/573,817. |
Notice of Allowance dated Oct. 8, 2014 for U.S. Appl. No. 13/077,941, filed Mar. 31, 2011. |
Notice of Allowance dated Aug. 26, 2015 for U.S. Appl. No. 14/034,390. |
Notice of Allowance dated Sep. 8, 2015 for U.S. Appl. No. 14/613,299. |
Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/692,677, 27 pages. |
Office Action dated Feb. 5, 2015 for U.S. Appl. No. 14/027,045, 6 pages. |
Office Action dated Apr. 11, 2014 for U.S. Appl. No. 13/594,665, 44 pages. |
Office Action dated Apr. 6, 2015 for U.S. Appl. No. 13/912,136, 23 pages. |
Office Action for European Application No. 11005649.6 dated Dec. 1, 2014, 2 pages. |
Office Action for European Application No. 11005649.6 dated Nov. 17, 2015, 5 pages. |
Office Action for European Application No. EP11005207.3 dated Aug. 8, 2012, 4 pages. |
Office Action for U.S. Appl. No. 13/463,714 dated Dec. 7, 2012. |
Office Action for U.S. Appl. No. 14/611,022 dated May 7, 2015, 13 pages. |
Office Action for U.S. Appl. No. 14/613,301 dated Jul. 31, 2015, 26 pages. |
Office Action for U.S. Appl. No. 13/952,467 dated Jan. 15, 2016, 22 pages. |
Office Action for U.S. Appl. No. 14/194,499, dated May 18, 2016, 10 pages. |
Office Action for U.S. Appl. No. 14/207,430 dated Oct. 15, 2015, 57 pages. |
Office Action for U.S. Appl. No. 14/207,430 dated Mar. 10, 2016, 78 pages. |
Office Action for U.S. Appl. No. 14/207,430 dated Jul. 25, 2016, 79 pages. |
Office Action for U.S. Appl. No. 14/213,953 dated Nov. 9, 2015, 20 pages. |
Office Action for U.S. Appl. No. 14/383,079 dated May 10, 2016, 7 pages. |
Office Action for U.S. Appl. No. 14/383,079 dated Aug. 4, 2015, 11 pages. |
Office Action for U.S. Appl. No. 14/613,301 dated Feb. 4, 2016, 42 pages. |
Waser R., et al., “Nanoionics-based Resistive Switching Memories,” Nature Materials, 2007, vol. 6, pp. 833-835. |
Written Opinion for Application No. PCT/US2009/060023, dated May 18, 2010, 3 pages. |
Written Opinion for Application No. PCT/US2009/061249, dated May 19, 2010, 3 pages. |
Written Opinion for Application No. PCT/US2011/040090, dated Feb. 17, 2012, 6 pages. |
Written Opinion for Application No. PCT/US2011/045124, dated May 29, 2012, 5 pages. |
Written Opinion for Application No. PCT/US2011/046036, dated Feb. 23, 2012, 4 pages. |
Yin S., “Solution Processed Silver Sulfide Thin Films for Filament Memory Applications”, Technical Report No. UCB/EECS-2010-166, Dec. 17, 2010, Electrical Engineering and Computer Sciences, University of California at Berkeley. Retrieved from the Internet. |
Yuan H.C., et al., “Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction”, NREL Conference Paper CP-520-42566, 33rd IEEE Photovoltaic Specialists Conference, May 11-16, 2008, National Renewable Energy Laboratory, San Diego, California. |
Zankovych S., et al., “Nanoimprint Lithography: Challenges and Prospects,” Nanotechnology, 2001, vol. 12, pp. 91-95. |
Notice of Allowance for U.S. Appl. No. 14/588,202 dated Jan. 20, 2016, 15 pages. |
Office Action for U.S. Appl. No. 14/588,202 dated Sep. 11, 2015, 9 pages. |
Office Action for U.S. Appl. No. 14/588,202 dated May 10, 2016, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/040232, dated Feb. 26, 2013, 7 pages. |
Final Office Action for U.S. Appl. No. 14/612,025 dated Jun. 14, 2016, 7 pages. |
Office Action for U.S. Appl. No. 14/612,025 dated Feb. 1, 2016, 12 pages. |
Office Action dated Dec. 6, 2013 for U.S. Appl. No. 13/960,735, filed Aug. 6, 2013. |
Notice of Allowance for U.S. Appl. No. 14/612,025 dated Jul. 22, 2015, 25 pages. |
Office Action dated May 23, 2013 for U.S. Appl. No. 13/592,224, filed Aug. 22, 2012. |
Office Action dated May 7, 2013 for U.S. Appl. No. 13/585,759, 22 pages. |
Notice of Allowance dated Sep. 19, 2013 for U.S. Appl. No. 13/585,759, 13 pages. |
Office Action dated Aug. 19, 2013 for U.S. Appl. No. 13/585,759, 15 pages. |
International Search Report and Written Opinion for PCT/US2013/054976 dated Dec. 16, 2013, 11 pages. |
Office Action dated Apr. 6, 2015 for U.S. Appl. No. 14/034,390, 27 pages. |
Korean Office Action dated Apr. 17, 2017 for Korean Application No. 10-2011-0069311, 20 pages (with English translation). |
Office Action for U.S. Appl. No. 14/667,346 dated Jun. 2, 2017, 115 pages. |
Chinese Office Action dated Feb. 17, 2017 for Chinese Application No. 201280027066.9, 9 pages (with English translation). |
Taiwanese Office Action dated Apr. 20, 2017 for Taiwanese Application No. 103109555, 12 pages (with English translation). |
Chinese Office Action dated Jul. 17, 2017 for Chinese Application No. 201410096590.2, 21 pages (with English translation). |
Chinese Office Action dated Jul. 3, 2017 for Chinese Application No. 201410096551.2, 18 pages (including English translation). |
Japanese Office Action dated Aug. 6, 2017 for Japanese Application No. 2014-513700, 41 pages (including English translation). |
Office Action dated Oct. 6, 2017 for U.S. Appl. No. 15/587,560, 47 pages. |
Office Action dated Sep. 20, 2017 for U.S. Appl. No. 14/613,585, 10 pages. |
Korean Office Action dated Sep. 22, 2017 for Korean Application No. 10-2013-7007430, 5 pages (including English translation). |
Korean Office Action dated Oct. 27, 2017 for Korean Application No. 10-2011-0069311, 6 pages (including English translation). |
Taiwanese Office Action dated Oct. 23, 2017 for Taiwanese Patent Application No. 103109550, 12 pages (including English translation). |
Extended European Search Report dated Nov. 3, 2017 for European Patent Application No. 14000952.3, 10 pages. |
Communication under rule 69 EPC dated Dec. 4, 2017 for European Patent Application No. 14000952.3, 2 pages. |
Chinese Office Action for Chinese Patent Application No. 201410096551.2 dated Mar. 5, 2018, 6 pages (including English translation). |
Office Action dated Feb. 3, 2017 for U.S. Appl. No. 14/613,585, 98 pages. |
Office Action dated Jun. 9, 2017 for U.S. Appl. No. 14/613,585, 11 pages. |
Office Action dated Feb. 15, 2018 for U.S. Appl. No. 15/451,045, 130 pages. |
European Office Action for Application No. 11005649.6 dated Apr. 4, 2017, 12 pages. |
Office Action issued for U.S. Appl. No. 13/149,757 dated Jun. 19, 2012, 11 pages. |
Office Action issued for U.S. Appl. No. 14/887,050 dated Mar. 11, 2016, 12 pages. |
Taiwanese Office Action for Taiwanese Patent Application No. 103125090 dated Jan. 2, 2018, 15 pages (including English translation). |
Non-Final Office Action received for U.S. Appl. No. 14/613,585 dated Mar. 30, 2018, 14 pages. |
Korean Office Action for Korean Patent Application No. 10-2013-7035133 dated Apr. 10, 2018, 9 pages (including English translation). |
Second Office Action received for Chinese Patent Application No. 201410096590.2 dated Apr. 16, 2018, 10 pages (including English translation). |
Korean Office Action for Korean Patent Application No. 10-2013-7007430 dated Mar. 31, 2018, 6 pages (including English Translation). |
Notice of Allowance received for U.S. Appl. No. 15/451,045 dated Jun. 20, 2018, 24 pages. |
Search Report received for Chinese Application 201410364826.6 dated Apr. 10, 2018, 1 page. |
Office Action dated Jul. 6, 2018 for U.S. Appl. No. 15/587,560, 182 pages. |
Number | Date | Country | |
---|---|---|---|
20150243886 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61937412 | Feb 2014 | US |