The disclosures of application Ser. Nos. 10/443,792, 09/946,190, now issued as U.S. Pat. No. 6,603,646, Ser. No. 09/579,606, now issued as U.S. Pat. No. 6,373,673, Ser. No. 09/460,218, now issued as U.S. Pat. No. 6,331,926, Ser. No. 09/056,379, now issued as U.S. Pat. No. 6,018,448; Ser. No. 09/008,769, now issued as U.S. Pat. No. 6,097,581; and Ser. No. 08/841,940, now issued as U.S. Pat. No. 5,909,350, are incorporated herein by reference.
The present invention relates to a multi-functional energy conditioner that possesses a commonly shared centrally located conductive electrode of the structure that can simultaneously interact with energized and paired differential electrodes as said differential electrodes operate with respect to each other in a oppositely phased or charged manner.
The majority of electronic equipment produced presently includes miniaturized active components and circuitry to perform high-speed functions and utilize high speed electrical interconnections to propagate power and data between critical components. These components can be very susceptible to stray electrical energy created by electromagnetic interference or voltage transients occurring on electrical circuitry servicing or utilizing these systems. Voltage transients can severely damage or destroy such micro-electronic components or contacts thereby rendering the electronic equipment inoperative, often requiring extensive repair and/or replacement at a great cost.
Electrical interference in the form of EMI, RFI and capacitive and inductive parasitics can be created or induced into electrical circuitry and components from such sources as radio broadcast antennas or other electromagnetic wave generators. EMI can also be generated from the electrical circuit, which makes shielding from EMI desirable. Differential and common mode currents are typically generated in cables and on circuit board tracks. In many cases, fields radiate from these conductors which act as antennas. Controlling these conducted/radiated emissions is necessary to prevent interference with other circuitry that is sensitive to the unwanted noise. Other sources of interference are also generated from equipment as it operates, coupling energy to the electrical circuitry, which may generate significant interference. This interference must be eliminated to meet international emission and/or susceptibility requirements.
Transient voltages can be induced by lightning on electrical lines producing extremely large potentials in a very short time. In a similar manner, electromagnetic pulses (EMP) can generate large voltage spikes with fast rise time pulses over a broad frequency range that are detrimental to most electronic devices. Other sources of large voltage transients as well as ground loop interference caused by varying ground potentials can disrupt an electrical system. Existing protection devices are unable to provide adequate protection in a single integrated package. Varieties of filter and surge suppression circuit configurations have been designed as is evident from the prior art. A detailed description of the various inventions in the prior art is disclosed in U.S. Pat. No. 5,142,430, herein incorporated by reference.
The '430 patent itself is directed to power line filter and surge protection circuit components and the circuits in which they are used to form a protective device for electrical equipment. These circuit components comprise wafers or disks of material having desired electrical properties such as varistor or capacitor characteristics. The disks are provided with electrode patterns and insulating bands on the surfaces thereof, which coact with apertures, formed therein, so as to electrically connect the components to electrical conductors of a system in a simple and effective manner. The electrode pattern coact with one another to form common electrodes with the material interposed between. The '430 patent was primarily directed toward filtering paired lines. Electrical systems have undergone short product life cycles over the last decade. A system built just two years ago can be considered obsolete to a third or fourth generation variation of the same application. Accordingly, componentry and circuitry built into these the systems need to evolve just as quickly.
The performance of a computer or other electronic systems has typically been constrained by the speed of its slowest active elements. Until recently, those elements were the microprocessor and the memory components that controlled the overall system's specific functions and calculations. However, with the advent of new generations of microprocessors, memory components and their data, there is intense pressure to provide the user increased processing power and speed at a decreasing unit cost. As a result, the engineering challenge of conditioning the energy delivered to electrical devices has become both financially and technologically difficult. Since 1980, the typical operating frequency of the mainstream microprocessors has increased approximately 240 times, from 5 MHz (million cycles per second) to approximately to 1200 MHz+by the end of the year 2000. Processor speed is now matched by the development and deployment of ultra-fast RAM architectures. These breakthroughs have allowed boosting of overall system speeds past the 1 GHz mark. During this same period, passive componentry technologies have failed to keep up and have produced only incremental changes in composition and performance. Advances in passive component design changes have focused on component size reduction, slight modifications of discrete component electrode layering, new dielectric discoveries, and modifications of manufacturing production techniques that decrease component production cycle times.
In the past, passive component engineers have solved design problems by increasing the number of components in the electrical circuit. These solutions generally involved adding inductors and resistors that are used with capacitors to filter and decouple.
Not to be overlooked, however, is the existence of a major limitation in the line conditioning ability of a single passive component and for many passive component networks. This limitation presents an obstacle for technological progression and growth in the computer industry and remains as one of the last remaining challenges of the+GHz speed system. This constraint to high-speed system performance is centered upon the limitations created by the supporting passive componentry that delivers and conditions energy and data signals to the processors, memory technologies, and those systems located outside of a particular electronic system.
The increased speed of microprocessors and memory combinations has resulted in another problem as evidenced by recent system failures that have occurred with new product deployments of high-speed processors & new memory combinations by major OEMs. The current passive component technology is the root cause of many of these failures and delays. The reasons are that the operating frequency of a single passive component generally has a physical line conditioning limitation of between 5 and 250 MHz. Higher frequencies for the most part require combinations of passive elements such as discrete L-C-R, L-C, R-C networks to shape or control energy delivered to the system load. At frequencies above 200 Mhz, prior art, discrete L-C-R, L-C, R-C networks begin to take on characteristics of transmission lines and even microwave-like features rather than providing lump capacitance, resistance or inductance that such a network was designed for. This performance disparity between the higher operating frequency of microprocessors, clocks, power delivery bus lines and memory systems and that of the supporting passive elements has resulted in system failures.
Additionally, at these higher frequencies, energy pathways are normally grouped or paired as an electrically complementary element or elements that electrically and magnetically must work together in harmony and balance An obstacle to this balance is the fact that two discrete capacitors manufactured in the same production batch can easily posses a variability in capacitance, ranging anywhere from 15%-25%. While it is possible to obtain individual variations of capacitance between discrete units of less than 10%, a substantial premium must be paid to recover the costs for testing, hand sorting manufactured lots, as well as the additional costs for the more specialized dielectrics and manufacturing techniques that are needed to produce these devices with reduced individual variance differences required for differential signaling. Therefore, in light of the foregoing deficiencies in the prior art, the applicant's invention is herein presented.
Based upon the foregoing, there has been found a need to provide a multi-functioning electronic component which can operate across a broad frequency range as compared to a single, prior art component or a multiple passive network. Ideally, this component would perform effectively past 1 Ghz while simultaneously providing energy decoupling for active componentry and maintaining a constant apparent voltage potential for portions of active circuitry. This new component would also minimize or suppress unwanted electromagnetic emissions resulting from differential and common mode currents flowing within electronic circuits. A multi-functioning electronic component in a multi-layered embodiment and in a dielectric independent passive architecture can, when attached into circuitry and energized, be able to provide simultaneous line conditioning functions such as, but not limited to, the forgoing needs. These needs include source to load and/or load to source decoupling, as well as, differential and common mode filtering, parasitic containment, and surge protection in one integrated package when utilizing an external conductive area or pathway. The invention can be utilized for protecting electronic circuitry and active electronic components from electromagnetic field interference (EMI), over voltages, and preventing debilitating electromagnetic emissions attributed to the circuitry and from the invention itself. Furthermore, the present invention minimizes or prevents detrimental parasitics from coupling back on to a host circuit from internally enveloped differential conductive elements located with the invention as it operates in an energized circuit. More specifically, this invention teaches that with proper placement techniques and attachment into circuitry, the system can utilize the energized physical architecture to suppresses unwanted electromagnetic emissions, both those received from other sources, and those created internally within the invention and it's electronic circuitry that could potentially result in differential and common mode currents that would be contributed as parasitics back into the host circuitry.
In addition, due to the multi-functional energy conditioner's physically integrated, shield-containment conductive electrode architecture, the ability to use an independent electrode material and/or an independent dielectric material composition when manufactured will not limit the invention to a specific form-shape, size for the multitude of possible embodiments of the invention that can be created and of which only a few will be described, herein.
Due to the highly competitive nature of today's electronic industry, such a multi-functional energy conditioner/surge protector must be inexpensive, miniaturized, low in cost, highly integrated for incorporation into a plurality of electronic products. It would be desirable if it could operate free of any additional discrete passive components to achieve the desired filtering and/or line conditioning that prior art components are unable to provide.
It is therefore a main object of the invention to provide an easily manufactured, adaptable, multi-functional electronic component that prevents or suppresses electromagnetic emissions caused by differential and common mode currents that are generated among paired energy pathways.
It is another object of the invention to provide a protective circuit arrangement that may be mass produced and adaptable to include one or more protective circuits in one component package to provide protection against voltage transients, over voltages, parasitic sand electromagnetic interference.
It is another object of the invention to provide a discrete, multi-functioning electronic component, that when attached to an external conductive pathway or surface could operate effectively across a broad frequency range and could simultaneously provide energy decoupling for active circuit componentry while maintaining a constant apparent voltage potential for portions of circuitry.
Another object of the invention is to provide a blocking circuit or circuits utilizing an inherent ground which is combined with an external conductive surface or ground area that provides an additional energy pathway from the paired differential conductors for attenuating EMI and over voltages without having to couple the hybrid electronic component to a final earth ground.
Another object of the invention is to provide a single device that eliminates the need to use specialized dielectrics commonly used to obtain a minimized degree of variation of capacitance between internal capacitor plates.
These and other objects and advantages of the invention are accomplished through the use of a plurality of common conductive plates that are joined and partially surrounding corresponding differentially conductive electrode plates that are separated by a material that exhibits any one or a combination of a number of predetermined electrical properties.
Other objects and advantages of the invention are accomplished by coupling pairs of conductors into an area or space partially enveloped by a plurality of joined common conductive plates and by selectively coupling external conductors or pathways to differential electrode plates.
It is another object of the invention to provide line-to-line and line-to-ground capacitive or inductive coupling between internal plates and/or conductive electrodes that create a state of effective differential and common mode electromagnetic interference filtering and/or surge protection. Additionally, a circuit arrangement utilizing the invention will comprise of at least one line conditioning circuit component constructed as a plate. Electrode patterns are provided on one surface of the plate and the electrode surfaces are then electrically coupled to electrical conductors of the circuit. The electrode patterns, dielectric material employed and common conductive plates produce commonality between electrodes for the electrical conductors producing a balanced (equal but opposite) circuit arrangement with an electrical component coupled line-to-line between the electrical conductors and line-to-ground from the individual electrical conductors. The particular electrical effects of the multi-functional energy conditioner are determined by the choice of material between the electrode plates and the use of ground shields which effectively house the electrode plates within one or more created Faraday like shield cages. If one specific dielectric material is chosen, the resulting multi-functional energy conditioner will be primarily a capacitive arrangement. The dielectric material in conjunction with the electrode plates and common conductive plates will combine to create a line-to-line capacitor that is approximately ½ the value of the capacitance of the two line-to-ground capacitors make up an attached and energized invention. If a metal oxide varistor (MOV) material is used, then the multi-functional energy conditioner will be a capacitive multi-functional energy conditioner with over current and surge protection characteristics provided by the MOV-type material. The common conductive plates and electrode plates will once again form line-to-line and line-to-ground capacitive plates, providing differential and common mode filtering accept in the case of high transient voltage conditions. During these conditions, the MOV-type varistor material, which is essentially a non-linear resistor used to suppress high voltage transients, will take effect to limit the voltage that may appear between the electrical conductors.
In a further embodiment, a ferrite material may be used adding additional inherent inductance to the multi-functional energy conditioner arrangement. As before, the common ground conductive and electrode plates form line-to-line and line-to-ground capacitive plates with the ferrite material adding inductance to the arrangement. Use of the ferrite material also provides transient voltage protection in that it to will become conductive at a certain voltage threshold allowing the excess transient voltage to be shunted to the common conductive plates, effectively limiting the voltage across the electrical conductors.
Numerous other arrangements and configurations are also disclosed which implement and build on the above objects and advantages of the invention to demonstrate the versatility and wide spread application of multi-functional energy conditioners within the scope of the present invention.
Continued and increasing use of electronics in daily life and the amount of electromagnetic interference (EMI) and emissions generated has created new electromagnetic compatibility (EMC) requirements. These new specifications apply to diverse electronic equipment such as but not limited to and in particular IC (Integrated Circuit) packages, PCBs, DSPs, microcontrollers, switch mode power supplies, networks, connectors, avionics, wireless phones, consumer electronics, tools, ordnance igniters, and control equipment. The present invention is directed towards a physical architecture for an electronic component that provides simultaneous and effective EMI suppression; line conditioning, broadband I/O-line filtering, EMI decoupling noise reduction and surge protection in one integrated component or assembly.
To propagate electromagnetic interference energy two fields are required, an electric and magnetic. Electric fields couple energy into circuits through the voltage differential between two or more points. Changing electrical fields in a space give rise to a magnetic field. Any time-varying magnetic flux will give rise to an electric field. As a result, a purely electric or purely magnetic time-varying fields cannot exist independent of each other. Passive component architecture such as the invention can be built to condition or minimize both types of energy fields that can be found in an electrical system. The invention is not necessarily built to condition one type of field more than another, however, different types of materials can be added or used to build an embodiment that could do such specific conditioning upon one energy field over another.
The accumulation of an electric charge creates an electrostatic field and this accumulation can best be observed between two boundaries, one conductive and the other nonconductive. The boundary condition behavior referenced in Gauss's law causes a conductive enclosure or semi-enclosure called a Faraday cage or Faraday cage-like structure to act as an electrostatic shield in relationship to conductive elements contained or located partially inside the shield-like structure. Near the boundary of the shield structure, electrical charges and parasitics are for the most part kept inside of the shield boundary. In turn, the electrical charges and parasitics that exist on the outside of the cage-like shield boundary are excluded for the most part, from detrimentally affecting internally generated fields related to the conductors held within. Coupled electric and magnetic fields have the ability in nature to propagate along at the speed of light unless the energy field propagating along a conductive pathway meets with an impedance or resistance along said pathway that hinders the propagating field energy from doing so. This impedance or resistance contributes to the concept of “skin effect,” which predicts the effectiveness of magnetic shielding in relationship to the materials that make up a conductive pathway.
As previously, noted, propagated electromagnetic interference can be the product of both electric and magnetic fields, respectively. Until recently, emphasis in the art has been placed upon on filtering EMI from circuit or energy conductors carrying high frequency noise with DC energy or current. However, the invention is capable of conditioning energy that uses DC, AC and AC/DC hybrid-type propagation of energy along conductive pathways found in an electrical system or test equipment. This includes use of the invention to condition energy in systems that contain many different types of energy propagation formats found in systems containing many kinds of circuitry propagation characteristics within the same electrical system platform. The main cause of radiated emission problems can be due to the two types of conducted currents, differential and common mode energy. The fields generated by these currents result in many types of EMI emissions. Differential mode (DM) currents are those currents that flow in a circular path in wires, circuit board traces and other conductors. The fields related to these currents originate from the loop defined by the conductors.
Higher operating frequencies of circuitry for the most part, require the user to develop combinations of single or multiple passive elements such as inductors, capacitors, or resistors to create L-C-R, L-C, and R-C discrete component networks used to control energy delivered to a system load. However, prior art, discrete, L-C-R, L-C, R-C component networks at frequencies above 200 Mhz begin to take on characteristics of transmission lines, or can even exhibit microwave-like features at still higher frequencies. This can allow unsuppressed or undiminished parasitics, or the connection structures that combine externally between all of the discrete elements into said network, to degrade, slow down or otherwise contribute noticeable degradation of the energy propagating along the circuit over a wide range of frequency operations. This can be substantially harmful to the larger circuit said network is attached into. Rather than providing a lump capacitance, resistance or inductance that such a network was designed for, at higher frequencies, capacitive parasitics that are attributed to the internal electrodes located inside prior art component networks can be one of many reasons or sources of energy degradation, debilitation or sub-specified performance to the circuit. Said sub-par performance losses such as, but not limited to, data drop, line delays, etc. and can contribute to a measurable circuit in-efficiency.
Common mode and differential mode energies differ in that they propagate in different circuit paths. Common mode noise will can be caused electrostatic induction which results from un-equal capacitance between conductive pathways and the surroundings. Noise voltage developed, will be the same on both wires and/or, it can be caused by electromagnetic induction magnetic fields from a conductive pathway linking paired or multiple conductive pathways unequally with any noise voltage developed, essentially, the same; on both paired, conductive pathways. Noise energy will travel on the outer skin surface of conductors. Differential noise, is normally created by voltage imbalance within an energized circuit, Interference that causes the potential of one side of the signal transmission path to be change relative to the other side.
To help reduce, minimize or suppress the unwanted noise, the energized invention utilizes a low impedance path that develops internally, within the invention to take portions of the unwanted energy to a conductive ground and/or an external (to the invention) conductive area or pathway. Portions of this pathway can also be located internally within the invention and include portions of the common conductive plates or the structure they make up. The common conductive plates or structure and the extension of the external conductive area created, will allow energy propagating along these conductive shield pathway elements to move to a larger, externally located conductive area, pathway or system ground that is situated primarily outside of the internally positioned common conductive plate area(s) or shield-like structure that make up portions of the invention.
Possible external connections and/or attachments of a plurality of invention common conductive pathways to pathways' external of the multilayer embodiment of the invention can be made by a multitude of possible industry accepted means know to the art. Such conductive attachments of common conductive plates or the attachments to a conductive shield-like structure that are made from a combination of these joined, common plate elements and to an external conductive pathway, separate, in most cases, from the differential conductive pathways, also conductively attached to the multi-functional energy conditioner will provide a shortening of the overall noise current loop area created in an energized circuit, also containing a source, multi-functional energy conditioner, conductive pathways and a load.
At least two energy loops are created when the invention is attached and energize within a circuit, with the created energy loops in parallel, but on opposite sides of a center, common conductive plate or pathway. These energy loops are propagating 180 degrees out-of-phase with respect to one another, thus, opposing energy will cancel and noise is minimized or suppressed. An energized configuration containing multi-functional energy conditioner within a larger, energized circuitry, will also provide a plurality of potential conductive pathways, internal to multi-functional energy conditioner, that can be used by portions of energy propagating from an energy source(s) to a load or loads.
The common shielding conductive plates and/or portions of the shield-like structure made of the plate elements, when used by propagating energy from a source or from a load as a return path to energy source, will have a short distance of separation or loop area between portions of paired differential conductive paths and a return path, when the common conductive structure or common conductive plates, are used by portions of propagating energy as one, or more energy return pathways, back to its' (the portions of propagating energy's) source.
When attached to respective, external conductors or pathways, a portion of the loop area is located internal to the multi-functional energy conditioner, with the interposing, dielectric material providing a distance between a differential conductive plate or pathway and a common conductive plate or pathway. Portions of the circuits' propagating energy can move along, internal to the multi-functional energy conditioner, with portions of the circuits' propagating energy moving from a source to a load moving oppositely to that of portions of the circuits' propagating energy moving from a load back to a source within a circuit mounted, multi-functional energy conditioner.
Oppositely propagating energy, as just described, will be separated by the central common conductive shield pathway, yet, contained in the Faraday cage-like shield structure, with interposing dielectric medium, all internally within the multi-functional energy conditioner. This oppositely propagating energy will be simultaneously conditioned, with respect to the Faraday cage-like shield structure's electrostatic properties and by mutually canceling magnetic fields principals within the short distance of separation, as just described.
Grouped, common conductive electrodes or paths, physically shield most of the area of the paired differential energy conductive plates or pathways from one another, and allow close distance proximity of these differential conductive pathways to function, when energized, oppositely, and in close proximity, always separated by a common shield pathway, to still co-act in a complementary or harmonious manner and to provide effective, energy conditioning internally within the multi-functional energy conditioner.
Portions of the circuit energy in a conditioner of the present invention will, at some point in time, propagate between portions of two distinct common conductive plate areas along or on a differential conductor that is separated from the respective common conductive plate areas by a dielectric medium, as portions of said energy propagates internally within the multi-functional energy conditioner is in operation with an energized circuit.
Turning now to
Electrode plates 16A and 16B are similar to common conductive plates 14 in that they are comprised of a conductive material or in a different embodiment, can have conductive material deposited onto a dielectric laminate (not shown) similar to the processes used to manufacture chip capacitors and the like and have electrical conductors 12a and 12b disposed through apertures. Unlike common conductive plates 14, electrode plates 16A and 16B are selectively electrically connected to one of the two electrical conductors 12. While electrode plates 16, as shown in
Electrical conductors 12 provide a current path that flows in the direction indicated by the arrows positioned at either end of the electrical conductors 12a and 12b as shown in
The final element which makes up multi-functional energy conditioner 10 is material 28 which has one or a number of electrical properties and surrounds the center common ground conductive plate 14, both electrode plates 16A and 16B and the portions of electrical conductors 12a and 12b passing between the two outer common conductive plates 14 in a manner which isolates the plates and conductors from one another except for the connection created by the conductors 12a and 12b and coupling aperture 20. The electrical characteristics of multi-functional energy conditioner 10 are determined by the selection of material 28. If a dielectric material is chosen multi-functional, energy conditioner 10 will have primarily capacitive characteristics. Material 28 may also be a metal oxide varistor material that will provide capacitive and surge protection characteristics. Other materials such as ferrites and sintered polycrystalline may be used wherein ferrite materials provide an inherent inductance along with surge protection characteristics in addition to the improved common mode noise cancellation that results from the mutual coupling cancellation effect. The sintered polycrystalline material provides conductive, dielectric, and magnetic properties. Sintered polycrystalline is described in detail in U.S. Pat. No. 5,500,629, which is herein incorporated by reference.
An additional material that may be used is a composite of high permittivity Ferro-electric material and a high permeability ferromagnetic material as disclosed in U.S. Pat. No. 5,512,196, which is incorporated by reference herein. Such a ferroelectric-ferromagnetic composite material can be formed as a compact unitary element which singularly exhibits both inductive and capacitive properties so as to act as an LC-type electrical filter. The compactness, formability, and filtering capability of such an element is useful for suppressing electromagnetic interference. In one embodiment, the ferroelectric material is barium titanate and the ferromagnetic material is a ferrite material such as one based upon a copper zinc ferrite. The capacitive and inductive characteristics of the ferroelectric-ferromagnetic composites exhibit attenuation capabilities which show no signs of leveling off at frequencies as high as 1 Ghz. The geometry of the ferroelectric-ferromagnetic composite will significantly affect the ultimate capacitive and inductive nature of an electrical filter that employs such a composite. The composite can be adjusted during its manufacturing process to enable the particular properties of a multi-functional energy conditioner to be tuned to produce suitable attenuation for specific applications and environments.
Still referring to
Connection of common conductive plates 14 to an external conductive area helps electrostatic suppression of any inductive or parasitic strays that can radiate or be absorbed by differentially conductive plates 16a and 16b and/or any plurality of differential electrical conductors such as 12a and 12b for example.
Principals of a Faraday cage-like structure are used when the common plates are joined to one another as described above and the grouping of common conductive plates together co-act with the larger external conductive area or surface to suppress radiated electromagnetic emissions and provide a greater conductive surface area in which to dissipate over voltages and surges and initiate Faraday cage-like electrostatic suppression of parasitics and other transients, simultaneously, This is particularly true when plurality of common conductive plates 14 are electrically coupled to earth ground (not shown) but are relied upon to provide an inherent ground for a circuit in which the invention is placed into an energized with. As mentioned earlier, inserted and maintained between common conductive plates 14 and both electrode plates 16A and 16B is material 28 which can be one or more of a plurality of materials having different electrical characteristics.
The second parallel plate required for each line-to-ground capacitor 32 is supplied by the corresponding electrode plate 16B. By carefully referencing
The larger external conductive area 34 will be described in more detail later but for the time being it may be more intuitive to assume that it is equivalent to earth or circuit ground. The larger external conductive area 34, can be coupled with the center and the additional common conductive plates 14 to join with the central plate 14 to form, one or more of common conductive plates 14 that are conductively joined and can be coupled to circuit or earth ground by common means of the art such as a soldering or mounting screws inserted through fastening apertures 22 which are then coupled to an enclosure or grounded chassis (not shown) of an electrical device.
While multi-functional energy conditioner 10 works equally well with inherent ground 34B coupled to earth or circuit ground 34, one advantage of multi-functional energy conditioner 10's physical architecture is that depending upon energy condition that is needed, a physical grounding connection can be unnecessary in some specific applications.
Referring again to
It should also be evident that labor intensive aspects of using multi-functional energy conditioner 10 as compared to combining discrete components found in the prior art provides an easy and cost effective method of manufacturing. Because connections only need to be made to either ends of electrical conductors 12 to provide a line to line capacitance to the circuit that is approx. ½ the value of the capacitance measured for each of the like to ground capacitance also developed internally within the embodiment and this provides flexibility for the user as well as providing a potential savings in time and space in manufacturing a larger electrical system utilizing the invention.
Graph in
An alternate embodiment of the present invention is differential and common mode multi-conductor filter 110 shown in
To provide multiple independent conductive electrodes for each pair of electrical conductors, a support material 116 comprised of one of the materials 122 containing desired electrical properties is used. Support plate 116B is comprised of a plurality of conductive electrodes 118b, 118c, 118e and 118h printed upon one side of plate 116B with one coupling aperture 120 per electrode. Support plate 116A is also comprised of a plurality of conductive electrodes 118a, 118d, 118f and 118g printed upon one side of plate 116A. Support plates 116A and 116B are separated and surrounded by a plurality of common conductive plates 112 which together excluding conductive materials are generally made up of material 122 so to allow respective plates to be melded or laminated and/or fused together daring the manufacturing process by standard means known in the art. Conductive electrode materials and insulating structures as just described are also added or deposited by standard means known in the art as well in the manufacturing process.
A conductive termination material 112D is also applied to the sides of plates 112 during manufacturing so that termination material 112D allows a conductive connection of at least the perimeter of invention 110's plurality of common conductive plate electrodes 112A, 112B, 112C to be joined conductively together to form a single conductive structure capable of sharing a same conductive pathway to an external conductive area 34 or surface (not shown) when placed into a circuit and energized. The pairs of incoming electrical conductors each have a corresponding electrode pair within multi-functional energy conditioner 110. Although not shown, the electrical conductors pass through the common conductive plates 112 and the respective conductive electrodes. Connections are either made or not made through the selection of coupling apertures 120 and insulating apertures 114. The common conductive plates 112 in cooperation with conductive electrodes 118a thru 118h perform essentially the same function as electrode plates 16A and 16B of
Again referring to
One trend found throughout modem electronic devices is the continuous miniaturization of equipment and the electronic components that make up that equipment. Capacitors, the key component in multi-functional energy conditioner arrangements, have been no exception and their size has continually decreased to the point where they may be formed in silicon and imbedded within integrated circuits only seen with the use of a microscope. One miniaturized capacitor which has become quite prevalent is the chip capacitor which is significantly smaller than standard through hole or leaded capacitors. Chip capacitors employ surface mount technology to physically and electrically connect to electrical conductors and traces found on circuit boards. The versatility of the architecture of the multi-functional energy conditioner of the present invention extends to surface mount technology as shown in
First differential support plate 410 includes conductive electrode 416 coupled to the top surface of material 430 in a manner which leaves isolation band 418 surrounding the outer perimeter of first differential plate 416 along three of its four sides. Isolation band 418 is simply a portion of material 430 that has not been covered by conductive electrode 416. Second differential plate 426 is essentially identical to first differential plate 416 with the exception being its physical orientation with respect to that of first differential plate 416. Second differential support plate 414 is comprised of material 430 having conductive electrode 426 coupled to the top surface of material 430 in such a manner as to leave isolation band 428 surrounding the outer perimeter of second differential plate 426 along three of its four sides. What is important to note about first and second differential plates 416 and 426's physical orientation with respect to one another is that the one side of each plate in which isolation bands 418 and 428 do not circumscribe are arranged 180 degrees apart from one another. It is also important to note about first and second differential plates 416 and 426's physical orientation with respect to the common conductive plate 424 is that all though not shown, but further explained in
The conductive area of each differential electrodes 416 and 426 respectively, are physically shielded from the other by the interpositioned central common conductive electrode 424 such that the boundary or perimeter of each respective differential electrode 416 and 426 is inset with respect to the common conductive electrode 424 border or perimeter to a degree that the common conductive plate 424 registration area or under lap area allows the common conductive plate 424 to appear oversized in relation to the equally-sized differential conductive plates 416 and 426 that sandwich said common conductive plate 412.
With respect to the common conductive electrode 424 and the range of the over lap with respect to the equally sized differential plates 416 and 426 can be essentially inset to a degree that when energized the entrapment of parasitics attempting to escape or enter the area occupied by differential electrodes 416 and 426 is sufficient to prevent such degradation from occurring. Insetting of differential conductive plates 416 and 426 to a point with respect to a larger set of common plates 424, 424a, 424b that are sandwiching differential plates 416 and 426 and will increase the electrostatic shielding effectiveness during an energized state. This orientation allows an electrical conductor to be coupled electrically to either individual differential plate 416 and 426 but not necessarily both, so to allow for differentially phased, but complementary energy conditioning, between paired, but oppositely positioned, differential conductors, 416 and 426.
Common support plate 412 is similar in construction to first and second differential support plates 410 and 414 in that it, too, includes material 430 with common conductive electrode 424 coupled to its top surface. As can be seen from
All three plates, common plate 424 and first and second differential plates 416 and 426 do not have any type of conductive surface beneath each plate and therefore when the plates are stacked one on top of the other, differential conductive electrode 416 is isolated from common conductive electrode 424 by the backside of common support plate 412. In a similar fashion, common conductive electrode 424 is isolated from differential conductive electrode 426 by the backside of first differential support plate 410 that is comprised of material 430.
Referring now to
A means for coupling electrical conductors to the differential electrodes 416 and 426 must be included. Electrical conductors are coupled to surface mount multi-functional energy conditioner 400 through first differential conductive band 404 and second differential conductive band 406, which are isolated from common conductive band 402 by isolation bands 408 positioned in between conductive bands 402, 404 and 406. Common conductive band 402 and isolation bands 408 can extend 360 degrees around the body of 400 multi-functional energy conditioner to provide isolation on all four sides, however because of the almost complete shield-like envelopment of differential conductive electrodes 416 and 426 by common conductive plates 424, 424A and 424B, common conductive band 402 can be reduced in size or even eliminated by replacing conductive band 402 with conductive termination structures (not shown), but similar in appearance and function of termination bands 84 found on
By referring back and forth between
In a similar fashion to that just described, second differential conductive band 406 including end 432 is electrically coupled to second differential conductive electrode 426 of second differential support plate 414. Due to isolation bands 420, 420A, 420B and 422, 422A and 422B of common support plates 412, 412A and 412B and first differential plate 416, the second differential conductive band 406 is electrically isolated from the first differential plate 416 and common plates 424, 424A and 424B.
Electrical coupling of common conductive band 402 to common plates 424, 424A and 424B is accomplished by the physical coupling of sides 436 of common conductive band 402 or its substitutions, to common conductive electrodes 424, 424a, 424b, which lack isolation bands along two sides. To maintain electrical isolation of common conductive electrodes 424, 424A, 424B from first and second differential conductive bands 404 and 406, isolation bands 420, 420A, 420B and 422, 422A, 422B of common plates 412, 412A, 412B prevent any physical coupling of ends 432 and 434 of first and second differential conductive bands 404 and 406 with common conductive electrodes, 424, 424A, 424B.
As with the other embodiments of the differential and common mode multi-functional energy conditioner of the present invention, conductive electrodes 416 and 426 of first and second differential support plates 410 and 414 act as a line-to-line differential mode capacitor when electrical conductors are coupled to first and second differential conductive bands 404 and 406. Line-to-ground decoupling capacitors are formed between each conductive electrode, 416 and 426 respectively, and coupled, common conductive electrodes 424, 424A, 424B, which form a Faraday cage-like shield structure 800 (not shown).
Common conductive plate 480 includes isolation barriers 482 and 492 which divide common conductive plate 480 into three conductive surfaces: common electrode 488, isolated electrode 484 and isolated electrode 494. As shown, isolation barriers 482 and 492 run vertically adjacent to and in parallel with the right and left edges of common conductive plate 480. Both isolation barriers 482 and 492 also include members 496 extending outward and perpendicular from the vertical sections of isolation barriers 482 and 492 and are positioned so when plates 460, 480 and 500 are stacked, they are aligned with the horizontal portions of the U-shaped isolation barriers 462 and 506 of first and second differential plates 460 and 500.
An additional feature is that common conductive plate 480 can be optimized for use in filtering AC or DC signals. Isolation barriers 492 and 482 as described above are optimized for use in filtering DC signals. For DC operation, isolated electrodes 484 and 494 require very little area within common conductive plate 480. When the filter is comprised of a film medium and used for filtering AC signals, isolated electrodes 484 and 494 require a greater area, which is accomplished by etching modified isolation barriers 486 and 490. The vertically running isolation barriers 484 and 494 are etched closer together and closer to the center of common conductive plate 480. To accommodate this modification, members 496 extending outward and perpendicular from the vertical sections are longer than for the DC version. The greater area isolated electrodes 484 and 494 provide better AC filtering characteristics, although either configuration provides filtering to both types of current.
Electric motor filter 180 may be made in any number of shapes but in the preferred embodiment shown in
d is a schematic representation of differential and common mode electric motor filter 180 showing conductive electrodes 181 and 185 providing the two necessary parallel plates for a line-to-line differential mode coupling capacitor while at the same time working in conjunction with common conductive electrode 183 to provide line-to-ground common mode decoupling capacitors with common conductive electrode 183 co-acting with inherent ground (not shown). Also shown are conductive bands 184, 194 and common conductive bands 186 which allow electric motor filter 180 to be connected to external differential electrical conductors and a separate conductive area (not shown), respectively. While the preferred embodiment of
The differential and common mode filter has been presented in many variations both above and in commonly owned patents and patent applications, previously incorporated herein by reference. A further embodiment of the present invention utilizes a variation of the filter previously discussed. Shielded twisted pair feed through differential and common mode filter 300 is shown in
Referring now to
In
Referring now to
The filter of the present invention may exist in innumerable embodiments. As an example of various types of layered configurations contemplated, but not intended to limit the invention, various additional embodiments of multi-component filters will be described. In each figure, the five electrode plates are shown individually and then in a top plan view and finally in a side view. Referring now to
The conductive bands 82, 84, 86 are isolated from each other by an insulated outer casing 88. Common conductive plates 74 have four common conductive bands 84, which provide four places of attachment to external, ground areas of an electrical circuit system, wherein each common conductive band 84 is about 90 degrees from the next adjacent common conductive band 84. This feature provides additional isolation and centralizing of the line conditioning capabilities of the structures and provides improved charge concentration.
The primary difference between the filters 70, 70′ is that the electrode terminal portions 72a, 76A are on the same longitudinal side in the filter 70 while the electrode terminal portions are on the opposite longitudinal side in the filter 70′. Also current dose not pass through filter 70 as it does in filter 70′. The different terminal locations provide versatility in the applicability of the filters to different electrical circuit system configurations.
Referring now to
Referring now to
Referring now to
Each of the
Each of the electrodes 72, 74, 76 in
Referring now to
Additionally, the first and second dual electrode plates 90, 96 have a smaller common conductive plate electrode 74 between the first and second electrode 72 and 76 of each plate 72A and 76A, respectively. This feature provides additional isolation of the dual electrodes.
In an energized system, the invention contains a single shielding, cage-like structure 800″ or grouped commonly conductive elements that form extension and/or transformational fusion to its attached an external conductive area 34, will significantly eliminate, reduce and/or suppress E-Fields and H-fields emissions, RF loop radiation, stray capacitances, stray inductances, capacitive parasitics, and at the same time allow for mutual cancellation of oppositely charged or phased and adjacent or abutting electrical fields. The process of electrical energy transmission conditioning is considered a dynamic process over time.
This process can be measured to some degree by devices such as dual port, Time Domain Reflectometry test equipment and/or other industry standard test equipment and fixtures. The invention can also be attached in a single, dual or multi-conductor electrical system with slight modifications made to accommodate external input and output energy transmission conductors or paths for such applications like signal, energy transmission and/or power line decoupling, bypassing and filtering operations. Circuitry and depictions of some of the embodiments shown in this document expose some of the placements contemplated by the applicant and should not be construed as the only possible configurations of the invention elements.
Another aspect of the present invention involves ‘decoupling loops’ or ‘RF loops’. Decoupling loops are related to the perimeter and physical area contained within the current path loop by the physical placement of a passive unit, such as a decoupling capacitor, in relation to its' distance and position between an active component that is receiving the energy that is conditioned from the passive element. In other words, the current loop is the distance and area enclosed by the current path from the power plane to the passive element and the return path to its source (typically on a PCB type board or IC package, etc.).
Power and ground return current pathways which make up an energized loop area are energy transmission lines which at certain frequencies, depending upon the physical size of the loop area of the current pathways, can act as an antenna, radiating unwanted energy from the system. This energized RF loop area creates a state of voltage imbalance in the electrical system because it allows detrimental common mode energy as a by-product of the imbalance that can seriously disrupt and strain efficient energy delivery to active components between an energy source and its subsequent return. The physical size of the RF loop area is directly related to the magnitude of the RF energy that is radiating from the electrical circuit system.
Due to the minute distances between the conductive termination paths to that of each respective differentially conductive energy transmission path the RF loop issue is negated. Voltage balance of the circuit is no longer detrimentally affected as in prior art components or systems.
Referring now to
The conductive plates 804, 808, and 810 are also surrounded by dielectric material 801 that provides support and an outer casing of the component. A means to allow connection of both common shield termination structures 802 to the same common conductive plates 808 and 804 and 810 (not shown) individually, is essential and is desired for this embodiment. When the entire invention is placed into circuitry, termination structures 802 should be attached by standard means known in the art to the same external conductive area or to the same external conductive path (not shown) without an interruption or conductive gap between each respective termination structures, 802.
A standard means known in the art facilitates connection of common shield termination structures 802, which attached, respectively, on all three conductive plates 804, 808, and 810 (not shown) together, will form a single structure to act as one common conductive Faraday cage-like shield structure of 800″(not shown).
Although not shown, Faraday cage-like structure 800′ (not shown)mirrors single, Faraday cage-like structure 800 (not shown) except that differential electrode 809A (not shown) contained within, is sandwiched and has a exit/entrance section 812A (not shown) that is not fully shielded, but in a generally opposing direction of 180 degrees to that of conductive termination structure 807 and differential electrode 809 to join with conductive termination structure 807A (not shown).
These two Faraday cage-like structures 800 and 800′ are in a positioned and parallel relationship, but most importantly, cage-like structures 800 and 801′ are sharing the same, central common conductive plate 804, layer or pathway that makes up each Faraday cage-like structures 800 and 800′, when taken individually.
Together, Faraday cage-like structures 800 and 800′ create a single and larger conductive Faraday cage-like shield structure 800″ (not shown) that acts as a double container. Each container 800 and 800′ will hold an equal number of same sized, differential electrodes that are opposing one another within said larger structure 800″ in a generally parallel manner, respectively. Larger conductive Faraday cage-like shield structure 800″ is made with co-acting 800 and 800′ individual, shield-like structures when energized, and attached to the same external common conductive path 34, to become one electrically.
At energization, the predetermined arrangement of the common conductive electrodes 804, 808 and 810 (not shown) into a differential conductive sandwich with a centralized common shield 804, are elements that make up one common conductive cage-like shield structure 800″, which is the base element of the present invention, namely the Faraday cage-like shield structure 800″.
The 800″ structure in essence, forms a minimum of two Faraday cage-like structures 800 and 800′ that are required to make up a multi-functional line-conditioning device in all of the layered embodiments of the present invention. The central common conductive plate 804 with respect to its interposition between the differential electrodes 809 and 809A (not shown) needs the outer two additional sandwiching common electrode plates 808 and 810 to be considered an un-energized Faraday cage-like shield structure 800″.
To go further, the central common plate 804 will be simultaneously used by both differential electrodes 809 and 809A at the same time, but with opposite results, with respective to charge switching. It must be noted that for most chip, non-hole thru embodiments, a new device will have a minimum of two differential electrodes sandwiched between three common conductive electrodes and connected, external termination structures that are connected, and are conductively, as one, to form a single, larger Faraday cage-like shield structure 800″ that when attached to a larger external conductive area 34, helps perform simultaneously, energized line conditioning and filtering functions, upon the energy propagating along the conductors sandwich within the said cage-like shield structure 800″, in an oppositely phased or charged manner.
The now attached, internal common conductive electrode plates 804, 808 and 810 (not shown) that make up the Faraday cage-like shield structure 800″ and their subsequent energization will allow the external conductive area or pathway 34 to become, in essence, an extended and closely positioned and essentially parallel arrangement of conductive elements with respect to its position also located internally within the pre-determined layered PCB or similar electronic circuitry.
Connection of the joined common conductive, and enveloping, multiple, common shield plates 808 and 810 (not shown) with a common centrally located common conductive plate 804 that will be, to external extension elements 34 interposed in such a multiple, parallel manner that the external extension elements will have microns of distance separation or ‘loop area’ with respect to the complimentary, phased differential electrodes 809 and 809A (not shown) that are sandwiched themselves and yet are separated (not shown) from the external extension 34 by a distance containing a dielectric medium 801 so that said extension becomes an enveloping shield-like element that will perform electrostatic shielding functions, among others, that the said energized combination will enhance and produce efficient, simultaneous conditioning upon the energy propagating on or along said portions of assembly differential conductors. The internal and external parallel arrangement groupings of a combined common conductive planes or areas will also cancel and/or suppress unwanted parasitics, electromagnetic emissions that can escape from or enter upon portions of said differential conductors used by said portions of energy as it propagates along a conductive pathway to active assembly load(s).
In the following sections, reference to common conductive plate 804 also applies to common conductive plates 808 and 810. Common conductive plate 804 is offset a distance 814 from the edge of the invention. One or more portions 811 of the common ground common conductive plate 804 extends 812′ through material 801 and is attached to common ground termination band or structure 802. Although not shown, the common ground termination band 802 electrically connects the common conductive plates 804, 808 and 810 to each other, and to all other common conductive plates of the filter, if used.
The conductive electrode plate 809 is not as large as the common conductive plate 804 such that an offset distance and area 806 exists between the edge 803 of the electrode plate 809 and of the edge of the central common conductive plate 804. This offset distance and area 806 enables the common conductive plate 804 to extend beyond the electrode plate 809 to provide a shield against any flux lines which might extend beyond the edge 803 of the electrode plate 809 resulting in reduction or elimination of near field coupling to other electrode plates within the filter or to elements external to the filter.
The horizontal offset is approximately 0 to 20+times the vertical distance between the electrode plate 809 and the common conductive plate 804, however, the offset distance 806 can be optimized for a particular application but all distances of overlap 806 among each respective plate is ideally approximately the same as manufacturing tolerances will allow. Minor size differences are unimportant in distance/area 806 between plates as long as the electrostatic shielding function of Faraday cage-like shield structure 800″ is not compromised. In order to connect electrode 809 to the energy pathways (not shown), the electrode 809 may have one or two portions 812 which extend 812′ beyond the edge 805 of the common conductive plates 804 and 808. These portions 812 are connected to electrode termination band 807 which enables the electrode 809 to be electrically connected to the energy pathways (not shown) by solder or the like as previously discussed. It should be noted that element 813 is a dynamic representation of the center axis point of the three-dimensional energy conditioning functions that take place within the invention and is relative with respect to the final size, shape and position of the embodiment in an energized circuit.
As can be seen, many different applications of the multi-functional energy conditioner architecture are possible and review of several features universal to all the embodiments must be noted. First, the material 801 having predetermined electrical properties may be one of a number in any of the embodiments including but not limited to dielectric material, metal oxide varistor material, ferrite material and other more exotic substances such as Mylar film or sintered polycrystalline. No matter which material 801 is used, the combination of common conductive plates and electrode conductive plates creates a plurality of capacitors to form a line-to-line differential coupling capacitor between and two line-to-ground decoupling capacitors from a pair of electrical conductors. The material 801 having electrical properties will vary the capacitance values and/or add additional features such as over-voltage and surge protection or increased inductance, resistance, or a combination of all the above.
Second, in all embodiments whether shown or not, the number of plates, both common conductive and electrode, can be multiplied to create a number of capacitive elements in parallel which thereby add to create increased capacitance values.
Third, additional common conductive plates surrounding the combination of a center conductive plate and a plurality of conductive electrodes are employed to provide an increased inherent ground and optimized Faraday cage-like function and surge dissipation area in all embodiments.
Fourth, although a minimum of one central common conductive shield paired with two additionally positioned common conductive plates or shields are generally desired and should be positioned on opposite sides of the central common conductive shield (other elements such as dielectric material and differential conductive electrodes can be located between these shields as described). Additional common conductive plates can be employed with any of the embodiments shown and is fully contemplated by Applicant.
In fact the multi-functional energy conditioner, although not shown, could easily be fabricated in silicon and directly incorporated into integrated circuits for use in such applications as communication microprocessor integrated circuitry or chips. Integrated circuits are already being made having capacitors etched within the silicone foundation which allows the architecture of the present invention to readily be incorporated with technology available today.
The multi-functional energy conditioner can also be embedded and filter communication or data lines directly from their circuit board terminal connections, thus reducing circuit board real estate requirements and further reducing overall circuit size while having simpler production requirements.
Finally, from a review of the numerous embodiments it should be apparent that the shape, thickness or size may be varied depending on the electrical characteristics desired or upon the application in which the filter is to be used due to the physical architecture derived from the arrangement of common conductive electrode plates and their attachment structures that form at least one single conductively homogenous, Faraday cage-like shield structure 800″ and other conductive electrode plates.
Although the principals, preferred embodiments and preferred operation of the present invention have been described in detail herein, this is not to be construed as being limited to the particular illustrative forms disclosed. It will thus become apparent to those skilled in the art that various modifications of the preferred embodiments herein can be made without departing from the spirit or scope of the invention as defined by the appended claims.
This application is a continuation of application ser. No. 10/443,792, filed May. 23, 2003 now U.S. Pat. No. 7,423,860, which is a continuation of application Ser. No. 09/946,190, filed Sep. 5, 2001, now issued as U.S. Pat. No. 6,603,646, which is a continuation of application Ser. No. 09/579,606 filed May 26, 2000, now issued as U.S. Pat. No. 6,373,673, which is a continuation-in-part of application Ser. No. 09/600,530, filed Jul. 18, 2000 now issued as U.S. Pat. No. 6,498,710, which is a national stage entry of PCT/US99/01040, filed Jan. 16, 1999, and application Ser. No. 09/579,606 is also a continuation-in-part of application Ser. No. 09/460,218 filed Dec. 13, 1999, now issued as U.S. Pat. No. 6,331,926, which is a continuation of application Ser. No. 09/056,379 filed Apr. 7, 1998, now issued as U.S. Pat. No. 6,018,448, which is a continuation-in-part of application Ser. No. 09/008,769 filed Jan. 19, 1998, now issued as U.S. Pat. No. 6,097,581, which is a continuation-in-part of application Ser. No. 08/841,940 filed Apr. 8, 1997, now issued as U.S. Pat. No. 5,909,350.
Number | Name | Date | Kind |
---|---|---|---|
3240621 | Flower, Jr. et al. | Mar 1966 | A |
3343034 | Ovshinsky | Sep 1967 | A |
3379943 | Breedlove | Apr 1968 | A |
3573677 | Detar | Apr 1971 | A |
3736471 | Donze et al. | May 1973 | A |
3742420 | Harnden, Jr. | Jun 1973 | A |
3790858 | Brancaleon et al. | Feb 1974 | A |
3842374 | Schlicke | Oct 1974 | A |
4023071 | Fussell | May 1977 | A |
4119084 | Eckels | Oct 1978 | A |
4135132 | Tafjord | Jan 1979 | A |
4139783 | Engeler | Feb 1979 | A |
4191986 | ta Huang et al. | Mar 1980 | A |
4198613 | Whitley | Apr 1980 | A |
4259604 | Aoki | Mar 1981 | A |
4262317 | Baumbach | Apr 1981 | A |
4275945 | Krantz et al. | Jun 1981 | A |
4292558 | Flick et al. | Sep 1981 | A |
4308509 | Tsuchiya et al. | Dec 1981 | A |
4320364 | Sakamoto et al. | Mar 1982 | A |
4335417 | Sakshaug et al. | Jun 1982 | A |
4353044 | Nossek | Oct 1982 | A |
4366456 | Ueno et al. | Dec 1982 | A |
4384263 | Neuman et al. | May 1983 | A |
4394639 | McGalliard | Jul 1983 | A |
4412146 | Futterer et al. | Oct 1983 | A |
4494092 | Griffin et al. | Jan 1985 | A |
4533931 | Mandai et al. | Aug 1985 | A |
4553114 | English et al. | Nov 1985 | A |
4563659 | Sakamoto | Jan 1986 | A |
4586104 | Standler | Apr 1986 | A |
4587589 | Marek | May 1986 | A |
4590537 | Sakamoto | May 1986 | A |
4592606 | Mudra | Jun 1986 | A |
4612140 | Mandai | Sep 1986 | A |
4612497 | Ulmer | Sep 1986 | A |
4636752 | Saito | Jan 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4685025 | Carlomagno | Aug 1987 | A |
4688151 | Kraus et al. | Aug 1987 | A |
4694265 | Kupper | Sep 1987 | A |
4698721 | Warren | Oct 1987 | A |
4703386 | Speet et al. | Oct 1987 | A |
4712062 | Takamine | Dec 1987 | A |
4713540 | Gilby et al. | Dec 1987 | A |
4720760 | Starr | Jan 1988 | A |
4746557 | Sakamoto et al. | May 1988 | A |
4752752 | Okubo | Jun 1988 | A |
4760485 | Ari et al. | Jul 1988 | A |
4772225 | Ulery | Sep 1988 | A |
4777460 | Okubo | Oct 1988 | A |
4780598 | Fahey et al. | Oct 1988 | A |
4782311 | Ookubo | Nov 1988 | A |
4789847 | Sakamoto et al. | Dec 1988 | A |
4793058 | Venaleck | Dec 1988 | A |
4794485 | Bennett | Dec 1988 | A |
4794499 | Ott | Dec 1988 | A |
4795658 | Kano et al. | Jan 1989 | A |
4799070 | Nishikawa | Jan 1989 | A |
4801904 | Sakamoto et al. | Jan 1989 | A |
4814295 | Mehta | Mar 1989 | A |
4814938 | Arakawa et al. | Mar 1989 | A |
4814941 | Speet et al. | Mar 1989 | A |
4819126 | Kornrumpf et al. | Apr 1989 | A |
4845606 | Herbert | Jul 1989 | A |
4847730 | Konno et al. | Jul 1989 | A |
4904967 | Morii et al. | Feb 1990 | A |
4908586 | Kling et al. | Mar 1990 | A |
4908590 | Sakamoto et al. | Mar 1990 | A |
4924340 | Sweet | May 1990 | A |
4942353 | Herbert et al. | Jul 1990 | A |
4967315 | Schelhorn | Oct 1990 | A |
4978906 | Herbert et al. | Dec 1990 | A |
4990202 | Murata et al. | Feb 1991 | A |
4999595 | Azumi et al. | Mar 1991 | A |
5029062 | Capel | Jul 1991 | A |
5034709 | Azumi et al. | Jul 1991 | A |
5034710 | Kawaguchi | Jul 1991 | A |
5051712 | Naito et al. | Sep 1991 | A |
5059140 | Philippson et al. | Oct 1991 | A |
5065284 | Hernandez | Nov 1991 | A |
5073523 | Yamada et al. | Dec 1991 | A |
5079069 | Howard et al. | Jan 1992 | A |
5079223 | Maroni | Jan 1992 | A |
5079669 | Williams | Jan 1992 | A |
5089688 | Fang et al. | Feb 1992 | A |
5105333 | Yamano et al. | Apr 1992 | A |
5107394 | Naito et al. | Apr 1992 | A |
5109206 | Carlile | Apr 1992 | A |
5140297 | Jacobs et al. | Aug 1992 | A |
5140497 | Kato et al. | Aug 1992 | A |
5142430 | Anthony | Aug 1992 | A |
5148005 | Fang et al. | Sep 1992 | A |
5155655 | Howard et al. | Oct 1992 | A |
5161086 | Howard et al. | Nov 1992 | A |
5167483 | Gardiner | Dec 1992 | A |
5173670 | Naito et al. | Dec 1992 | A |
5179362 | Okochi et al. | Jan 1993 | A |
5181859 | Foreman et al. | Jan 1993 | A |
5186647 | Denkmann et al. | Feb 1993 | A |
5206786 | Lee | Apr 1993 | A |
5208502 | Yamashita et al. | May 1993 | A |
5219812 | Doi et al. | Jun 1993 | A |
5220480 | Kershaw, Jr. et al. | Jun 1993 | A |
5236376 | Cohen | Aug 1993 | A |
5243308 | Shusterman et al. | Sep 1993 | A |
5251092 | Brady et al. | Oct 1993 | A |
5257950 | Lenker et al. | Nov 1993 | A |
5261153 | Lucas | Nov 1993 | A |
5262611 | Danysh et al. | Nov 1993 | A |
5268810 | DiMarco et al. | Dec 1993 | A |
5290191 | Foreman et al. | Mar 1994 | A |
5299956 | Brownell et al. | Apr 1994 | A |
5300760 | Batliwalla et al. | Apr 1994 | A |
5310363 | Brownell et al. | May 1994 | A |
5311408 | Ferchau et al. | May 1994 | A |
5319525 | Lightfoot | Jun 1994 | A |
5321373 | Shusterman et al. | Jun 1994 | A |
5321573 | Person et al. | Jun 1994 | A |
5326284 | Bohbot et al. | Jul 1994 | A |
5337028 | White | Aug 1994 | A |
5353189 | Tomlinson | Oct 1994 | A |
5353202 | Ansell et al. | Oct 1994 | A |
5357568 | Pelegris | Oct 1994 | A |
5362249 | Carter | Nov 1994 | A |
5362254 | Siemon et al. | Nov 1994 | A |
5378407 | Chandler et al. | Jan 1995 | A |
5382928 | Davis et al. | Jan 1995 | A |
5382938 | Hansson et al. | Jan 1995 | A |
5386335 | Amano et al. | Jan 1995 | A |
5396201 | Ishizaki et al. | Mar 1995 | A |
5401952 | Sugawa | Mar 1995 | A |
5405466 | Naito et al. | Apr 1995 | A |
5414393 | Rose et al. | May 1995 | A |
5414587 | Kiser et al. | May 1995 | A |
5420553 | Sakamoto et al. | May 1995 | A |
5432484 | Klas et al. | Jul 1995 | A |
5446625 | Urbish et al. | Aug 1995 | A |
5450278 | Lee et al. | Sep 1995 | A |
5451919 | Chu et al. | Sep 1995 | A |
RE35064 | Hernandez | Oct 1995 | E |
5455734 | Foreman et al. | Oct 1995 | A |
5461351 | Shusterman | Oct 1995 | A |
5463232 | Yamashita et al. | Oct 1995 | A |
5471035 | Holmes | Nov 1995 | A |
5477933 | Nguyen | Dec 1995 | A |
5481238 | Carsten et al. | Jan 1996 | A |
5483407 | Anastasio et al. | Jan 1996 | A |
5483413 | Babb | Jan 1996 | A |
5488540 | Hatta | Jan 1996 | A |
5491299 | Naylor et al. | Feb 1996 | A |
5493260 | Park | Feb 1996 | A |
5495180 | Huang et al. | Feb 1996 | A |
5500629 | Meyer | Mar 1996 | A |
5500785 | Funada | Mar 1996 | A |
5512196 | Mantese et al. | Apr 1996 | A |
5531003 | Seifried et al. | Jul 1996 | A |
5534837 | Brandt | Jul 1996 | A |
5535101 | Miles et al. | Jul 1996 | A |
5536978 | Cooper et al. | Jul 1996 | A |
5541482 | Siao | Jul 1996 | A |
5544002 | Iwaya et al. | Aug 1996 | A |
5546058 | Azuma et al. | Aug 1996 | A |
5548255 | Spielman | Aug 1996 | A |
5555150 | Newman, Jr. | Sep 1996 | A |
5568348 | Foreman et al. | Oct 1996 | A |
5570278 | Cross | Oct 1996 | A |
5583359 | Ng et al. | Dec 1996 | A |
5586007 | Funada | Dec 1996 | A |
5590016 | Fujishiro | Dec 1996 | A |
5592391 | Muyshondt et al. | Jan 1997 | A |
5612657 | Kledzik | Mar 1997 | A |
5614881 | Duggal et al. | Mar 1997 | A |
5619079 | Wiggins et al. | Apr 1997 | A |
5624592 | Paustian | Apr 1997 | A |
5640048 | Selna | Jun 1997 | A |
5645746 | Walsh | Jul 1997 | A |
5647766 | Nguyen | Jul 1997 | A |
5647767 | Scheer et al. | Jul 1997 | A |
5668511 | Furutani et al. | Sep 1997 | A |
5682303 | Goad | Oct 1997 | A |
5692298 | Goetz et al. | Dec 1997 | A |
5700167 | Pharney et al. | Dec 1997 | A |
5708553 | Hung | Jan 1998 | A |
5719450 | Vora | Feb 1998 | A |
5719477 | Tomihari | Feb 1998 | A |
5719750 | Iwane | Feb 1998 | A |
5751539 | Stevenson et al. | May 1998 | A |
5767446 | Ha et al. | Jun 1998 | A |
5789999 | Barnett et al. | Aug 1998 | A |
5790368 | Naito et al. | Aug 1998 | A |
5796568 | Baiatu | Aug 1998 | A |
5796595 | Cross | Aug 1998 | A |
5797770 | Davis et al. | Aug 1998 | A |
5808873 | Celaya et al. | Sep 1998 | A |
5822174 | Yamate et al. | Oct 1998 | A |
5825084 | Lau et al. | Oct 1998 | A |
5825628 | Garbelli et al. | Oct 1998 | A |
5828093 | Naito et al. | Oct 1998 | A |
5828272 | Romerein et al. | Oct 1998 | A |
5828555 | Itoh | Oct 1998 | A |
5831489 | Wire | Nov 1998 | A |
5834992 | Kato et al. | Nov 1998 | A |
5838216 | White et al. | Nov 1998 | A |
5867361 | Wolf et al. | Feb 1999 | A |
5870272 | Seifried et al. | Feb 1999 | A |
5875099 | Maesaka et al. | Feb 1999 | A |
5880925 | DuPre et al. | Mar 1999 | A |
5889445 | Ritter et al. | Mar 1999 | A |
5895990 | Lau | Apr 1999 | A |
5898403 | Saitoh et al. | Apr 1999 | A |
5898562 | Cain et al. | Apr 1999 | A |
5905627 | Brendel et al. | May 1999 | A |
5907265 | Sakuragawa et al. | May 1999 | A |
5908151 | Elias | Jun 1999 | A |
5909155 | Anderson et al. | Jun 1999 | A |
5909350 | Anthony | Jun 1999 | A |
5910755 | Mishiro et al. | Jun 1999 | A |
5912809 | Steigerwald et al. | Jun 1999 | A |
5917388 | Tronche et al. | Jun 1999 | A |
5926377 | Nakao et al. | Jul 1999 | A |
5928076 | Clements et al. | Jul 1999 | A |
5955930 | Anderson et al. | Sep 1999 | A |
5959829 | Stevenson et al. | Sep 1999 | A |
5959846 | Noguchi et al. | Sep 1999 | A |
5969461 | Anderson et al. | Oct 1999 | A |
5977845 | Kitahara | Nov 1999 | A |
5978231 | Tohya et al. | Nov 1999 | A |
5980718 | Van Konynenburg et al. | Nov 1999 | A |
5995352 | Gumley | Nov 1999 | A |
5999067 | D'Ostilio | Dec 1999 | A |
5999398 | Makl et al. | Dec 1999 | A |
6004752 | Loewy et al. | Dec 1999 | A |
6013957 | Puzo et al. | Jan 2000 | A |
6016095 | Herbert | Jan 2000 | A |
6018448 | Anthony | Jan 2000 | A |
6021564 | Hanson | Feb 2000 | A |
6023406 | Kinoshita et al. | Feb 2000 | A |
6031710 | Wolf et al. | Feb 2000 | A |
6034576 | Kuth | Mar 2000 | A |
6034864 | Naito et al. | Mar 2000 | A |
6037846 | Oberhammer | Mar 2000 | A |
6038121 | Naito et al. | Mar 2000 | A |
6042685 | Shinada et al. | Mar 2000 | A |
6046898 | Seymour et al. | Apr 2000 | A |
6052038 | Savicki | Apr 2000 | A |
6061227 | Nogi | May 2000 | A |
6064286 | Ziegner et al. | May 2000 | A |
6072687 | Naito et al. | Jun 2000 | A |
6075211 | Tohya et al. | Jun 2000 | A |
6078117 | Perrin et al. | Jun 2000 | A |
6078229 | Funada et al. | Jun 2000 | A |
6088235 | Chiao et al. | Jul 2000 | A |
6091310 | Utsumi et al. | Jul 2000 | A |
6092269 | Yializis et al. | Jul 2000 | A |
6094112 | Goldberger et al. | Jul 2000 | A |
6094339 | Evans | Jul 2000 | A |
6097260 | Whybrew et al. | Aug 2000 | A |
6097581 | Anthony | Aug 2000 | A |
6104258 | Novak | Aug 2000 | A |
6104599 | Ahiko et al. | Aug 2000 | A |
6108448 | Song et al. | Aug 2000 | A |
6111479 | Myohga et al. | Aug 2000 | A |
6120326 | Brooks | Sep 2000 | A |
6121761 | Herbert | Sep 2000 | A |
6125044 | Cherniski et al. | Sep 2000 | A |
6130585 | Whybrew et al. | Oct 2000 | A |
6137392 | Herbert | Oct 2000 | A |
6142831 | Ashman et al. | Nov 2000 | A |
6144547 | Retseptor | Nov 2000 | A |
6147587 | Hadano et al. | Nov 2000 | A |
6150895 | Steigerwald et al. | Nov 2000 | A |
6157528 | Anthony | Dec 2000 | A |
6157547 | Brown et al. | Dec 2000 | A |
6160705 | Stearns et al. | Dec 2000 | A |
6163454 | Strickler | Dec 2000 | A |
6163456 | Suzuki et al. | Dec 2000 | A |
6165814 | Wark et al. | Dec 2000 | A |
6175287 | Lampen et al. | Jan 2001 | B1 |
6180588 | Walters | Jan 2001 | B1 |
6181231 | Bartilson | Jan 2001 | B1 |
6183685 | Cowman et al. | Feb 2001 | B1 |
6185091 | Tanahashi et al. | Feb 2001 | B1 |
6188565 | Naito et al. | Feb 2001 | B1 |
6191475 | Skinner et al. | Feb 2001 | B1 |
6191669 | Shigemura | Feb 2001 | B1 |
6191932 | Kuroda et al. | Feb 2001 | B1 |
6195269 | Hino | Feb 2001 | B1 |
6198123 | Linder et al. | Mar 2001 | B1 |
6198362 | Harada et al. | Mar 2001 | B1 |
6204448 | Garland et al. | Mar 2001 | B1 |
6205014 | Inomata et al. | Mar 2001 | B1 |
6207081 | Sasaki et al. | Mar 2001 | B1 |
6208063 | Horikawa | Mar 2001 | B1 |
6208225 | Miller | Mar 2001 | B1 |
6208226 | Chen et al. | Mar 2001 | B1 |
6208494 | Nakura et al. | Mar 2001 | B1 |
6208495 | Wieloch et al. | Mar 2001 | B1 |
6208501 | Ingalls et al. | Mar 2001 | B1 |
6208502 | Hudis et al. | Mar 2001 | B1 |
6208503 | Shimada et al. | Mar 2001 | B1 |
6208521 | Nakatsuka | Mar 2001 | B1 |
6208525 | Imasu et al. | Mar 2001 | B1 |
6211754 | Nishida et al. | Apr 2001 | B1 |
6212078 | Hunt et al. | Apr 2001 | B1 |
6215647 | Naito et al. | Apr 2001 | B1 |
6215649 | Appelt et al. | Apr 2001 | B1 |
6218631 | Hetzel et al. | Apr 2001 | B1 |
6219240 | Sasov | Apr 2001 | B1 |
6222427 | Kato et al. | Apr 2001 | B1 |
6222431 | Ishizaki et al. | Apr 2001 | B1 |
6225876 | Akino et al. | May 2001 | B1 |
6226169 | Naito et al. | May 2001 | B1 |
6226182 | Maehara | May 2001 | B1 |
6229226 | Kramer et al. | May 2001 | B1 |
6236572 | Teshome et al. | May 2001 | B1 |
6240621 | Nellissen et al. | Jun 2001 | B1 |
6243253 | DuPre et al. | Jun 2001 | B1 |
6249047 | Corisis | Jun 2001 | B1 |
6249439 | DeMore et al. | Jun 2001 | B1 |
6252161 | Hailey et al. | Jun 2001 | B1 |
6262895 | Forthun | Jul 2001 | B1 |
6266228 | Naito et al. | Jul 2001 | B1 |
6266229 | Naito et al. | Jul 2001 | B1 |
6272003 | Schaper | Aug 2001 | B1 |
6281704 | Ngai et al. | Aug 2001 | B2 |
6282074 | Anthony | Aug 2001 | B1 |
6282079 | Nagakari et al. | Aug 2001 | B1 |
6285109 | Katagiri et al. | Sep 2001 | B1 |
6285542 | Kennedy, III et al. | Sep 2001 | B1 |
6292350 | Naito et al. | Sep 2001 | B1 |
6292351 | Ahiko et al. | Sep 2001 | B1 |
6309245 | Sweeney | Oct 2001 | B1 |
6310286 | Troxel et al. | Oct 2001 | B1 |
6313584 | Johnson et al. | Nov 2001 | B1 |
6320547 | Fathy et al. | Nov 2001 | B1 |
6324047 | Hayworth | Nov 2001 | B1 |
6324048 | Liu | Nov 2001 | B1 |
6325672 | Belopolsky et al. | Dec 2001 | B1 |
6327134 | Kuroda et al. | Dec 2001 | B1 |
6327137 | Yamamoto et al. | Dec 2001 | B1 |
6331926 | Anthony | Dec 2001 | B1 |
6331930 | Kuroda | Dec 2001 | B1 |
6342681 | Goldberger et al. | Jan 2002 | B1 |
6373673 | Anthony | Apr 2002 | B1 |
6388856 | Anthony | May 2002 | B1 |
6395996 | Tsai et al. | May 2002 | B1 |
6448873 | Mostov | Sep 2002 | B1 |
6456481 | Stevenson | Sep 2002 | B1 |
6469595 | Anthony et al. | Oct 2002 | B2 |
6498710 | Anthony | Dec 2002 | B1 |
6504451 | Yamaguchi | Jan 2003 | B1 |
6509807 | Anthony et al. | Jan 2003 | B1 |
6510038 | Satou et al. | Jan 2003 | B1 |
6522516 | Anthony | Feb 2003 | B2 |
6549389 | Anthony et al. | Apr 2003 | B2 |
6563688 | Anthony et al. | May 2003 | B2 |
6580595 | Anthony et al. | Jun 2003 | B2 |
6594128 | Anthony | Jul 2003 | B2 |
6603372 | Ishizaki et al. | Aug 2003 | B1 |
6603646 | Anthony et al. | Aug 2003 | B2 |
6606011 | Anthony et al. | Aug 2003 | B2 |
6606237 | Naito et al. | Aug 2003 | B1 |
6608538 | Wang | Aug 2003 | B2 |
6618268 | Dibene, II et al. | Sep 2003 | B2 |
6636406 | Anthony | Oct 2003 | B1 |
6650525 | Anthony | Nov 2003 | B2 |
6687108 | Anthony et al. | Feb 2004 | B1 |
6696952 | Zirbes | Feb 2004 | B2 |
6717301 | De Daran et al. | Apr 2004 | B2 |
6738249 | Anthony et al. | May 2004 | B1 |
6806806 | Anthony | Oct 2004 | B2 |
6873513 | Anthony | Mar 2005 | B2 |
6894884 | Anthony, Jr. et al. | May 2005 | B2 |
6950293 | Anthony | Sep 2005 | B2 |
6954346 | Anthony | Oct 2005 | B2 |
6995983 | Anthony et al. | Feb 2006 | B1 |
7042303 | Anthony et al. | May 2006 | B2 |
7042703 | Anthony et al. | May 2006 | B2 |
7050284 | Anthony | May 2006 | B2 |
7106570 | Anthony, Jr. et al. | Sep 2006 | B2 |
7110227 | Anthony et al. | Sep 2006 | B2 |
7110235 | Anthony, Jr. et al. | Sep 2006 | B2 |
7113383 | Anthony et al. | Sep 2006 | B2 |
7141899 | Anthony et al. | Nov 2006 | B2 |
7180718 | Anthony et al. | Feb 2007 | B2 |
7193831 | Anthony | Mar 2007 | B2 |
7224564 | Anthony | May 2007 | B2 |
7262949 | Anthony | Aug 2007 | B2 |
7274549 | Anthony | Sep 2007 | B2 |
7301748 | Anthony et al. | Nov 2007 | B2 |
7321485 | Anthony et al. | Jan 2008 | B2 |
7336467 | Anthony et al. | Feb 2008 | B2 |
7336468 | Anthony et al. | Feb 2008 | B2 |
7423860 | Anthony et al. | Sep 2008 | B2 |
7428134 | Anthony | Sep 2008 | B2 |
7440252 | Anthony | Oct 2008 | B2 |
7443647 | Anthony | Oct 2008 | B2 |
20010001989 | Smith | May 2001 | A1 |
20010002105 | Brandelik et al. | May 2001 | A1 |
20010002624 | Khandros et al. | Jun 2001 | A1 |
20010008288 | Kimura et al. | Jul 2001 | A1 |
20010008302 | Murakami et al. | Jul 2001 | A1 |
20010008478 | McIntosh et al. | Jul 2001 | A1 |
20010008509 | Watanabe | Jul 2001 | A1 |
20010009496 | Kappel et al. | Jul 2001 | A1 |
20010010444 | Pahl et al. | Aug 2001 | A1 |
20010011763 | Ushijima et al. | Aug 2001 | A1 |
20010011934 | Yamamoto | Aug 2001 | A1 |
20010011937 | Satoh et al. | Aug 2001 | A1 |
20010013626 | Fujii | Aug 2001 | A1 |
20010015643 | Goldfine et al. | Aug 2001 | A1 |
20010015683 | Mikami et al. | Aug 2001 | A1 |
20010017576 | Kondo et al. | Aug 2001 | A1 |
20010017579 | Kurata | Aug 2001 | A1 |
20010019869 | Hsu | Sep 2001 | A1 |
20010020879 | Takahashi et al. | Sep 2001 | A1 |
20010021097 | Ohya et al. | Sep 2001 | A1 |
20010022547 | Murata et al. | Sep 2001 | A1 |
20010023983 | Kobayashi et al. | Sep 2001 | A1 |
20010024148 | Gerstenberg et al. | Sep 2001 | A1 |
20010028581 | Yanagisawa et al. | Oct 2001 | A1 |
20010029648 | Ikada et al. | Oct 2001 | A1 |
20010031191 | Korenaga | Oct 2001 | A1 |
20010033664 | Poux et al. | Oct 2001 | A1 |
20010035801 | Gilbert | Nov 2001 | A1 |
20010035802 | Kadota | Nov 2001 | A1 |
20010035805 | Suzuki et al. | Nov 2001 | A1 |
20010037680 | Buck et al. | Nov 2001 | A1 |
20010039834 | Hsu | Nov 2001 | A1 |
20010040484 | Kim | Nov 2001 | A1 |
20010040487 | Ikata et al. | Nov 2001 | A1 |
20010040488 | Gould et al. | Nov 2001 | A1 |
20010041305 | Sawada et al. | Nov 2001 | A1 |
20010043100 | Tomita et al. | Nov 2001 | A1 |
20010043129 | Hidaka et al. | Nov 2001 | A1 |
20010043450 | Seale et al. | Nov 2001 | A1 |
20010043453 | Narwankar et al. | Nov 2001 | A1 |
20010045810 | Poon et al. | Nov 2001 | A1 |
20010048581 | Anthony et al. | Dec 2001 | A1 |
20010048593 | Yamauchi et al. | Dec 2001 | A1 |
20010048906 | Lau et al. | Dec 2001 | A1 |
20010050550 | Yoshida et al. | Dec 2001 | A1 |
20010050600 | Anthony et al. | Dec 2001 | A1 |
20010050837 | Stevenson et al. | Dec 2001 | A1 |
20010052833 | Enokihara et al. | Dec 2001 | A1 |
20010054512 | Belau et al. | Dec 2001 | A1 |
20010054734 | Koh et al. | Dec 2001 | A1 |
20010054756 | Horiuchi et al. | Dec 2001 | A1 |
20010054936 | Okada et al. | Dec 2001 | A1 |
20020000521 | Brown | Jan 2002 | A1 |
20020000583 | Kitsukawa et al. | Jan 2002 | A1 |
20020000821 | Haga et al. | Jan 2002 | A1 |
20020000893 | Hidaka et al. | Jan 2002 | A1 |
20020000895 | Takahashi et al. | Jan 2002 | A1 |
20020003454 | Sweeney et al. | Jan 2002 | A1 |
20020005880 | Ashe et al. | Jan 2002 | A1 |
20020024787 | Anthony | Feb 2002 | A1 |
20020027263 | Anthony et al. | Mar 2002 | A1 |
20020027760 | Anthony | Mar 2002 | A1 |
20020044401 | Anthony et al. | Apr 2002 | A1 |
20020075096 | Anthony | Jun 2002 | A1 |
20020079116 | Anthony | Jun 2002 | A1 |
20020089812 | Anthony et al. | Jul 2002 | A1 |
20020113663 | Anthony et al. | Aug 2002 | A1 |
20020122286 | Anthony | Sep 2002 | A1 |
20020131231 | Anthony | Sep 2002 | A1 |
20020149900 | Anthony | Oct 2002 | A1 |
20020158515 | Anthony, Jr. et al. | Oct 2002 | A1 |
20020186100 | Anthony et al. | Dec 2002 | A1 |
20030029632 | Anthony, Jr. et al. | Feb 2003 | A1 |
20030029635 | Anthony, Jr. et al. | Feb 2003 | A1 |
20030048029 | DeDaran et al. | Mar 2003 | A1 |
20030067730 | Anthony et al. | Apr 2003 | A1 |
20030161086 | Anthony | Aug 2003 | A1 |
20030202312 | Anthony et al. | Oct 2003 | A1 |
20030206388 | Anthony et al. | Nov 2003 | A9 |
20030210125 | Anthony | Nov 2003 | A1 |
20030231451 | Anthony | Dec 2003 | A1 |
20030231456 | Anthony et al. | Dec 2003 | A1 |
20040004802 | Anthony et al. | Jan 2004 | A1 |
20040008466 | Anthony et al. | Jan 2004 | A1 |
20040027771 | Anthony | Feb 2004 | A1 |
20040032304 | Anthony et al. | Feb 2004 | A1 |
20040054426 | Anthony | Mar 2004 | A1 |
20040085699 | Anthony | May 2004 | A1 |
20040105205 | Anthony et al. | Jun 2004 | A1 |
20040124949 | Anthony et al. | Jul 2004 | A1 |
20040130840 | Anthony | Jul 2004 | A1 |
20040218332 | Anthony et al. | Nov 2004 | A1 |
20040226733 | Anthony et al. | Nov 2004 | A1 |
20050016761 | Anthony, Jr. et al. | Jan 2005 | A9 |
20050018374 | Anthony | Jan 2005 | A1 |
20050063127 | Anthony | Mar 2005 | A1 |
20050248900 | Anthony | Nov 2005 | A1 |
20050286198 | Anthony et al. | Dec 2005 | A1 |
20060023385 | Anthony et al. | Feb 2006 | A9 |
20060139836 | Anthony | Jun 2006 | A1 |
20060139837 | Anthony et al. | Jun 2006 | A1 |
20060193051 | Anthony et al. | Aug 2006 | A1 |
20060203414 | Anthony | Sep 2006 | A1 |
20070019352 | Anthony | Jan 2007 | A1 |
20070047177 | Anthony | Mar 2007 | A1 |
20070057359 | Anthony et al. | Mar 2007 | A1 |
20070103839 | Anthony et al. | May 2007 | A1 |
20070109709 | Anthony et al. | May 2007 | A1 |
20080160681 | Anthony et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
197 28 692 | Jan 1999 | DE |
198 57 043 | Mar 2000 | DE |
0623363 | Nov 1994 | EP |
98915364 | Nov 1994 | EP |
0776016 | May 1997 | EP |
0933871 | Aug 1999 | EP |
1022751 | Jul 2000 | EP |
1024507 | Aug 2000 | EP |
1061535 | Dec 2000 | EP |
1128434 | Aug 2001 | EP |
1873872 | Jan 2008 | EP |
2496970 | Jun 1982 | FR |
2606207 | May 1988 | FR |
2765417 | Dec 1998 | FR |
2808135 | Oct 2001 | FR |
2217136 | Apr 1988 | GB |
2341980 | Mar 2000 | GB |
57-172130 | Oct 1982 | JP |
63-269509 | Nov 1988 | JP |
1-27251 | Jan 1989 | JP |
02-267879 | Nov 1990 | JP |
03-018112 | Jan 1991 | JP |
5-283284 | Oct 1993 | JP |
05-299292 | Nov 1993 | JP |
06-053048 | Feb 1994 | JP |
06-053049 | Feb 1994 | JP |
06-053075 | Feb 1994 | JP |
06-053077 | Feb 1994 | JP |
06-053078 | Feb 1994 | JP |
06-084695 | Mar 1994 | JP |
06-151014 | May 1994 | JP |
06-151244 | May 1994 | JP |
06-151245 | May 1994 | JP |
6-302471 | Oct 1994 | JP |
06-325977 | Nov 1994 | JP |
07161568 | Jun 1995 | JP |
07-235406 | Sep 1995 | JP |
07-235852 | Sep 1995 | JP |
07-240651 | Sep 1995 | JP |
08-124795 | May 1996 | JP |
08-163122 | Jun 1996 | JP |
08-172025 | Jul 1996 | JP |
8172025 | Jul 1996 | JP |
9-266130 | Oct 1997 | JP |
09-284077 | Oct 1997 | JP |
09-284078 | Oct 1997 | JP |
9-294041 | Nov 1997 | JP |
10-12490 | Jan 1998 | JP |
11-97291 | Apr 1999 | JP |
11-21456 | Aug 1999 | JP |
11-214256 | Aug 1999 | JP |
11-223396 | Aug 1999 | JP |
11-219824 | Oct 1999 | JP |
11-294908 | Oct 1999 | JP |
11-305302 | Nov 1999 | JP |
11-319222 | Nov 1999 | JP |
11-345273 | Dec 1999 | JP |
2000-188218 | Apr 2000 | JP |
2000-243646 | Aug 2000 | JP |
WO 9115046 | Oct 1991 | WO |
WO 9720332 | Jun 1997 | WO |
WO 9743786 | Nov 1997 | WO |
WO 9845921 | Oct 1998 | WO |
WO 9904457 | Jan 1999 | WO |
WO 9919982 | Apr 1999 | WO |
WO 9937008 | Jul 1999 | WO |
WO 9952210 | Oct 1999 | WO |
WO 0016446 | Mar 2000 | WO |
WO 0065740 | Nov 2000 | WO |
WO 0074197 | Dec 2000 | WO |
WO 0077907 | Dec 2000 | WO |
0106631 | Jan 2001 | WO |
WO 0110000 | Feb 2001 | WO |
WO 0141232 | Jun 2001 | WO |
WO 0141233 | Jun 2001 | WO |
WO 0145119 | Jun 2001 | WO |
WO 0171908 | Sep 2001 | WO |
WO 0175916 | Oct 2001 | WO |
WO 0184581 | Nov 2001 | WO |
WO 0186774 | Nov 2001 | WO |
WO 0259401 | Jan 2002 | WO |
WO 0211160 | Feb 2002 | WO |
WO 0215360 | Feb 2002 | WO |
WO 0233798 | Apr 2002 | WO |
WO 021227794 | Apr 2002 | WO |
WO 0245233 | Jun 2002 | WO |
WO 0265606 | Aug 2002 | WO |
WO 02080330 | Oct 2002 | WO |
WO 03005541 | Jan 2003 | WO |
WO 2004070905 | Aug 2004 | WO |
WO 2005002018 | Jan 2005 | WO |
WO 2005015719 | Feb 2005 | WO |
WO 2005065097 | Jul 2005 | WO |
WO 2006093830 | Sep 2006 | WO |
WO 2006093831 | Sep 2006 | WO |
WO 2006099297 | Sep 2006 | WO |
WO 2006104613 | Oct 2006 | WO |
WO 2007103965 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080253054 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10443792 | May 2003 | US |
Child | 12113988 | US | |
Parent | 09946190 | Sep 2001 | US |
Child | 10443792 | US | |
Parent | 09579606 | May 2000 | US |
Child | 09946190 | US | |
Parent | 09056379 | Apr 1998 | US |
Child | 09460218 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09600530 | US | |
Child | 09579606 | US | |
Parent | 09460218 | Dec 1999 | US |
Child | 09579606 | US | |
Parent | 09008769 | Jan 1998 | US |
Child | 09056379 | US | |
Parent | 08841940 | Apr 1997 | US |
Child | 09008769 | US |