The present invention relates to semiconductor memory technology. More specifically, the invention relates to a semiconductor device utilizing an electrically floating body transistor.
Semiconductor memory devices are used extensively to store data. Memory devices can be characterized according to two general types: volatile and non-volatile. Volatile memory devices such as static random access memory (SRAM) and dynamic random access memory (DRAM) lose data that is stored therein when power is not continuously supplied thereto.
A DRAM cell without a capacitor has been investigated previously. Such memory eliminates the capacitor used in the conventional 1T/1C memory cell, and thus is easier to scale to smaller feature size. In addition, such memory allows for a smaller cell size compared to the conventional 1T/1C memory cell. Chatterjee et al. have proposed a Taper Isolated DRAM cell concept in “Taper Isolated Dynamic Gain RAM Cell”, P. K. Chatterjee et al., pp. 698-699, International Electron Devices Meeting, 1978 (“Chatterjee-1”), “Circuit Optimization of the Taper Isolated Dynamic Gain RAM Cell for VLSI Memories”, P. K. Chatterjee et al., pp. 22-23, IEEE International Solid-State Circuits Conference, February 1979 (“Chatterjee-2”), and “DRAM Design Using the Taper-Isolated Dynamic RAM Cell”, J. E. Leiss et al., pp. 337-344, IEEE Journal of Solid-State Circuits, vol. SC-17, no. 2, April 1982 (“Leiss”), which are hereby incorporated herein, in their entireties, by reference thereto. The holes are stored in a local potential minimum, which looks like a bowling alley, where a potential barrier for stored holes is provided. The channel region of the Taper Isolated DRAM cell contains a deep n-type implant and a shallow p-type implant. As shown in “A Survey of High-Density Dynamic RAM Cell Concepts”, P. K. Chatterjee et al., pp. 827-839, IEEE Transactions on Electron Devices, vol. ED-26, no. 6, June 1979 (“Chatterjee-3”), which is hereby incorporated herein, in its entirety, by reference thereto, the deep n-type implant isolates the shallow p-type implant and connects the n-type source and drain regions.
Terada et al. have proposed a Capacitance Coupling (CC) cell in “A New VLSI Memory Cell Using Capacitance Coupling (CC) Cell”, K. Terada et al., pp. 1319-1324, IEEE Transactions on Electron Devices, vol. ED-31, no. 9, September 1984 (“Terada”), while Erb has proposed Stratified Charge Memory in “Stratified Charge Memory”, D. M. Erb, pp. 24-25, IEEE International Solid-State Circuits Conference, February 1978 (“Erb”), both of which are hereby incorporated herein, in their entireties, by reference thereto.
DRAM based on the electrically floating body effect has been proposed both in silicon-on-insulator (SOI) substrate (see for example “The Multistable Charge-Controlled Memory Effect in SOI Transistors at Low Temperatures”, Tack et al., pp. 1373-1382, IEEE Transactions on Electron Devices, vol. 37, May 1990 (“Tack”), “A Capacitor-less 1T-DRAM Cell”, S. Okhonin et al., pp. 85-87, IEEE Electron Device Letters, vol. 23, no. 2, February 2002 (“Okhonin”) and “Memory Design Using One-Transistor Gain Cell on SOI”, T. Ohsawa et al., pp. 152-153, Tech. Digest, 2002 IEEE International Solid-State Circuits Conference, February 2002 (“Ohsawa”), which are hereby incorporated herein, in their entireties, by reference thereto) and in bulk silicon (see for example “A one transistor cell on bulk substrate (1T-Bulk) for low-cost and high density eDRAM”, R. Ranica et al., pp. 128-129, Digest of Technical Papers, 2004 Symposium on VLSI Technology, June 2004 (“Ranica-1”), “Scaled 1T-Bulk Devices Built with CMOS 90 nm Technology for Low-Cost eDRAM Applications”, R. Ranica et al., 2005 Symposium on VLSI Technology, Digest of Technical Papers (“Ranica-2”), “Further Insight Into the Physics and Modeling of Floating-Body Capacitorless DRAMs”, A. Villaret et al, pp. 2447-2454, IEEE Transactions on Electron Devices, vol. 52, no. 11, November 2005 (“Villaret”), “Simulation of intrinsic bipolar transistor mechanisms for future capacitor-less eDRAM on bulk substrate”, R. Pulicani et al., pp. 966-969, 2010 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (“Pulicani”), which are hereby incorporated herein, in their entireties, by reference thereto).
Widjaja and Or-Bach describe a bi-stable SRAM cell incorporating a floating body transistor, where more than one stable state exists for each memory cell (for example as described in U.S. Patent Application Publication No. 2010/00246284 to Widjaja et al., titled “Semiconductor Memory Having Floating Body Transistor and Method of Operating” (“Widjaja-1”) and U.S. Patent Application Publication No. 2010/0034041, “Method of Operating Semiconductor Memory Device with Floating Body Transistor Using Silicon Controlled Rectifier Principle” (“Widjaja-2”), which are both hereby incorporated herein, in their entireties, by reference thereto). This is bi-stability is achieved due to the applied back bias which causes impact ionization and generates holes to compensate for the charge leakage current and recombination. The applied back bias may be a constant voltage back bias or, alternatively, a periodic pulse of voltage.
Memories are often configured into arrays to improve density and efficiency. For single transistor memories, the most commonly used array configuration are the NOR and NAND array. Memory technologies such as Flash, EEPROM, EPROM, ROM, PROM, Metal Programmable ROM and Antifuse have all been published using variations of both the NAND and/or NOR array structures. The term NOR or NAND configuration refers to how memory elements are connected in the bit line direction. Typically memory arrays are arranged in rows and columns. When an array is arranged so the memory elements in the column direction directly connect to the same common node/line, the connection is said to be in a NOR configuration. For example, 1-transistor NOR Flash Memory has the column configuration where every memory cell has its drain terminal directly connected to common metal line often called the bit line. Note that in a NOR configuration, care must be taken to ensure that unselected cells within a bit line do not interfere with the reading, write or erase of the selected memory cell. This is often a major complication for arrays configured in the NOR orientation since they all share a single electrically connected bit line.
A NAND connection on the other hand has multiple memory cells connected serially together (for example, as described in U.S. Pat. No. 8,514,622, “Compact Semiconductor Memory Device Having Reduced Number of Contacts, Methods of Operating and Methods of Making”, which is hereby incorporated herein, in its entirety, by reference thereto). A large group of serially connected memory cells will then be connected to a select or access transistor. These access or select devices will then connect to the bit line, source line or both. For example NAND Flash has a Select Drain Gate (SGD) which connects to 32 to 128 serially connected NAND memory cells. NAND Flash also has a second select gate for the source typically called Select Gate Source (SGS). These NAND groupings of SGD, NAND memory cells and SGS are typically referred to as a NAND String. These Strings are connected through the SGD device to the bit line. Note that the SGD device blocks any interaction between the NAND Memory cells within the string to the bit line.
In one aspect of the present invention, a NAND string configuration is provided that includes: a plurality of semiconductor memory cells serially connected to one another to form a string of semiconductor memory cells; a select gate drain device connecting one end of the string of semiconductor memory cells to a bit line; and a select gate source device connecting an opposite end of said string of semiconductor memory cells to a common source line; wherein serial connections between at least two of the semiconductor memory cells are contactless.
In at least one embodiment, all serial connections between the semiconductor memory cells are contactless, so that only a contact to the select gate drain device and a contact to the select gate source device are provided.
In at least one embodiment, the NAND string is configured to perform at least one of: injecting charge into or extracting charge out of a portion of at least one of the semiconductor memory cells to maintain a state of the at least one semiconductor memory cell.
In at least one embodiment, at least one of the semiconductor memory devices each comprise a floating body region configured to store data as charge therein to define a state of the semiconductor memory cell; and a back bias region configured to perform the at least one of injecting charge into or extracting charge out of at least a portion of the floating body region.
In at least one embodiment, the floating body region is provided in a fin structure that extends vertically above the back bias region.
In another aspect of the present invention, a semiconductor memory array is provided that includes: a plurality of NAND string configurations, each NAND string configuration including: a plurality of semiconductor memory cells serially connected to one another to form a string of semiconductor memory cells; a select gate drain device connected at one end of the string of semiconductor memory cells; and a select gate source device connected an opposite end of the string of semiconductor memory cells; wherein serial connections between at least two of the semiconductor memory cells are contactless; and wherein the semiconductor memory array comprises at least one of: at least two of the select gate drain devices connected to a common bit line; or at least two of the select gate source devices connected to a common source line.
In at least one embodiment, the semiconductor array includes: a first set of two or more NAND string configurations connected to the common bit line, wherein the common bit line is a first common bit line; and at least a second set of two or more NAND string configurations connected to at least a second common bit line; wherein the first common bit line and the at least a second common bit line are connected to a primary bit line.
In at least one embodiment, the semiconductor array includes: a first set of two or more NAND string configurations connected to the common source line, wherein the common source line is a first common source line; and at least a second set of two or more NAND string configurations connected to at least a second common source line; wherein the first common source line and the at least a second common source line are connected to a primary source line.
In at least one embodiment, at least one of the semiconductor memory cell each include a floating body region configured to store data as charge therein to define a state of the semiconductor memory cell; and a back-bias region configured to perform at least one of injecting charge into or extracting charge out of at least a portion of the floating body region.
In at least one embodiment, the floating body region is provided in a fin structure that extends vertically above the back bias region.
In another aspect of the present invention, a semiconductor memory cell is provided that includes: a floating body region configured to be charged to a level indicative of a state of the memory cell, the floating body region have a first conductivity type selected from p-type conductivity type and n-type conductivity type; the floating body region having a bottom surface bounded by an insulator layer; a first region in electrical contact with the floating body region, the first region exposed at or proximal to a top surface of the floating body region and extending to contact the insulator layer; a second region in electrical contact with the floating body region and spaced apart from the first region, the second region exposed at or proximal to the top surface of the floating body region and extending into the floating body region, wherein the floating body region underlies the second region such that the second region does not extend to contact the insulator layer; a third region in electrical contact with the floating body region and spaced apart from the first and second regions, the third region exposed at or proximal to the top surface of the floating body region and extending to contact the insulator layer; and a gate positioned between the first and second regions; wherein the third region is configured to function as a collector region to maintain a charge of the floating body region, thereby maintaining the state of the floating body region.
In at least one embodiment, the floating body is formed in a substrate having the first conductivity type and the insulator is a buried layer positioned between the bottom surface of the floating body region and a lower portion of the substrate.
In at least one embodiment the top surface of the floating body region is a top surface of the substrate.
In at least one embodiment, the first, second and third regions have a second conductivity type selected from the p-type conductivity type and the n-type conductivity type, and wherein the second conductivity type is different from the first conductivity type.
In at least one embodiment, the semiconductor memory cell further includes a second gate positioned between the second and third regions.
In at least one embodiment, the first and third regions electrically isolate the floating body region from neighboring floating body regions of adjacent ones of the semiconductor memory cell when a plurality of the semiconductor memory cells are joined in an array.
In at least one embodiment, the floating body region and the first, second and third regions are provided in a fin structure that extends vertically above the insulator layer.
In another aspect of the present invention, a method of making a memory cell includes: providing a substrate including a floating body region configured to be charged to a level indicative of a state of the memory cell, the floating body region have a first conductivity type selected from p-type conductivity type and n-type conductivity type; forming first and second gate regions above a top surface of the floating body region, wherein the first and second gate regions are spaced apart from one another. performing an ion implantation process at first angle to a normal to the top surface and at a second angle to the normal to the top surface, wherein the first and second angles are applied from opposite sides of the memory cell and are mirror images of one another; and wherein the gate regions partially block the ion implantation therebetween, resulting in a shallow ion implantation in between the gate regions as a second region; and wherein first and third regions formed outside of the gate regions are deep ion implantation regions.
In at least one embodiment, the method further includes adjusting a distance between the gate regions to vary the depth of the resultant shallow region, wherein decreasing the distance makes the shallow region more shallow and, conversely, increasing the distance makes the shallow region relatively deeper.
In another aspect of the present invention, a method of making a memory cell includes: providing a substrate including a floating body region configured to be charged to a level indicative of a state of the memory cell, the substrate and floating body region have a first conductivity type selected from p-type conductivity type and n-type conductivity type; forming a buried insulator layer between a bottom surface of the floating body region and a lower region of the substrate: forming a first region in electrical contact with the floating body region, the first region exposed at or proximal to a top surface of the substrate and extending to contact the insulator layer; forming a third region in electrical contact with the floating body region and spaced apart from the first, the third region exposed at or proximal to the top surface and extending to contact the insulator layer; contacting a member to the top surface at a location between the first and third regions and spaced apart from the first and third regions, the member being doped with a second conductivity type material selected from p-type conductivity type and n-type conductivity type and different from the first conductivity type; thermally annealing the member a floating body region, whereby dopant outdiffusion from the member forms a second region in the floating body spaced apart from the first and third regions and shallower than the first and third regions, the second region being in electrical contact with the floating body region, exposed at or proximal to the top surface and extending into the floating body region, wherein the floating body region underlies the second region such that the second region does not extend to contact the insulator layer.
In at least one embodiment, the member comprises polysilicon material doped with the second conductivity type material.
In at least one embodiment, the member comprises conductive material.
In at least one embodiment, the conductive material includes at least one of: tungsten, tantalum, titanium, nitrides of tungsten, nitrides of tantalum and nitrides of titanium.
Other aspects of the present invention include the construction, use and operation of floating body memory cells in an array configured in a NAND orientation.
These and other features of the invention will become apparent to those persons skilled in the art upon reading the details of the arrays, strings, memory cells and methods as more fully described below.
Before the present memory cells, strings, arrays and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a string” includes a plurality of such strings and reference to “the memory cell” includes reference to one or more memory cells and equivalents thereof known to those skilled in the art, and so forth.
The dates of publication provided regarding the publications described herein may be different from the actual publication dates which may need to be independently confirmed.
A buried layer 22 of the second conductivity type is also provided in the substrate 12, buried in the substrate 12, as shown. Buried layer 22 may also be formed by an ion implantation process on the material of substrate 12. Alternatively, buried layer 22 can be grown epitaxially. A floating body region 24 of the substrate 12 having a first conductivity type, such as a p-type conductivity type, is bounded by surface 14, first and second regions 20a, 20b, insulating layers 26 and buried layer 22. Insulating layers 26 (e.g., shallow trench isolation (STI)), may be made of silicon oxide, for example. Insulating layers 26 insulate cell 102 from neighboring cells 102 when multiple cells 102 are joined in an array. A gate 60 is positioned in between the regions 20a and 20b, and above the surface 14. The gate 60 is insulated from surface 14 by an insulating layer 62. Insulating layer 62 may be made of silicon oxide and/or other dielectric materials, including high-K dielectric materials, such as, but not limited to, tantalum peroxide, titanium oxide, zirconium oxide, hafnium oxide, and/or aluminum oxide. The gate 60 may be made of polysilicon material or metal gate electrode, such as tungsten, tantalum, titanium and their nitrides.
In another embodiment, the memory cell 102 may be provided with n-type conductivity type as the first conductivity type and p-type conductivity type as the second conductivity type.
Operation of floating body memory cell (FBMC) 102 of
As described in Widjaja-1 and Widjaja-2, each FBMC 102a to 102z has two distinct stable states which will be referred to as state “1” and state “0” throughout this disclosure. State “1” is defined as a stable state where the floating body 24 voltage is at a high voltage such as 0.6V, while state “0” is defined as a stable state where the floating body 24 is at a low voltage such as 0V. A FBMC 102 that is set to be in state “1” will have a high potential at the floating body 24 which in turn will also lower the FBMC 102 threshold voltage better known as Vt. By lowering the Vt of the FBMC 102, the high floating body potential makes the FBMC 102 easier to conduct by requiring less voltage on the gate 60 to induce conduction between source (20a or 20b) and drain (the other of 20a and 20b), than that required when FBMC is in state “0”. Alternatively, a FBMC 102 that is set to be in state “0” will have a floating body voltage close to 0V. FBMC 102 in state “0” will have a higher Vt than FBMC in state “1” and thus require a higher bias on the gate 60 terminal in order to turn on this FBMC 102 and allow conduction between source (one of 20a and 20b) and drain (the other of 20a and 20b) of the FBMC 102.
The floating body NAND string 100 has a static or standby condition where the bit line 110 is kept at a low potential such as 0V, the Select Gate Drain or SGD Device 101 is driven high through line 112, the Select Gate Source or SGS device 103 is driven high through line 116, and the source line 118 is driven to a low potential such as 0V. All word lines 114a through 114z are held at a high enough potential to ensure the NMOS transistor of each FBMC 102a-102z is turned on regardless of the floating body 24 bias of each. As an example, 1.8V may be used for the word line standby voltage. The voltage applied to the DNWell connection 113 is kept at a high potential to allow proper bi-stable operation of the floating body memory cell 102. As an example 1.8V may be used here. The substrate 12 connection 111 will be held at a low potential such as 0V. Throughout this disclosure, unless specifically mentioned, the DNWell 113 and substrate 111 connections can always be assumed to be a high voltage (1.8V) and a low voltage (0v), respectively, to ensure proper operation of the FBMC 102. Those skilled in the art will appreciate that the detailed voltages, descriptions and examples provided throughout this disclosure are meant for exemplary purposes only and are in no way meant to limit the scope and range of this invention.
To set all the FBMC 102 within the FB NAND string 100 to state “0”, a high negative voltage in the range of −1.0V to −3.0V can be applied to the bit line 110, such as −1.8V as shown in
An alternate method to perform a write “0” operation (illustrated in
Once the negative bit line 110 voltage has been passed through the SGD device 101, it will then set FBMC 102a to state “0” due to the forward biasing of the p-n junction between floating body and n+ region of the floating body NMOS device 102. Note that the assumed p-n junction forward bias is only in the situation where the floating body 24 is at a high potential such as 0.6V. If the floating body is already at state “0”, there may be little to no current being consumed, since the p-n junction may not have enough potential to forward bias. Since FBMC 102a is also an NMOS device similar to the SGD device 101, it also will be required to have the gate 114a to be high in order to pass the negative voltage to device 102b. If all the word line voltages 114a to 114z are high, then the entire string will pass the negative bit line voltage. During this operation the SGS device 103 will be turned off by driving the gate 116 to a low enough potential to disable this device 103. An exemplary waveform diagram of this selective write “0” operation is shown in
The method of write “0” described with regard to
To selectively set a single cell to state “0”, capacitive coupling may be employed in conjunction with toggling the state of the DNWell, an example of which is illustrated in
An exemplary waveform diagram of the capacitive selective write “0” operation can be found in
To set an individual cell 102 to state “1” within the floating body NAND string 100 (e.g., see
To inhibit the setting of state “1” to other (nonselected) cells 102 within the same word line, the bit line 110 can be held at 0V instead of 1.8V. This causes the SGD device 101 to turn on. Since all the unselected FBMC 102 are biased to a high voltage the 0V can pass through the FB NAND string 100 to the selected FBMC 102. When the selected word line goes high a channel will develop since the transistor is now fully turned on. This channel will be at a near ground potential and prevent the floating body coupling to the rising gate voltage. This will inhibit programming in unselected columns. Note that between setting state “1” and state “0” the only difference is the bit line voltage. This provides bit selectivity during the write state “1” process, while the write state “0” process is limited to an entire FB NAND string or a portion of a FB NAND string.
Unselected floating body NAND strings 100 not within the same selected row will have their SGD devices 101 driven to ground to turn off the SGD devices 101. To properly maintain the bi-stable behavior of the floating body cells 102 within these floating body NAND strings 100, the SGS devices 103 in the unselected strings 100 can be driven high and ground can be provided through the source side without impacting the bit line 110 voltage. An exemplary waveform diagram of the write 1 including the inhibit operation is provided in
An exemplary read operation is shown in
An alternate method to read the FB NAND string 100 is illustrated in
To further reduce bit line capacitance and leakage a segmented local bit line array structure can be adopted as shown in
The source lines can also be segmented into local source line structures as shown in
Schematic views showing a top-view, cross-sectional views, and three-dimensional views of a memory device 50 according to an embodiment of the present invention are shown in
Buried well layer 22 may be formed by an ion implantation process on the material of substrate 12. Alternatively, buried well layer 22 may be grown epitaxially above substrate 12. Buried well layer 22, which has a second conductivity type (such as n-type conductivity type), electrically isolates the floating body region 24, which has a first conductivity type (such as p-type conductivity type), from the bulk substrate 12 also of the first conductivity type. Fin structure 52 includes bit line region 16 and source line region 18 having a second conductivity type (such as n-type conductivity type).
Memory cell 50 further includes gate 60 enclosing the upper portion 24U of the floating body region, as illustrated in
The floating body region 24 of the first conductivity type is bounded by insulating layer 62, source line region 16, drain region 18. on the bottom by buried layer 22, and by insulating layers 26. Floating body 24 may be the portion of the original substrate 12 above buried layer 22 if buried layer 22 is implanted. Alternatively, floating body 24 may be epitaxially grown. Depending on how buried layer 22 and floating body 24 are formed, floating body 24 may have the same doping as substrate 12 in some embodiments or a different doping, if desired in other embodiments. The floating body region 24U comprises the upper portion of the floating body region 24 that is surrounded by the gate region 60, while the lower portion of the floating body region is indicated as region 24L. The doping concentrations between the upper and lower portion of the floating body regions 24U and 24L may be the same. However, the upper and lower portion of the floating body regions 24U and 24L may have different doping concentrations. For example, the lower portion of the floating body region 24L may be more highly doped than the upper portion of the floating body region 24U. In one embodiment, the upper portion of the floating body region 24U may comprise an intrinsic-type floating body region, where no significant amount of dopant species is present, and the lower portion of the floating body region 24L may have a first conductivity type, such as p-type, for example.
A source line region 16 having a second conductivity type, such as n-type, for example, is provided in fin 52. Source line region 16 may be formed by an implantation process on the material making up fin 52, according to any implantation process known and typically used in the art. Alternatively, a solid state diffusion or a selective epitaxial growth process could be used to form source line region 16.
A bit line region 18 having a second conductivity type, such as n-type, for example, is also provided in fin 52. Bit line region 18 may be formed by an implantation process on the material making up fin 52, according to any implantation process known and typically used in the art. Alternatively, a solid state diffusion or a selective epitaxial growth process could be used to form bit line region 18.
Insulating layers 26 (like, for example, shallow trench isolation (STI)), may be made of silicon oxide, for example, though other insulating materials may be used. The bottom of insulating layer 26 may reside inside the buried region 22 allowing buried region 22 to be continuous as shown in
Cell 50 includes several terminals: word line (WL) terminal 70 electrically connected to gate 60, bit line (BL) terminal 74 electrically connected to bit line region 18, source line (SL) terminal 72 electrically connected to source line region 16, buried well (BW) terminal 76 electrically connected to buried layer 22, and substrate (SUB) terminal 78 electrically connected to the substrate 12 (see
Several operations can be performed by memory cell 50 such as holding, read, write logic-1 and write logic-0 operations.
The memory cell states are represented by the charge such as holes in the floating body region 24 of the first conductivity. In one embodiment, the charge is stored uniformly across the floating body region 24. In another embodiment, the upper portion of the floating body region 24U is fully depleted, and the charge is preferentially stored in the lower portion of the floating body region 24L. If cell 50 has holes stored in the floating body region 24, then the memory cell 50 will have a lower threshold voltage (gate voltage where transistor is turned on) compared to when cell 50 does not store holes in floating body region 24. Alternatively, if cell 50 has holes stored in the floating body region 24, then the memory cell 50 will conduct a higher current (from the bit line region 18 to the source line region 16, for example) compared to when cell 50 does not store holes in the floating body region 24.
The positive charge stored in the floating body region 24 will decrease over time due to the p-n diode leakage formed by the floating body region 24 and regions 16, 18, and 22, and due to charge recombination. A holding operation may be applied in parallel to memory cells 50, which is performed by applying a positive back bias to the BW terminal 76, zero or low negative bias on the WL terminal 70, and zero bias on the SL terminal 72, BL terminal 74, and SUB terminal 78. The positive back bias applied to the buried layer region 22 connected to the BW terminal 76 will maintain the state of the memory cell 50 that it is connected to by maintaining the charge stored in the floating body region 24.
The principles of the holding operation performed on memory cell 50 may be illustrated through the equivalent circuit representation of the memory cell 50 shown in
The region where the product β×(M−1) approaches 1 and is characterized by hole current moving into the base region of a bipolar transistor is sometimes referred to as the reverse base current region and has been described for example in “A New Static Memory Cell Based on Reverse Base Current (RBC) Effect of Bipolar Transistor”, K. Sakui et al., pp. 44-47, International Electron Devices Meeting, 1988 (“Sakui-1”), “A New Static Memory Cell Based on the Reverse Base Current Effect of Bipolar Transistors”, K. Sakui et al., pp. 1215-1217, IEEE Transactions on Electron Devices, vol. 36, no. 6, June 1989 (“Sakui-2”), “On Bistable Behavior and Open-Base Breakdown of Bipolar Transistors in the Avalanche Regime—Modeling and Applications”, M. Reisch, pp. 1398-1409, IEEE Transactions on Electron Devices, vol. 39, no. 6, June 1992 (“Reisch”), all of which are hereby incorporated herein, in their entireties, by reference thereto.
The latching behavior based on the reverse base current region has also been described in a biristor (i.e. bi-stable resistor) for example in “Bistable resistor (Biristor)—Gateless Silicon Nanowire Memory”, J.-W. Han and Y.-K. Choi, pp. 171-172, 2010 Symposium on VLSI Technology, Digest of Technical Papers, 2010 “(“J.-W. Han”), which is hereby incorporated herein, in its entirety, by reference thereto. In a two-terminal biristor device, a refresh operation is still required. J.-W. Han describes a 200 ms data retention for the silicon nanowire biristor memory. In memory cell 50, the state of the memory cell is maintained due to the vertical bipolar transistors 32 and 34, while the remaining cell operations (i.e. read and write operations) are governed by the lateral bipolar transistor 36 and/or MOS transistor 40. Hence, the holding operation does not require any interruptions to the memory cell 50 access.
If floating body 24 is neutrally charged (the voltage on floating body 24 being equal to the voltage on grounded source line region 16), a state corresponding to logic-0, no current will flow through bipolar transistors 32 and 34. The bipolar devices 32 and 34 will remain off and no impact ionization occurs. Consequently memory cells in the logic-0 state will remain in the logic-0 state.
An autonomous refresh for a floating body memory, without requiring to first read the memory cell state, has been described for example in “Autonomous Refresh of Floating Body Cell (FBC)”, Ohsawa et al., pp. 801-804, International Electron Device Meeting, 2008 (“Ohsawa”), U.S. Pat. No. 7,170,807 “Data Storage Device and Refreshing Method for Use with Such Device”, Fazan et al. (“Fazan”), which are hereby incorporated herein, in their entireties, by reference thereto. Ohsawa and Fazan teach an autonomous refresh method by applying periodic gate and drain voltage pulses, which interrupt access to the memory cells being refreshed. In memory cell 50, more than one stable state is achieved because of the vertical bipolar transistors 32 and 34. The read and write operations of the memory cell 50 are governed by the lateral bipolar transistor 36 and/or MOS transistor 40. Hence, the holding operation does not require any interruptions to the memory cell 50 access.
In the holding operation described in
The holding operation results in the floating body memory cell having two stable states: the logic-0 state and the logic-1 state separated by an energy barrier, which are represented by VFB0, VFB1, and VTS, respectively.
The values of the floating body 24 potential where the current changes direction, i.e. VFB0, VFB1, and VTS, can be modulated by the potential applied to the BW terminal 76. These values are also temperature dependent.
The holding/standby operation also results in a larger memory window by increasing the amount of charge that can be stored in the floating body 24. Without the holding/standby operation, the maximum potential that can be stored in the floating body 24 is limited to the flat band voltage VFB as the junction leakage current to regions 16 and 18 increases exponentially at floating body potential greater than VFB. However, by applying a positive voltage to BW terminal 76, the bipolar action results in a hole current flowing into the floating body 24, compensating for the junction leakage current between floating body 24 and regions 16 and 18. As a result, the maximum charge VMC stored in floating body 24 can be increased by applying a positive bias to the BW terminal 76 as shown in
Floating body DRAM cells described in Ranica, Villaret, and Pulicani only exhibit one stable state, which is often assigned as logic-0 state. Villaret describes the intrinsic bipolar transistors enhance the data retention of logic-1 state, by drawing the electrons which otherwise would recombine with the holes stored in the floating body region. However, only one stable state is observed because there is no hole injection into the floating body region to compensate for the charge leakage and recombination.
A read operation of the memory cell 50, according to an embodiment of the present invention, is illustrated in
A read operation for example can be performed on memory cell 50 by applying the following bias conditions: zero or positive bias is applied to the WL terminal 70, a positive voltage is applied to the BL terminal 74, zero voltage is applied to the SL terminal 72, zero or positive voltage is applied to the BW terminal 76, and zero voltage is applied to the SUB terminal 78. If memory cell 50 is in a logic-1 state having holes in the floating body region 24, then a higher current will flow from the BL terminal 74 to the SL terminal 72 of the selected memory cell 50, compared to if memory cell 50 is in a logic-0 state having no holes in the floating body region 24. Current may flow from the BL terminal 74 to the SL terminal 72 through the transistor 40 and/or the bipolar transistor 36 (where the current may flow through the lower portion of the floating body region 24L). In one particular embodiment, about +1.2 volts is applied to the WL terminal 70, about +0.4 volts is applied to the BL terminal 74, about 0.0 volts is applied to the SL terminal 72, about +1.2 volts is applied to the BW terminal 76, and about 0.0 volts is applied to the SUB terminal 78.
In one particular non-limiting embodiment, about −1.2 volts is applied to the WL terminal 70, about +1.2 volts is applied to the BL terminal 74, about 0.0 volts is applied to the SL terminal 72, about +1.2 volts is applied to the BW terminal 76, and about 0.0 volts is applied to the SUB terminal 78, as shown in
In one particular non-limiting embodiment, about +0.5 volts is applied to the WL terminal 70, about +1.2 volts is applied to the BL terminal 74, about 0.0 volts is applied to the SL terminal 72, about +1.2 volts is applied to the BW terminal 76, and about 0.0 volts is applied to the SUB terminal 78. These voltage levels are exemplary only and may vary from embodiment to embodiment. Thus the exemplary embodiments, features, bias levels, etc., described are not limiting.
In one particular non-limiting embodiment, about −1.2 volts is applied to the selected SL terminal 72, about 0.0 volts is applied to the WL terminal 70, BL terminal 74, and SUB terminal 78, and about +1.2 volts is applied to the BW terminal 76. These voltage levels are exemplary only and may vary from embodiment to embodiment. Thus the exemplary embodiments, features, bias levels, etc., described are not limiting.
Substrate 12 has a surface 14 and includes a buried insulator layer 22. Buried insulator layer 22 may include any suitable dielectric material, an illustrative, non-exclusive example of which includes silicon oxide.
Memory cell 150 includes a first region 18 having a second conductivity type, such as an n-type conductivity type, that is formed in substrate 12, a second region 16 having the second conductivity type that is formed in substrate 12 and spaced apart from the first region 18, and a third region 20 having the second conductivity type that is formed in substrate 12 and spaced apart from the first and second regions 18 and 16, respectively. First, second and third regions 18, 16 and 20, respectively, may be exposed at and/or proximal to surface 14 and may be formed using any suitable method and/or process, illustrative, non-exclusive examples of which include ion implantation and/or solid state diffusion and/or epitaxial growth.
A floating body region 24, having a first conductivity type, such as a p-type conductivity type, is bounded by surface 14, first, second and third regions 18, 16, and 20, respectively, and by buried insulator layer 22. Floating body region 24 may be formed using any suitable method and/or process, illustrative, non-exclusive examples of which include an ion implantation process and/or epitaxial growth.
Referring back to
A first gate 60 may be positioned in between the regions 16 and 18, and above the surface 14. Cell 150 may or may not comprise a second gate 64, When included, gate 64 may be positioned in between the regions 16 and 20, and above the surface 14, as shown in
Cell 150 further includes a WL terminal 70 electrically connected to gate 60, a second word line WL2 terminal 71 electrically connected to gate 64, a source line (SL) terminal 72 electrically connected to region 16, a bit line (BL) terminal 74 electrically connected to region 18, a second bit line (BL2) terminal 76 electrically connected to region 20, and a SUB terminal 78 electrically connected to substrate 12.
As discussed in more detail herein, the conductivity types described above are exemplary conductivity types and other conductivity types and/or relative conductivity types are also within the scope of the present disclosure. As an illustrative, non-exclusive example, memory cell 150 may have and/or include an n-type conductivity type as the first conductivity type and a p-type conductivity type as the second conductivity type.
Several operations can be performed by memory cell 150 such as holding, read, write logic-1 and write logic-0 operations.
A holding operation may be performed on memory cell 150 following the same principle as the holding operation of memory cell 50, where the holding operation is performed by applying a positive bias to the BL2 terminal 76, zero or low negative bias on the WL terminal 70, zero or low positive bias on WL2 terminal 71, and zero bias on the SL terminal 72, BL terminal 74, and SUB terminal 78. The positive bias applied to the region 20 connected to the BL2 terminal 76 will maintain the state of the memory cell 150 that it is connected to by maintaining the charge stored in the floating body region 24.
The principles of the holding operation performed on memory cell 150 may be illustrated through the equivalent circuit representation of the memory cell 150 shown in
If the floating body region 24 is positively charged, the lateral bipolar transistor 133 will be turned on as the positive charge in the floating body region 24 lowers the energy barrier of electron flow into the base region (the floating body region 24). Once injected into the floating body region 24, the electrons will be swept into the region 20 (connected to BL2 terminal 76) due to the positive bias applied to the region 20. As a result of the positive bias, the electrons are accelerated and create additional hot carriers (hot hole and hot electron pairs) through an impact ionization mechanism. The resulting hot electrons flow into the BL2 terminal 76 while the resulting hot holes will subsequently flow into the floating body region 24. When the following condition is met: β×(M−1)≈1− where β is the forward common-emitter current gain of the bipolar transistor 133 and M is the impact ionization coefficient—the amount of holes injected into the floating body region 24 compensates for the charge lost due to p-n junction forward bias current between the floating body region 24 and the source line region 16 or bit line region 18 and due to holes recombination. As a result of a positive-feedback mechanism, this process maintains the charge (i.e. holes) stored in the floating body region 24 which will keep the n-p-n bipolar transistors 133 on for as long as a positive bias is applied to the region 20 (connected to BL2 terminal 76).
If the floating body region 24 is neutral, the bipolar device 133 will remain off because the energy barrier between the floating body region 24 and the source line region 16 will prevent electron flow from source line region 16 (connected to SL terminal 72) to the floating body region 24. As a result, the floating body region 24 will remain neutral.
In one particular non-limiting embodiment, about 0.0 volts is applied to the WL terminal 70, about −1.2 volts is applied to the WL2 terminal 71, about 0 volts is applied to the BL terminal 74, about 0.0 volts is applied to the SL terminal 72, about +1.2 volts is applied to the BL2 terminal 76, and about 0.0 volts is applied to the SUB terminal 78.
In one particular non-limiting embodiment, about 0 volts is applied to the WL terminal 70, about +0.5 volts is applied to the WL2 terminal 71, about 0 volts is applied to the BL terminal 74, about 0.0 volts is applied to the SL terminal 72, about +1.2 volts is applied to the BL2 terminal 76, and about 0.0 volts is applied to the SUB terminal 78. These voltage levels are exemplary only and may vary from embodiment to embodiment. Thus the exemplary embodiments, features, bias levels, etc., described are not limiting.
In one particular non-limiting embodiment, about −1.2 volts is applied to the selected SL terminal 72, about 0.0 volts is applied to the WL terminal 70, WL2 terminal 71, BL terminal 74, and SUB terminal 78, and about +1.2 volts is applied to the BL2 terminal 76. These voltage levels are exemplary only and may vary from embodiment to embodiment. Thus the exemplary embodiments, features, bias levels, etc., described are not limiting.
Substrate 12 has a surface and includes a buried insulator layer 22. Buried insulator layer 22 may include any suitable dielectric material, an illustrative, non-exclusive example of which includes silicon oxide.
Memory cell 150V includes a first region 18 having a second conductivity type, such as an n-type conductivity type, that is formed in fin 52, a second region 16 having the second conductivity type that is formed in fin 52 and spaced apart from the first region 18, and a third region 20 having the second conductivity type that is formed in fin 52 and spaced apart from the first and second regions 18 and 16, respectively. First, second and third regions 18, 16 and 20, respectively, may be exposed at and/or proximal to the surface and may be formed using any suitable method and/or process, illustrative, non-exclusive examples of which include ion implantation and/or solid state diffusion and/or epitaxial growth.
First and third regions 18 and 20, respectively, reach buried insulator layer 22 and insulate floating body 24 from a neighboring floating body 24 of an adjacent cell when multiple cells 150V are joined in an array. On the other hand, the method and/or process utilized to form second region 16 may be optimized such that region 16 does not reach buried insulator layer 22. Therefore, floating body 24 is not isolated on the side by the second region 16.
The operation of the memory cell 150V is similar to that of memory cell 150.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiments, methods, and examples, but by all embodiments and methods within the scope and spirit of the invention as claimed.
This application is a continuation of co-pending application Ser. No. 17/219,564, filed Mar. 31, 2021, which is a continuation of application Ser. No. 16/706,148, filed Dec. 6, 2019, now U.S. Pat. No. 10,991,697, issued on Apr. 27, 2021, which is a continuation of application Ser. No. 16/132,675, filed Sep. 17, 2018, now U.S. Pat. No. 10,546,860, issued on Jan. 28, 2020, which is a continuation of application Ser. No. 15/628,931, filed Jun. 21, 2017, now U.S. Pat. No. 10,103,148, issued on Oct. 16, 2018, which is a continuation of application Ser. No. 15/161,493, filed May 23, 2016, now U.S. Pat. No. 9,704,578, issued on Jul. 11, 2017, which is a division of application Ser. No. 14/267,112, filed May 1, 2014, now U.S. Pat. No. 9,368,625, issued on Jun. 14, 2016, which claims the benefit of U.S. Provisional Application No. 61/818,305, filed on May 1, 2013 and of U.S. Provisional Application No. 61/829,262, filed on May 31, 2013, all of which applications and patents are hereby incorporated herein, in their entireties, by reference thereto, and to which applications we claim priority.
Number | Name | Date | Kind |
---|---|---|---|
4300212 | Simko | Nov 1981 | A |
4385308 | Uchida | May 1983 | A |
4959812 | Momodoni et al. | Sep 1990 | A |
5519831 | Holzhammer | May 1996 | A |
5581504 | Chang et al. | Dec 1996 | A |
5748538 | Lee et al. | May 1998 | A |
5767549 | Chen et al. | Jun 1998 | A |
5999444 | Fujiwara et al. | Dec 1999 | A |
6005818 | Ferrant et al. | Dec 1999 | A |
6064100 | Wen | May 2000 | A |
6141248 | Forbes et al. | Oct 2000 | A |
6163048 | Hirose et al. | Dec 2000 | A |
6166407 | Ohta | Dec 2000 | A |
6243293 | Van Houdt et al. | Jun 2001 | B1 |
6341087 | Kunikiyo et al. | Jan 2002 | B1 |
6356485 | Proebsting et al. | Mar 2002 | B1 |
6376876 | Shin et al. | Apr 2002 | B1 |
6542411 | Tanikawa et al. | Apr 2003 | B2 |
6614684 | Shukuri et al. | Sep 2003 | B1 |
6625057 | Iwata | Sep 2003 | B2 |
6661042 | Hsu | Dec 2003 | B2 |
6686624 | Hsu | Feb 2004 | B2 |
6714447 | Satoh et al. | Mar 2004 | B2 |
6724657 | Shukuri et al. | Apr 2004 | B2 |
6791882 | Seki et al. | Sep 2004 | B2 |
6801452 | Miwa et al. | Oct 2004 | B2 |
6845042 | Ichige et al. | Jan 2005 | B2 |
6870751 | van Brocklin et al. | Mar 2005 | B2 |
6885581 | Nemati et al. | Apr 2005 | B2 |
6912150 | Portman et al. | Jun 2005 | B2 |
6913964 | Hsu | Jul 2005 | B2 |
6925006 | Fazan et al. | Aug 2005 | B2 |
6954377 | Choi et al. | Oct 2005 | B2 |
6969662 | Fazan et al. | Nov 2005 | B2 |
7085156 | Ferrant et al. | Aug 2006 | B2 |
7118986 | Steigerwalt et al. | Oct 2006 | B2 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7209384 | Kim | Apr 2007 | B1 |
7224019 | Hieda et al. | May 2007 | B2 |
7259420 | Anderson et al. | Aug 2007 | B2 |
7259992 | Shirota | Aug 2007 | B2 |
7280399 | Fazan et al. | Oct 2007 | B2 |
7285820 | Park et al. | Oct 2007 | B2 |
7301803 | Okhonin et al. | Nov 2007 | B2 |
7301838 | Waller et al. | Nov 2007 | B2 |
7329580 | Cho et al. | Feb 2008 | B2 |
7440333 | Hsia et al. | Oct 2008 | B2 |
7447068 | Tsai et al. | Nov 2008 | B2 |
7450423 | Lai et al. | Nov 2008 | B2 |
7473611 | Cho et al. | Jan 2009 | B2 |
7498630 | Ichige et al. | Mar 2009 | B2 |
7504302 | Matthew et al. | Mar 2009 | B2 |
7541636 | Ranica et al. | Jun 2009 | B2 |
7542345 | Okhonin et al. | Jun 2009 | B2 |
7579241 | Hieda et al. | Aug 2009 | B2 |
7609551 | Shino et al. | Oct 2009 | B2 |
7622761 | Park et al. | Nov 2009 | B2 |
7701763 | Roohparvar | Apr 2010 | B2 |
7733693 | Ferrant et al. | Jun 2010 | B2 |
7759715 | Bhattacharyya | Jul 2010 | B2 |
7760548 | Widjaja | Jul 2010 | B2 |
7847338 | Widjaja | Dec 2010 | B2 |
7933139 | Lung | Apr 2011 | B2 |
7933140 | Wang et al. | Apr 2011 | B2 |
8014200 | Widjaja | Sep 2011 | B2 |
8036033 | Widjaja | Oct 2011 | B2 |
8059459 | Widjaja | Nov 2011 | B2 |
8077536 | Widjaja | Dec 2011 | B2 |
8130547 | Widjaja et al. | Mar 2012 | B2 |
8130548 | Widjaja et al. | Mar 2012 | B2 |
8159868 | Widjaja | Apr 2012 | B2 |
8159878 | Widjaja | Apr 2012 | B2 |
8174886 | Widjaja et al. | May 2012 | B2 |
8194451 | Widjaja | Jun 2012 | B2 |
8208302 | Widjaja | Jun 2012 | B2 |
8243499 | Widjaja | Aug 2012 | B2 |
8264875 | Widjaja et al. | Sep 2012 | B2 |
8294193 | Widjaja | Oct 2012 | B2 |
8391066 | Widjaja | Mar 2013 | B2 |
8461035 | Cronquist et al. | Jun 2013 | B1 |
8472249 | Widjaja | Jun 2013 | B2 |
8514622 | Widjaja | Aug 2013 | B2 |
8514623 | Widjaja et al. | Aug 2013 | B2 |
8531881 | Widjaja | Sep 2013 | B2 |
8559257 | Widjaja | Oct 2013 | B2 |
8570803 | Widjaja | Oct 2013 | B2 |
8582359 | Widjaja | Nov 2013 | B2 |
8654583 | Widjaja | Feb 2014 | B2 |
8711622 | Widjaja | Apr 2014 | B2 |
8767458 | Widjaja | Jul 2014 | B2 |
8787085 | Widjaja | Jul 2014 | B2 |
8797804 | Tanzawa | Aug 2014 | B2 |
8817548 | Widjaja et al. | Aug 2014 | B2 |
8837247 | Widjaja | Sep 2014 | B2 |
8923052 | Widjaja | Dec 2014 | B2 |
8934296 | Widjaja | Jan 2015 | B2 |
8937834 | Widjaja et al. | Jan 2015 | B2 |
8957458 | Widjaja | Feb 2015 | B2 |
8995186 | Widjaja | Mar 2015 | B2 |
9001581 | Widjaja | Apr 2015 | B2 |
9025358 | Widjaja | May 2015 | B2 |
9029922 | Han et al. | May 2015 | B2 |
9030872 | Widjaja et al. | May 2015 | B2 |
9087580 | Widjaja | Jul 2015 | B2 |
9153309 | Widjaja et al. | Oct 2015 | B2 |
9153333 | Widjaja | Oct 2015 | B2 |
9208840 | Widjaja et al. | Dec 2015 | B2 |
9208880 | Louie et al. | Dec 2015 | B2 |
9209188 | Widjaja | Dec 2015 | B2 |
9230651 | Widjaja et al. | Jan 2016 | B2 |
9230965 | Widjaja | Jan 2016 | B2 |
9236382 | Widjaja et al. | Jan 2016 | B2 |
9257179 | Widjaja | Feb 2016 | B2 |
9275723 | Louie et al. | Mar 2016 | B2 |
9391079 | Widjaja | Jul 2016 | B2 |
9401206 | Widjaja | Jul 2016 | B2 |
9431401 | Han et al. | Aug 2016 | B2 |
9455262 | Widjaja | Sep 2016 | B2 |
9460790 | Widjaja | Oct 2016 | B2 |
9484082 | Widjaja | Nov 2016 | B2 |
9490012 | Widjaja | Nov 2016 | B2 |
9514803 | Widjaja et al. | Dec 2016 | B2 |
9524970 | Widjaja | Dec 2016 | B2 |
9576962 | Widjaja et al. | Feb 2017 | B2 |
9589963 | Widjaja | Mar 2017 | B2 |
9601493 | Widjaja | Mar 2017 | B2 |
9601993 | Kawano | Mar 2017 | B2 |
9614080 | Widjaja | Apr 2017 | B2 |
9646693 | Widjaja | May 2017 | B2 |
9653467 | Widjaja et al. | May 2017 | B2 |
9666275 | Widjaja | May 2017 | B2 |
9679648 | Widjaja | Jun 2017 | B2 |
9704578 | Louie et al. | Jul 2017 | B2 |
9704870 | Widjaja | Jul 2017 | B2 |
9715932 | Widjaja | Jul 2017 | B2 |
9747983 | Widjaja | Aug 2017 | B2 |
9761311 | Widjaja | Sep 2017 | B2 |
9761589 | Widjaja | Sep 2017 | B2 |
9793277 | Widjaja et al. | Oct 2017 | B2 |
9812203 | Widjaja | Nov 2017 | B2 |
9812456 | Widjaja | Nov 2017 | B2 |
9831247 | Han et al. | Nov 2017 | B2 |
9847131 | Widjaja | Dec 2017 | B2 |
9865332 | Louie et al. | Jan 2018 | B2 |
9893067 | Widjaja et al. | Feb 2018 | B2 |
9905564 | Widjaja et al. | Feb 2018 | B2 |
9922711 | Widjaja | Mar 2018 | B2 |
9922981 | Widjaja | Mar 2018 | B2 |
9928910 | Widjaja | Mar 2018 | B2 |
9960166 | Widjaja | May 2018 | B2 |
9978450 | Widjaja | May 2018 | B2 |
10008266 | Widjaja | Jun 2018 | B1 |
10026479 | Louie et al. | Jul 2018 | B2 |
10032514 | Widjaja | Jul 2018 | B2 |
10032776 | Widjaja et al. | Jul 2018 | B2 |
10056387 | Widjaja | Aug 2018 | B2 |
10074653 | Widjaja | Sep 2018 | B2 |
10079236 | Widjaja | Sep 2018 | B2 |
10103148 | Louie et al. | Oct 2018 | B2 |
10103149 | Han et al. | Oct 2018 | B2 |
10109349 | Widjaja | Oct 2018 | B2 |
10141315 | Widjaja et al. | Nov 2018 | B2 |
10163907 | Widjaja et al. | Dec 2018 | B2 |
10181471 | Widjaja et al. | Jan 2019 | B2 |
10192872 | Widjaja et al. | Jan 2019 | B2 |
10204684 | Widjaja | Feb 2019 | B2 |
10204908 | Widjaja | Feb 2019 | B2 |
10210934 | Widjaja | Feb 2019 | B2 |
10211209 | Widjaja | Feb 2019 | B2 |
10242739 | Widjaja | Mar 2019 | B2 |
10249368 | Widjaja | Apr 2019 | B2 |
10340006 | Widjaja | Jul 2019 | B2 |
10340276 | Widjaja et al. | Jul 2019 | B2 |
10347636 | Widjaja | Jul 2019 | B2 |
10373685 | Louie et al. | Aug 2019 | B2 |
10388378 | Widjaja | Aug 2019 | B2 |
10403361 | Widjaja | Sep 2019 | B2 |
10453847 | Widjaja et al. | Oct 2019 | B2 |
10461083 | Han et al. | Oct 2019 | B2 |
10461084 | Widjaja | Oct 2019 | B2 |
10468102 | Widjaja | Nov 2019 | B2 |
10497443 | Widjaja | Dec 2019 | B2 |
10504585 | Louie et al. | Dec 2019 | B2 |
10515968 | Widjaja | Dec 2019 | B2 |
10529424 | Widjaja | Jan 2020 | B2 |
10546860 | Louie et al. | Jan 2020 | B2 |
10553281 | Widjaja | Feb 2020 | B2 |
10593675 | Widjaja et al. | Mar 2020 | B2 |
10615163 | Widjaja | Apr 2020 | B2 |
10622069 | Widjaja | Apr 2020 | B2 |
10629599 | Widjaja et al. | Apr 2020 | B2 |
10644001 | Widjaja et al. | May 2020 | B2 |
10644002 | Widjaja | May 2020 | B2 |
10707209 | Widjaja | Jul 2020 | B2 |
10734076 | Widjaja | Aug 2020 | B2 |
10748904 | Widjaja et al. | Aug 2020 | B2 |
10797055 | Widjaja et al. | Oct 2020 | B2 |
10804276 | Widjaja | Oct 2020 | B2 |
10818354 | Widjaja | Oct 2020 | B2 |
10825520 | Widjaja | Nov 2020 | B2 |
10839905 | Louie et al. | Nov 2020 | B2 |
10861548 | Widjaja | Dec 2020 | B2 |
10867676 | Widjaja | Dec 2020 | B2 |
10978455 | Widjaja et al. | Apr 2021 | B2 |
10991697 | Louie et al. | Apr 2021 | B2 |
10991698 | Widjaja | Apr 2021 | B2 |
11004512 | Widjaja | May 2021 | B2 |
11011232 | Widjaja | May 2021 | B2 |
11018136 | Widjaja et al. | May 2021 | B2 |
11031401 | Han et al. | Jun 2021 | B2 |
11037929 | Widjaja | Jun 2021 | B2 |
11063048 | Widjaja | Jul 2021 | B2 |
11100994 | Louie et al. | Aug 2021 | B2 |
11133313 | Widjaja | Sep 2021 | B2 |
11183498 | Widjaja et al. | Nov 2021 | B2 |
11211125 | Widjaja | Dec 2021 | B2 |
11217200 | Louie et al. | Jan 2022 | B2 |
11295813 | Widjaja | Apr 2022 | B2 |
11348922 | Widjaja et al. | May 2022 | B2 |
11348923 | Widjaja | May 2022 | B2 |
11404420 | Widjaja | Aug 2022 | B2 |
11417657 | Widjaja et al. | Aug 2022 | B2 |
11417658 | Louie | Aug 2022 | B2 |
20020018366 | von Schwerin et al. | Feb 2002 | A1 |
20020048193 | Tanikawa et al. | Apr 2002 | A1 |
20050024968 | Lee et al. | Feb 2005 | A1 |
20050032313 | Forbes | Feb 2005 | A1 |
20050124120 | Du et al. | Jun 2005 | A1 |
20060018164 | Wu | Jan 2006 | A1 |
20060044915 | Park et al. | Mar 2006 | A1 |
20060125010 | Bhattacharyya | Jun 2006 | A1 |
20060157679 | Scheuerlein | Jul 2006 | A1 |
20060227601 | Bhattacharyya | Oct 2006 | A1 |
20060237770 | Huang et al. | Oct 2006 | A1 |
20060278915 | Lee et al. | Dec 2006 | A1 |
20070004149 | Tews | Jan 2007 | A1 |
20070090443 | Choi et al. | Apr 2007 | A1 |
20070164351 | Hamamoto | Jul 2007 | A1 |
20070164352 | Padilla | Jul 2007 | A1 |
20070210338 | Orlowski | Sep 2007 | A1 |
20070215954 | Mouli | Sep 2007 | A1 |
20070263466 | Morishita et al. | Nov 2007 | A1 |
20070284648 | Park et al. | Dec 2007 | A1 |
20080048239 | Huo et al. | Feb 2008 | A1 |
20080080248 | Lue et al. | Apr 2008 | A1 |
20080111154 | Voldman | May 2008 | A1 |
20080123418 | Widjaja | May 2008 | A1 |
20080224202 | Young et al. | Sep 2008 | A1 |
20080265305 | He et al. | Oct 2008 | A1 |
20080303079 | Cho et al. | Dec 2008 | A1 |
20090034320 | Ueda | Feb 2009 | A1 |
20090065853 | Hanafi | Mar 2009 | A1 |
20090081835 | Kim et al. | Mar 2009 | A1 |
20090085089 | Chang et al. | Apr 2009 | A1 |
20090108322 | Widjaja | Apr 2009 | A1 |
20090108351 | Yang et al. | Apr 2009 | A1 |
20090109750 | Widjaja | Apr 2009 | A1 |
20090173985 | Lee et al. | Jul 2009 | A1 |
20090190402 | Hsu et al. | Jul 2009 | A1 |
20090251966 | Widjaja | Oct 2009 | A1 |
20090316492 | Widjaja | Dec 2009 | A1 |
20100008139 | Bae | Jan 2010 | A1 |
20100034041 | Widjaja | Feb 2010 | A1 |
20100046287 | Widjaja | Feb 2010 | A1 |
20100157664 | Chung | Jun 2010 | A1 |
20100246277 | Widjaja | Sep 2010 | A1 |
20100246284 | Widjaja | Sep 2010 | A1 |
20100290271 | Lung | Nov 2010 | A1 |
20110032756 | Widjaja | Feb 2011 | A1 |
20110042736 | Widjaja | Feb 2011 | A1 |
20110044110 | Widjaja | Feb 2011 | A1 |
20110170329 | Kang | Jul 2011 | A1 |
20110228591 | Widjaja | Sep 2011 | A1 |
20110228617 | Wang et al. | Sep 2011 | A1 |
20110305085 | Widjaja | Dec 2011 | A1 |
20120012915 | Widjaja et al. | Jan 2012 | A1 |
20120014180 | Widjaja | Jan 2012 | A1 |
20120014188 | Widjaja et al. | Jan 2012 | A1 |
20120069652 | Widjaja | Mar 2012 | A1 |
20120081976 | Widjaja et al. | Apr 2012 | A1 |
20120106234 | Widjaja | May 2012 | A1 |
20120113712 | Widjaja | May 2012 | A1 |
20120195123 | Lee | Aug 2012 | A1 |
20120217549 | Widjaja | Aug 2012 | A1 |
20120230123 | Widjaja et al. | Sep 2012 | A1 |
20120241708 | Widjaja | Sep 2012 | A1 |
20120281475 | Oh et al. | Nov 2012 | A1 |
20130015517 | Widjaja et al. | Jan 2013 | A1 |
20130058169 | Lee et al. | Mar 2013 | A1 |
20130094280 | Widjaja | Apr 2013 | A1 |
20130229857 | Kajigaya | Sep 2013 | A1 |
20130250685 | Widjaja | Sep 2013 | A1 |
20130264656 | Widjaja et al. | Oct 2013 | A1 |
20140036577 | Widjaja | Feb 2014 | A1 |
20140159156 | Widjaja | Jun 2014 | A1 |
20140160868 | Widjaja et al. | Jun 2014 | A1 |
20140198551 | Louie et al. | Jul 2014 | A1 |
20140307501 | Louie et al. | Oct 2014 | A1 |
20140328128 | Louie et al. | Nov 2014 | A1 |
20140332899 | Widjaja | Nov 2014 | A1 |
20140340972 | Widjaja et al. | Nov 2014 | A1 |
20140355343 | Widjaja | Dec 2014 | A1 |
20150023105 | Widjaja et al. | Jan 2015 | A1 |
20150092486 | Widjaja | Apr 2015 | A1 |
20150109860 | Widjaja | Apr 2015 | A1 |
20150155284 | Widjaja | Jun 2015 | A1 |
20150170743 | Widjaja | Jun 2015 | A1 |
20150187776 | Widjaja | Jul 2015 | A1 |
20150213892 | Widjaja | Jul 2015 | A1 |
20150221650 | Widjaja et al. | Aug 2015 | A1 |
20150221653 | Han et al. | Aug 2015 | A1 |
20150310917 | Widjaja | Oct 2015 | A1 |
20150371707 | Widjaja | Dec 2015 | A1 |
20160005741 | Widjaja | Jan 2016 | A1 |
20160005750 | Widjaja | Jan 2016 | A1 |
20160078921 | Widjaja et al. | Mar 2016 | A1 |
20160086655 | Widjaja | Mar 2016 | A1 |
20160086954 | Widjaja et al. | Mar 2016 | A1 |
20160111158 | Widjaja | Apr 2016 | A1 |
20160148675 | Louie et al. | May 2016 | A1 |
20160267982 | Louie et al. | Sep 2016 | A1 |
20160300613 | Widjaja | Oct 2016 | A1 |
20160300841 | Widjaja | Oct 2016 | A1 |
20160336326 | Han et al. | Nov 2016 | A1 |
20160365444 | Widjaja | Dec 2016 | A1 |
20170025534 | Widjaja | Jan 2017 | A1 |
20170032842 | Widjaja | Feb 2017 | A1 |
20170040326 | Widjaja | Feb 2017 | A1 |
20170053919 | Widjaja et al. | Feb 2017 | A1 |
20170092359 | Louie et al. | Mar 2017 | A1 |
20170092648 | Widjaja | Mar 2017 | A1 |
20170125421 | Widjaja et al. | May 2017 | A1 |
20170133091 | Widjaja | May 2017 | A1 |
20170133382 | Widjaja | May 2017 | A1 |
20170154888 | Widjaja | Jun 2017 | A1 |
20170169887 | Widjaja | Jun 2017 | A1 |
20170213593 | Widjaja | Jul 2017 | A1 |
20170229178 | Widjaja | Aug 2017 | A1 |
20170229466 | Widjaja et al. | Aug 2017 | A1 |
20170271339 | Widjaja | Sep 2017 | A1 |
20170294230 | Widjaja | Oct 2017 | A1 |
20170294438 | Louie et al. | Oct 2017 | A1 |
20170365340 | Widjaja | Dec 2017 | A1 |
20170365607 | Widjaja | Dec 2017 | A1 |
20180012893 | Widjaja et al. | Jan 2018 | A1 |
20180025780 | Widjaja | Jan 2018 | A1 |
20180047731 | Widjaja | Feb 2018 | A1 |
20180069008 | Han et al. | Mar 2018 | A1 |
20180075907 | Widjaja | Mar 2018 | A1 |
20180096721 | Louie et al. | Apr 2018 | A1 |
20180158825 | Widjaja et al. | Jun 2018 | A1 |
20180166446 | Widjaja | Jun 2018 | A1 |
20180174654 | Widjaja | Jun 2018 | A1 |
20180182458 | Widjaja | Jun 2018 | A1 |
20180182460 | Widjaja | Jun 2018 | A1 |
20180219013 | Widjaja | Aug 2018 | A1 |
20180233199 | Widjaja | Aug 2018 | A1 |
20180301191 | Widjaja | Oct 2018 | A1 |
20180301192 | Louie et al. | Oct 2018 | A1 |
20180308848 | Widjaja et al. | Oct 2018 | A1 |
20180330790 | Widjaja | Nov 2018 | A1 |
20180331109 | Widjaja | Nov 2018 | A1 |
20180358360 | Widjaja | Dec 2018 | A1 |
20190006367 | Widjaja | Jan 2019 | A1 |
20190027220 | Widjaja | Jan 2019 | A1 |
20190027476 | Louie et al. | Jan 2019 | A1 |
20190067289 | Widjaja et al. | Feb 2019 | A1 |
20190096889 | Widjaja et al. | Mar 2019 | A1 |
20190131305 | Widjaja et al. | May 2019 | A1 |
20190139962 | Widjaja | May 2019 | A1 |
20190148381 | Widjaja et al. | May 2019 | A1 |
20190156889 | Widjaja | May 2019 | A1 |
20190156890 | Widjaja | May 2019 | A1 |
20190164974 | Widjaja | May 2019 | A1 |
20190180820 | Widjaja | Jun 2019 | A1 |
20190189212 | Widjaja | Jun 2019 | A1 |
20190259763 | Widjaja et al. | Aug 2019 | A1 |
20190267089 | Widjaja | Aug 2019 | A1 |
20190267382 | Widjaja | Aug 2019 | A1 |
20190295646 | Widjaja | Sep 2019 | A1 |
20190311769 | Louie et al. | Oct 2019 | A1 |
20190355419 | Widjaja | Nov 2019 | A1 |
20200013780 | Widjaja | Jan 2020 | A1 |
20200013781 | Widjaja et al. | Jan 2020 | A1 |
20200035682 | Han et al. | Jan 2020 | A1 |
20200051633 | Widjaja | Feb 2020 | A1 |
20200075091 | Louie et al. | Mar 2020 | A1 |
20200091155 | Widjaja | Mar 2020 | A1 |
20200111792 | Louie et al. | Apr 2020 | A1 |
20200118627 | Widjaja | Apr 2020 | A1 |
20200118628 | Widjaja | Apr 2020 | A1 |
20200168609 | Widjaja et al. | May 2020 | A1 |
20200203346 | Widjaja | Jun 2020 | A1 |
20200227415 | Widjaja et al. | Jul 2020 | A1 |
20200243529 | Widjaja et al. | Jul 2020 | A1 |
20200243530 | Widjaja | Jul 2020 | A1 |
20200312855 | Widjaja | Oct 2020 | A1 |
20200335503 | Widjaja et al. | Oct 2020 | A1 |
20200342939 | Widjaja | Oct 2020 | A1 |
20200411521 | Widjaja et al. | Dec 2020 | A1 |
20210005608 | Widjaja | Jan 2021 | A1 |
20210050059 | Widjaja | Feb 2021 | A1 |
20210057027 | Louie et al. | Feb 2021 | A1 |
20210074358 | Widjaja | Mar 2021 | A1 |
20210217754 | Louie et al. | Jul 2021 | A1 |
20210225844 | Widjaja et al. | Jul 2021 | A1 |
20210249078 | Widjaja | Aug 2021 | A1 |
20210257025 | Widjaja | Aug 2021 | A1 |
20210257365 | Widjaja | Aug 2021 | A1 |
20210288051 | Han et al. | Sep 2021 | A1 |
20210327880 | Widjaja | Oct 2021 | A1 |
20210358547 | Louie et al. | Nov 2021 | A1 |
20210375870 | Widjaja | Dec 2021 | A1 |
20210398981 | Widjaja | Dec 2021 | A1 |
20220059537 | Widjaja et al. | Feb 2022 | A1 |
20220093175 | Widjaja | Mar 2022 | A1 |
20220115061 | Louie et al. | Apr 2022 | A1 |
20220199160 | Widjaja | Jun 2022 | A1 |
20220262800 | Widjaja | Aug 2022 | A1 |
20220278104 | Widjaja et al. | Sep 2022 | A1 |
Entry |
---|
Chatterjee, et al. “Taper isolated dynamic gain RAM cell.” Electron Devices Meeting, 1978 International. vol. 24. IEEE, 1978, pp. 698-699. |
Chatterjee, et al. Circuit Optimization of the Paper Isolated Dynamic Gain RAM Cell for VLSI Memories, pp. 22-23, 1979. |
Chatterjee, et al. “a survey of high-density dynamic RAM cell concepts.” Electron Devices, IEEE Transactions on 26.6 (1979): 827-839. |
Erb, D. “Stratified charge memory.” Solid-State Circuits Conference. Digest of Technical Papers. 1978 IEEE International. vol. 21. IEEE, 1978, pp. 24-25. |
Lanyon et al., “Bandgap Narrowing in Moderately to Heavily Doped Silicon”, pp. 1014-1018, No. 7, vol. ED-26, 1979 IEEE. |
Leiss, et al, “dRAM Design Using the Taper-Isolated Dynamic RAM Cell.” Solid-State Circuits, IEEE Journal of 17.2 (1982): 337-344. |
Lin et al., “A new 1T DRAM Cell with enhanced Floating Body Effect”, pp. 1-5, Proceedings of the 2006 IEEE International Workshop on Memory Technology. |
Ohsawa et al., “Autonomous refresh of floating body cell (FBC)”, Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE 2008, pp. 801-804. |
Oh et al., “A 4-Bit Double SONOS memory (DSM) with 4 Storage Nodes Per Cell for Ultimate Multi-Bit Operation”, pp. 1-2, 2006 Symposium on VLSI Technology Digest of Technical Papers. |
Ranica, et al. “A one transistor cell on bulk substrate (1T-Bulk) for low-cost and high density eDRAM.” VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on. IEEE, 2004, pp. 128-129. |
Ranica, et al. “Scaled IT-Bulk devices built with CMOS 90nm technology for low-cost eDRAM applications.” VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on. IEEE, 2005, pp. 38-39. |
Reisch, “On bistable behavior and open-base breakdown of bipolar transistors in the avalanche regime-modeling and applications.” Electron Devices, IEEE Transactions on 39.6 (1992): 1398-1409. |
Sakui et al., “A new static memory cell based on reverse bias current (RBC) effect of bipolar transistor”, Electron Devices Meeting, 1988. IEDM'88. Technical Digest, International IEEE, 1988, pp. 44-47. |
Sakui et al., “A new static memory cell based on the reverse bias current effect of bipolar transistors”, Electron Devices, IEEE Transactions on 36.6 (1989): 1215-1217. |
Sze et al., “Physics of Semiconductor Devices”, Wiley-Interscience, 2007, p. 104. |
Terada et al., “A new VLSI memory cell using capacitance coupling (CC) cell”, Electron Devices, IEEE Transactions on 31.9 (1984); pp. 1319-1324. |
Villaret et al., “Further insight into the physics and modeling of floating-body capacitorless DRAMs”, Electron Devices, IEEE Transactions on 52.11 (2005); pp. 2447-2454. |
Ohsawa et al., “Autonomous refresh of floating-body cell due to Current Anomaly of Impact Ionization”, vol. 56, No. 10, pp. 2301-2311, 2009. |
Ban et al., “A Scaled Floating Body Cell (FBC) memory with High-k+Metal Gate on Thin-Silicon and Thin-BOX fro 16-nm Technology Node and Beyond”, Symposium on VLSI Technology, 2008, pp. 92-93. |
Campardo et al., VLSI Design of Non-Volatile Memories, Springer-Berlin Heidelberg New York, 2005, pp. 94-95. |
Han et al., “Programming/Erasing Characteristics of 45 nm NOR-Type Flash Memory Based on SOI Fin FET Structure”, J. Korean Physical Society, vol. 47, Nov. 2005, pp. S564-S567. |
Headland, Hot electron injection, Feb. 19, 2004. |
Pellizer et al., “A 90 nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications”, Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2006, pp. 1-2. |
Ranica et al., “Scaled 1T-Bulk devices built with CMOS 90nm technology for low-cost eDRAM applications”, 2005 Symposium on VLSI Technology Digest of Technical Papers, pp. 38-39. |
Pierret, Semiconductor Device Fundamentals, ISBN: 0-201-54393-1, 1996, Addison-Wesley Publishing Company, Inc., PNPN Devices 463-476. |
Tack et al., “The Multistable Charge-Controlled Memory Effect in SOI Transistors at Low Temperatures”, IEEE Transactions on Electron Devices, vol. 37, May 1990, pp. 1373-1382. |
Okhonin et al., “A SOI Capacitor-less 1T DRAM Concept”, 2001 IEEE International SOI Conference, pp. 153-154. |
Ohsawa et al., “An 18.5ns 128Mb SOI DRAM with a Floating Body Cell”, IEEE International Solid-State Circuits Conference, 2005, pp. 458-459 and 609. |
Okhonin et al., “Principles of Transient Charge Pumping on Partially Depleted SOI MOSFETs”, IEEE Electron Device Letters, vol. 23, No. 5, May 2002, pp. 279-281. |
Okhonin et al., “A Capacitor-less 1T DRAM Cell”, IEEE Electron device Letters, vol. 23, No. 2, Feb. 2002, pp. 85-87. |
Ohsawa et al., “Memory Design using One-Transistor Gain Cell on SOI”, Tech. Digest, IEEE Internataional Solid-State Circuits, vol. 37, No. 11, 2002, pp. 1510-1522. |
Yoshida et al., “A Design of a Capacitorless 1T-DRAM Cell Using Gate-Induced Drain Leakage (GIDL) Current for Low-power and High-speed Embedded Memory”, International Electron Devices Meeting, 2003, pp. 1-4. |
Bawedin et al., “Floating-Body SOI Memory: Concepts, Physics and Challenges”, ECS Transactions 19.4 (2009) pp. 243-256. |
Ban et al., “Integration of Back-Gate doping for 15-nm node floating body cell (FBC) memory”, VLSI Technology (VLSIT), 2010 Symposium on IEEE, 2010, pp. 159-160. |
Chiu et al., “Characteristics of a new trench oxide thin film transistor and its 1T-DRAM applications”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on IEEE, 2010, pp. 1106-1108. |
Chiu et al., “A simple process ot thin-film transistor using the trench-oxide layer for improving 1T-DRAM performance”, Next Generation Electronics (ISNE), 2010 International Symposium on IEEE, 2010, pp. 254-257. |
Chun et al., “A 1.1 V, 667 MHZ random cycle, asymmetric 2T gain cell embedded DRAM with a 99.9 percentile retention time of 110 microsec”, VLSI Circuits (VLSIC), 2010 IEEE Symposium on, IEEE, 2010, pp. 191-192. |
Collaert et al., “A low voltage biasing scheme for aggressively scaled bulk FinFET 1T-DRAM featuring 10s retention at 85 C”, VLSI Technology (VLSIT), 2010 Symposium on. IEEE, 2010, pp. 161-162. |
Giusi et al., “Bipolar mode operation and scalability of double gate capacitorless 1T-DRAM cells”, Electron Devices, IEEE Transactions on, vol. 57, No. 8 (2010), pp. 1743-1750. |
Gupta et al., “32nm high-density, high-speed T-RAM embedded memory technology”, Electron Devices Meeting (IEDM), 2010 IEEE International, IEEE, 2010, pp. 12.1.1-12.1.4. |
Han et al., “Bistable resistor (biristor)-gateless silicon nanowire memory”, VLSI Technology (VLSIT), 2010 Symposium on. IEEE, 2010, pp. 171-172. |
Han et al., “Biristor-bistable resistor based on a silicon nanowire”, Electron Device Letters, IEEE 31.8 (2010), pp. 797-799. |
Hubert et al., “Experimental comparison of programming mechanisms in 1T-DRAM cells with variable channel length”, Solid-State Device Research Conference (ESSDERC), 2010 Proceedings of the European., pp. 150-153, Sep. 14-16, 2010. |
Kim et al., “Vertical double gate Z-RAM technology with remarkable low voltage operation for DRAM application”, VLSI Technology (VLSIT), 2010 Symposium on . . . , 2010, pp. 163-164. |
Kim et al., “Silicon on replacement insulator (SRI) floating body cell (FBC) memory”, VLSI Technology (VLSIT), 2010 Symposium on . . . , IEEE, 2010, pp. 165-166. |
Kim et al., “Investigation of 1T DRAM cell with non-overlap structure and recessed channel”, Silicon Nanoelectronics Workshop (SNW), 2010, IEEE, 2010, pp. 1-2. |
Lu et al., “A simplified superior floating-body/gate DRAM cell”, IEEE Elec. Dev. Letters, vol. 30, No. 3, Mar. 2009, pp. 282-284. |
Moon et al., “fin-width dependance of BJT-based 1T-DRAM implemented on FinFET”, Electron Device Letters, vol. 31, No. 9 (2010), pp. 909-911. |
Moon et al., “An optically assisted program method for capacitorless 1T-DRAM”, Electron Devices, IEEE Transactions on . . . , vol. 57, No. 7, 2010, pp. 1714-1718. |
Moon et al., “Ultimately scaled 20nm unified-RAM”, Electron Devices Meeting (IEDM), 2010 IEEE International, IEEE, 2010, pp. 12.2.1-12.2.4. |
Pulcani et al., “Simulation of intrinsic bipolar transistor mechanisms for future capacitor-less eDRAM on bulk substrate”, Electronics, Circuits and Systems (ICECS), 2010 17th IEEE International Conference on . . . , IEEE, 2010, pp. 966-969. |
Rodriguez et al., “A-RAM memofy cell: concept and operation”, Electron Device Letters, IEEE, vol. 31, No. 9 (2010), pp. 972-974. |
Rodriguez et al., “A-RAM Novel capacitor-less DRAM memory”, Intl SOI Conference, 2009 IEEE International . . . , pp. 1-2, IEEE, 2009. |
Zhang et al., “Total ionizing Dose Effects on FinFET-Based Capacitor-less 1T-DRAMs”, Nuclear Science, IEEE Trnasactions on . . . , vol. 57, No. 6, 2010, pp. 3298-3304. |
Villaret et al., “Mechanisms of charge modulation in the floating body of triple-well nMOSFET capacitor-less DRAMs”, Microelectronic Engineering 72 (2004) 434-439. |
Almeida et al., “Comparison between low and high read bias in FB-RAM on UTBOX FDSOI devices”, IEEE, 1978-1-4673-0192-3/12, 2012, pp. 61-64. |
Andrade et al., “The impact of Back Bias on the Floating Body Effect in UTBOX SOI Devices for 1T-FBRAM Memory Applications”, 2012 8th International Caribbean Conferences on Devices, Circuits and Systems (ICCDCS), IEEE, 2012,, 978-1-4577-1117-6/12/$26.00. |
Aoulaiche et al., “Hot Hole Induced Damage in 1T-FBRAM on Bulk FinFET”, 978-1-4244-911-7/11/$26.00. IEEE, 2011, pp. 2D.3.1-2D.3.6. |
Aoulaiche et al., “Junction Field Effect on the Retention Time for One-Transistor Floating-Body RAM”, IEEE Transactions on Electron Devices, vol. 59, No. 8, Aug. 2012, pp. 2167-2172. |
Avci et al., “Floating-Body Diode—A Novel DRAM Device”, IEEE Electron Device Letters, vol. 33, No. 2, Feb. 2012, pp. 161-163. |
Cao et al., “A Novel 1T-DRAM Cell for Embedded Application”, IEEE Transactions on Electron Devices, vol. 59, No. 5, May 2012, pp. 1304-1310. |
Cho et al., “Variation-Aware Study of BJT-based Capacitorless DRAM Cell Scaling Limit”, Silicon Nanoelectronics Workshop (SNW), 2012 IEEE; 978-1-4673-0996-7. |
Cho et al., “Variation Study and Implications for BJT-BasedThin-Body Capacitorless DRAM”, IEEE Electron Device Letters, vol. 33, No. 3, Mar. 2012, pp. 312-314. |
Chun et al., “A 667 MHZ Logic-Compatible Embedded DRAM Featuring an Asymmetric 2T Gain Cell for High Speed On-Die Caches”, IEEE Journal of Solid-State Circuits, vol. 47, No. 2, Feb. 2012, pp. 547-559. |
Collaert et al., “Substrate bias dependency of sense margin and retention in bulk FinFET 1T-DRAM cells”, Solid-State Electronics 65-66 (2011) 205-210. |
Galeti et al., “BJT effect analysis in p- and n-SOI MuGFETs with high-k gate dielectrics and TiN metal gate electrode for a 1T-DRAM application”, 978-1-61284-760-3/11/$26.00 © 2011 IEEE. |
Gamiz et al., “3D Trigate 1T-DRAM memory cell for 2x nm nodes”, 978-1-4673-1081-9/12/$31.00 © 2012 IEEE. |
Gamiz et al., “A 20nm Low-Power Triple-Gate Multibody 1T-DRAM cell”, 978-1-4577-2084-0/12/$26.00 © 2012 IEEE. |
Hwang et al., “Offset Buried Metal Gate Vertical Floating Body Memory Technology with Excellent Retention Time for DRAM Application”, 2011 Symposium on VLSI Technology Digest of Technical Papers, pp. 172-173. |
Kim et al., “Optical Charge-Pumping: A Universal Trap Characterization Technique for Nanoscale Floating Body Devices”, 2011 Symposium on VLSI Technology Digest of Technical Papers, pp. 190-191. |
Lee et al., “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement”, IEEE Transactions On Nanotechnology, vol. 10, No. 3, May 2011; pp. 462-466. |
Liu et al., “A three-dimensional DRAM using floating body cell in FDSOI devices”, 978-1-4673-1188-5/12/$31.00 © 2012 IEEE. |
Lu et al., “A Floating-Body/Gate DRAM Cell Upgraded for Long Retention Time”, IEEE Electron Device Letters, vol. 32, No. 6, Jun. 2011, pp. 731-733. |
Mahatme et al., “Total Ionizing Dose Effects on Ultra Thin Buried Oxide Floating Body Memories”, 978-1-4577-1680-5/12/$26.00 © 2012 IEEE; pp. MY.3.1-MY.3.5. |
Moon et al., “Multi-Functional Universal Device using a Band-Engineered Vertical Structure”, 978-1-4577-0505-2/11/$26.00 © 2011 IEEE, pp. 24.6.1-24.6.4. |
Nicoletti et al., “The Dependence of Retention Time on Gate Length in UTBOX FBRAM With Different Source/Drain Junction Engineering”, IEEE Electron Device Letters, vol. 33, No. 7, Jul. 2012, pp. 940-942. |
Pulicani et al., “Simulation of Intrinsic Bipolar Transistor Mechanisms for future capacitor-less eDRAM on bulk substrate.” 978-1-4244-8157-6/10/$26.00 2010 IEEE pp. 966-969. |
Rodriguez et al., “A-RAM: Novel capacitor-less DRAM memory”, 978-1-4244-5232-3/09/$25.00 © 2009 IEEE. |
Rodriguez et al., “A-RAM Memory Cell: Concept and Operation”, IEEE Electron Device Letters, vol. 31, No. 9, Sep. 2010, pp. 972-974. |
Rodriguez et al., “Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates”, IEEE Transactions On Electron Devices, vol. 58, No. 8, Aug. 2011, pp. 2371-2377. |
Romanjek et al., “Compact (Wg/Lg)=80/85 nm FDSOI 1T-DRAM programmed by Meta Stable Dip”, 978-1-4673-0192-3/12/$31.00 © 2012 IEEE, pp. 199-202. |
Rothemund et al., “The importance of being modular”, 584 | Nature | vol. 485 | May 31, 2012, pp. 584-585. |
Shim et al., “A BJT-Based Heterostructure 1T-DRAM for Low-Voltage Operation”, IEEE Electron Device Letters, vol. 33, No. 1, Jan. 2012, pp. 14-16. |
Shin et al., “A Novel Double HBT-Based Capacitorless 1T DRAM Cell With Si/SiGe Heterojunctions”, IEEE Electron Device Letters, vol. 32, No. 7, Jul. 2011, pp. 850-852. |
Shin et al., “Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage”, IEEE Electron Device Letters, vol. 33, No. 2, Feb. 2012, pp. 134-136. |
Ventrice et al., “Analytical model of deeply-scaled thyristors for memory applications”, Microelectronics and Electron Devices (WMED), 2012 IEEE Workshop on, 978-1-4577-1735-2, pp. 1-4. |
Wu et al., “Experimental Demonstration of the High-Performance Floating-Body/Gate DRAM Cell for Embedded Memories”, IEEE Electron Device Letters, vol. 33, No. 6, Jun. 2012, pp. 743-745. |
Zhang et al., “Total Ionizing Dose Effects on FinFET-Based Capacitor-Less 1T-DRAMs”, IEEE Transactions On Nuclear Science, vol. 57, No. 6, Dec. 2010, pp. 3298-3304. |
Pelizzer et al., “A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications”, 2006 Symposium on VLSI Technology Digest of Technical Papers, 1-4244-0005-8/06/$20.00 (c) 2006 IEEE. |
Number | Date | Country | |
---|---|---|---|
20220367472 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
61829262 | May 2013 | US | |
61818305 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14267112 | May 2014 | US |
Child | 15161493 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17219564 | Mar 2021 | US |
Child | 17868722 | US | |
Parent | 16706148 | Dec 2019 | US |
Child | 17219564 | US | |
Parent | 16132675 | Sep 2018 | US |
Child | 16706148 | US | |
Parent | 15628931 | Jun 2017 | US |
Child | 16132675 | US | |
Parent | 15161493 | May 2016 | US |
Child | 15628931 | US |