This invention relates to photovoltaic devices, such as solar cells and detectors.
Increasing the efficiency of solar cells has been the subject of intensive research and development for many years. Although numerous solar cell approaches have been proposed and developed, the goal of providing solar cells having both high efficiency and low cost remains elusive. Semiconductor photovoltaic devices have been investigated for many years in connection with solar cell applications. Such devices are based on the appearance of a voltage at the terminals of an illuminated pn junction. More recently, multi-junction devices have been considered, which include several pn junctions in series, each junction covering a different part of the solar spectrum.
Variations of device geometry have also been considered. For example, solar cells including nano-wires in various configurations have been considered for improving solar cell efficiency. Representative examples in the art include U.S. Pat. No. 7,741,647, US 2004/0109666, and US 2008/0169017.
In the present work, photovoltaic cell efficiency is addressed by using Ge nano-wires as the substrate for photovoltaic cells. Such photovoltaic cells can be homojunction or heterojunction devices, and can be single-junction or multi-junction. The photovoltaic cells can employ p-n and/or p-i-n junctions. The photovoltaic cells can be single-crystal or poly-crystalline. Suitable semiconductors for the photovoltaic cells include group IV elements and alloys, group III-V compounds and alloys, and group II-VI compounds and alloys. The Ge nano-wires can be disposed on an inexpensive and/or flexible substrate (e.g., Aluminum foil). For example, an amorphous or polycrystalline Ge layer can be deposited on Al foil, and then Al or Ga can be used as a catalyst to grow Ge nano-wires on the Ge layer. Growth of Ge thin films on both glass and polymer substrates has been demonstrated by Hu, Marshall and McIntyre in an article entitled “Interface-controlled layer exchange in metal-induced crystallization of germanium thin films” (Applied Physics Letters 97, 082104, (2010)), hereby incorporated by reference in its entirety. Authors Hu and McIntyre of this reference are also inventors of the present application. Other suitable substrates include, but are not limited to silicon, glass, and polymers.
The use of Ge nano-wires allows the use of inexpensive substrates, and provides a favorable device geometry for solar cell operation (i.e., photo-generated carriers are relatively close to device electrodes, reducing recombination loss). Shell layers deposited on the Ge nano-wires and including pn junctions can be grown such that they end up with faceted tips, by sophisticated pre-growth treatment and growth condition tuning. Faceted tips provide two main advantages: 1) they provide direct evidence that the overgrown structures are single crystalline, and 2) they can significantly improve optical collection efficiency.
The present approach provides several significant advantages. Solar cell efficiency can be improved because the Ge nano-wires can serve as small band-gap absorption layers in close proximity to the photovoltaic cells. Solar cell cost can be dramatically reduced because inexpensive substrates can be employed. For example flexible and/or ultra-light substrates can be employed that are compatible with a roll-to-roll fabrication process, which can reduce cost by increasing process throughput. Solar cell installation can also be reduced by the use of flexible/light substrates. Such solar cells can be included on wearable materials (e.g., on clothing to provide power to personal electronic devices).
Applications of the present approach include general photovoltaic applications, solar farms, building installations (e.g., roof, curtain, windows, etc.). Further applications include providing power to wearable devices such as helmets and backpacks. Providing emergency charger and/or power supply capability for field applications is also possible. The present approach is also applicable to photodetectors, in addition to solar cells.
a shows an embodiment of the invention.
b shows a close up view of the example of
a-f show a fabrication sequence for an embodiment of the invention.
a-c show SEM images of Ge nano-wires (a) and overgrown GaAs—Ge shell-core structure (b and c).
a-c show SEM images of completed devices.
a shows a close-up view of an embodiment of the invention. In this example, a Ge nano-wire 106 is epitaxially grown on a substrate 102 (e.g., Si). A first junction layer 108 is disposed on nano-wire 106, and a second junction layer 110 is disposed on first junction layer 108. A transparent conductive layer 112 (e.g., indium tin oxide) is disposed on second junction layer 110. First junction layer 108 is insulated from substrate 102 by an insulating layer 104 (e.g., SiO2). One or more of the shell layers has a faceted tip 114, as shown on
A structure as in
An example of this kind of 3-junction device is shown in the further close up view of
An exemplary fabrication sequence for the structure of
Conventionally, III-V multijunction solar cells have multiple planar layers on single-crystal Ge or GaAs or other lattice matched single-crystal III-V substrates. In this work, we report our recent discovery that the surface kinetics and epitaxial growth by MBE are dramatically altered when growing on nano-wires instead of planar surfaces. These growth kinetics enable uniform, single-crystal growth of low-defect, lattice matched or mismatched materials on nano-wires with high aspect ratios. We have also found that the GaAs layers can be grown on Ge nano-wires independent of substrate material, enabling the usage of flexible and low cost substrates.
Nano-wire structures can greatly improve the light absorption over a wide range of spectra and incident angle.
We simulate the reflection of nano-wire arrays over a large range of diameter size using rigorous coupled wave analysis (RCWA) method. For most wavelengths in sun spectra, the reflectance is below 5% when the diameter of nano-wire is in the range of several hundreds nanometers (
The relevant device structure for this example is illustrated in
The single-crystal Ge/GaAs and Ge/AlGaAs core-shell nano-wire structure have been fabricated by MBE. The Ge nano-wires are grown on Si substrates via a vapor-liquid-solid method and then the catalysts are removed before loading in to a Veeco Gen II MBE system. The sample is baked at 350° C. in the baking chamber and then loaded into the growth chamber where the base pressure is ˜10−10 Torr. Ge oxide is blown off ˜500° C. (thermocouple reading) for 5 minutes. After that, GaAs is grown at 0.3 μm/hour with As overpressure ˜400° C. The Ge nano-wire (111) crystal and enhanced surface mobility at sharp curvatures allow us to achieve a good single crystal GaAs shell overgrown on Ge nano-wire. Clear single-crystal hexagonal pillars are obtained. SEM and TEM measurements confirm that the GaAs/Ge core-shell structure is single crystal. Al0.5Ga0.5As single crystal shell overgrowth on Ge nano-wire is also achieved under similar conditions at slightly higher growth rate. More surface roughness is observed and may be due to the high Al concentration. We also derive the ratio of growth rate of nano-wire side wall thickness (rs) over that of planar 2D growth (rb) is rs:rb=(tan Φ)/π, where Φ is the angle between the Ga flux and the axis of nano-wire. This growth rate prediction fits the SEM measurement results very well. Finally, the transparent contact layer (TCO) is deposited by sputtering, showing good conformality and uniformity.
a-c and 8a-c show scanning electron microscope images at various points in a fabrication process.
This application is a continuation in part of U.S. application Ser. No. 12/928,278, filed on Dec. 7, 2010, entitled “Nano-wire solar cell or detector”, and hereby incorporated by reference in its entirety. Application Ser. No. 12/928,278 claims the benefit of U.S. provisional patent application 61/283,812, filed on Dec. 8, 2009, entitled “Nano-structured solar cell or detector”, and hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61283812 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12928278 | Dec 2010 | US |
Child | 13065710 | US |