The present application relates to microelectronic devices, and particularly to NEMS (nanoelectromechanical system) devices that are electrically connected in series with a ferroelectric negative capacitor, and also electrical circuits comprising a combination of at least two different negative capacitance gate insulators connected in series, such that the capacitance of the series combination is negative.
Nanoelectromechanical systems (NEMS) are seen as one of the most promising candidates for next generation extreme low power electronics that can operate as a versatile switch/memory/sensor/display element. The NEMS devices have often been mentioned as one of the most promising candidates in ITRS roadmap for a number of emerging device categories. The effective zero standby power dissipation and low subthreshold swing make it an ideal candidate for a logic switch (NEMFET), its intrinsic hysteresis suggests potential as a non-volatile memory element (NEMM), and its high quality factor and sensitivity to changes in mass/stiffness promise applications as RF resonators or nanobiosensors.
One of the main challenges toward this goal lies in the fabrication difficulties of ultra-scaled NEMS which is required for high density integrated circuits. It is believed that fabricating and operating a NEMS with an airgap below a few nanometers will be extremely challenging due to factors including surface roughness, non-ideal forces and tunneling. A Micro/Nano electromechanical system (M/NEMS) consists of a pair of electrodes one fixed and the other movable separated by an airgap. However, the most difficult challenge inhibiting the integration of these devices in next generation chips has been the reliable scalability of NEMS devices. For example, a low power memory/switch requires sub-1V actuation (Vpi), which can be achieved only if the airgap is scaled to a few nanometer range. Such an extreme scaling poses a difficult fabrication challenge. Moreover, the reduced airgap leads to the introduction of many non-ideal physical effects, such as the tunneling current (for less than 2 nm) which in turn degrades the subtreshold swing (SS) and standby power dissipation, the surface forces (for example, Van der Wall and Casimir) causing stiction, etc. Therefore, although NEMS switches with a 4 nm airgap (sub-1V Vpi) using a pipe-clip structure have been reported, the most advanced devices based on conventional geometry rely on an airgap of 15 nm (with a corresponding pull-in voltage, Vp13V).
Ferroelectric (FE) negative capacitors are known. Recently, Salahuddin and Datta has reported a ferroelectric negative capacitor connected in series with a classical gate oxide transistor in which the gate voltage was amplified and thereby reduced the sub-threshold swing below the 60 mV/decade limit. It is well-known that an FE capacitor is characterized by a negative capacitance around zero charge, but the capacitor by itself cannot be operated at this unstable point. Operation of an FE capacitor around this negative capacitance regime is possible only if the overall system is stabilized by adding a series capacitor. The stability comes from the fact that the charge state of the combined structure is determined by, not the FE alone, but the energetics of the overall structure. An elementary circuit analysis shows that, in the negative capacitance regime, the voltage across the FE capacitor can also be negative, even when a positive voltage is applied across the combined structure. Since the total applied voltage is constant, therefore, the voltage across the remaining series capacitor is higher than the applied voltage. Such voltage amplification is the basis of sub-60 mV/decade operation of the negative capacitance field effect transistor (NCFET) where the gate stack contains the FE film, and the remaining gate and the channel capacitance act as the series capacitor that stabilizes the FE film.
Another problem involves switches, which are the most basic component of integrated circuit (IC) technology. The sub-threshold swing (S) characterizes the switching characteristics of a switch where S=0 mV/decade corresponds to an ideal switch. However, current IC technology relies on field effect transistors (FETs) which are non-ideal in practice. The switching characteristics of a classical FET are far from being ideal and thermodynamics dictate that S cannot be lower than 60 mV/decade. Alternative approaches using devices with gate insulators with negative capacitance (NC) that have S<60 mV/decade such as Ferroelectric-FETs and suspended gate FETs have been developed. However, these approaches have not been able to achieve an ideal switching characteristic of S=0 mV/decade. Moreover, existing approaches of 0 mV/decade are not hysteresis-free. Therefore, improvements are needed in the field.
According to one aspect of the present disclosure, an FE-NEMS cascade is provided, wherein the NEMS device acts as a stabilizing series capacitor. The NEMS device will experience a voltage amplification that results in lower applied voltage required to pull-in the NEMS. The FE-NEMS cascade, operating in the negative capacitance regime, further provides a number of additional and unexpected benefits for the operation of the NEMS device. Among the effects, the effective air-gap of the NEMS device is reduced by almost an order of magnitude, without the need to reduce the air-gap physically. Since this approach does not require physical reduction of the NEMS air-gap, it avoids the fabrication, reliability, and the non-ideality issues. This not only reduces the pull-in voltage to sub-1V ranges, but also offers a set of characteristics which are difficult or impossible to achieve otherwise. For example, this can improve the classical travel range, flip the traditional stable-unstable regime of the electrode, get a negative pull-out voltage, and thus, center the hysteresis around zero volt. Moreover, the combination can be operated as an effective ferroelectric memory with much reduced switching voltages. These characteristics promise dramatic saving in power for NEMS-based switching, memory, and other related applications.
For example, by combining a NEMS device in series with a FE capacitor, the physical travel range of the NEMS electrode is modified below or above the classical ⅓ range, and in principle, to any arbitrary limit. It is also possible to make the pull-out voltage negative, a feature extremely useful in memory applications which avoids the use of an extra charge layer to center the hysteresis at zero volt. In addition, in certain operating modes, the stable-unstable regime of the NEMS can be flipped so that the electrode operates in the lower part of the air-gap. This is useful in display/analog operations.
According to a second aspect, a switch is provided, comprising at least two different negative capacitance gate insulators connected in series within the same circuit to enable switching characteristics with S=0 mV/decade and hysteresis-free operation. This is achieved by choosing the two different NC gate insulators such that their NC regime overlap and their capacitance-charge characteristics are opposite to each other (for example, one increases while the other decreases). The combination of these individual elements which have opposing energy landscapes may at least partially cancel each other so that the combined structure has a total negative capacitance.
One suitable example of an NC gate insulator is an air-gap such as those found in suspended gate FETs. Another suitable example of an NC gate insulator is a ferroelectric material such as those found in ferroelectric FETs.
In the second aspect, the two different NC gate insulators are located within the same device. An example would be a FET with two different serially connected NC gate insulators located between the channel and gate of the FET. In this aspect, the two different NC gate insulators are chosen so the total capacitance of the FET gate insulator remains negative. In particular, the properties of the NC gate insulators are chosen such that (i) when one of the capacitance is infinite, other is negative and (ii) total capacitance should remain negative in the regime where one of the capacitance is positive and other negative. Therefore, series combination of properly designed NC gate insulators can make Cins(Q) negative by bypassing the point of infinite capacitance of individual NCs. This negative Cins(Q) can then be matched by Cs(Q) through a proper design of the channel leading to ideal switching characteristics.
The above and other objects, features, and advantages of the present invention will become more apparent when taken in conjunction with the following description and drawings wherein identical reference numerals have been used, where possible, to designate identical features that are common to the figures.
The attached drawings are for purposes of illustration and are not necessarily to scale.
As shown in
The NEMS capacitor 102 may further comprise a movable or flexible electrode 106 that is attached at two points and is separated from a fixed electrode 107 by an air gap 109 (the electrodes 106 and 109 held apart by pillars 111 and 113), with dielectric layer 111 placed on the fixed electrode 107 as shown. However, it is envisioned that the NEMS capacitor 102 can alternatively have a movable or flexible electrode that is attached only at one point or cantilevered. The movable or flexible electrode 106 may be clamped or pinned. The NEMS capacitors 102 can be fabricated by either a top-down (for example, optical and electron beam lithography) or a bottom-up approach (for example, molecular self-assembly and/or molecular recognition) as known in the field. Any suitable materials (for example, carbon based materials such as diamond, carbon nanotubes and grapheme) as known in the field may be used in the construction of the NEMS capacitor 102.
A ferroelectric capacitor, is a capacitor based on a ferroelectric material. As shown in
The ferroelectric capacitor 104 and a NEMS capacitor 102 have opposite energy characteristics which cancel each other when combined together. The resultant structure thus has low power dissipation. An electric circuit (such as circuit 100) comprising the NEMS capacitor 102 and ferroelectric negative capacitor 104 in series may be used for many different purposes and applications. Some non-limiting examples of application include logic switches, non-volatile memory, RF resonators and sensors (for example, nanobiosensors and AFM tips). Since this kind of electrical circuit has very low power dissipation, it is particularly useful in logical or computational devices and as memory for such devices. Another particularly useful application would be for circuitry and memory for display devices including those based on microcavity effects.
The Q-V Characteristics of a NEMS Capacitor:
To explain the operation of an FE-NEMS cascade such as circuit 100, the charge-voltage (Q-V) relationship for the NEMS capacitor 102 is first derived. When a charge Q is applied on NEMS capacitor 102, the movable electrode 106 experiences an electrostatic force Q2/(2∈0AN), and is displaced by some amount x (see
giving
Eq. (1) defines the location of the electrode 106 (x<x0) for any arbitrary charge Q, where x0 is the nominal airgap. Now, the voltage across the NEMS capacitor 102 is VN=Q/CN, where
Substituting the value of x from Eq. (1), and defining positive quantities αN≡x0/(∈0AN) and
we deduce the equation of the NEMS capacitor 102 as follows:
VN=αNQ−βNQ3 (2)
The state of the NEMS 102 at any instant is defined by the electrode charge, Q(VN) (
NEMS) and the equilibrium solutions lie in the crest and valley locations
The voltage at which the stable equilibrium solution (valley) disappears (with the critical charge,
as shown in
The corresponding electrode location defines the travel range, xTR=x0/3 (
The Q-V Characteristics of an FE Capacitor:
The electric field-polarization (EF-P) characteristics of a ferroelectric capacitor can be expressed as: EF=α′P+β′P3+γ′P5+ . . . . Although additional terms may be necessary to characterize the double well energy landscape (
VF=αFQ+βFQ3, (3)
where the coefficients αF≡−α′t1/AF and βF≡β′t1/AF3 are both positive quantities.
Note that, for the ferroelectric capacitor, the first term is negative (compare, a simple capacitor, V=+(1/C)Q), a reason why a ferroelectric capacitor is sometimes referred as a negative capacitor for charge magnitude close to zero. Also note that both Eqs. (2) and (3) have the same form except that the signs of the coefficients are opposite, which is also reflected in the inverted energy landscape
and the two stable minima of the ferroelectric capacitor (
The Q-V Characteristics of an FE-NEMS Cascade:
When the two capacitors are connected in series, the net voltage (VFN) can be found by adding Eqs. (2) and (3) as—
VFN=(αN−αF)Q−(βN−βF)Q3≡αNEffQ−βNEffQ3≡rα
where the factors
depends on the dimensions and the material parameters of both the FE and the NEMS capacitors. Such an FE-NEMS combination reduces of the effective charge coefficients (e.g., αNEff=αN−αF, in Eq. (4)) and correspondingly, flattens the energy landscape (
Effective NEMS Mode:
According to one aspect, the FE-NEMS cascade is operated in an effective NEMS mode (compare Eq. (4) and (2)) by ensuring that both αNEff and βNEff are positive (or, 0<(rα
Using Qcr,Eff in Eq. (1), the travel range is found as:
which is different from the classical ⅓ range. To understand physically why the travel range changes,
Note that, if one would start with a single NEMS with scaled parameters xEff and KEff, where
xEff=rα
one would achieve the same Q-V relationship as the FE-NEMS cascade (Eq. (4)), and would get a pull-in voltage as,
which is same as Eq. (6). Thus, the series structure effectively reduces the airgap of the NEMS as in Eq. (7), as long as pull-in is concerned.
For a quantitative example, consider a NEMS having a TiN cantilever, with Young's modulus=450 GPa, width/length/thickness=3/6/0.5 μm, and an airgap x0=15 nm. The ferroelectric capacitor is SBT (Sr0.8Bi2.2Ta2O9) (α′=−6.5e7 m/F, β′=3.75e9 m5F/coul2 and γ′=0, at room temperature) with t1=500 nm and AF=0.4 μm2. Such FE-NEMS combination gives rα
The dramatic reduction in the effective pull-in voltage VPI,Eff by about an order of magnitude can be traced to two factors: (i) the reduced Qcr,Eff (or travel range), and (ii) the voltage amplification. This can be understood from
however, the NEMS capacitor 102 operates in the stable positive capacitance regime
see stable regions of
Pull-Out:
After pull-in (and as long as it remains in the pulled-in state), see
where ∈r is the relative permittivity of the dielectric layer) as:
VN=αPIQ. (8)
At the point of pull-out, the charge reaches an unstable equilibrium (QPO, see
For the FE-NEMS cascade, however, Eq. (9) is an implicit expression, containing the voltage ratio rV(VFN)≡VFN/VN, and must be solved numerically (
for any given dielectric material and thickness (td/∈r).
Conversely, the required dielectric thickness (or CPI) can be found for any desirable VPO. For that, the pull-out charge (QPO) for that VPO (see
For example, for VPO=0 (
and
For a single NEMS, since rα
is positive and finite, and thus, negative VPO is possible. However, it should be noted that a VPO≤−VPI is not desirable, as the NEMS will be pulled-in again with reversed charge (
Note that, in addition to the reduction of VPI, the capability of designing a NEMS with a negative VPO is another advantage of the FE-NEMS cascade 100.
As one non-limiting example, a stable-unstable cascading is illustrated. This will demonstrate that using the same FE-NEMS circuit 100, a stable effective ferroelectric capacitor may be achieved, as described in the following (see
Effective FE Mode:
In Eq. (4), both αNEff and βNEff (or rα
VFN=−(αF−αN)Q+(βF−βN)Q3≡−αFEffQ+βFEffQ3≡−rα
This represents an effective FE mode (compare Eq. (10) with Eq. (3)), where the Q-V is similar to a ferroelectric capacitor (note the difference between
As before, the voltages across the two components are shown in
Note that VC,Eff could be reduced by choosing appropriate values of rα
The above-described aspect therefore provides a NEMS capacitor 102 connected in series with a ferroelectric capacitor 104 operating in the negative capacitance regime which can be stabilized, and effectively, acts like a NEMS with a much smaller airgap and reduced pull-in voltage. Such combination also offers tuning of the travel range by choosing ferroelectric of appropriate material and dimensions. With this effective NEMS mode, the pull-out voltage can be made negative and the hysteresis can be centered around zero volt. Such feature is not possible for even a physically scaled NEMS, and is extremely useful in operating the NEMS as a non-volatile memory or in passive NEMS-based displays. In the effective FE mode, the switching voltage of the ferroelectric capacitor is significantly reduced, and the NEMS can operate in the lower unstable region.
According to another embodiment, a FET is provided which comprises two different serially connected NC gate insulators with opposite energy characteristics which cancel each other when combined together. The resultant structure thus can provide ideal or near-ideal abrupt switching characteristic and be hysteresis-free. An electric circuit comprising this type of FET can be used for many different purposes and application. In addition to those applications described above, this aspect can be particularly suitable for ferroelectric random access memory applications.
A field-effect transistor (FET), such as that shown in
According to one embodiment, as shown in
Series Combination of NC Gate Insulators:
Sub-threshold swing (S) is defined as the change in gate voltage (VG) required for one order change in the drain current (IDS). When a FET is operated between the gate voltages VG1<VG<VG2, S is given by:
where IDS1 and IDS2 are the drain currents at VG1 and VG2, respectively. Δψs is change in the surface potential and ΔVG=VG2−VG1. The transport factor
is 60 mV/decade at room temperature for above the barrier transport. On the other hand, the body factor m can be written as follows:
Here, Cs(Q) is the channel capacitance and Cins(Q) is the capacitance of the gate insulator (a capacitive divider model of a FET is shown in
In a negative capacitance FET, NC gate insulator exhibits Cins(Q)<0 with Cs(Q)>0 (as shown in
Cs(Q)−1≥−Cins(Q)−1. (14)
Equations 12-14 therefore suggest that the value of S depends on the matching between Cs(Q) and Cins(Q). As shown in
In a series combination of two capacitors (say NC1 and NC2 in
Cins−1=CNC1−1+CNC2−1=CNC1−1,
provided CNC2=∞. This observation gives us the key insight that the point of infinite capacitance (characteristic of a single NC) can be bypassed by putting it in series with other NC so that the total capacitance remains negative. NC gate insulators have to be carefully chosen such that (i) when one of the capacitance is infinite, other is negative i.e., CNC1=∞ with CNC2<0 or vice versa (see open circles, squares, arrows and oval in
Suspended-Gate Ferroelectric FET:
To illustrate the above concept, a series combination of ferroelectric of FE-FET (as shown in
For a ferroelectric, the capacitance (CFE) is simply given by:
CFE−1=(α0+3β0Q2)yd, (15)
where α0, β0 are material constants and yd is the insulator thickness.
and Q′c2=0 for an n-type FE-FET. Similarly, air-gap capacitance (Cair) in an SG-FET is given by:
where
A is the area of gate electrode, k is the stiffness of gate, y0 is the initial air-gap and ∈0 is the permittivity of free space. Equation 16 and the physical boundary of y=0 (gate touching the dielectric) suggests that
Interestingly, the dependence of and Cair−1 and CFE−1 are opposite to each other (
Equation 17 suggests that the capacitance of the series combination (Cins) can be tuned by tuning the parameters of the ferroelectric or suspended-gate. Note that, if the parameters are chosen such that
will be strictly negative from Q=Q′c2 to Q=Qc2. In such case, a variable channel capacitance such that Cs=−Cins would make the sub-threshold swing identically zero. Design of a channel with specific charge dependence however may not be easy. Therefore, a simpler design in which parameters are chosen such that
may be used. These two conditions are equivalent to designing suspended-gate stiffness (k) and air-gap (y0) as follows:
Cins in SG-FE-FET with k and y0 following Eq. 18 reduces to a constant negative value i.e.,
(
will make the overall gate capacitance (CG−1=Cins−1+Cs−1=0) infinity and S to be 0 mV/decade. The example case of constant channel capacitance is directly relevant for modern fully depleted FET architectures. It should be noted that this S=0 mV/decade is not a point sub-threshold swing as exhibited by NEMS relays or SG-FETs, but is extended from gate charge Q=Q′c2 to Q=Qc2.
In the previous section, it was shown that the gate insulator capacitance in a properly designed SG-FE-FET according to one embodiment may be constant and negative, thus giving rise to 0 mV/decade switching behavior in a constant channel capacitance FET. We now discuss both the steady state and dynamic response of SG-FE-FET using its two dimensional energy landscape as follows:
Two Dimensional Energy Landscapes of SG-FE-FET:
The static response of an SG-FE-FET can be understood by looking at the evolution of energy landscapes as a function of the applied gate voltage (VG). The total energy (U) of an SG-FE-FET has four main components: (i) ferroelectric energy given by two-well Landau energy landscape of the ferroelectric i.e.,
(ii) air-gap energy comprising of spring and electrostatic energy i.e.,
(iii) series capacitor energy
(iv) energy due to the applied bias
UV
and is given by—
Note that, SG-FE-FET is stabilized at the minimum of total system energy (U) for a given VG. On the energy landscape, points with
correspond to equilibrium and are given by the solutions of following equations:
Equation 21a describes the balance of spring and electrostatic forces acting on the suspended-gate; whereas Eq. 21b is Kirchhoff's voltage law applied to the series combination of three capacitors namely air-gap, ferroelectric and channel.
If VG is increased or decreased, energy landscapes tilts resulting in only one point of stable equilibria shown by a solid circle 804 in
Switching Dynamics:
When the gate voltage is switched from negative to positive, state of SG-FE-FET changes from y=0, Q≈−Q0 (
Equation 22a is Newton's law applied to the movable gate. Here, m is the mass of the gate, v is velocity, t is time, b is the damping coefficient, k(y0−y) is the restoring spring force and
is the electrostatic force. Equation 22b is Landau-Khalatnikov (LK) equation and describes the dynamics of ferroelectric switching. Here, ρ0 is material dependent constants and is related to the dissipation in the ferroelectric. Vair=Qy/∈0 is the voltage drop across air-gap and ψs (Eq. 22c) is the surface potential or voltage drop in the channel.
Equations 22a-c are solved self-consistently to simulate the switching dynamics when VG changes from negative to positive. Before switching (i.e., VG<0), SG-FE-FET is in the state y=0, Q≈−Q0 (at t=0) (open circle 904 in
Based on the above, a switch is provided comprising two different types of negative capacitance gate insulators to achieve hysteresis-free 0 mV/decade switching. The disclosed switch reduces the power supply voltage and corresponding power dissipation of integrated circuits technology to the lowest possible value which is to be determined by noise considerations only. This switching behavior also illustrates that combining two bi-stable systems enables hysteresis-free abrupt switching. The switch may also be implemented in other two-well systems such as ferroelectric or magnetic random access memory (Fe-RAM or MRAM).
The invention has been described in detail with particular reference to certain preferred aspects thereof, but it will be understood that variations, combinations, and modifications can be affected by a person of ordinary skill in the art within the spirit and scope of the invention. This may include the combination of two or more elements where the individual elements have opposing energy landscapes which cancel each other and the combined structure has a much flatter energy landscape which allows reduced operational energy.
The present U.S. patent application is a divisional of U.S. patent application Ser. No. 14/701,502, filed Apr. 30, 2015, now U.S. Pat. No. 9,755,041 issued Sep. 5, 2017, which claims the benefit of priority to U.S. provisional patent application 61/986,421, filed Apr. 30, 2014, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6441539 | Kitamura | Aug 2002 | B1 |
7140084 | Yamada | Nov 2006 | B2 |
8653510 | Hodges, Jr. | Feb 2014 | B2 |
Number | Date | Country |
---|---|---|
2004-272171 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20180012972 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
61986421 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14701502 | Apr 2015 | US |
Child | 15695440 | US |