The present invention relates to an optoelectronic device and a process for making same; particularly, it relates to an optoelectronic device having photodiodes for different wavelengths, and a process for making same.
An optoelectronic device, such as a sensor, is often required in digital image processing. The sensor generally includes a photo diode and an electronic circuit, and an image received is converted to an electronic signal output.
Conventionally, a photo diode is constituted by a PN junction formed in a silicon substrate. However, such photo diode formed by silicon has low light absorption efficiency to invisible light. Accordingly, it is desired to provide a device having better light absorption efficiency for invisible light applications, such as infrared sensor.
In one perspective, the present invention provides an optoelectronic device comprising: a substrate made of a first material; a region in the substrate, the region being made of a second material different from the first material; an N-well in the region made of the second material; and a photo diode for a first wavelength formed in the N-well.
The second material in the region for example includes silicon germanium (Si1-xGex) or silicon carbide (Si1-yCy), wherein 0<x,y<1. The optoelectronic device can further comprise an electronic circuit coupled to the photo diode.
In one embodiment, the optoelectronic device further comprises another photodiode for a second wavelength formed in the substrate and not in the region made of the second material. In one embodiment, the first wavelength is an invisible light wavelength and the second wavelength is a visible light wavelength.
In another perspective, the present invention provides a sensor pixel unit comprising at least one photodiode for visible light and at least one photodiode for invisible light.
In one embodiment, the sensor pixel unit comprises three photodiodes for red, green and blue, and one photodiode for infrared.
In another perspective, the present invention provides a process for making an optoelectronic device, comprising: providing a substrate made of a first material; etching a region of the substrate; filling the region with a second material different from the first material; forming an N-well in the region made of the second material; and forming a photo diode in the region made of the second material.
In the foregoing process for making the optoelectronic device, preferably, the second material filled in the region includes silicon germanium (Si1-xGex) or silicon carbide (Si1-yCy), wherein 0<x,y<1. The step of filling the region with the second material for example is epitaxial growth.
In addition, the process can further comprise: forming a masking layer to define the region before etching it; and after the region is filled with the second material, removing the masking layer. The masking layer for example includes oxide.
The process can further comprise forming another photodiode for a second wavelength in the substrate and not in the region made of the second material, wherein the first wavelength is for example an invisible light wavelength and the second wavelength is for example a visible light wavelength.
The objectives, technical details, features, and effects of the present invention will be better understood with regard to the detailed description of the embodiments below, with reference to the drawings.
The drawings as referred to throughout the description of the present invention are for illustration only, to show the interrelationships between the process steps and between the layers, but not drawn according to actual scale.
Silicon germanium for example can be formed by epitaxial growth, with primary reaction gases of (SiH4+GeH4), wherein SiH4 can be replaced by SiH2Cl2 or SiCl4. Other than the primary reaction gases, additional gas (es) such as SiCH6, C2H4, or C5H8 may be added, such that the formed silicon germanium may contain a slight amount of carbon ingredient; or, additional HCl can be added, so as to enhance the selectivity of the epitaxial growth. Depending on the selected reaction gases, the epitaxial growth can be performed in a temperature for example between 550-900° C. Due to the shielding effect of the masking layer 12, the silicon germanium made by epitaxial growth can be selectively formed in the region as shown in the drawing.
Silicon carbide for example can be formed by CVD (chemical vapor deposition) epitaxial growth, with primary reaction gases of silicon-containing gas and carbon-containing gas. The former for example can be SiH4, SiH2Cl2, or SiCl4; the latter for example can be CH4, SiCH6, C2H4, or C5H8. The reaction temperature is between 1400-1600° C. and the reaction pressure is between 0.1 to 1 atmospheric pressure. If silicon carbide can not be selectively deposited in the desired region, photolithography and etch steps may be taken to define the pattern of the silicon carbide layer, and the masking layer 12 can be employed as an etch stop layer.
Referring to
An essential difference of the present invention from the prior art is that the photo diode 18 of the present invention is formed in a material layer 14 having a different property from the substrate layer 11. Therefore, the present invention has better absorption efficiency to light with different wavelengths. The photo diode 18 of the prior art is formed in silicon, having an energy gap of about 1.1 eV. In the first example of the present invention, silicon germanium has an energy gape of around 0.6-1.1 eV, which has better absorption efficiency to a light beam with long wavelength (such as above 800 nm). In the second example, silicon carbide has an energy gap higher than 3 eV, which has better absorption efficiency to a light beam with short wavelength (such as below 450 nm). In other words, according to the present invention, the material of the material layer 14 can be selected in accordance with the primary wavelength of a photo signal desired to be received, so as to enhance light absorption efficiency. For example, an infrared sensor can be made by employing silicon germanium. In addition, the present invention is not limited to providing only one type of photo diodes in one integrated device; for example, photo diodes can be formed in both the material layer 14 and the substrate 11, so that one integrated device include two or more different types of photo diodes.
The sensor pixel unit including photodiodes for visible and invisible light wavelengths can be applied to many applications. In one example, the sensor pixel unit can be used in a proximity sensor. The proximity sensor for example includes an infrared light source and an infrared sensor array. The infrared sensor array includes plural infrared photodiodes IR. In another example, the sensor pixel unit can be used in an ambient light sensor. The ambient light sensor includes plural photodiodes for visible light, plural photodiodes for invisible light, and a processor circuit. The photodiodes for visible light and plural photodiodes for invisible light receive ambient light to generate a first signal and a second signal, respectively, and the processor circuit is adapted to process the first and second signals to generate an ambient light signal, for example by subtracting the second signal from the first signal. In another example, the sensor pixel unit can be used in a recognition device. The recognition device includes an infrared light source and an infrared sensor array (the infrared sensor array includes plural infrared photodiodes IR), and a processor circuit. The infrared sensor array receives infrared light projected from the infrared light source and reflected by an object processor circuit, and outputs a corresponding signal. The processor circuit is adapted to process the signal outputted from the infrared sensor array, and determine the size, distance and/or movement of the object thereby. The processor circuit outputs a recognition signal which includes distance information and/or gesture information that relates to the object.
This embodiment is different from the embodiment of
The present invention has been described in considerable detail with reference to certain preferred embodiments thereof. It should be understood that the description is for illustrative purpose, not for limiting the scope of the present invention. Those skilled in this art can readily conceive variations and modifications within the spirit of the present invention. For example, the materials and number of interconnection layers in the abovementioned example are for illustration only, and may be modified in many ways. As another example, the transistor is not limited to the CMOS transistor as shown, but may be bipolar junction transistor (BJT) or other devices. In view of the foregoing, the spirit of the present invention should cover all such and other modifications and variations, which should be interpreted to fall within the scope of the following claims and their equivalents.
The present invention is a continuation-in-part application of U.S. Ser. No. 12/552,856, filed on Sep. 2, 2009.
Number | Date | Country | |
---|---|---|---|
Parent | 14321240 | Jul 2014 | US |
Child | 15942536 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12552856 | Sep 2009 | US |
Child | 14321240 | US |