1. Technical Field
The present invention relates generally to Ball Grid Array (hereinafter “BGA”) packages. In particular, the present invention relates to the use of partially captured interconnections, wherein the uncaptured region is selectively oriented in the direction of the highest stress within the BGA package.
2. Related Art
In the manufacture of BGA packages, thermal mismatch between the chip module and the printed circuit board may produce fatigue failure of the BGA interconnections, or solder joints. One solution for this problem is the elongation of the solder joints, which increases the compliance of the solder joints, thereby increasing the fatigue life of the BGA package. Solder joints have been elongated by the use of “captured pads” which form mask-defined solder joints. Along with increasing the height of the solder joint, the use of captured pads enhances the adhesion of the pads to the underlying chip module or printed circuit board. Unfortunately, stress concentrations within mask-defined solder joints tends to decrease the fatigue life of the solder joints. Alternative techniques employed to elongate the solder joints and increase fatigue life include the use of spacers, high-melt solder columns, selective solder joints containing an excess solder volume, etc. However, many of these techniques reduce the amount of space on the printed circuit board available for wiring.
Accordingly, there exists a need in the industry for a BGA package having an increased fatigue life, without sacrificing wiring space.
The present invention provides an integrated chip package, e.g., a BGA package, having an increased fatigue life, enhanced pad adhesion, while maintaining sufficient wiring space. In particular, the present invention provides a method of forming an integrated chip package having solder joints that are mask-defined in a first direction and pad-defined in a second direction.
The first general aspect of the present invention provides a method of forming an integrated chip package, comprising the steps of: providing a first substrate and a second substrate, each having conductive pads thereon; applying a mask to at least one of the first and second substrates, wherein the mask has a plurality of non-circular openings having a first dimension and a second dimension, such that the conductive pads are not covered by the mask in the direction of the first dimension and partially covered by the mask in the direction of the second dimension; and providing a reflowable material between the conductive pads of the first and second substrates. This aspect allows for an integrated chip package, e.g., a BGA package, having an increased fatigue life, without sacrificing wiring space. It also allows for an integrated chip package having solder joints that are mask-defined in a first direction and pad-defined in a second direction.
The second aspect of the present invention provides an integrated chip package comprising: a first substrate and a second substrate, wherein at least one of the first and second substrates includes a plurality of partially captured pads; and a plurality of interconnections between the first and second substrates. This aspect provides similar advantages as those associated with the first aspect.
The third aspect of the present invention provides a substrate having a plurality of conductive pads and a mask thereon, wherein the mask has a plurality of openings having a first dimension larger than the conductive pad, and a second dimension smaller than the conductive pad. This aspect provides similar advantages as those associated with the first aspect.
The fourth aspect of the present invention provides an integrated circuit mask having a plurality of elongated non-circular openings therein, wherein the openings have a first dimension greater than a second dimension, such that the first dimension of the openings coincides with the direction of the highest stress within integrated circuit. This aspect provides similar advantages as those associated with the first aspect.
The fifth aspect of the present invention provides an integrated circuit interconnection, wherein the interconnection is mask-defined in a first direction and pad-defined in a second direction. This aspect provides similar advantages as those mentioned with respect to the first aspect.
The foregoing and other features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention.
The preferred embodiments of this invention will be described in detail, with reference to the following figures, wherein like designations denote like elements, and wherein:
Although certain preferred embodiments of the present invention will be shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present invention will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of the preferred embodiment. Although the drawings are intended to illustrate the present invention, the drawings are not necessarily drawn to scale.
Referring to the drawings,
The major axis 32 of the elongated openings 30 is preferably selectively oriented in the direction of greatest stresses, predominantly shear stresses, within the solder joints 48 attached to the chip carrier 14 and the board 20. However, the major axis 32 of the elongated openings 30 may be oriented in any number of directions as needed or desired.
The use of a solder joint 48 utilizing a combination of mask-defined and pad-defined solder joint profiles (see
It should be noted that use of elongated openings 30, rather than round mask openings, also increases the space available for wiring. The major axis 32 of the openings 30 in the masks 26, 28 should be oriented in the direction of highest stress, taking into consideration the orientation that maximizes the space on the board 20 available for wiring.
It should be understood that the oval-shaped elongated openings 30, oriented radially from the centers 60, 61 of the chip carrier 14 and the board 20, are solely an example. The elongated openings 30 are not limited to the size, shape or orientation described and illustrated herein. Likewise, the size and shape of the conductive pads 16, 22 are not limited by the disclosure above. A vast array of size, shape and orientation combinations may be used to suit particular needs.
It should also be noted that the mask does not have to be applied to both the chip carrier 14 and the board 20, as described above. Rather, the mask may be used on only one side of the BGA package, either the chip carrier 14 or the board 20. This would produce solder joints having the combination pad-defined and mask-defined solder joint profile, described and illustrated above, at one end of the solder joint and an alternative profile at the other end. For instance, the other end may have a solder joint profile that is entirely pad-defined or entirely mask-defined, etc.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims.
This application is a divisional of Ser. No. 09/438,037; filed on Nov. 10, 1999 now U.S. Pat. No. 6,774,474.
Number | Name | Date | Kind |
---|---|---|---|
3893156 | Riseman | Jul 1975 | A |
4391034 | Stuby | Jul 1983 | A |
5484963 | Washino | Jan 1996 | A |
5517756 | Shirai et al. | May 1996 | A |
5523920 | Machuga et al. | Jun 1996 | A |
5706178 | Barrow | Jan 1998 | A |
5742483 | Ma et al. | Apr 1998 | A |
5859474 | Dordi | Jan 1999 | A |
5875102 | Barrow | Feb 1999 | A |
5885849 | DiStefano et al. | Mar 1999 | A |
5889655 | Barrow | Mar 1999 | A |
5977632 | Beddingfield | Nov 1999 | A |
6037547 | Blish, II | Mar 2000 | A |
6118182 | Barrow | Sep 2000 | A |
6148512 | Brown | Nov 2000 | A |
6194667 | Jimarez et al. | Feb 2001 | B1 |
6251704 | Ohuchi et al. | Jun 2001 | B1 |
6251766 | Desai et al. | Jun 2001 | B1 |
6268568 | Kim | Jul 2001 | B1 |
6274474 | Caletka et al. | Aug 2001 | B1 |
6441316 | Kusui | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040099936 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09438037 | Nov 1999 | US |
Child | 10717946 | US |