Positive photosensitive resin composition, positive photosensitive dry film, method for producing positive photosensitive dry film, patterning process, method for forming cured film, interlayer insulation film, surface protective film, and electronic component

Abstract
A positive photosensitive resin composition including: an alkali-soluble resin containing at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof, a polymer compound having a structural unit formed by cyclopolymerization, and a compound having a quinonediazide structure for serving as a photosensitizer to generate an acid by light and increase a dissolution speed to an alkaline aqueous solution.
Description
TECHNICAL FIELD

The present invention relates to: a positive photosensitive resin composition; a positive photosensitive dry film; a method for producing the positive photosensitive dry film; a patterning process capable of developing with an alkaline aqueous solution that uses the positive photosensitive resin composition and the positive photosensitive dry film; a method for forming a cured film; an interlayer insulation film; a surface protective film; and an electronic component.


BACKGROUND ART

As miniaturization and higher performance of various electronic devices such as personal computers, digital cameras, and mobile phones advance, a demand for further miniaturization, thinning, and higher density in semiconductor devices are also increasing rapidly. Accompanying these, it is demanded for interlayer insulation films and surface protective films of semiconductor devices to combine excellent electric characteristics, heat resistance, mechanical characteristics, and the like.


In a high-density mounting technology such as a three-dimensional lamination, as a photosensitive insulation material capable of forming a pattern on a substrate, a polyimide film has been utilized as a protective film or an insulation layer, its insulation property, mechanical characteristics, adhesiveness with a substrate, and so forth have continued to draw attention, and its development is active even now. In particular, a Fan Out Wafer Level Package (FO-WLP) structure has been paid attention to, being advantageous from viewpoints of higher transmission speed, and miniaturization and thinning of devices. Various FO-WLP structures are being studied (Non Patent Document 1).


FO-WLP is mass-produced in 12-inch wafer size. On the other hand, in recent years, a Fan Out Panel Level Package (FO-PLP), which raises productivity by wiring formation on a substrate using a film, is being studied (Non Patent Document 2, Non Patent Document 3).


A characteristic of rewiring formation in FO-PLP is in wiring formation on a surface layer of a mold material in which a die is implanted. Therefore, low-temperature curing at 220° C. or lower is required in an insulation material for rewiring in this process from the viewpoint of heat resistance of the mold material, which contains epoxy resin as a main component. In addition, generally in FO-PLP, it is common to form wiring on only one side, and warp suppression is also a problem.


A photosensitive polyimide material is used for surface protective films and interlayer insulation films of semiconductor devices, and wiring protection insulation films for circuit formation. This is because photosensitive polyimide materials are excellent in electric characteristics and mechanical characteristics, and have heat resistance to 300° C. or higher. In recent years, to improve the above-described problem, suggestions have been made of using a closed-ring polyimide in order to lower a post-curing temperature (Patent Document 1) and achieving a dry film by adding a flexible heat crosslinking agent or a crosslinkable resin as a plasticizer (Patent Document 2, Patent Document 3).


However, in these Patent Documents, only physical properties of the cured film at a curing temperature of 250° C. or 220° C. are considered, and there is room for improvement concerning the achievement of both the physical properties of the cured film and lithography performance of fine patterns in low-temperature curing at 200° C. or lower.


In addition, to improve the mechanical strength of a cured film, studies are being conducted on resins, besides the above-described polyimide resin, having a structural unit derived from a cyclic olefin (a norbornene-type monomer, maleic anhydride, maleimide, etc.) or a cyclic structure introduced into a main chain skeleton as in a cyclopolymerization monomer unit (Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7).


Patent Document 4 and Patent Document 5 propose a positive photosensitive resin composition having an alkali-soluble resin containing an N-hydroxymaleimide unit and a norbornene unit, and in addition, a novolak resin added and using a quinonediazide compound. However, there is no detailed study regarding miniaturization, and there is no mention of the physical properties of the cured film.


Patent Document 6 proposes photosensitive dry film including a copolymer of a maleimide unit and a (meth)acrylic unit having a thermally crosslinkable group, epoxy resin, a maleimide compound, and a photopolymerization initiator. The mechanical strength, heat resistance, and crack resistance of the cured film are excellent, but the resolution of fine patterns have not been evaluated, and due to photosensitive characteristics where radical crosslinking is employed, there is room for improvement in miniaturization.


Meanwhile, Patent Document 7 proposes a negative photosensitive resin composition using a copolymer containing a monomer having an acid radical introduced to a side chain, a maleimide, and a cyclic cyclized monomer, and using an alkali-soluble resin having an unsaturated double bond introduced to an acid radical of a side chain, and a photopolymerization initiator. The material is excellent in mechanical characteristics such as elastic recovery and breaking strength of the cured film. However, due to photosensitive characteristics where radical crosslinking is employed, the material is liable to oxygen impedance, and there is room for improvement regarding miniaturization.


Thus, hereafter, as higher densification and higher integration of chips proceed, the miniaturization of patterns in a rewiring technology of the insulation protective film further proceeds. Accordingly, as the photosensitive resin composition, there is strong demand for a composition that can be made into a film, and that can realize high resolution without damaging excellent features such as the mechanical characteristics of a protective film, adhesiveness, and so forth.


CITATION LIST
Patent Literature





    • Patent Document 1: JP 2006-313237 A

    • Patent Document 2: WO 2016/158150

    • Patent Document 3: WO 2017/170032

    • Patent Document 4: JP 2019-045622 A

    • Patent Document 5: JP 2020-170103 A

    • Patent Document 6: WO 2020/202691

    • Patent Document 7: JP 6694230 B





Non Patent Literature





    • Non Patent Document 1: 2015 Symposium on VLSI Technology Digest of Technical Papers, T46-47

    • Non Patent Document 2: Proceedings of Electronic System-integration Technology Conference 2010, pp. 1-6

    • Non Patent Document 3: Proceedings of Electronic Components and Technology Conference 2015, pp. 1077-1083





SUMMARY OF INVENTION
Technical Problem

The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a positive photosensitive resin composition and a positive photosensitive dry film that are soluble in an alkaline aqueous solution, that can achieve high resolution without damaging excellent features such as the mechanical characteristics of a protective film, adhesiveness, etc., and that have excellent mechanical characteristics and adhesiveness to a substrate even when cured at low temperatures.


Solution to Problem

To achieve the object, the present invention provides a positive photosensitive resin composition comprising:

    • (A) an alkali-soluble resin containing at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof;
    • (B) a polymer compound having a structural unit formed by cyclopolymerization; and
    • (C) a compound having a quinonediazide structure for serving as a photosensitizer to generate an acid by light and increase a dissolution speed to an alkaline aqueous solution.


Such a positive photosensitive resin composition is soluble in an alkaline aqueous solution, enables formation of a fine pattern and high resolution, and has excellent mechanical characteristics and adhesiveness to a substrate even when cured at low temperatures.


Furthermore, the structural unit formed by cyclopolymerization in the component (B) is preferably at least one structural unit represented by the following general formula (1), the following general formula (2), the following general formula (3), and the following general formula (4),




embedded image



wherein R1, R2, R3, R4, R5, and R6 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms.


Such a positive photosensitive resin composition has a ring structure in a main chain, and therefore has excellent mechanical characteristics and excellent adhesiveness to a substrate even when cured at low temperatures. In addition, heat resistance can be provided.


Furthermore, in the inventive positive photosensitive resin composition, the component (B) is preferably an alkali-soluble polymer compound further containing a structural unit represented by the following general formula (5) or (5′),




embedded image



wherein R7 represents a hydrogen atom or a methyl group; each X1 represents —C(═O)—O—, —C(═O)—O—R8—, —C(═O)—NH—, —C(═O)—NH—R8—, or —C(═O)—N(R8OH)—; R8 represents a divalent linear, branched, or cyclic aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, wherein a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; a hydrogen atom of an aromatic hydrocarbon group in the formulae is optionally substituted with a methyl group; and “p” is 0 or 1.


Such a positive photosensitive resin composition makes it possible to adjust the alkali-solubility of an exposed part, and enables formation of a finer pattern and high resolution. Furthermore, mechanical characteristics and adhesiveness to a substrate become excellent even when cured at low temperatures.


Furthermore, the component (B) is preferably a crosslinking alkali-soluble polymer compound further containing a structural unit represented by the following general formula (6),




embedded image



wherein R9 represents a hydrogen atom or a methyl group; each X2 represents —C(═O)—O—, a phenylene group, or a naphthylene group; R10 represents a linear, branched, or cyclic alkylene group having 1 to 15 carbon atoms and optionally containing an ester group, an ether group, or an aromatic hydrocarbon group; R11 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, or is optionally bonded with R10 to form a ring; R12 represents a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms; R3 represents a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms, and is optionally bonded with R10 to form a ring; “m” is 0 or 1; and “p” is 0 or 1.


Such a crosslinkable polymer compound undergoes a crosslinking reaction with a phenolic hydroxy group of the component (A) alkali-soluble resin since a crosslinkable group excellent in crosslinking property is present. Therefore, excellent mechanical characteristics such as rupture elongation and tensile strength can be achieved even when cured at low temperatures, and heat resistance is also improved.


Furthermore, the component (B) is preferably a crosslinking alkali-soluble polymer compound further containing a structural unit represented by the following general formula (7),




embedded image



wherein R14 represents a hydrogen atom or a methyl group; R15 represents a single bond or a linear, branched, or cyclic aliphatic saturated hydrocarbon group with a valency of (l+1) having 1 to 13 carbon atoms, wherein a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; each X3 represents —C(═O)—O—, —C(═O)—O—R16—, —C(═O)—NH—, —C(═O)—N(R16OH)—, a phenylene group, or a naphthylene group; R16 represents a divalent linear, branched, or cyclic aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, wherein a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; and “1” is 0 or 1.


Such a polymer compound reacts with the heat crosslinking agent (D) while maintaining alkali-solubility, so that a pattern with high resolution can be obtained.


Furthermore, the component (B) is preferably a crosslinking alkali-soluble polymer compound containing the structural units represented by the following general formula (3), the following general formula (5), the following general formula (6), and the following general formula (7),




embedded image



wherein R4 represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms; R7 represents a hydrogen atom or a methyl group; each X1 represents —C(═O)—O—, —C(═O)—O—R8—, —C(═O)—NH—, —C(═O)—NH—R8—, or —C(═O)—N(R8OH)—; R8 represents a divalent linear, branched, or cyclic aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, wherein a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; a hydrogen atom of an aromatic hydrocarbon group in the formulae is optionally substituted with a methyl group; R9 represents a hydrogen atom or a methyl group; each X2 represents —C(═O)—O—, a phenylene group, or a naphthylene group; R10 represents a linear, branched, or cyclic alkylene group having 1 to 15 carbon atoms and optionally containing an ester group, an ether group, or an aromatic hydrocarbon group; R11 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, or is optionally bonded with R10 to form a ring; R12 represents a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms; R3 represents a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms, and is optionally bonded with R10 to form a ring; R14 represents a hydrogen atom or a methyl group; R15 represents a single bond or a linear, branched, or cyclic aliphatic saturated hydrocarbon group with a valency of (l+1) having 1 to 13 carbon atoms, wherein a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; each X3 represents —C(═O)—O—, —C(═O)—O—R16—, —C(═O)—NH—, —C(═O)—N(R16OH)—, a phenylene group, or a naphthylene group; R16 represents a divalent linear, branched, or cyclic aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, wherein a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; “p” is 0 or 1; “m” is 0 or 1; “l” is 0 or 1; and 0<a1<1.0, 0<a2<1.0, 0<a3<1.0, 0<a4<1.0, and 0<a1+a2+a3+a4<1.0.


Using such a crosslinkable polymer compound, a high-resolution pattern can be obtained while maintaining sufficient alkali-solubility. Moreover, since a ring structure is introduced to a main chain skeleton and there is also a crosslinkable group excellent in crosslinking property, mechanical characteristics such as rupture elongation and tensile strength are excellent even when cured at low temperatures.


Furthermore, 1 to 50 parts by mass of the component (B) is preferably contained relative to 100 parts by mass of the component (A).


Within such a range, sufficient mechanical characteristics, in particular, elongation and tensile strength of the cured film can be achieved while maintaining excellent lithography characteristics and physical properties of the cured film.


In addition, (D) a heat crosslinking agent is preferably further comprised.


Furthermore, the component (D) more preferably contains one or more kinds of crosslinking agents selected from an amino condensate modified by formaldehyde or formaldehyde-alcohol; a phenol compound having two or more methylol groups or alkoxymethylol groups by average in one molecule; a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a glycidyl group; a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a substituent represented by the following formula (D-1); and a compound containing two or more nitrogen atoms having a glycidyl group represented by the following formula (D-2),




embedded image



wherein a dotted line represents a bond, Rc represents a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, and “v” represents 1 or 2.


The alkali-solubility of an exposed/unexposed part can be adjusted by adding the component (D). In addition, by the component (D) being crosslinked with the component (A) and the component (B) during post-curing, the crosslinking density of the cured film can be raised, and excellent mechanical strength can be achieved.


Furthermore, 1 to 100 parts by mass of the component (D) is preferably contained relative to 100 parts by mass of the component (A).


Within such a range, the film can be provided with flexibility while maintaining lithography characteristics when the positive photosensitive resin composition is made into a dry film.


One or more of (E) a protective amine compound, (F) a thermal acid generator, (G) an antioxidant, and (H) a silane compound is preferably further comprised.


The protective amine compound of the component (E) produces a basic compound on curing at high temperatures, becomes a catalyst for a crosslinking reaction, and can promote a curing reaction. The thermal acid generator of the component (F) can further improve the mechanical strength, chemical resistance, adhesiveness and so forth of an obtained pattern or film by further advancing the crosslinking and curing reaction. Furthermore, the antioxidant of the component (G) can suppress degradation of physical properties due to degradation by oxidation of the cured film during a reliability test such as a high humidity test or a thermal shock test, and a more suitable cured film can be formed. The silane compound of the component (H) can further improve the adhesiveness of the obtained pattern or film to a substrate.


Furthermore, the present invention provides a patterning process comprising:

    • (1) forming a photosensitive material film by coating a substrate with the above-described positive photosensitive resin composition;
    • (2) subsequently, after a heat treatment, exposing the photosensitive material film with a high-energy beam having a wavelength of 190 to 500 nm or an electron beam via a photomask; and
    • (3) after irradiation, developing with a developer of an alkaline aqueous solution.


According to such a patterning process, since the positive photosensitive resin composition used is soluble in an alkaline aqueous solution, a fine pattern can be formed and high resolution can be achieved.


Furthermore, the present invention provides a positive photosensitive dry film, which has a photosensitive resin layer having a film thickness of 5 to 100 μm, the photosensitive resin layer being sandwiched between a supporting film and a top coat film, wherein the photosensitive resin layer is formed using the above-described positive photosensitive resin composition.


Such a positive photosensitive dry film is soluble in an alkaline developer, a fine pattern can be formed, and high resolution can be achieved.


Furthermore, the present invention provides a method for producing a positive photosensitive dry film, comprising:

    • (1) forming a photosensitive resin layer by continuously coating a supporting film with the above-described positive photosensitive resin composition;
    • (2) continuously drying the photosensitive resin layer; and further
    • (3) laminating a top coat film onto the photosensitive resin layer.


According to such a method for producing a positive photosensitive dry film, the above-described dry film can be mass-produced stably with good yield.


Furthermore, the present invention provides a patterning process comprising:

    • (1) adhering onto a substrate the photosensitive resin layer which becomes exposed by delaminating the top coat film from the above-described positive photosensitive dry film;
    • (2) exposing the photosensitive resin layer to a high-energy beam having a wavelength of 190 to 500 nm or an electron beam via a photomask under the state of intervention of the supporting film or under the state of the supporting film delaminated; and
    • (3) after irradiation, developing with a developer of an alkaline aqueous solution.


According to such a patterning process, the positive photosensitive dry film can be adhered to a substrate without bubbles or creases on adhering, and furthermore, a fine pattern can be formed by photolithography.


Furthermore, the present invention provides a method for forming a cured film comprising:


heating and post-curing a film on which a pattern is formed by the above-described patterning process at a temperature of 100 to 300° C.


According to such a method for forming a cured film, a cured film (pattern) excellent in mechanical characteristics can be formed even when cured at low temperatures.


Furthermore, the present invention provides an interlayer insulation film being a cured film by curing the above-described positive photosensitive resin composition or the above-described positive photosensitive dry film.


Furthermore, the present invention provides a surface protective film being a cured film by curing the above-described positive photosensitive resin composition or the above-described positive photosensitive dry film.


The cured film obtained by curing the inventive positive photosensitive resin composition and positive photosensitive dry film has excellent adhesiveness with a substrate, heat resistance, electric characteristics, mechanical strength, and chemical resistance to alkaline release liquid or the like, and a semiconductor device having the cured film as a protective coating has excellent reliability. Therefore, the cured film is suitable as a protective coating (an interlayer insulation film or surface protective film) of electric and electronic components, semiconductor devices, and the like.


Furthermore, the present invention provides an electronic component having the above-described interlayer insulation film or the above-described surface protective film.


Such a protective coating (interlayer insulation film or surface protective film) is effective for an insulation film for semiconductor devices including rewiring use, an insulation film for multilayer printed boards and so on from the viewpoint of heat resistance, chemical resistance, and insulation property, and can give electronic components having excellent reliability.


Advantageous Effects of Invention

As described above, according to the present invention, it is possible to provide a positive photosensitive resin composition and a positive photosensitive dry film that are soluble in an alkaline aqueous solution, that can achieve high resolution without damaging excellent features such as mechanical characteristics and adhesiveness of a protective film, etc., and that have excellent mechanical characteristics and adhesiveness to a substrate even when cured at low temperatures.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is an explanatory diagram illustrating an adhesion measurement method.





DESCRIPTION OF EMBODIMENTS

As described above, there has been demand for a photosensitive resin composition that is soluble in an alkaline aqueous solution, can be made into a film, that can realize high resolution without damaging excellent features such as the mechanical characteristics of a protective film, adhesiveness, and so forth, and that has excellent mechanical characteristics and adhesiveness to a substrate even when cured at low temperatures.


To achieve the object, the present inventors have earnestly studied and found out that a positive photosensitive resin composition containing: (A) an alkali-soluble resin containing at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof; (B) a polymer compound having a structural unit formed by cyclopolymerization; and (C) a compound having a quinonediazide structure for serving as a photosensitizer to generate an acid by light and increase a dissolution speed to an alkaline aqueous solution can be made into a dry film. In addition, the present inventors have found out that high resolution can be achieved without damaging excellent features such as mechanical characteristics and adhesiveness of a protective film and so forth even when cured at low temperatures.


Furthermore, the present inventors have found out that a protective film obtained by using the above-described positive photosensitive resin composition and positive photosensitive dry film by forming a pattern and heating has excellent mechanical characteristics, and has excellent adhesion after a high temperature and high humidity test. That is, the present inventors have found that a cured film with a pattern formed by using the positive photosensitive resin composition and positive photosensitive dry film is excellent as an electric or electronic component protective film and an insulation protective film, and thus completed the present invention. In the present specification, the electric and electronic components are also summarized as “electronic component”.


That is, the present invention is a positive photosensitive resin composition containing:

    • (A) an alkali-soluble resin containing at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof;
    • (B) a polymer compound having a structural unit formed by cyclopolymerization; and
    • (C) a compound having a quinonediazide structure for serving as a photosensitizer to generate an acid by light and increase a dissolution speed to an alkaline aqueous solution.


Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.


[Positive Photosensitive Resin Composition]


The positive photosensitive resin composition of the present invention will be described.


The inventive positive photosensitive resin composition contains: (A) an alkali-soluble resin containing at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof; (B) a polymer compound having a structural unit formed by cyclopolymerization; and (C) a compound having a quinonediazide structure for serving as a photosensitizer to generate an acid by light and increase a dissolution speed to an alkaline aqueous solution. The positive photosensitive resin composition can be alkali-developed. Furthermore, the positive photosensitive resin composition may further contain, as needs arise, (D) a heat crosslinking agent, (E) a protective amine compound, (F) a thermal acid generator, (G) an antioxidant, (H) a silane compound, and the like, besides the component (A), component (B), and component (C). Hereinafter, these components will be described in detail.


[(A) Alkali-Soluble Resin]


The alkali-soluble resin (A) to be used in the present invention contains at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof. The resin (A) is not particularly limited as long as the resin (A) is an alkali-soluble resin containing a structure mentioned above, but a resin containing the structure represented by the following general formula (8) and/or (9) is preferable.




embedded image



In the formula, X4 represents a tetravalent organic group, “s” represents 0 or 1, Z represents a divalent linking group, and when s=0, two aromatic rings in the formula are directly bonded without a linking group.




embedded image



In the formula, X5 represents a divalent organic group, and “s” and Z are the same as those described above.


X4 in the general formula (8) represents a tetravalent organic group, but is not limited as long as it is a tetravalent organic group. X4 is preferably a tetravalent organic group of an alicyclic aliphatic group having 4 to 40 carbon atoms or an aromatic group, and more preferably, a tetravalent organic group represented by the following formula (10). Furthermore, a structure of X4 may be one kind or a combination of two or more kinds.




embedded image



In the formulae, a dotted line represents a bond.


The “s” in the general formula (8) represents 0 or 1, and when “s” is 0, two aromatic rings in the general formula (8) are bonded directly without the divalent linking group Z.


Meanwhile, when “s” is 1, two aromatic rings in the general formula (8) are bonded via the divalent linking group Z. Z is not limited as long as it is a divalent group. Preferably, Z is a divalent organic group of an alicyclic aliphatic group having 4 to 40 carbon atoms or an aromatic group, and more preferably a divalent linking group represented by the following formula (11). The structure of Z may be one kind or a combination of two or more kinds.




embedded image



In the formulae, q1, q2, and q3 represent an integer of 1 to 6, and q4 and q5 represent an integer of 1 to 10. A dotted line represents a bond.


In particular, a preferable divalent linking group Z is a divalent group represented by the following formula (12) or (13).




embedded image



In the formulae, a dotted line represents a bond.


As a structural unit represented by the general formula (8), when Z in the general formula (8) is a group represented by the formula (12), a structural unit represented by the following general formula (8-1) is preferable, and when Z in the general formula (8) is a group represented by the formula (13), a structural unit represented by the following general formula (8-2) is preferable.




embedded image



In the formulae, X4 is the same as that described above.


As shown by the general formula (8-1), when the divalent linking group Z is a hexafluoropropylene group shown by the formula (12) and is located at a p-position of a phenolic hydroxy group, the acidity of the phenolic hydroxy group becomes high since the hexafluoropropylene group is an electron-withdrawing group. Thus, the solubility of an alkaline aqueous solution to a developer increases. Therefore, it is preferred that the Z be the group shown by the formula (12).


Similarly, as shown by the general formula (8-2), when the divalent linking group Z is a sulfonic group represented by the formula (13) and is located at a p-position of a phenolic hydroxy group, the acidity of the phenolic hydroxy group becomes high since the sulfonic group is also an electron-withdrawing group. Thus, the solubility of an alkaline aqueous solution to a developer increases. Therefore, it is also preferred that the Z be the group shown by the formula (13).


The X5 in the general formula (9) is a divalent organic group, and is not limited as long as it is a divalent organic group. Preferably, X5 is a divalent organic group of an aliphatic chain length structure or an alicyclic aliphatic group having 4 to 40 carbon atoms, or an aromatic group. Further preferably, X5 is a divalent organic group represented by the following formula (14). The structure of X5 may be one kind or a combination of two or more kinds.




embedded image



In the formulae, R17 and R18 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 6 carbon atoms, q6 is an integer of 1 to 30, and a dotted line represents a bond.


When the X5 in the general formula (9) is a divalent organic group that is an aliphatic chain length structure, the mechanical strength, in particular, the elongation of a cured film of the inventive positive photosensitive resin composition is improved. Therefore, this case is preferred.


The “s” and Z in the general formula (9) are the same as above, and Z is preferably the formula (12) or (13) from the viewpoint of the solubility to a developer of an alkaline aqueous solution. Also in this case, in the same manner as the case of the general formulae (8-1) and (8-2), the acidity of the phenolic hydroxy group becomes higher, and the solubility to the developer that is an alkaline aqueous solution is improved. Therefore, this case is preferred.


The alkali-soluble resin (A) to be used in the present invention may further contain a structural unit represented by the following general formula (15) (hereinafter, also referred to as a structural unit (15)) in addition to the structural units shown by the general formulae (8) and (9).




embedded image



In the formula, X6 is the same as X5. X7 is a divalent organic group.


The X7 in the general formula (15) is a divalent organic group, and is not restricted as long as it is a divalent organic group. However, X7 is preferably a divalent organic group having 6 to 40 carbon atoms, more preferably a cyclic organic group having an aromatic ring having a substituent or a cyclic organic group containing 1 to 4 aliphatic rings, or an aliphatic group or a siloxane group not having a cyclic structure. Further suitable examples of X7 include structures shown by the following formula (16) or the following general formula (17). The structure of X7 may be one kind or a combination of two or more kinds.




embedded image



In the formulae, a dotted line represents a bond with an amino group.




embedded image



In the formulae, a dotted line represents a bond with an amino group, R19 each independently represents a methyl group, an ethyl group, a propyl group, an n-butyl group, or a trifluoromethyl group, and q7 represents an integer of 2 to 20.


The alkali-soluble resin (A) to be used in the present invention preferably further contains a structural unit represented by the following general formula (18) (hereinafter, also referred to as a structural unit (18)) in addition to the structural units represented by the general formulae (8) and (9).




embedded image



In the formula, X8 is a tetravalent organic group that is the same as or different from the X4, and X9 is a group represented by the following general formula (19).




embedded image



In the formula, R20 to R23 each independently represent a linear or branched alkylene group having 2 to 10 carbon atoms, m1 is an integer of 1 to 40, and m2 and m3 each independently represent an integer of 0 to 40.


X8 in the general formula (18) may be a tetravalent organic group cited as X4, for example, a tetravalent organic group shown by the formula (10). Meanwhile, in X9 (the group represented by the general formula (19)), specific examples of a preferred organic group include the following. However, there is no restriction to these.




embedded image


When the alkali-soluble resin (A) contains such a structural unit (19), flexibility is produced to obtain a cured film having high elongation and low warpage.


Furthermore, the alkali-soluble resin (A) to be used in the present invention can also contain a structural unit represented by the following general formula (20) or (21) (hereinafter, structural unit (20), structural unit (21)).




embedded image



In the formulae, X10 is a tetravalent organic group that is the same as or different from the X4, X11 is a divalent organic group that is the same as or different from X7, and “s” and Z are the same as above. R24 and R25 are each independently a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, or an organic group represented by the following general formula (22), where at least one of R24 and R25 is an organic group represented by the following general formula (22).




embedded image



In the formula, a dotted line represents a bond. R26 is a hydrogen atom or an organic group having 1 to 3 carbon atoms, R27 and R28 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and “o” is an integer of 2 to 10.


The X10 in the structural units (20) and (21) is a tetravalent organic group and can be the same as or different from the above-described X4, and is not limited as long as it is a tetravalent organic group. X10 is preferably a tetravalent organic group of an alicyclic aliphatic group having 4 to 40 carbon atoms or an aromatic group, further preferably a tetravalent organic group represented by the formula (10). The structure of X10 may be one kind or a combination of two or more kinds.


Meanwhile, the X11 in the structural unit (21) is a divalent organic group and can be the same as or different from the above-described X7, and is not limited as long as it is a divalent organic group. X11 is preferably a divalent organic group having 6 to 40 carbon atoms, more preferably a cyclic organic group having an aromatic ring having a substituent or a cyclic organic group containing 1 to 4 aliphatic rings, or an aliphatic group or a siloxane group not having a cyclic structure. Further suitable examples of X11 include structures shown by the formula (16) or the general formula (17). The structure of X11 may be one kind or a combination of two or more kinds.


The R24 and R25 in the structures (20) and (21) are each independently a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, or an organic group represented by the general formula (22), and at least one of R24 and R25 is an organic group represented by the general formula (22).


The R26 in the general formula (22) is not limited as long as it is a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms. However, from the viewpoint of photosensitive characteristics of the positive photosensitive resin composition, a hydrogen atom or a methyl group is preferable.


The R27 and R28 in the general formula (22) are not limited as long as they are each independently a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms. However, from the viewpoint of photosensitive characteristics of the positive photosensitive resin composition, a hydrogen atom is preferable.


The “o” in the general formula (22) is an integer of 2 to 10, and from the viewpoint of photosensitive characteristics, is preferably an integer of 2 to 4. Further preferably, “o” is 2.


[(B) Polymer Compound Having Structural Unit Formed By Cyclopolymerization]


The polymer compound (B) to be used in the present invention is not particularly limited as long as it has a structural unit formed by cyclopolymerization.


Here, preferably used examples of monomers for obtaining a structural unit formed by cyclopolymerization include diallyl quaternary ammonium salts, ether perfluoro-1,6-diene, and α-(allyloxymethyl) acrylic acid esters.


Furthermore, to improve adhesiveness to a substrate, the structural unit formed by cyclopolymerization in the component (B) is more preferably at least one structural unit represented by the following general formula (1), the following general formula (2), the following general formula (3), and the following general formula (4).




embedded image


In the formulae, R1, R2, R3, R4, R5, and R6 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms.


In particular, as a monomer unit for forming the structural unit formed by cyclopolymerization, the monomer units given in the following general formulae (23) and (24) are preferable. One of these monomers may be used, or two or more thereof may be used.




embedded image



In the formulae, R4, R5, and R6 are as described above.


In particular, specific examples of commercially available monomers that can be used include ACRYCURE RD series and ACRYCURE RE series (trade names, manufactured by NIPPON SHOKUBAI CO., LTD.).


In particular, from viewpoints of polymerizing property and stability, the structural unit of the general formula (3) and the monomer unit (23) are more preferable.


Furthermore, in order to provide alkali-solubility and improve crosslinking density, the polymer compound of the component (B) more preferably contains a structural unit represented by the following general formula (5) or (5′).




embedded image


In the formulae, R7 represents a hydrogen atom or a methyl group; each X1 represents —C(═O)—O—, —C(═O)—O—R8—, —C(═O)—NH—, —C(═O)—NH—R8—, or —C(═O)—N(R8OH)—; and R8 represents a divalent linear, branched, or cyclic aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, where a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom. A hydrogen atom of an aromatic hydrocarbon group in the formulae is optionally substituted with a methyl group. “p” is 0 or 1.


Meanwhile, the structure represented by the general formula (5) preferably has an ester group or an amide group, which are electron-withdrawing groups, on a p-position of a phenolic hydroxy group. In this case, the acidity of the phenolic hydroxy group becomes high, and solubility to a developer of an alkaline aqueous solution becomes improved. Specific examples of monomers that can be favorably used for forming the structural units of the general formulae (5) and (5′) include the following. However, examples are not limited thereto.




embedded image



In the formulae, R7 is as described above.




embedded image



In the formulae, R7 is as described above.


The structures shown by the general formulae (5) and (5′) are effective as units for promoting crosslinking in addition to alkali-solubility, and curability can be further improved by using together with a structural unit formed by cyclopolymerization.


Furthermore, to improve crosslinking density, a monomer having an epoxy group or an oxetanyl group shown by the following general formula (6) is preferably copolymerized with the polymer compound of the component (B).




embedded image


In the formula, R9 represents a hydrogen atom or a methyl group; and each X2 represents —C(═O)—O—, a phenylene group, or a naphthylene group. R10 represents a linear, branched, or cyclic alkylene group having 1 to 15 carbon atoms and optionally containing an ester group, an ether group, or an aromatic hydrocarbon group; and R11 represents a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, or is optionally bonded with R10 to form a ring. R12 represents a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms; R3 represents a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms, and is optionally bonded with R10 to form a ring; “m” is 0 or 1; and “p” is 0 or 1.


Examples of monomers for forming the structural unit of the general formula (6) include the following.




embedded image


embedded image


embedded image



In the formulae, R9 is as described above.




embedded image


embedded image


embedded image


embedded image



In the formulae, R9 is as described above.




embedded image


embedded image


embedded image



In the formulae, R9 is as described above.


Incidentally, some of the monomers for obtaining a repeating unit having an epoxy group and an oxetanyl group are disclosed in JP 2003-55362 A, JP 2005-8847 A, and JP 2005-18012 A.


In addition, from viewpoints of further improving crosslinking reactivity at the time of lithography patterning and improving the dissolution contrast of the unexposed/exposed part to an alkali developer, the structural unit of the following general formula (7) is preferably copolymerized with the polymer compound of the component (B).




embedded image


In the formula, R4 represents a hydrogen atom or a methyl group; and R15 represents a single bond or a linear, branched, or cyclic aliphatic saturated hydrocarbon group with a valency of (l+1) having 1 to 13 carbon atoms, where a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom. Each X3 represents —C(═O)—O—, —C(═O)—O—R16—, —C(═O)—NH—, —C(═O)—N(R16OH)—, a phenylene group, or a naphthylene group. R16 represents a divalent linear, branched, or cyclic aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, where a carbon atom of the aliphatic saturated hydrocarbon group is optionally substituted with an oxygen atom; and “1” is 0 or 1.


Examples of monomers for forming the structural unit of the general formula (7) include the following.




embedded image


embedded image



In the formulae, R14 is as described above.




embedded image


embedded image



In the formulae, R14 is as described above.




embedded image



In the formulae, R14 is as described above.


Here, the structural units formed by cyclopolymerization shown by the general formulae (1) to (4) are excellent in mechanical strength and heat resistance, but do not have crosslinking property or alkali-solubility. Therefore, the polymer compound of the component (B) is preferably copolymerized with the structural units represented by the general formulae (5) and (5′) and the general formula (7), which are excellent in alkali-solubility, and the structural unit shown by the epoxy group or oxetanyl group represented by the general formula (6), which has crosslinking property. Such a compound makes it possible to achieve all of mechanical characteristics, alkali-solubility, and crosslinking property more easily than a polymer containing only the structural units shown by the general formulae (1) to (7).


Accordingly, when repeating units are copolymerized in this manner, repeating units of the following formula (1a) are preferably contained.




embedded image


In the formulae, 0<a1<1.0, 0<a2<1.0, 0<a3<1.0, 0<a4<1.0, and 0<a1+a2+a3+a4≤1.0. R4, R7, R9 to R1, R14, R15, X1, X2, X3, “m”, “p”, and “l” are the same as described above.


The polymer compound of the component (B) to be used in the present invention may include, as a base, a repeating unit with a monomer for obtaining a structural unit formed by cyclopolymerization represented by the general formulae (1) to (4) (hereinafter, noted as “a”), a monomer for obtaining a repeating unit represented by the general formula (5) and the general formula (7) having a hydroxy group (hereinafter, noted as “b” and “c”), and a monomer for obtaining a repeating unit that is represented by the general formula (6) and that has a group crosslinked with the alkali-soluble resin of the component (A) (hereinafter, noted as “d”). It is also possible to copolymerize a monomer for obtaining a repeating unit represented by the following general formula (25) (hereinafter, noted as “e”) in order to improve adhesiveness to a substrate and flexibility of a cured film, and to further improve mechanical characteristics and thermal shock resistance.




embedded image


In the general formula (25), R29 represents a hydrogen atom or a methyl group. R30 may have a monovalent organic group having a primary, secondary, or tertiary amino group, an alkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alicyclic group having 6 to 10 carbon atoms. X12 is preferably —C(═O)—O— or —C(═O)—NH—. “e” satisfies 0≤e<1.


Specific examples of monomers for obtaining the repeating unit represented by the general formula (25) include the following: aminoethyl(meth)acrylate, N-methylaminoethyl(meth)acrylate, N,N-dimethylaminoethyl(meth)acrylate, N-ethylaminoethyl(meth)acrylate, N,N-diethylaminoethyl(meth)acrylate, aminopropyl(meth)acrylate, N-methylaminopropyl(meth)acrylate, N,N-dimethylaminopropyl(meth)acrylate, N-ethylaminopropyl(meth)acrylate, N,N-diethylaminopropyl(meth)acrylate, aminoethyl(meth)acrylamide, N-methylaminoethyl(meth)acrylamide, N,N-dimethylaminoethyl(meth)acrylamide, N-ethylaminoethyl(meth)acrylamide, N,N-diethylaminoethyl(meth)acrylamide, aminopropyl(meth)acrylamide, N-methylaminopropyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N-ethylaminopropyl(meth)acrylamide, N,N-diethylaminopropyl(meth)acrylamide, piperidine-4-yl(meth)acrylate, 1-methylpiperidine-4-yl(meth)acrylate, 2,2,6,6-tetramethylpiperidine-4-yl(meth)acrylate, 1,2,2,6,6-pentamethylpiperidine-4-yl(meth)acrylate, (piperidine-4-yl)methyl(meth)acrylate, 2-(piperidine-4-yl)ethyl(meth)acrylate, piperidine-4-yl(meth)acrylate, 1-methylpiperidine-4-yl(meth)acrylate, 2,2,6,6-tetramethylpiperidine-4-yl(meth)acrylate, 1,2,2,6,6-pentamethylpiperidine-4-yl(meth)acrylate, (piperidine-4-yl)methyl(meth)acrylate, 2-(piperidine-4-yl)ethyl(meth)acrylate, and the like.


Furthermore, a (meth)acrylic acid alkyl ester can be used as a monomer for obtaining the repeating unit represented by the general formula (25), and specific examples include (meth)acrylic acid butyl ester, (meth)acrylic acid pentyl ester, (meth)acrylic acid hexyl ester, (meth)acrylic acid heptyl ester, (meth)acrylic acid octyl ester, (meth)acrylic acid nonyl ester, (meth)acrylic acid decyl ester, (meth)acrylic acid undecyl ester, (meth)acrylic acid dodecyl ester, (meth)acrylic acid tridecyl ester, (meth)acrylic acid tetradecyl ester, (meth)acrylic acid pentadecyl ester, (meth)acrylic acid hexadecyl ester, (meth)acrylic acid heptadecyl ester, (meth)acrylic acid octadecyl ester, (meth)acrylic acid nonadecyl ester, (meth)acrylic acid eicosyl ester, and the like.


Furthermore, in order to improve the mechanical strength of the cured film, it is also possible to copolymerize olefins “f” having an aromatic group such as styrenes, vinylnaphthalenes, vinylanthracenes, vinylcarbazoles, acenaphthylenes, indenes, and the like; and alicyclic olefins “g” such as norbornenes, norbornadienes, and the like.


Regarding the repeating units “a”, “b”, “c”, “d”, “e”, “f”, and “g”, the proportion of the repeating units is preferably 0<a<0.8, 0<b≤0.8, 0<c≤0.8, 0<d≤0.8, 0≤e<0.8, 0≤f≤0.8, and 0≤g≤0.8; more preferably 0<a≤0.5, 0.1≤b≤0.6, 0.1≤c≤0.6, 0.1≤d≤0.7, 0≤e≤0.4, 0≤f≤0.4, and 0≤g≤0.4; and further preferably 0≤a≤0.4, 0.1≤b≤0.4, 0.1≤c≤0.4, 0.2≤d≤0.7, 0≤e≤0.4, 0≤f≤0.4, and 0≤g≤0.4. Note that a+b+c+d=1 or a+b+c+d+e+f+g=1 is preferable, and the total of these repeating units is preferably 100 mol % of the total amount of all the repeating units.


The (crosslinkable) polymer compound (B) used in the inventive positive photosensitive composition preferably has a weight-average molecular weight of 1,000 to 500,000, in particular, 2,000 to 30,000 in terms of polystyrene determined by gel permeation chromatography (GPC). When the weight-average molecular weight is 1,000 or more, glass transition temperature becomes sufficiently high, so that the pattern does not become deformed in heat crosslinking after development of the positive photosensitive resin composition. When the weight-average molecular weight is 500,000 or less, there is no risk of pinhole defects occurring on application, and no risk of layer separation from the alkali-soluble resin in the pattern formed by lithography patterning. Note that it is also possible to blend two or more polymers having different composition ratios, molecular weight distributions, or molecular weights.


In this event, the (crosslinkable) polymer compound (B) is preferably added in an amount of 1 part by mass or more and 50 parts by mass or less relative to 100 parts by mass of the alkali-soluble resin (A). When the added amount is 1 part by mass or more, a cured film with the above-described alkali-soluble resin (A) becomes tough. When the added amount is 50 parts by mass or less, the tensile strength of the cured film does not become degraded. Therefore, the added amount of the (crosslinkable) polymer compound (B) is preferably within the above range. The added amount of the component (B) is more preferably 1 part by mass or more and 35 parts by mass or less, further preferably 1 part by mass or more and 25 parts by mass or less. When the amount is set to this range, the balance between the lithography patterning performance and the physical properties of the cured film becomes excellent.


[(C) Photosensitizer]


The component (C) in the inventive positive photosensitive resin composition is a photosensitizer that generates an acid by light to increase the dissolution speed to an alkaline aqueous solution, and is a compound having a quinonediazide structure. Examples of the component (C) include a compound having a 1,2-naphtoquinone diazide sulfonyl group in a molecule.


Examples of the compound having a 1,2-naphthoquinone diazide sulfonyl group in its molecule include compounds having a 1,2-naphthoquinone diazide sulfonyl group represented by the following general formula (26) or (27) in its molecule.




embedded image


Illustrative examples of a preferable compound into which the 1,2-naphthoquinone diazide sulfonyl group is introduced include trihydroxybenzophenone or tetrahydroxybenzophenone, a ballast molecule shown by the following general formula (28) having a phenolic hydroxy group and a novolak resin having a repeating unit represented by the following formula (33) with a weight-average molecular weight in the range of 2,000 to 20,000, preferably 3,000 to 10,000. That is, those obtained by substituting a hydrogen atom(s) of the phenolic hydroxy group of the following resin or compound which has the phenolic hydroxy group with the 1,2-naphthoquinone diazide sulfonyl group are suitable as the component (C).




embedded image


Here, R101 to R106 each independently represent a hydrogen atom, a methyl group, a group represented by the following formula (29), or a group represented by the following formula (30). “w” is an integer of 0 to 2, and “z” is an integer of 0 to 2. When “z” is 0, “w” is 1 or 2. “A” is represented as follows: when “z” is 0 and “w” is 1, a hydrogen atom, a methyl group, or a group represented by the following formula (29); when “z” is 0 and “w” is 2, one “A” is a methylene group or a group represented by the following formula (31), and the other “A” is a hydrogen atom, a methyl group, or a group represented by the following formula (29); when “z” is 1, “A” is a methylene group or a group represented by the following formula (31); when “z” is 2 and “w” is 1, “A” is a methine group or a group represented by the following formula (32); and when “z” is 2 and “w” is 2, one of the “A” s is a methylene group or a group represented by the following formula (31), and the other is a methine group or a group represented by the following formula (32).




embedded image



In the formulae, b1, b2, b3, b4, b5, b6, and b7 are each an integer of 0 to 3, and satisfy b1+b2≤5, b3+b4≤4, and b6+b7≤3.


In this case, a low nucleus body (ballast molecule) of the formula (28) has 2 to 20 benzene rings, more preferably 2 to 10, and further preferably 3 to 6. In addition, a ratio of the number of the phenolic hydroxy groups to the number of the benzene rings is in the range of 0.5 to 2.5, more preferably 0.7 to 2.0, and further preferably 0.8 to 1.5.


Specific examples of such a low nucleus body (ballast molecule) include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Among the low nucleus bodies (ballast molecules) illustrated above, (C-3), (C-29), (C-33), (C-38) and the like are preferred. Compounds obtained by substituting a hydrogen atom of the phenolic hydroxy group of these ballast molecules with the 1,2-naphthoquinone diazide sulfonyl group are suited for the component (C) of the inventive positive photosensitive resin composition.




embedded image



In the formula, “mm” is an integer of 0 to 3.


The novolak resin having a repeating unit represented by the formula (33) may be synthesized by making condensed aldehydes and the phenols shown by the following formula (34), specifically, at least one kind of phenol such as o-cresol, m-cresol, p-cresol, 3,5-xylenol, and the like according to an ordinary method.




embedded image



In the formula, “mm” is an integer of 0 to 3.


In this case, examples of the aldehydes include formaldehyde, para-formaldehyde, acetaldehyde, benzaldehyde and the like, and the formaldehyde is preferable.


A ratio of the phenols represented by the formula (34) to the aldehydes is preferably 0.2 to 2, particularly preferably 0.3 to 2, by molar ratio.


As a method for introducing the 1,2-naphthoquinone diazide sulfonyl group into a compound into which the 1,2-naphthoquinone diazide sulfonyl group is introduced, it is preferable to perform a dehydrochlorination condensation reaction between the 1,2-naphthoquinone diazide sulfonyl chloride and the phenolic hydroxy group with a basic catalyst. In the case of reacting with the ballast molecule represented by the formula (28), trihydroxybenzophenone or tetrahydroxybenzophenone, a ratio of substituting hydrogen atoms of the phenolic hydroxy group with the 1,2-naphthoquinone diazide sulfonyl group is 10 to 100 mol %, preferably 50 to 100 mol %. In the case of reacting with the novolak resin having a repeating unit represented by the formula (33), a ratio of substituting hydrogen atoms of the phenolic hydroxy group with the 1,2-naphthoquinone diazide sulfonyl group is 2 to 50 mol %, preferably 3 to 27 mol %.


The component (C) is preferably added in an amount of 1 to 60 parts by mass, more preferably 10 to 50 parts by mass relative to 100 parts by mass of the component (A). Furthermore, one kind or two or more kinds of the component (C) in combination may be used.


By blending such a component (C), before exposure, the solubility to the alkaline aqueous solution is suppressed due to the dissolution preventing effect of the component (C), and the system becomes alkali-insoluble; and when exposed, the photosensitizer of the component (C) generates an acid by light, a dissolution speed to the alkaline aqueous solution increases, and the system becomes alkali-soluble.


That is, when an alkaline aqueous solution is used as a developer, an unexposed part is not dissolved in the developer and an exposed part is soluble in the developer. As a result, a positive pattern may be formed.


[(D) Heat Crosslinking Agent]


The inventive positive photosensitive resin composition preferably further contains, in addition to the components (A), (B), and (C) that are essential components, (D) one or more kinds of crosslinking agents selected from an amino condensate modified by formaldehyde or formaldehyde-alcohol; a phenol compound having two or more methylol groups or alkoxymethylol groups by average in one molecule; a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a glycidyl group; a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a substituent represented by the following formula (D-1); and a compound having two or more nitrogen atoms having a glycidyl group represented by the following general formula (D-2).




embedded image



In the formulae, a dotted line represents a bond, Rc represents a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, and “v” represents 1 or 2.


Examples of the amino condensates modified by the formaldehyde or formaldehyde-alcohol include a melamine condensate modified by the formaldehyde or formaldehyde-alcohol, and a urea condensate modified by the formaldehyde or formaldehyde-alcohol.


The melamine condensate modified by the formaldehyde or formaldehyde-alcohol is prepared, for example, in such a manner that, firstly, according to a well-known method, a melamine monomer is modified by methylol reaction with formalin, or this is further modified by alkoxylation with alcohol, thus modified melamine represented by the following general formula (35) is obtained. As the alcohol, a lower alcohol, for example alcohols having 1 to 4 carbon atoms is preferable.




embedded image



In the formula, R31s may be the same or different from each other, and are methylol groups, alkoxymethyl groups containing an alkoxy group having 1 to 4 carbon atoms, or hydrogen atoms, and at least one R31 is a methylol group or the alkoxymethyl group.


Examples of the R3 include a hydrogen atom, a methylol group, and alkoxymethyl groups such as a methoxymethyl group, and an ethoxymethyl group.


Specific examples of the modified melamine represented by the general formula (35) include trimethoxymethylmonomethylol melamine, dimethoxymethylmonomethylol melamine, trimethylol melamine, hexamethylol melamine, and hexamethoxymethylol melamine.


Next, the modified melamine represented by the general formula (35) or its multimer (for example, an oligomer such as a dimer or a trimer) is subjected to addition condensation polymerization with formaldehyde until a desired molecular weight is obtained according to the conventional method to obtain a melamine condensate modified by formaldehyde or formaldehyde-alcohol.


The urea condensate modified by the formaldehyde or formaldehyde-alcohol is prepared, according to, for example, a well-known method, by modifying a urea condensate having a desired molecular weight by methylol reaction with formaldehyde, or by further modifying by alkoxylation with alcohol.


Specific examples of the urea condensate modified by the formaldehyde or formaldehyde-alcohol include a methoxymethylated urea condensate, an ethoxymethylated urea condensate, a propoxymethylated urea condensate, and the like.


One of these modified melamine condensates and modified urea condensates may be used or two or more kinds thereof may be used in mixture.


Next, examples of the phenol compound having two or more methylol groups or alkoxymethylol groups in average in one molecule include (2-hydroxy-5-methyl)-1,3-benzenedimethanol, 2,2′,6,6′-tetramethoxymethylbisphenol A, compounds represented by the following formulae (D-3) to (D-7), and the like.




embedded image


embedded image


One of the crosslinking agents may be used or two or more kinds may be used in combination.


Meanwhile, examples of the compounds in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a glycidyl group include a compound obtained by reaction of the hydroxy group of bisphenol A, tris(4-hydroxyphenyl)methane, and 1,1,1-tris(4-hydroxyphenyl)ethane with epichlorohydrin in the presence of a base. Suitable examples of the compound in which a hydrogen atom of a hydroxy group of a polyhydric phenol is substituted with a glycidyl group include the compounds represented by the following formulae (D-8) to (D-14).




embedded image


embedded image



In the formulae, “t” is 2≤t≤3.


Furthermore, favorable examples of compounds other than those of the formulae (D-8) to (D-14) include Epiclon 850-S, Epiclon HP-4032, Epiclon HP-7200, Epiclon HP-820, Epiclon HP-4700, Epiclon EXA-4710, Epiclon HP-4770, Epiclon EXA-859CRP, Epiclon EXA-4880, Epiclon EXA-4850, Epiclon EXA-4816, Epiclon EXA-4822 (all trade names, manufactured by Dainippon Ink and Chemicals, Inc.), RIKARESIN BPO-20E, RIKARESIN BEO-60E (both trade names, manufactured by New Japan Chemical Co., Ltd.), EP-4003S, EP-4000S, EP-4000S, EP-4000L (all trade names, manufactured by ADEKA CORPORATION), jER828EL, YX7105 (both trade names, manufactured by Mitsubishi Chemical Corporation), and the like.


One kind or two kinds of the compounds obtained by substituting a hydroxy group of the polyhydric phenol with a glycidoxy group (a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a glycidyl group) may be used as a crosslinking agent.


Examples of the compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a substituent represented by the formula (D-1) include ones containing two or more of the substituents and represented by the following formula (D-15).




embedded image



In the formula, 1≤u≤3.


Furthermore, favorable examples of compounds other than those of the formula (D-15) include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene, 3-ethyl-3-(2-ethylhexylmethyl)oxetane, 1,4-benzenedicarboxylic acid-bis[(3-ethyl-3-oxetanyl)methyl]ester, ARON OXETANE Series manufactured by TOAGOSEI CO., LTD., and the like.


Meanwhile, examples of the compound containing two or more nitrogen atoms having a glycidyl group represented by the formulae (D-2) include ones represented by the following formula (D-16).




embedded image



In the formula, W represents a linear, branched or cyclic alkylene group having 2 to 12 carbon atoms, or a divalent aromatic group. The W here is applied only in the above formula.


Examples of the compounds represented by the formula (D-16) include compounds represented by the following formulae (D-17) to (D-20).




embedded image


Meanwhile, as the compound containing two or more nitrogen atoms each of which has a glycidyl group(s) represented by the formula (D-2), a compound represented by the following formulae (D-21) and (D-22) may be suitably used.




embedded image


One kind or two kinds of these compounds containing two or more nitrogen atoms each of which has a glycidyl group(s) represented by the formula (D-2) may be used as a crosslinking agent.


An epoxy group has a great distortion in the ring and has high reactivity, but oxetane has high basicity and is easily bonded with an acid. It is reported that reactivity in cation polymerization is remarkably improved by combining an epoxy group with an oxetanyl group.


The component (D) is a component that causes a crosslinking reaction in the post-curing after forming a pattern of the inventive positive photosensitive resin composition to further increase the strength of a cured product. A weight-average molecular weight of such a component (D) is preferably 150 to 10,000, and particularly preferably 200 to 3,000, from the viewpoint of the photocurability and heat resistance.


In the inventive positive photosensitive resin composition, a blending amount of the component (D) is preferably 0.5 to 100 parts by mass, more preferably 1 to 100 parts by mass, and particularly preferably 1 to 80 parts by mass relative to 100 parts by mass of the component (A).


[(E) Protective Amine Compound]


The inventive positive photosensitive resin composition can further contain, in addition to the components (A), (B), and (C) that are essential components, component (E) a protective amine compound. The component (E) protective amine compound can be any protective amine compound, as long as it is a nitrogen-containing organic compound in which a group that is deprotected by heat or an acid is bonded to a nitrogen atom. In particular, the protective amine compound is not particularly limited as long as it has a carbamate structure represented by the following general formula (36) or (37).




embedded image


Here, in the formula, R32, R33, R34 and R35 each independently represent hydrogen, an alkyl group having 1 to 8 carbon atoms optionally having a substituent, a cycloalkyl group having 3 to 8 carbon atoms optionally having a substituent, an alkoxyl group having 1 to 8 carbon atoms optionally having a substituent, an alkenyl group having 2 to 8 carbon atoms optionally having a substituent, an alkynyl group having 2 to 8 carbon atoms optionally having a substituent, an aryl group optionally having a substituent, or a heterocyclic group optionally having a substituent. R36 and R37 each independently represent hydrogen, an alkyl group having 1 to 8 carbon atoms optionally having a substituent, a cycloalkyl group having 3 to 8 carbon atoms optionally having a substituent, an alkoxyl group having 1 to 8 carbon atoms optionally having a substituent, an alkenyl group having 2 to 8 carbon atoms optionally having a substituent, an alkynyl group having 2 to 8 carbon atoms optionally having a substituent, an aryl group optionally having a substituent, a heterocyclic group optionally having a substituent, a single ring optionally having a substituent formed by bonding with each other, or a polycycle optionally having a substituent formed by bonding with each other. (Here, the total number of carbon atoms in the formula is preferably 10 or less.) R38 represents an alkyl group having 1 to 12 carbon atoms optionally having a substituent, a cycloalkyl group having 3 to 12 carbon atoms optionally having a substituent, an alkenyl group having 2 to 12 carbon atoms optionally having a substituent, an alkynyl group having 2 to 12 carbon atoms optionally having a substituent, an aryl group optionally having, as a substituent, an alkyl group having 1 to 3 carbon atoms, an aralkyl group optionally having, as a substituent, an alkyl group having 1 to 3 carbon atoms, or a heterocyclic group optionally having a substituent. (Here, the total number of carbon atoms constituting R38 is 12 or less.) Any substituent may be used as the substituent that the above groups optionally have.




embedded image


Specific examples of the formulae (36) and (37) include the following: N-(isopropoxycarbonyl)-2,6-dimethylpiperidine, N-(isopropoxycarbonyl)-2,2,6,6-tetramethylpiperidine, N-(isopropoxycarbonyl)diisopropylamine, N-(isopropoxycarbonyl)pyrrolidine, N-(isopropoxycarbonyl)-2,5-dimethylpyrrolidine, N-(isopropoxycarbonyl)-azetidine, N-(1-ethylpropoxycarbonyl)-2,6-dimethylpiperidine, N-(1-ethylpropoxycarbonyl)-2,2,6,6-tetramethylpiperidine, N-(1-ethylpropoxycarbonyl)diisopropylamine, N-(1-ethylpropoxycarbonyl)pyrrolidine, N-(1-ethylpropoxycarbonyl)-2,5-dimethylpyrrolidine, N-(1-ethylpropoxycarbonyl)-azetidine, N-(1-propylbutoxycarbonyl)-2,6-dimethylpiperidine, N-(1-propylbutoxycarbonyl)-2,2,6,6-tetramethylpiperidine, N-(1-propylbutoxycarbonyl)diisopropylamine, N-(1-propylbutoxycarbonyl)pyrrolidine, N-(1-propylbutoxycarbonyl)-2,5-dimethylpyrrolidine, N-(1-propylbutoxycarbonyl)-azetidine, N-(cyclopentoxycarbonyl)-2,6-dimethylpiperidine, N-(cyclopentoxycarbonyl)-2,2,6,6-tetramethylpiperidine, N-(cyclopentoxycarbonyl)diisopropylamine, N-(cyclopentoxycarbonyl)pyrrolidine, N-(cyclopentoxycarbonyl)-2,5-dimethylpyrrolidine, N-(cyclopentoxycarbonyl)-azetidine, N-(cyclohexylcarbonyl)-2,6-dimethylpiperidine, N-(cyclohexylcarbonyl)-2,2,6,6-tetramethylpiperidine, N-(cyclohexylcarbonyl)diisopropylamine, N-(cyclohexylcarbonyl)pyrrolidine, N-(cyclohexylcarbonyl)-2,5-dimethylpyrrolidine, N-(cyclohexylcarbonyl)-azetidine, N-(tert-butoxycarbonyl)-2,6-dimethylpiperidine, N-(tert-butoxycarbonyl)-2,2,6,6-tetramethylpiperidine, N-(tert-butoxycarbonyl)diisopropylamine, N-(tert-butoxycarbonyl)pyrrolidine, N-(tert-butoxycarbonyl)-2,5-dimethylpyrrolidine, N-(tert-butoxycarbonyl)-azetidine, N-(benzyloxycarbonyl)-2,6-dimethylpiperidine, N-(benzyloxycarbonyl)-2,2,6,6-tetramethylpiperidine, N-(benzyloxycarbonyl)diisopropylamine, N-(benzyloxycarbonyl)pyrrolidine, N-(benzyloxycarbonyl)-2,5-dimethylpyrrolidine, N-(benzyloxycarbonyl)-azetidine, 1,4-bis(N,N′-diisopropylaminocarbonyloxy)cyclohexane, imidazole compounds disclosed in JP 5609815 B, and the like.


The protective amine compound according to the present embodiment is particularly preferably decomposed 100% at 200° C. or lower. In this manner, a basic compound can be generated more efficiently to promote imidization of a polyimide precursor or to promote the crosslinking reaction between a heat crosslinking agent and a resin. A base obtained by heating the protective amine compound and other decomposed products preferably have a boiling point of 200° C. or lower under 1 atmosphere (0.1 GPa). This is because the decomposed product can be volatilized in a low-temperature process from during coating when the boiling point is 200° C. or lower. The lower limit of the boiling point of the decomposed product under 1 atmosphere is not particularly limited, but is preferably −150° C. or higher from the viewpoint of synthesizing the protective amine compound simply and conveniently.


When an amine compound is added directly to the inventive positive photosensitive resin composition, there is concern that the component (B) crosslinkable polymer compound or the component (D) heat crosslinking agent and the amine compound react under room temperature and the composition becomes viscous over time so that storage stability becomes degraded. On the other hand, with an amine compound whose basic site is protected by a protecting group, the component (B) and the component (D) do not react under room temperature, in the same manner as when unheated. Therefore, storage stability of the photosensitive resin composition over time can be raised. In addition, since a base is only generated once heated, such an amine compound becomes a catalyst in an imide ring-closing reaction or a crosslinking reaction with the component (A) alkali-soluble resin, so that a crosslinking reaction can be promoted effectively.


One kind of the protective amine compound can be used or a combination of two or more kinds can be used. When 0 to 10 parts by mass of the protective amine compound is to be blended relative to 100 parts by mass of the component (A) alkali-soluble resin, a protective amine compound that is a mixture with the blending amount of 0.01 to 10 parts by mass, in particular, 0.01 to 5 parts by mass is suitable. When the blending amount is 10 parts by mass or less, the alkali-solubility of the composition does not become lowered, so that lithography patterning property does not become degraded.


[(F) Thermal Acid Generator]


The inventive positive photosensitive resin composition may further contain (F) a compound that generates an acid by heat (thermal acid generator). The compound generating an acid by heat of the component (F) may be added to thermally expedite a crosslinking reaction of the component (A) with the component (B) and the component (D) in a step of heating and post-curing at a temperature of 100 to 300° C. performed after the pattern formation.


In particular, as the component (F), a preferable component is one that does not encourage the curing of a film and does not disturb the pattern formation until a pattern is formed by development. In order to realize this, the component (F) is preferably one that, after the photosensitive resin composition is applied, does not generate an acid at a temperature in a step of removing a solvent and drying, but only generates an acid by a heat treatment after pattern formation to encourage the curing of the pattern or a film of the positive photosensitive resin composition. Specifically, a compound that is decomposed by a heat treatment at 100° C. to 300° C., preferably at 150° C. to 300° C. to generate an acid is preferable. By containing such a component (F), crosslinking and curing reaction of the pattern or the film of the positive photosensitive resin composition can be further promoted in the step of heating and post-curing at a temperature of 100 to 300° C. after patterning. The component (F) makes it possible to further improve the mechanical strength, the chemical resistance, the adhesiveness or the like of the obtained pattern or film, by further forwarding the crosslinking and the curing reaction.


As the compound that generates an acid by a suitable heat, compounds described in paragraphs [0061] to [0085] of JP 2007-199653 A may be used.


A blending amount of the compound that generates an acid by heat is preferably 0.1 parts by mass or larger, more preferably 0.5 parts by mass or larger, and preferably 30 parts by mass or smaller, and more preferably 5 parts by mass or smaller relative to 100 parts by mass of the component (A) in the inventive positive photosensitive resin composition. When the contained amount is 0.1 parts by mass or larger, the crosslinking reaction can be promoted. Meanwhile, when the contained amount is 30 parts by mass or smaller, alkali developing properties of the composition are not degraded, so that development residue is not generated.


[(G) Antioxidant]


The inventive positive photosensitive resin composition can further contain a component (G), an antioxidant. Degradation of an aliphatic group or a phenolic hydroxy group of the component (A) by oxidation can be suppressed by the component (G) antioxidant being contained. In addition, by an anticorrosive effect to metal materials, it is possible to suppress oxidation of metal by water from outside, a photo-acid generator, or a thermal acid generator, etc. and accompanying adhesion degradation and delamination.


Specific examples of antioxidants that can be used here include hindered phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants as preferable examples. However, the antioxidant is not limited thereto. Moreover, one of these antioxidants can be used or two or more thereof can be used in combination.


Furthermore, out of the above-described specific examples of antioxidants, examples of the hindered phenol-based antioxidants include pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (Irganox 1010 (trade name), manufactured by BASF Japan Ltd.), thiodiethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (Irganox 1035 (trade name), manufactured by BASF Japan Ltd.), octadecyl[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (Irganox 1076 (trade name), manufactured by BASF Japan Ltd.), octyl-1-3,5-di-tert-butyl-4-hydroxy-hydrocinnamic acid (Irganox 1135 (trade name), manufactured by BASF Japan Ltd.), 4,6-bis(octylthiomethyl-o-cresol) (Irganox 1520L, manufactured by BASF Japan Ltd.), Sumilizer GA80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.), Adekastab AO-20 (trade name, manufactured by ADEKA CORPORATION), Adekastab AO-30 (trade name, manufactured by ADEKA CORPORATION), Adekastab AO-40 (trade name, manufactured by ADEKA CORPORATION), Adekastab AO-50 (trade name, manufactured by ADEKA CORPORATION), Adekastab AO-60 (trade name, manufactured by ADEKA CORPORATION), Adekastab AO-80 (trade name, manufactured by ADEKA CORPORATION), Adekastab AO-330 (trade name, manufactured by ADEKA CORPORATION), hindered phenol-based antioxidants disclosed in WO 2017/188153 A1, and the like.


Furthermore, out of the above-described specific examples of antioxidants, examples of the phosphorus-based antioxidants include triphenyl phosphite, tris(methylphenyl) phosphite, triisooctyl phosphite, tridecyl phosphite, tris(2-ethylhexyl) phosphite, tris(nonylphenyl) phosphite, tris(octylphenyl) phosphite, trisdecylpoly(oxyethylene) phosphite, tris(cyclohexylphenyl) phosphite, tricyclohexyl phosphite, tri(decyl)thio phosphite, triisodecylthio phosphite, phenyl-bis(2-ethylhexyl) phosphite, phenyl-diisodecyl phosphite, tetradecylpoly(oxyethylene)-bis(ethylphenyl) phosphite, phenyl-dicyclohexyl phosphite, phenyl-diisooctyl phosphite, phenyl-di(tridecyl) phosphite, diphenyl-cyclohexyl phosphite, diphenyl-isooctyl phosphite, diphenyl-2-ethylhexyl phosphite, diphenyl-isodecyl phosphite, diphenyl-cyclohexylphenyl phosphite, diphenyl-(tridecyl)thio phosphite, and the like.


Furthermore, out of the above-described specific examples of antioxidants, examples of the sulfur-based antioxidants include Adekastab AO-412S (trade name, manufactured by ADEKA CORPORATION), AO-503S (trade name, manufactured by ADEKA CORPORATION), Sumilizer TP-D (trade name, manufactured by Sumitomo Chemical Co., Ltd.), and the like.


Sulfur-based antioxidants and phosphorus-based antioxidants can be expected to have an effect of decomposing peroxides.


The contained amount of the component (G) antioxidant is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass relative to 100 parts by mass of the component (A) alkali-soluble resin. When the contained amount is 0.1 parts by mass or more, adhesiveness to metal materials is enhanced, while at the same time, delamination is suppressed. Meanwhile, when the contained amount is 10 parts by mass or less, the alkali developing properties of the composition and the toughness of the cured film are not degraded.


[(H) Silane Compound]


The inventive positive photosensitive resin composition can further contain a component (H), a silane compound. When the component (H) silane compound is contained, not only is the adhesiveness to metal materials enhanced, it is also possible to suppress the delamination of the cured film in reliability tests such as a thermal shock test and a high temperature and high humidity test.


A silane compound that can be used here can be any silane compound as long as the silane compound has an alkoxysilyl group. Suitable, specific examples include the following: γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, bis(2-hydroxyethyl)-3-aminopropyl-triethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, triethoxysilylpropylethyl carbamate, 3-(triethoxysilyl)propyl succinic anhydride, phenyltriethoxysilane, phenyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethylbutylidene)propylamine, amide group-containing silane compounds disclosed in JP 6414060 B, thiourea group-containing silane compounds disclosed in WO 2016/140024 A and JP 5987984 B, thiol group-containing silane compounds disclosed in JP 2017-044964 A, and the like. However, the silane compound is not limited thereto. Furthermore, one of these silane compounds can be used or a combination of two or more thereof can be used.


The contained amount of the silane compound (H) is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and further preferably 3 to 6 parts by mass relative to 100 parts by mass of the component (A) alkali-soluble resin. With 0.1 parts by mass or more, more sufficient adhesiveness with a substrate can be provided, and when 20 parts by mass or less, it is possible to further suppress the problem of increasing viscosity or the like when storing at room temperature. Meanwhile, when the contained amount is less than 10 parts by mass, development residue due to the degradation of the alkali developing properties of the composition can be suppressed more certainly.


[Other Components]


In the inventive positive photosensitive resin composition, components other than the components (A), (B), (C), (D), (E), (F), (G), and (H) may be further contained. Examples of such other components include (I) a dissolution inhibitor, (J) a surfactant, (K) a solvent, and the like. The compounds exemplified below or the like can be suitably used. However, the compounds are not limited thereto.


Examples of the dissolution inhibitor (I) include compounds having two or more phenolic hydroxy groups in a molecule, where an average of 0 to 100 mol % of the hydrogen atoms of the phenolic hydroxy groups are substituted with acid-labile groups as a whole; or compounds having a carboxy group in a molecule, where an average of 50 to 100 mol % of the hydrogen atoms of the carboxy groups are substituted with acid-labile groups as a whole. In addition, the compounds have a weight-average molecular weight of 100 to 1,000, preferably 150 to 800.


The degree of substitution of the hydrogen atoms in the phenolic hydroxy groups with the acid-labile groups is, on average, 0 mol % or higher, preferably 30 mol % or higher of all the phenolic hydroxy groups, and the upper limit of the degree is 100 mol %, more preferably 80 mol %. The degree of substitution of the hydrogen atoms in the carboxy groups with the acid-labile group is, on average, 50 mol % or higher, preferably 70 mol % or higher of all the carboxy groups, and the upper limit of the degree is 100 mol %.


In this case, compounds represented by the following formulae (I1) to (I15) are preferable as the compounds having two or more phenolic hydroxy groups or the compounds having a carboxy group.




embedded image


embedded image


In the formulae, R201 and R202 each represent a hydrogen atom or a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms. R203 represents a hydrogen atom or a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms. R204 represents —(CH2)i-(i=2 to 10), an arylene group having 6 to 10 carbon atoms, a carbonyl group, a sulfonyl group, an oxygen atom, or a sulfur atom. R205 represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, a carbonyl group, a sulfonyl group, an oxygen atom, or a sulfur atom. R206 represents a hydrogen atom, a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms, or a phenyl group or a naphthyl group each substituted with a hydroxy group. R208 represents a hydrogen atom or a hydroxy group. “j” is an integer of 0 to 5. “u” and “h” are 0 or 1. “s”, “t”, s″, t′″, “s″”, and “t″” each satisfy s+t=8, s′+t′=5, and s″+t″=4, and are numbers such that there is at least one hydroxy group in each phenyl skeleton. “a” is a number that gives a molecular weight of 100 to 1,000 to the compounds of the formulae (I8) and (I9).


The blending amount of the dissolution inhibitor is 0 to 50 parts by mass, preferably 5 to 50 parts by mass, more preferably 5 to 20 parts by mass relative to 100 parts by mass of the component (A) alkali-soluble resin. One dissolution inhibitor can be used or a mixture of two or more thereof can be used. When the blending amount is 5 parts by mass or more, resolution can be enhanced with more certainty, and when the amount is 50 parts by mass or less, film loss of patterns does not occur, so that high resolution can be achieved.


As the surfactant (J), a nonionic surfactant is preferable. Examples thereof include fluorinated surfactants, specifically, perfluoroalkyl polyoxyethylene ethanol, fluorinated alkyl ester, perfluoroalkylamine oxide, a fluorine-containing organosiloxane compound, a nonfluorinated organosiloxane compound, and the like.


As these surfactants, commercially available ones may be used. Examples thereof include Fluorad FC-4430 (trade name, manufactured by Sumitomo 3M Limited), PF-6320 (trade name, manufactured by OMNOVA Solutions Inc.), PF-636 (trade name, manufactured by OMNOVA Solutions Inc.), Surflon S-141 and S-145 (both trade names, manufactured by ASAHI GLASS CO., LTD.), UNIDYNE DS-401, DS-4031, and DS-451 (all trade names, manufactured by DAIKIN INDUSTRIES, LTD.), Megafac F-8151 (trade name, manufactured by DIC Corporation), X-70-093 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), KP-341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Among these, preferred are Fluorad FC-4430 (trade name, manufactured by Sumitomo 3M Limited), PF-6320 (trade name, manufactured by OMNOVA Solutions Inc.), PF-636 (trade name, manufactured by OMNOVA Solutions Inc.), and X-70-093 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).


The blending amount of the surfactant is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 3 parts by mass relative to 100 parts by mass of the component (A) alkali-soluble resin.


The solvent (K) is not limited as long as it can dissolve the component (A), the component (B), and the component (C). Examples of the solvent include: ketones such as cyclohexanone, cyclopentanone, methyl-2-n-amyl ketone, and the like; alcohols such as 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and the like; ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, and the like; esters such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, tert-butyl acetate, tert-butyl propionate, propylene glycol-mono-tert-butyl ether acetate, γ-butyrolactone, and the like. One or more kinds thereof may be used. In particular, ethyl lactate, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, γ-butyrolactone or a mixed solvent thereof is preferable.


A blending amount of the component (K) is preferably 50 to 2,000 parts by mass, particularly preferably 100 to 1,000 parts by mass relative to 100 parts by mass of the total of the blending amounts of the component (A), the component (B), and the component (C).


[Positive Photosensitive Dry Film]


The inventive positive photosensitive dry film is provided with a supporting film, a top coat film, and between the supporting film and the top coat film, a photosensitive resin film (photosensitive resin layer) obtained from the above-described positive photosensitive resin composition.


The photosensitive dry film (supporting film, top coat film, and photosensitive resin film) is solid, and the photosensitive resin film does not contain a solvent. Therefore, there is no risk of bubbles caused by volatilization of the solvent remaining inside the photosensitive resin film and between the photosensitive resin film and an uneven substrate.


The film thickness of the photosensitive resin film is preferably 5 to 200 μm, more preferably 5 to 100 μm, and further preferably 10 to 100 μm, from the viewpoints of flatness on an uneven substrate, covering of the uneven surface, and a distance between laminated substrates.


The viscosity and the flowability of the photosensitive resin film are closely related. The photosensitive resin film can exhibit suitable flowability at a suitable viscosity range and go deep into narrow spaces, or strengthen the adhesion with a substrate by softening the resin. Accordingly, the viscosity of the photosensitive resin film is preferably 10 to 5,000 Pa·s, more preferably 30 to 2,000 Pa·s, and further preferably 50 to 300 Pa·s at 80 to 120° C. from the viewpoint of the flowability of the photosensitive resin film. In the present invention, the viscosity is a value measured with a rotational viscometer.


When the inventive positive photosensitive dry film has the top coat film delaminated to bring into close contact with an uneven substrate, the photosensitive resin film follows and covers the unevenness, so that high flatness can be achieved. In particular, since the photosensitive resin film has a characteristic of having low viscoelasticity, higher flatness can be achieved. Furthermore, by bringing the photosensitive resin film into close contact with the substrate under vacuum conditions, these spaces can be prevented more effectively.


[Method for Producing Positive Photosensitive Dry Film]


Furthermore, the present invention provides a method for producing a positive photosensitive dry film, including:

    • (1) forming a photosensitive resin layer by continuously coating a supporting film with the above-described positive photosensitive resin composition;
    • (2) continuously drying the photosensitive resin layer; and further
    • (3) laminating a top coat film onto the photosensitive resin layer.


The inventive photosensitive dry film can be produced by coating a supporting film with the above-described positive photosensitive resin composition and drying to form a photosensitive resin film. As an apparatus for producing the photosensitive dry film, a film coater that is generally used for producing an adhesive product may be used. Illustrative examples of the film coater include a comma coater, a comma reverse coater, a multi coater, a die coater, a lip coater, a lip reverse coater, a direct gravure coater, an offset gravure coater, a 3-roll bottom reverse coater, and a 4-roll bottom reverse coater.


The supporting film is rolled out from a roll-out axis of the film coater, and when the supporting film is passing through a coater head of the film coater, the photosensitive resin composition is applied onto the supporting film with a predetermined thickness; and then, the resultant is passed through a hot-air circulating oven at a predetermined temperature for a predetermined period to dry, and a photosensitive resin film can thus be formed on the supporting film. Next, the photosensitive resin film is passed through a laminate roll together with the top coat film that has been rolled out from another roll-out axis of the film coater under a predetermined pressure, thereby bonding the photosensitive resin film on the supporting film to the top coat film. Subsequently, this is rolled up to a roll-up axis of the film coater. Thus, a photosensitive dry film having a top coat film can be produced. In this case, the temperature of the hot-air circulating oven is preferably 25 to 150° C., the period for passing through is preferably 1 to 100 minutes, and the laminate roll pressure is preferably 0.01 to 5 MPa.


The supporting film may be a monolayer film formed from a single film or a multilayer film having a plurality of films being laminated. Examples of the material for the film include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, etc. Among these, polyethylene terephthalate is preferable in view of having appropriate flexibility, mechanical strength, and heat resistance. These films may be variously subjected to, for example, corona treatment and coating treatment with a releasing agent. For this, commercial films may be used. Illustrative examples thereof include Cerapeel WZ (RX) and Cerapeel BX8 (R) (both manufactured by Toray Advanced Film Co., Ltd.), E7302 and E7304 (both manufactured by Toyobo Co., Ltd.), Purex G31 and Purex G71T1 (both manufactured by Teijin DuPont Films Japan Ltd.), and PET38×1-A3, PET38×1-V8, and PET38×1-X08 (all manufactured by Nippa Co., Ltd.).


As the top coat film, the same film as the above-mentioned supporting film can be used, but polyethylene terephthalate and polyethylene are preferable, having appropriate flexibility. For this, commercial films may be used, and illustrative examples thereof include the polyethylene terephthalates that have already been exemplified, and polyethylene such as GF-8 (manufactured by Tamapoly Co., Ltd.) and PE Film 0-Type (manufactured by Nippa Co., Ltd.).


The thicknesses of the supporting film and the top coat film are both preferably 10 to 100 μm, more preferably 10 to 50 μm, in view of stable production of the photosensitive dry film and the rolling habit around a roll axis, so-called curl-prevention.


(Patterning Process)


The present invention provides a patterning process including the following steps.

    • (1) A step of forming a photosensitive material film by coating a substrate with the above-described positive photosensitive resin composition;
    • (2) subsequently, after a heat treatment, a step of exposing the photosensitive material film with a high-energy beam having a wavelength of 190 to 500 nm or an electron beam via a photomask; and
    • (3) after irradiation, a step of developing with a developer of an alkaline aqueous solution.


In the following, a patterning process using the inventive positive photosensitive resin composition will be described.


In the inventive positive photosensitive resin composition, in order to form a pattern, a well-known lithography technology may be adopted and performed. For example, on a silicon wafer, a SiO2 substrate, a SiN substrate, or a substrate on which a pattern such as copper wiring is formed, the positive photosensitive resin composition is applied by a technique of spin-coating (spin-coating method), followed by prebaking under the condition at 80 to 130° C., and for about 50 to 600 seconds to form a photosensitive material film having a thickness of 1 to 50 μm, preferably 1 to 30 μm, and further preferably 1 to 20 μm.


According to the spin-coating method, after dispensing about 5 mL of the positive photosensitive resin composition on such a silicon substrate, the positive photosensitive resin composition may be applied on the substrate by rotating the substrate. At this time, by adjusting the rotation rate, a film thickness of the photosensitive material film on the substrate may be readily adjusted.


Subsequently, by holding a mask for forming a target pattern over the photosensitive material film, a high-energy beam of a wavelength of 190 to 500 nm such as an i-line and a g-line or an electron beam is used for irradiation such that an exposure dose is about 1 to 5,000 mJ/cm2, preferably about 100 to 2,000 mJ/cm2, for example.


After the irradiation, the development is applied. In the inventive positive photosensitive resin composition, an alkaline development using an alkaline aqueous solution may be applied.


Examples of the aqueous alkaline solution that can be favorably used for the alkali development include a 2.38% aqueous tetramethylammonium hydroxide (TMAH) solution. The development may be performed according to an ordinary method such as a spray method and a paddle method, by dipping in the developer, or the like. After that, as needs arise, by performing cleaning, rinsing, drying, and so forth, a resist film having a desired pattern may be obtained.


(Patterning Process Using Positive Photosensitive Dry Film)


The present invention provides a patterning process including the following steps.

    • (1) A step of adhering onto a substrate the photosensitive resin layer which becomes exposed by delaminating the top coat film from the inventive positive photosensitive dry film;
    • (2) subsequently, a step of exposing the photosensitive resin layer to a high-energy beam having a wavelength of 190 to 500 nm or an electron beam via a photomask under the state of intervention of the supporting film or under the state of the supporting film delaminated; and
    • (3) after irradiation, a step of developing with a developer of an alkaline aqueous solution.


In the following, a patterning process using the inventive positive photosensitive dry film will be described.


In step (1), a photosensitive resin film is formed on a substrate by using a photosensitive dry film. Specifically, a photosensitive resin film is formed on a substrate by laminating a photosensitive resin film of a photosensitive dry film on a substrate. Examples of the substrate include those similar to the substrates described in the patterning process using the positive photosensitive resin composition.


When the photosensitive dry film has a top coat film, the top coat film is delaminated from the photosensitive dry film, and then the photosensitive resin film of the photosensitive dry film is laminated onto the substrate. The lamination can be performed using a film laminating apparatus, for example. As the film laminating apparatus, a vacuum laminator is preferred. For example, the top coat film of the photosensitive dry film is delaminated, and the photosensitive resin film thereby exposed is brought into close contact with the substrate on a table at a predetermined temperature by using an adhering roll under a predetermined pressure in a vacuum chamber with a predetermined degree of vacuum. Note that the temperature of the table is preferably 60 to 120° C., the pressure of the adhering roll is preferably 0 to 5.0 MPa, and the degree of vacuum is preferably 50 to 500 Pa.


In order to obtain the photosensitive resin film with a necessary thickness, the films may be laminated multiple times as necessary. For example, about 1 to 10 times of the adhesion can give the photosensitive resin film with the film thickness of about 10 to 1,000 μm, particularly about 100 to 500 km.


If necessary, pre-bake may be carried out in order to enhance the adhesion properties between the photosensitive resin film and the substrate. The pre-bake may be carried out, for example, at 40 to 140° C. for about 1 minute to 1 hour.


Subsequently, by holding a mask for forming a target pattern over the photosensitive resin film, a high-energy beam of a wavelength of 190 to 500 nm such as an i-line and a g-line or an electron beam is used for irradiation such that an exposure dose is about 1 to 5,000 mJ/cm2, preferably about 100 to 2,000 mJ/cm2, for example. Incidentally, the supporting film of the photosensitive dry film is delaminated or removed by other methods before the pre-bake or before the PEB in accordance with the process.


After the irradiation, the photosensitive resin film is developed using a developer to form a pattern in the same manner as the patterning process using the photosensitive resin composition.


(Method for Forming Cured Film)


The film having a pattern obtained by the patterning process may be heated and post-cured with an oven or a hot plate, for example, at a temperature of 100 to 300° C., preferably 150 to 300° C., more preferably 180 to 250° C. to form a cured film. The post-curing temperature of 100 to 300° C. allows the film of the positive photosensitive resin composition to increase the crosslinking density and to remove remaining volatile components. Thus, this temperature range is preferable in view of adhesiveness to a substrate, heat resistance, strength, and electronic characteristics. The time for the post-curing can be 10 minutes to 10 hours.


The formed pattern is used for the purpose of a protective coating for covering wirings, circuits, substrates, and the like. The formed patterns and protective coatings, while having excellent insulation property, exhibit excellent adhesive force on a metal layer such as Cu of wirings and circuits to be covered, on a metal electrode existing on the substrate, or on an insulating substrate such as SiN existing in wirings and circuits to be covered, and make it possible, while having the mechanical strength appropriate as a protective coating, to remarkably improve the resolution performance for enabling a finer pattern formation.


(Cured Film)


The cured film thus obtained is excellent in the adhesiveness to the substrate, heat resistance, electric characteristics, mechanical strength, and chemical resistance to an alkaline release liquid, and the like, and also excellent in reliability of a semiconductor device using the film as a protective coating. In particular, it is possible to prevent occurrence of cracks in the temperature cycle test, and the film can be suitably used as a protective coating (an interlayer insulation film or a surface protective film) for electric and electronic parts, a semiconductor device, and the like.


That is, the present invention provides an interlayer insulation film or a surface protective film made of the cured film obtained by curing the positive photosensitive resin composition or the positive photosensitive dry film.


The above protective coating is useful for an insulator film for a semiconductor device including rewiring use, an insulator film for a multilayer printed substrate, a solder mask, a cover lay film, etc. because of its heat resistance, chemical resistance, and insulating property.


Furthermore, the present invention provides an electronic component having the interlayer insulation film or the surface protective film. Such an electronic component is excellent in reliability because the electronic component has the protective coating (interlayer insulation film or surface protective film) having heat resistance, chemical resistance, and insulation property.


EXAMPLE

Hereinafter, the present invention will be specifically described with reference to Synthesis Examples, Examples, and Comparative Examples. However, the present invention is not limited to the following Examples or the like. Note that the weight-average molecular weight (Mw) indicates a weight-average molecular weight measured by GPC in terms of polystyrene.


I. Synthesis of Alkali-Soluble Resin (A)


In the following Synthesis Examples, chemical structures and names of the used compounds are shown below.




embedded image


[Synthesis Example 1] Synthesis of Polyimide Resin (A1)

Into a 1-L flask provided with a stirrer and a thermometer, 30 g (81.9 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), 0.9 g (8.6 mmol) of 4-aminophenol (PAP) and 125 g of N-methyl-2-pyrrolidone were added, followed by dissolving by stirring at room temperature. Next, under room temperature, a solution in which 26.7 g (86.2 mmol) of 3,3′,4,4′-oxydiphthalic dianhydride (s-ODPA) was dissolved in 270 g of N-methyl-2-pyrrolidone was dropped thereto, followed by stirring for 3 hours under room temperature after dropping. Thereafter, 40 g of xylene was added to the reaction liquid, followed by heating and refluxing for 3 hours while removing water generated at 170° C. outside the system. After cooling to room temperature, the reaction liquid was dropped into 2 L of ultrapure water under stirring, a precipitate was filtered to be washed appropriately with water, followed by drying under reduced pressure at 40° C. for 48 hours. Thus, a polyimide resin (A1) was obtained. A molecular weight of the polymer was measured by GPC. A weight-average molecular weight was 35,000 in terms of polystyrene.


[Synthesis Example 2] Synthesis of Polyimide Resin (A2)

A polyimide resin (A2) was obtained by the same method as Synthesis Example 1, except that the 30 g (81.9 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP) was changed to 21.2 g (81.9 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)propane (BAP). A molecular weight of the polymer was measured by GPC. A weight-average molecular weight was 34,000 in terms of polystyrene.


[Synthesis Example 3] Synthesis of Polyamide-Imide Resin (A3)

Into a 500-ml flask provided with a stirrer and a thermometer, 28.5 g (77.8 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), 0.9 g (8.2 mmol) of 4-aminophenol (PAP), and 118 g of N-methyl-2-pyrrolidone were added, followed by dissolving by stirring at room temperature. Next, under room temperature, a solution in which 19.0 g (61.4 mmol) of 3,3′,4,4′-oxydiphthalic dianhydride (s-ODPA) was dissolved in 192 g of N-methyl-2-pyrrolidone was dropped thereto, followed by stirring for 3 hours under room temperature after dropping. Thereafter, 40 g of xylene was added to the reaction liquid, followed by heating and refluxing for 3 hours while removing water generated at 170° C. outside the system. After cooling to room temperature, 3.2 g (41.0 mmol) of pyridine was added thereto, and 4.9 g (20.5 mmol) of sebacoyl dichloride (DC-1) was dropped thereto so as to keep the temperature to 5° C. or lower. After completion of the dropping, the temperature was returned to room temperature, and the reaction liquid was dropped into 2 L of ultrapure water under stirring. A precipitate was filtered to be washed appropriately with water, followed by drying under reduced pressure at 40° C. for 48 hours. Thus, a polyamide-imide resin (A3) was obtained. A molecular weight of the polymer was measured by GPC. A weight-average molecular weight was 35,000 in terms of polystyrene.


[Synthesis Example 4] Synthesis of Polyamide Resin (A4)

Into a 500-ml flask provided with a stirrer and a thermometer, 28.5 g (77.8 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), 0.9 g (8.2 mmol) of 4-aminophenol (PAP), and 118 g of N-methyl-2-pyrrolidone were added, followed by dissolving by stirring at room temperature. Next, 13.0 g (163.8 mmol) of pyridine was added thereto, and 19.6 g (81.9 mmol) of sebacoyl dichloride (DC-1) was dropped thereto so as to keep the temperature to 5° C. or lower. After completion of the dropping, the temperature was returned to room temperature, and the reaction liquid was dropped into 2 L of ultrapure water under stirring. A precipitate was filtered to be washed appropriately with water, followed by drying under reduced pressure at 40° C. for 48 hours. Thus, a polyamide resin (A4) was obtained. A molecular weight of the polymer was measured by GPC. A weight-average molecular weight was 38,000 in terms of polystyrene.


[Synthesis Example 5] Synthesis of Tetracarboxylic Diester Compound (X-1)

Into a 3-L flask provided with a stirrer and a thermometer, 100 g (322 mmol) of 3,3′,4,4′-oxydiphthalic dianhydride (s-ODPA), 65.2 g (644 mmol) of triethylamine, 39.3 g (322 mmol) of N,N-dimethyl-4-aminopyridine, and 400 g of γ-butyrolactone were added, under stirring at room temperature, 83.8 g (644 mmol) of hydroxyethylmethacrylate (HEMA) was dropped thereto, followed by stirring for 24 hours under room temperature. After that, 370 g of a 10% aqueous solution of hydrochloric acid was dropped under ice cooling to stop the reaction. To the reaction liquid, 800 g of 4-methyl-2-pentanone was added to sample an organic layer, followed by washing 6 times with 600 g of water. A solvent of the obtained organic layer was distilled off and 180 g of a tetracarboxylic diester compound (X-1) was obtained.


[Synthesis Example 6] Synthesis of Polyimide Precursor (A5)

Into a 1-L flask provided with a stirrer and a thermometer, 57.1 g (100 mmol) of (X-1) and 228 g of N-methyl-2-pyrrolidone were added, followed by dissolving by stirring at room temperature. Next, under ice cooling, 24.4 g (205 mmol) of thionyl chloride was dropped thereto so as to keep the reaction solution temperature to 10° C. or lower. After completion of the dropping, the solution was stirred under ice cooling for 2 hours. Subsequently, a solution obtained by dissolving 34.8 g (95 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), 1.1 g (10 mmol) of 4-aminophenol (PAP), and 32.4 g (410 mmol) of pyridine with 144 g of N-methyl-2-pyrrolidone was dropped thereto under ice cooling so as to keep the reaction solution temperature to 10° C. or lower. After completion of the dropping, the temperature was returned to room temperature, and the reaction liquid was dropped into 3 L of water under stirring. A precipitate was filtered to be washed appropriately with water, followed by drying under reduced pressure at 40° C. for 48 hours. Thus, a polyimide precursor (A5) was obtained. A molecular weight of the polymer was measured by GPC. A weight-average molecular weight was 36,000 in terms of polystyrene.


II. Synthesis of Polymer Compound (B)


Synthesis Example

As a crosslinkable polymer compound (polymeric additive), various monomers were combined and copolymerized under a tetrahydrofuran solvent, a crystal was precipitated in hexane, dried, and polymer compounds (polymers B1 to B12 and comparative polymers C1 and C2) of the compositions shown below were obtained. The composition of the obtained polymer compounds was confirmed by 1H-NMR, and the molecular weight of the obtained polymer compounds was confirmed by gel permeation chromatography.


[Synthesis Example 7] Polymer B1





    • Molecular weight (Mw)=10,800







embedded image


[Synthesis Example 8] Polymer B2





    • Molecular weight (Mw)=11,400







embedded image


[Synthesis Example 9] Polymer B3





    • Molecular weight (Mw)=11,000







embedded image


[Synthesis Example 10] Polymer B4





    • Molecular weight (Mw)=10,800







embedded image


[Synthesis Example 11] Polymer B5





    • Molecular weight (Mw)=11,300







embedded image


[Synthesis Example 12] Polymer B6





    • Molecular weight (Mw)=12,000







embedded image


[Synthesis Example 13] Polymer B7





    • Molecular weight (Mw)=10,900







embedded image


[Synthesis Example 14] Polymer B8





    • Molecular weight (Mw)=10,200







embedded image


[Synthesis Example 15] Polymer B9





    • Molecular weight (Mw)=12,300







embedded image


[Synthesis Example 16] Polymer B10





    • Molecular weight (Mw)=11,800







embedded image


[Synthesis Example 17] Polymer B11





    • Molecular weight (Mw)=9,000







embedded image


[Synthesis Example 18] Polymer B12





    • Molecular weight (Mw)=9,300







embedded image


[Synthesis Example 19] Comparative Polymer C1





    • Molecular weight (Mw)=11,900







embedded image


[Synthesis Example 20] Comparative Polymer C2





    • Molecular weight (Mw)=10,600







embedded image


III-1. Preparation of Positive Photosensitive Resin Composition (Examples 1 to 24, Comparative Examples 1 to 3)

Alkali-soluble resins (A1) to (A5) synthesized in the Synthesis Example 1 to Synthesis Example 6 with crosslinkable polymer compounds (B1) to (B12), (C1), and (C2) synthesized in Synthesis Example 7 to Synthesis Example 20 added were used as a base resin, and resin compositions were prepared with the compositions and blending amounts described in Table 1 and Table 2. Thereafter, after stirring, mixing, and dissolving, micro-filtering was applied with a Teflon (registered trade mark) 1.0-μm filter to obtain a positive photosensitive resin composition. In the Tables, PGMEA of a solvent represents propylene glycol monomethyl ether acetate and GBL represents γ-butyrolactone.














TABLE 1











Protective





Photo-sensi-

amine
Thermal acid



Resin
tizer
Crosslinking agent
compound
gener-ator














Component (A)
Component (B)
Component (C)
Component (D)
Component (E)
Component (F)

















Photosensitive resin
A1
B1
PAC-1
CL-1
CL-3
E-1



composition 1
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A2
B1
PAC-1
CL-1
CL-3
E-1



composition 2
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A3
B1
PAC-1
CL-1
CL-3
E-1



composition 3
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A4
B1
PAC-1
CL-1
CL-3
E-1



composition 4
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A5
B1
PAC-1
CL-1
CL-3
E-1



composition 5
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B1
PAC-1
CL-2
CL-3
E-1



composition 6
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B1
PAC-1
CL-2
CL-3
E-1



composition 7
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B1
PAC-1
CL-2
CL-3

F-1


composition 8
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by

1 part by



weight
weight
weight
weight
weight

weight


Photosensitive resin
A1
B1
PAC-1
CL-2
CL-3

F-2


composition 9
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by

1 part by



weight
weight
weight
weight
weight

weight


Photosensitive resin
A1
B2
PAC-1
CL-2
CL-3
E-1



composition 10
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B3
PAC-1
CL-2
CL-3
E-1



composition 11
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B4
PAC-1
CL-2
CL-3
E-1



composition 12
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B5
PAC-1
CL-2
CL-3
E-1



composition 13
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B6
PAC-1
CL-2
CL-3
E-1



composition 14
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B7
PAC-1
CL-2
CL-3
E-1



composition 15
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B8
PAC-1
CL-2
CL-3
E-1



composition 16
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B9
PAC-1
CL-2
CL-3
E-1



composition 17
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B10
PAC-1
CL-2
CL-3
E-1



composition 18
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B11
PAC-1
CL-2
CL-3
E-1



composition 19
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Photosensitive resin
A1
B12
PAC-1
CL-2
CL-3
E-1



composition 20
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by




weight
weight
weight
weight
weight
weight



Comparative
A1
C1
PAC-1
CL-2
CL-3
E-1



photosensitive resin
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by



composition 1
weight
weight
weight
weight
weight
weight



Comparative
A1
C2
PAC-1
CL-2
CL-3
E-1



photosensitive resin
90 parts by
10 parts by
20 parts by
15 parts by
10 parts by
1 part by



composition 2
weight
weight
weight
weight
weight
weight

















Silane
Disso-lution





Anti-oxidant
compound
inhib-itor
Surfac-tant
Solvent



Component (G)
Component (H)
Compo-nent (I)
Component (J)
Component (K)
















Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 1
2 parts by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
GBL



composition 2
2 parts by
1 part by

0.02 parts by
320 parts by




weight
weight

weight
weight



Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 3
2 parts by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 4
2 parts by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 5
2 parts by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 6
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1
I-1
J-1
PGMEA
GBL


composition 7
1 part by
1 part by
5 parts by
0.02 parts by
319 parts by
35.5 parts by



weight
weight
weight
weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 8
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 9
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 10
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 11
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 12
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 13
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 14
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 15
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by


weight
weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 16
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 17
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 18
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 19
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Photosensitive resin
G-1
H-1

J-1
PGMEA
GBL


composition 20
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by



weight
weight

weight
weight
weight


Comparative
G-1
H-1

J-1
PGMEA
GBL


photosensitive resin
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by


composition 1
weight
weight

weight
weight
weight


Comparative
G-1
H-1

J-1
PGMEA
GBL


photosensitive resin
1 part by
1 part by

0.02 parts by
319 parts by
35.5 parts by


composition 2
weight
weight

weight
weight
weight




















TABLE 2











Protective




Photo-

amine



Resin
sensitizer
Crosslinking agent
compound













Component (A)
Component (B)
Component (C)
Component (D)
Component (E)

















Photosensitive resin
A1
B1
PAC-1
CL-1
CL-2
CL-3
E-1


composition 21
45 parts by
10 parts by
20 parts by
15 parts by
15 parts by
10 parts by
1 part by



weight
weight
weight
weight
weight
weight
weight


Photosensitive resin
A1
Bi
PAC-1
CL-2
CL-3

E-1


composition 22
45 parts by
10 parts by
20 parts by
30 parts by
10 parts by

1 part by



weight
weight
weight
weight
weight

weight


Photosensitive resin
A1
B5
PAC-1
CL-2
CL-3

E-1


composition 23
45 parts by
10 parts by
20 parts by
30 parts by
10 parts by

1 part by



weight
weight
weight
weight
weight

weight


Photosensitive resin
A1
B1
PAC-1
CL-2
CL-3




composition 24
45 parts by
10 parts by
20 parts by
30 parts by
10 parts by





weight
weight
weight
weight
weight




Comparative
A1
C1
PAC-1
CL-2
CL-3

E-1


photosensitive resin
45 parts by
10 parts by
20 parts by
30 parts by
10 parts by

1 part by


composition 3
weight
weight
weight
weight
weight

weight

















Thermal








acid

Silane
Dissolution





gener-ator
Anti-oxidant
compound
inhib-itor
Surfac-tant
Solvent



Component (F)
Component (G)
Component (H)
Component (I)
Component (J)
Component (K)

















Photosensitive resin

G-1
H-1

J-1
PGMEA
GBL


composition 21

1 part by
1 part by

0.02 parts by
155 parts by
17 parts by




weight
weight

weight
weight
weight


Photosensitive resin

G-1
H-1

J-1
PGMEA
GBL


composition 22

1 part by
1 part by

0.02 parts by
155 parts by
17 parts by




weight
weight

weight
weight
weight


Photosensitive resin

G-1
H-1

J-1
PGMEA
GBL


composition 23

1 part by
1 part by

0.02 parts by
155 parts by
17 parts by




weight
weight

weight
weight
weight


Photosensitive resin

G-1
H-1

J-1
PGMEA
GBL


composition 24

1 part by
1 part by

0.02 parts by
155 parts by
17 parts by




weight
weight

weight
weight
weight


Comparative

G-1
H-1

J-1
PGMEA
GBL


photosensitive resin

1 part by
1 part by

0.02 parts by
155 parts by
17 parts by


composition 3

weight
weight

weight
weight
weight










III-2. Preparation of Photosensitive Dry Film


By using a comma coater as a film coater and a polyethylene terephthalate film AL-5 (trade name, manufactured by LINTEC Corporation, thickness: 38 μm) as a supporting film, one of the photosensitive resin compositions 21 to 24 and comparative photosensitive resin composition 3 described in Table 2 was applied onto the supporting film. Then, each was passed through a hot-air circulating oven (length: 6 m) set to 55° C. over 4 minutes and dried to form a photosensitive resin film on the supporting film, whereby each photosensitive dry film was obtained. Thereafter, a polyethylene film (thickness: 10 m) was laminated as a top coat film onto the photosensitive resin film by using a laminate roll under pressure of 1 MPa to produce a photosensitive dry film having a top coat film. The film thickness of each photosensitive resin film was set to 14 μm to achieve a finishing film thickness of 10 μm after the post-curing (the film thickness of the photosensitive resin films was measured with an optical interference film thickness gauge).


In Table 1 and Table 2, details of the photosensitizer, being a quinonediazide compound (PAC-1), the crosslinking agents (CL-1), (CL-2), and (CL-3), the protective amine compound (basic compound) (E-1), the thermal acid generators (F-1) and (F-2), the antioxidant (G-1), the silane compound (H-1), the dissolution inhibitor (I-1), and the surfactant (J-1) are as follows.


Photosensitizer (PAC-1)




embedded image



In the formula, Q represents a 1,2-naphthoquinone diazide sulfonyl group represented by the following formula or a hydrogen atom, and 90% of Qs are substituted with the 1,2-naphthoquinone diazide sulfonyl group represented by the following formula.




embedded image



Crosslinking Agent (CL-1)

    • Epoxy resin: EP4000L manufactured by ADEKA CORPORATION


      Crosslinking Agent (CL-2)
    • Epoxy resin: jER828EL manufactured by Mitsubishi Chemical Corporation


      Crosslinking Agent (CL-3)




embedded image



Protective Amine Compound (E-1)




embedded image



Thermal Acid Generator (F-1)




embedded image



Thermal Acid Generator (F-2)




embedded image



Antioxidant (G-1)

    • Hindered phenol-based antioxidant: Sumilizer GA-80 manufactured by Sumitomo Chemical Co., Ltd.


      Silane Compound (H-1)
    • Amino silane coupling agent: KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.


      Dissolution Inhibitor (I-1)




embedded image



Surfactant (J-1)

    • Fluorinated surfactant: PF-6320 manufactured by OMNOVA Solutions Inc.


      IV. Pattern Formation


Using one of the photosensitive resin compositions 1 to 20, the comparative photosensitive resin compositions 1 and 2, and furthermore, the photosensitive dry films formed from the photosensitive resin compositions 21 to 24 and the comparative photosensitive resin composition 3, photosensitive resin films were formed on silicon substrates treated with hexamethylsilazane.


By rotating a substrate after each of the resin solutions of the photosensitive resin compositions 1 to 20 and comparative photosensitive resin compositions 1 and 2 was dispensed by 5 mL on a silicon substrate, that is, by a spin-coating method, the photosensitive resin composition was applied such that a film thickness was 2 μm after patterning and heating for the post-curing. That is, by studying in advance that after the post-curing step, the film thickness decreases, the rotational rate during coating was adjusted such that a finishing film thickness after the post-curing was 2 μm. Note that the prebaking conditions were: on a hot plate at 100° C. for 2 minutes.


Meanwhile, from each photosensitive dry film formed using the photosensitive resin compositions 21 to 24 and the comparative photosensitive resin composition 3, the top coat film was delaminated. The photosensitive resin film on the supporting film was brought into close contact with a silicon substrate by using a vacuum laminator TEAM-100RF manufactured by Takatori Corp. with the vacuum degree in the vacuum chamber set to 80 Pa. The stage temperature condition was set to 110° C. After the pressure was resumed to normal pressure, the supporting film was delaminated, and this was pre-baked at 90° C. for 1 minute with a hot plate in order to improve adhesiveness to the substrate.


After forming the coating, i-line exposure was carried out using an i-line stepper AP300E manufactured by Veeco Instruments Inc. In the pattern formation, a mask for a positive pattern was used. The mask has a pattern which can form a contact hole pattern (hereinafter, noted as via pattern) of 2 μm in lengthwise and breadthwise arrangement of 1:1, and can form a via pattern of 1 m in increments from 10 μm to 2 μm.


Subsequently, a 2.38% aqueous tetramethylammonium hydroxide (TMAH) solution was used as a developer, and a 1-minute paddle development was carried out until the coating film of the exposed part was dissolved. Then, rinsing with ultrapure water was carried out.


Subsequently, the substrate with the pattern was post-cured by using an oven at 180° C. for 2 hours while purging with nitrogen.


Next, in order to observe the shape of the obtained via pattern, each substrate was cut out and the via pattern shape was observed using a scanning electron microscope (SEM). The cross sections of the formed 10-μm, 8-μm, 6-μm, 4-μm, and 2-μm via patterns were observed, and the smallest via pattern having a hole penetrating to the bottom was taken as a limiting resolution. Furthermore, verticality of the pattern was evaluated from the obtained cross-sectional photographs. Together with these results, Table 3 shows the sensitivity and the number of times the development was performed at which the via pattern with the smallest diameter was formed.


The shape of the via pattern was evaluated based on the following criteria, and the evaluation results are shown in Table 3. Verticality of the via pattern with the smallest diameter was evaluated, and a vertical pattern was rated as “Excellent”, a slightly tapered shape as “Good”, a tapered shape as “Poor”, and an opening defect as “Bad”.


V. Rupture Elongation and Tensile Strength


According to the same procedure as the above-described pattern formation, a photosensitive resin film was formed on an aluminum substrate by using the photosensitive resin compositions 1 to 20, the comparative photosensitive resin compositions 1 and 2, and furthermore, the photosensitive dry films formed from the photosensitive resin compositions 21 to 24 and the comparative photosensitive resin composition 3. The resin solutions were each applied by a spin-coating method so that a finishing film thickness after curing was 10 μm. Meanwhile, the photosensitive dry films were each laminated onto an aluminum substrate so that a finishing film thickness after curing was 10 μm. The pre-baking in the spin-coating method was performed at 100° C. for 4 minutes, and lamination of the dry film was carried out under the same conditions as the pattern formation.


Thereafter, curing was performed with an oven at 180° C. for 2 hours while purging with nitrogen to obtain a photosensitive resin cured film. Next, a wafer with a cured film was cut in strips of a width of 10 mm and a length of 60 mm, followed by peeling the cured film from the substrate by dipping in hydrochloric acid of 20 mass %. The obtained cured film was subjected to a measurement of the rupture elongation and tensile strength using an Autograph AGX-1KN manufactured by Shimadzu Corporation. The measurement was performed 10 times per sample, and an average value thereof is shown in Table 3.
















TABLE 3









Number of times









development was

Rupture
Tensile




Smallest via

performed
Sensitivity
elongation
strength




pattern
Pattern shape
(Puddle times)
(mJ/cm2)
(%)
(MPa)






















Example 1
Photosensitive resin
2 um
Good
60 sec × 2
360
40
125



composition 1








Example 2
Photosensitive resin
2 um
Good
60 sec × 2
330
38
123



composition 2








Example 3
Photosensitive resin
2 um
Good
60 sec × 2
400
45
120



composition 3








Example 4
Photosensitive resin
2 um
Good
60 sec × 2
410
48
118



composition 4








Example 5
Photosensitive resin
2 um
Good
60 sec × 2
450
42
115



composition 5








Example 6
Photosensitive resin
2 um
Good
60 sec × 2
440
38
130



composition 6








Example 7
Photosensitive resin
2 um
Good
60 sec × 2
400
38
132



composition 7








Example 8
Photosensitive resin
2 um
Good
60 sec × 2
400
38
128



composition 8








Example 9
Photosensitive resin
2 um
Good
60 sec × 2
400
38
130



composition 9








Example 10
Photosensitive resin
2 um
Good
60 sec × 2
440
35
125



composition 10








Example 11
Photosensitive resin
2 um
Good
60 sec × 2
430
35
126



composition 11








Example 12
Photosensitive resin
2 um
Good
60 sec × 2
440
40
125



composition 12








Example 13
Photosensitive resin
2 um
Good
60 sec × 2
430
45
120



composition 13








Example 14
Photosensitive resin
2 um
Good
60 sec × 2
450
40
127



composition 14








Example 15
Photosensit ve resin
2 um
Good
60 sec × 2
440
38
130



composition 15








Example 16
Photosensitve resin
2 um
Good
60 sec × 2
500
35
135



composition 16








Example 17
Photosensitve resin
2 um
Good
60 sec × 2
420
45
130



composition 17








Example 18
Photosensitve resin
2 um
Good
60 sec × 2
440
45
120



composition 18








Example 19
Photosensitve resin
2 um
Good
60 sec × 2
430
45
128



composition 19








Example 20
Photosensitive resin
2 um
Good
60 sec × 2
440
39
129



composition 20








Example 21
Photosensitive resin
8 um
Excellent
60 sec × 6
1100
50
120



composition 21








Example 22
Photosensitive resin
8 um
Excellent
60 sec × 6
1100
52
123



composition 22








Example 23
Photosensitive resin
8 um
Excellent
60 sec × 6
1200
53
124



composition 23








Example 24
Photosensitive resin
8 um
Excellent
60 sec × 6
900
50
118



composition 24








Comparative
Comparative photosensitive
2 um
Good
60 sec × 6
420
35
100


Example 1
resin composition 1








Comparative
Comparative photosensitive
2 um
Good
60 sec × 6
400
40
95


Example 2
resin composition 2








Comparative
Comparative photosensitive
8 um
Excellent
60 sec × 6
1100
42
104


Example 3
resin composition 3










VI. Adhesion


According to the same procedure as the above-described pattern formation, a photosensitive resin film was formed on a SiN substrate by using the photosensitive resin compositions 1 to 20, and furthermore, the photosensitive dry films formed from the photosensitive resin compositions 21 to 24. The resin solutions were each applied by a spin-coating method so that a finishing film thickness after curing was 5 km. Meanwhile, the photosensitive dry films were each laminated onto a SiN substrate so that a finishing film thickness after curing was 10 μm. After forming a coating film, a 1-cm-square square pattern was i-line exposed to obtain a grid-like pattern on the entire surface of the substrate. The exposure dose was the exposure dose determined in the via pattern evaluation. The pre-baking in the spin-coating method was performed at 100° C. for 4 minutes, and lamination of the dry film was carried out under the same conditions as the pattern formation. Regarding the development, a 1-minute paddle development was performed until the coating film in the exposed parts dissolved over a prescribed number of times.


Subsequently, purging with nitrogen was carried out at 180° C. for 2 hours, and the substrate with the pattern was post-cured. Next, the cured substrate was cut into individual pieces along the 1-cm-square pattern to obtain chips with cured films. An aluminum pin with epoxy resin was made to stand on an obtained chip, this was heated at 150° C. for 1 hour to make the aluminum pin adhere to the chip, and thus, a measurement sample was fabricated. After cooling, adhesive force was measured by using ROMULUS manufactured by Quad Group Inc. according to the method shown in FIG. 1 (hereinafter, noted as the Stud-pull method). As the measurement condition, the measurement was performed at a measurement speed of 20 N/sec. FIG. 1 is an explanatory diagram illustrating the adhesive force measurement method. In FIG. 1, 1 denotes a SiN substrate (a substrate), 2 denotes a cured film, 3 denotes an aluminum pin with adhesive, 4 denotes a support, 5 denotes a grip, and 6 denotes a tensile direction. The obtained value was an average value of ten measurement points. The larger the numerical value, the higher the adhesiveness of the cured film to a SiN substrate. In addition, the adhesive force at the peeling interface of cured film/adhesive is higher than that of substrate/cured film. The obtained numerical values and the peeling interfaces were compared to evaluate the adhesiveness.


Furthermore, as a high temperature and high humidity test, the obtained chip was left to stand under saturation 2 atmospheres at 120° C. in a 100% RH pressure cooker for 168 hours. Subsequently, the adhesive force after the test was evaluated by the Stud-pull method. The results are shown in Table 4 as the adhesive force to a substrate together with the results before the test.













TABLE 4









Adhesive force (MPa)















Before
After
Peeling interface














PCT test
PCT test
Before PCT test
After PCT test















Example 1
Photosensitive resin
65
64
Cured film/adhesive
Cured film/adhesive



composition 1






Example 2
Photosensitive resin
64
64
Cured film/adhesive
Cured film/adhesive



composition 2






Example 3
Photosensitive resin
60
60
Cured film/adhesive
Cured film/adhesive



composition 3






Example 4
Photosensitive resin
64
63
Cured film/adhesive
Cured film/adhesive



composition 4






Example 5
Photosensitive resin
63
62
Cured film/adhesive
Cured film/adhesive



composition 5






Example 6
Photosensitive resin
65
66
Cured film/adhesive
Cured film/adhesive



composition 6






Example 7
Photosensitive resin
63
63
Cured film/adhesive
Cured film/adhesive



composition 7






Example 8
Photosensitive resin
62
62
Cured film/adhesive
Cured film/adhesive



composition 8






Example 9
Photosensitive resin
66
64
Cured film/adhesive
Cured film/adhesive



composition 9






Example 10
Photosensitive resin
67
65
Cured film/adhesive
Cured film/adhesive



composition 10






Example 11
Photosensitive resin
63
62
Cured film/adhesive
Cured film/adhesive



composition 11






Example 12
Photosensitive resin
61
62
Cured film/adhesive
Cured film/adhesive



composition 12






Example 13
Photosensitive resin
60
61
Cured film/adhesive
Cured film/adhesive



composition 13






Example 14
Photosensitive resin
59
60
Cured film/adhesive
Cured film/adhesive



composition 14






Example 15
Photosensitive resin
62
63
Cured film/adhesive
Cured film/adhesive



composition 15






Example 16
Photosensitive resin
63
62
Cured film/adhesive
Cured film/adhesive



composition 16






Example 17
Photosensitive resin
64
62
Cured film/adhesive
Cured film/adhesive



composition 17






Example 18
Photosensitive resin
65
64
Cured film/adhesive
Cured film/adhesive



composition 18






Example 19
Photosensitive resin
66
66
Cured film/adhesive
Cured film/adhesive



composition 19






Example 20
Photosensitive resin
67
67
Cured film/adhesive
Cured film/adhesive



composition 20






Example 21
Photosensitive resin
68
67
Cured film/adhesive
Cured film/adhesive



composition 21






Example 22
Photosensitive resin
62
63
Cured film/adhesive
Cured film/adhesive



composition 22






Example 23
Photosensitive resin
61
61
Cured film/adhesive
Cured film/adhesive



composition 23






Example 24
Photosensitive resin
60
61
Cured film/adhesive
Cured film/adhesive



composition 24









As shown in Table 3, it has been revealed that the inventive positive photosensitive resin compositions and positive photosensitive dry films resolve via patterns with good rectangularity.


In addition, as shown in Table 3 and Table 4, it has been revealed that the inventive positive photosensitive composition and photosensitive dry film can give a cured film having excellent mechanical characteristics and resistance to high temperature and high humidity even when cured at a low temperature of 200° C. or lower. In particular, Examples 1 to 24 showed higher values than Comparative Examples 1 to 3 regarding tensile strength.


From the above results, the following results have been achieved: the compositions of Examples 1 to 24 show excellent resolution that can resolve fine patterns and show sufficient properties as photosensitive materials; at the same time, the cured films thereof have substrate adhesiveness and excellent resistance to high temperature and high humidity even when cured at low temperatures, and are useful as top coats for circuits and electronic components.


It should be noted that the present invention is not limited to the above-described embodiments. The embodiments are just examples, and any examples that have substantially the same feature and demonstrate the same functions and effects as those in the technical concept disclosed in claims of the present invention are included in the technical scope of the present invention.

Claims
  • 1. A positive photosensitive resin composition comprising: (A) an alkali-soluble resin containing at least one structure selected from a polyimide structure, a polyamide structure, a polybenzoxazole structure, a polyamide-imide structure, and a precursor structure thereof;(B) a polymer compound having a structural unit formed by cyclopolymerization; and(C) a compound having a quinonediazide structure for serving as a photosensitizer to generate an acid by light and increase a dissolution speed to an alkaline aqueous solution, whereinthe structural unit formed by cyclopolymerization in the component (B) is at least one structural unit represented by the following general formula (1), the following general formula (2), the following general formula (3), and the following general formula (4),
  • 2. The positive photosensitive resin composition according to claim 1, wherein the component (B) is a crosslinking alkali-soluble polymer compound further containing a structural unit represented by the following general formula (6),
  • 3. The positive photosensitive resin composition according to claim 1, wherein the component (B) is a crosslinking alkali-soluble polymer compound further containing a structural unit represented by the following general formula (7),
  • 4. The positive photosensitive resin composition according to claim 1, wherein the component (B) is a crosslinking alkali-soluble polymer compound containing the structural units represented by the following general formula (3), the following general formula (5), the following general formula (6), and the following general formula (7),
  • 5. The positive photosensitive resin composition according to claim 1, containing 1 to 50 parts by mass of the component (B) relative to 100 parts by mass of the component (A).
  • 6. The positive photosensitive resin composition according to claim 1, further comprising (D) a heat crosslinking agent.
  • 7. The positive photosensitive resin composition according to claim 6, wherein the component (D) contains one or more kinds of crosslinking agents selected from an amino condensate modified by formaldehyde or formaldehyde-alcohol; a phenol compound having two or more methylol groups or alkoxymethylol groups by average in one molecule; a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a glycidyl group; a compound in which a hydrogen atom of a hydroxy group of polyhydric phenol is substituted with a substituent represented by the following formula (D-1); and a compound containing two or more nitrogen atoms having a glycidyl group represented by the following formula (D-2),
  • 8. The positive photosensitive resin composition according to claim 6, containing 1 to 100 parts by mass of the component (D) relative to 100 parts by mass of the component (A).
  • 9. The positive photosensitive resin composition according to claim 1, further comprising one or more of (E) a protective amine compound, (F) a thermal acid generator, (G) an antioxidant, and (H) a silane compound.
  • 10. A patterning process comprising: (1) forming a photosensitive material film by coating a substrate with the positive photosensitive resin composition according to claim 1;(2) subsequently, after a heat treatment, exposing the photosensitive material film with a high-energy beam having a wavelength of 190 to 500 nm or an electron beam via a photomask; and(3) after irradiation, developing with a developer of an alkaline aqueous solution.
  • 11. A positive photosensitive dry film, which has a photosensitive resin layer having a film thickness of 5 to 100 μm, the photosensitive resin layer being sandwiched between a supporting film and a top coat film, wherein the photosensitive resin layer is formed using the positive photosensitive resin composition according to claim 1.
  • 12. A method for producing a positive photosensitive dry film, comprising: (1) forming a photosensitive resin layer by continuously coating a supporting film with the positive photosensitive resin composition according to claim 1;(2) continuously drying the photosensitive resin layer; and further(3) laminating a top coat film onto the photosensitive resin layer.
  • 13. A patterning process comprising: (1) adhering onto a substrate the photosensitive resin layer which becomes exposed by delaminating the top coat film from the positive photosensitive dry film according to claim 11;(2) exposing the photosensitive resin layer to a high-energy beam having a wavelength of 190 to 500 nm or an electron beam via a photomask under the state of intervention of the supporting film or under the state of the supporting film delaminated; and(3) after irradiation, developing with a developer of an alkaline aqueous solution.
  • 14. A method for forming a cured film comprising: heating and post-curing a film on which a pattern is formed by the patterning process according to claim 10 at a temperature of 100 to 300° C.
  • 15. An interlayer insulation film being a cured film by curing the positive photosensitive resin composition according to claim 1.
  • 16. A surface protective film being a cured film by curing the positive photosensitive resin composition according to claim 1.
  • 17. An electronic component having the interlayer insulation film according to claim 15.
  • 18. An electronic component having the surface protective film according to claim 16.
Priority Claims (1)
Number Date Country Kind
2021-49195 Mar 2021 JP national
US Referenced Citations (19)
Number Name Date Kind
4857435 Hopf et al. Aug 1989 A
5059513 Hopf et al. Oct 1991 A
10175577 Tahara et al. Jan 2019 B2
20030194644 Hatakeyama et al. Oct 2003 A1
20030194645 Harada et al. Oct 2003 A1
20060079658 Kato et al. Apr 2006 A1
20060246377 Yamato et al. Nov 2006 A1
20070020555 Matsumura et al. Jan 2007 A1
20120052441 Sagehashi et al. Mar 2012 A1
20120129103 Ohsawa May 2012 A1
20170045818 Karasawa et al. Feb 2017 A1
20170298186 Takemura et al. Oct 2017 A1
20180031970 Arimoto et al. Feb 2018 A1
20180305552 Matsumura et al. Oct 2018 A1
20180342386 Onishi et al. Nov 2018 A1
20190169211 Urano et al. Jun 2019 A1
20190241716 Komori et al. Aug 2019 A1
20200041903 Takemura et al. Feb 2020 A1
20210284839 Komori et al. Sep 2021 A1
Foreign Referenced Citations (53)
Number Date Country
1 772 468 Apr 2007 EP
3 235 803 Oct 2017 EP
S60-115932 Jun 1985 JP
H02-60941 Mar 1990 JP
H02-99537 Apr 1990 JP
H02-115238 Apr 1990 JP
H11-100378 Apr 1999 JP
2001310937 Nov 2001 JP
2003-055362 Feb 2003 JP
2003-231860 Aug 2003 JP
2005-008847 Jan 2005 JP
2005-018012 Jan 2005 JP
2005-146038 Jun 2005 JP
2005-290052 Oct 2005 JP
2006-199790 Aug 2006 JP
3824286 Sep 2006 JP
2006-273748 Oct 2006 JP
2006-313237 Nov 2006 JP
2006-348252 Dec 2006 JP
2007-199653 Aug 2007 JP
2008-24920 Feb 2008 JP
2010-174195 Aug 2010 JP
4530284 Aug 2010 JP
5609815 Oct 2014 JP
2015-102612 Jun 2015 JP
2015-129791 Jul 2015 JP
2015-200819 Nov 2015 JP
5884837 Mar 2016 JP
2016079371 May 2016 JP
5987984 Sep 2016 JP
2017-044964 Mar 2017 JP
6315204 Apr 2018 JP
6414060 Oct 2018 JP
2019-045622 Mar 2019 JP
2019-099516 Jun 2019 JP
6601628 Nov 2019 JP
2020-023666 Feb 2020 JP
2020-064148 Apr 2020 JP
6694230 May 2020 JP
2020-170103 Oct 2020 JP
2002-0048511 Jun 2002 KR
10-1807630 Jul 2016 KR
10-2019-0080865 Jul 2019 KR
2004074242 Sep 2004 WO
WO-2014038576 Mar 2014 WO
2016140024 Sep 2016 WO
2016158150 Oct 2016 WO
2017170032 Oct 2017 WO
2017188153 Nov 2017 WO
WO-2018084149 May 2018 WO
WO-2019026549 Feb 2019 WO
2020202691 Oct 2020 WO
2021006315 Jan 2021 WO
Non-Patent Literature Citations (15)
Entry
https://www.honshuchemical.co.jp/en/products/search/91-04-3.html (Year: 2023).
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3495524.htm (Year: 2023).
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3258080.htm (Year: 2023).
Sep. 15, 2022 Extended Search Report issued in European Patent Application No. 22159695.0.
Sep. 2, 2022 Extended Search Report issued in European Patent Application No. 22159629.9.
Yu, Douglas, “A New Integration Technology Platform: Integrated Fan-Out Wafer-Level-Packaging for Mobile Applications”, Symposium on VLSI Technology Digest of Technical Papers, (2015), T46-47.
Kurita, Yoichiro et al., “Fan-Out Wafer-Level Packaging with Highly Flexible Design Capabilities”, Proceedings of Electronic System-integration Technology Conference, (2010), pp. 1-6.
Braun, T. et al, “Large Area Compression Molding for Fan-out Panel Level Packing”, Electronic Components & Technology Conference, (2015), pp. 1077-1083.
U.S. Appl. No. 17/674,120, filed Feb. 17, 2022 in the name of Iio et al.
Jul. 20, 2023 Office Action issued in U.S. Appl. No. 17/674,120.
Jan. 24, 2024 U.S. Office Action issued in U.S. Appl. No. 17/674,120.
Jan. 23, 2024 Office Action issued in Japanese Application No. 2021-049195.
Mar. 4, 2024 Office Action issued in Korean Application No. 10-2022-0031738.
Jan. 8, 2024 Office Action issued in Korean Application No. 10-2022-0031760.
Nov. 12, 2024 Office Action issued in Japanese Patent Application No. 2022-014785.
Related Publications (1)
Number Date Country
20220315676 A1 Oct 2022 US