a illustrates an example embodiment of a standard quad flat package (QFP) having an incorporated quad flat nonleaded package (QFN) and flip chip semiconductor die;
b illustrates a lead having a first level downset lead extension;
c illustrates a lead having first and second level downset lead extensions;
a illustrates a second example embodiment of a QFP having an additional semiconductor die attached on a top surface of the QFN package;
b illustrates a first lead type which is compatible with the embodiment shown in
c illustrates a second lead type which is compatible with the embodiment shown in
d illustrates a third lead type which is compatible with the embodiment shown in
a illustrates a third example embodiment of a QFP having two integrated QFN packages;
b illustrates a first lead type which is compatible with the embodiment shown in
c illustrates a second lead type which is compatible with the embodiment shown in
a illustrates a fifth example embodiment of a QFP having an integrated QFN package and a wirebonded semiconductor die attached to a top surface of the QFN package;
b illustrates a sixth example embodiment of a QFP having an integrated QFN package and a wirebonded semiconductor die attached to a bottom surface of the QFN package; and
c illustrates a seventh example embodiment of a QFP having an integrated QFN package and a wirebonded semiconductor die attached to a top and bottom surface of the QFN package.
The present invention is described in one or more embodiments in the following description with reference to the Figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
A semiconductor package can be manufactured which takes into account a stacked-die arrangement and serves to alleviate many of the problems previously described, while providing increasingly smaller sizes. The package can be manufactured more easily and with greater efficiency than previous packages, resulting in a package with lower overall manufacturing cost.
The semiconductor packages described below reduce incidences of upper die cracking during wire bonding of the upper die, which provides additional freedom in the design and location of various sized dies in semiconductor packages having stacked dies. Additionally, the packages alleviate problems associated with heat dissipation in semiconductor packages having multiple dies, which allows more dies to be placed in a given semiconductor package.
The semiconductor packages described serve to reduce the amount of adhesive material used when multiple dies are stacked, resulting in a reduction in the amount of moisture that can be absorbed into the package. Finally, the reliability of semiconductor packages having stacked dies is increased by use of the following designs and methods of manufacture.
Turning to
An encapsulant 22 is formed over QFN 18, die 20, and at least a portion of the first and second level downset extensions 14, 16 to provide structural support, resulting in the completed QFP 10. The manufacturing techniques involving encapsulant 22 can include those generally known in the art and selected for a particular application.
Downset leads 14, 16 incorporated into QFP 10 can perform a variety of functions, including serving to control the overall stack height positioning inside the QFP 10, and to control the position of the QFN 18 and die 20 in place, particularly during the attachment process, by limiting the movement of QFNs 18 and dies 20.
Turning to
QFN 18 can consist of any package variation known in the art. QFN 18 can include either an exposed or non-exposed wire bond pad. Example QFN packages include flip chip quad flat nonleaded packages (fcQFN) and/or wirebonded QFNs in a single or stacked die arrangement, bump chip carriers (BCCs), punch singulated QFNs (LFCSP), and SON packages. QFN 18 can be attached using any conductive adhesive material, such as solder paste, solder or epoxy.
The foregoing semiconductor package 10 can be fabricated by a method comprising the steps of: preparing a leadframe 12 having downset extensions 14, 16, preparing a QFN package 18 and flip chip semiconductor die 20, attaching the QFN 18 and die 20 to the extensions 14, 16 to electrically interconnect the QFN 18 and die 20 to the leadframe 12, and finally, forming an encapsulant 22 to encapsulate the package 10 including the QFN 18, die 20 and at least a portion of the downset extensions 14, 16 to provide structural support.
Turning to
Die 28 can be attached by any adhesive material (tape or epoxy). Additionally, the adhesive material can be either a conductive or non-conductive material. Three types of lead structures can be used in the package 10 as depicted.
Turning to
a depicts a fifth example embodiment of a QFP 10. In the depicted example, QFP 10 includes a standard QFP package 10 having a QFN 18 attached on top of the downsetted lead extensions 14. A wirebondable semiconductor die 28 is attached on top of the QFN 18. The die 28 is then wire bonded using wire 30 between leads 12 and wire bond pad 34 to provide electrical connectivity. Here, as before, the first level downset lead extension 14 provides for limited movement of the QFN package 18 and/or die 28 during the attachment process for better position control along the horizontal axis. Additionally, the use of extension 14 allows control over the overall stack height position inside the QFP 10.
b illustrates a sixth example embodiment of a QFP 10. Again, package 10 is a standard QFP 10 having an integrated QFN 18 package attached on top of the downsetted lead extensions 14. A wirebondable semiconductor die 28 is attached on the bottom of the QFN 18 package. The die 28 is then wirebonded to the leads 12 using wires 38.
c illustrates a seventh example embodiment of a QFP 10. Package 10 again consists of a standard QFP 10 having an integrated QFN 18 package which is attached on top of the downsetted lead extensions 14. Two semiconductor dies 28 are attached on a top and a bottom surface of QFN 18. The bottom die 28 is attached to leads 12 using wires 38. The top die 28 is attached to leads 12 using wires 40.
The use of package 10 as described involves new stacking concepts suitable for a QFP package. As the cost of leaded packages is much lower than the costs associated with an array package, the use of package 10 is less expensive, yet the needs for higher functionality and device density of new generation packages are not compromised.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.