The present invention relates to a RF (radio frequency) power supply, in particular to a RF power supply with a precise power detector.
A RF power supply is a device for generating RF power signals, and is a core component of the semiconductor process equipment. All the equipments that generate plasma for processing material need the RF power supply to provide energy. Process manufacturing equipments of integrated circuits, solar cells and LEDs (Light Emitting Diodes), such as etcher, PVD (Physical Vapor Deposition) equipment, PECVD (Plasma Enhanced Chemical Vapor Deposition) equipment, ALD (Atomic layer deposition) equipment and so on are equipped with the RF power supplies with different power specifications.
A RF power supply is generally composed of a RF signal generator, a RF power amplifying circuit, power supplying lines and a RF power detector. Currently, the integrated circuit manufacturing industry develops toward a goal of making a linewidth thinner. In the manufacturing process, the linewidth is changed from 90 nm, 65 nm, 45 nm, to the latest 32 nm. This brings higher requirements to the output power of the RF power supply. That is to say, the fluctuation range of the output power should be small enough. As to the output power control of the RF power supply, it is essential whether the detection of the RF power is accurate.
It is impossible for an existing RF power detector to achieve the consistency of the accuracy of the RF power detection since the detecting circuit of the existing RF power detector has a big dead-band, and a small dynamic range. That is to say, since there are large errors during the detection of small RF power, it is uncertain whether the process equipment can process a wafer with a smaller linewidth. As to the 32 nm manufacturing process, if the existing technology is used, it is impossible to achieve a thin linewidth, and thus an expected pattern, this finally results a failure of the manufacturing process.
The technical problem to be solved by the present invention is to provide a RF power source having a precise power detector, which can achieve high precise RF power detection with a wide detection range, good consistency of accuracy, and a small dead-band.
In order to solve above-mentioned technical problem, the present invention provides a RF power supply with a precise power detector, the RF power supply comprises a RF signal generator, a RF power amplifying circuit, power supplying lines, and a precise power detector. The precise power detector comprises a voltage mutual inductor, a current mutual inductor, a precise detecting module and a microcontroller integrated with an analog-digital converter and a micro-processing unit, wherein the voltage mutual inductor and the current mutual inductor are respectively connected to the precise detecting module. The precise detecting module comprises an add circuit, a subtraction circuit, a rectification circuit and a filtering-amplifying circuit, wherein the adding circuit performs an addition on the signals from the voltage mutual inductor and the current mutual inductor, and the subtraction circuit performs a subtraction on the signals from the voltage mutual inductor and the current mutual inductor, the add circuit and the subtraction circuit are respectively connected to the rectification circuit, the rectification circuit is connected to the filtering-amplifying circuit, the filtering-amplifying circuit is connected to the microcontroller.
Furthermore, the present invention has the following characteristics: the precise detecting module further comprises a multi-way switch, an input terminal of which is respectively connected to an output terminal of the add circuit and an output terminal of the subtraction circuit, the multi-way switch transfers an output signal of the add circuit and an output signal of the subtraction circuit to the rectifying circuit according to an instruction of the microcontroller.
Furthermore, the present invention has the following characteristics: the rectification circuit comprises a rectifying operational amplifier and detecting diodes, an anode of one detecting diode is connected to an inverting input terminal of the rectifying operational amplifier, and a cathode of the detecting diode is connected to an output terminal of the rectifying operational amplifier, another detecting diode is disposed between the output terminal of the rectifying operational amplifier and an input terminal of the filtering-amplifying circuit.
Furthermore, the present invention has the following characteristics: the voltage level of a non-inverting input terminal of the rectifying operational amplifier is less than 0.01 volt.
Furthermore, the present invention has the following characteristics: the detecting diodes are Schottky diodes with low break-over voltage.
Furthermore, the present invention has the following characteristics: the rectifying operational amplifier is a high-speed operational amplifier with a bandwidth greater than 1 GHz.
Furthermore, the present invention has the following characteristics: the filtering-amplifier circuit is a first-order filtering-amplifier circuit composed of operational amplifiers, resistors, and capacitors.
Furthermore, the present invention has the following characteristics: the filtering-amplifier circuit is a second-order filtering-amplifier circuit composed of operational amplifiers, resistors, and capacitors.
Furthermore, the present invention has the following characteristics: the resistances of an input resistor of the rectifying operational amplifier, a feedback resistor connected between the inverting input terminal and the output terminal of the rectifying operational amplifier, and a resistor of the filtering-amplifier circuit are configured according to the gain and the input range of the precise detecting module.
Furthermore, the present invention has the following characteristics: the work frequency of the RF power supply is 2 MHz, 13.56 MHz or 27.12 MHz.
By comparing with the prior art, the present invention has following advantages:
Hereinafter, the present invention will be described in detail with respect to the appended figures and the specific embodiments for deep comprehension. The present invention provides a RF power supply with a precise power detector. Generally, the RF power supply may be a valve-type RF power supply or a transistor-type RF power supply, and comprises a RF signal generator, a RF power amplifying circuit, power supplying lines, and a precise power detector. Furthermore, the present RF power supply further comprises a main controller and a human-machine interface, etc. The RF signal generator is respectively connected to the RF power amplifying circuit, the power supplying lines, and the main controller. The RF power amplifying circuit is respectively connected to the power supplying lines, the precise power detector, and the main controller. The main controller is respectively connected to the power supplying lines and the precise power detector. The work frequency of the RF power supply may be 2 MHz, 13.56 MHz or 27.12 MHz.
As shown in
As shown in
As shown in
It is shown in
The detecting diodes D1, D2 may be Schottky diodes with low break-over voltage, preferably IN5711 model diodes. The rectifying operational amplifier is a high-speed operational amplifier with a bandwidth greater than 1 GHz, preferably a high-speed operational amplifier OPA657 with 1.6 GHz bandwidth made of Texas Instruments. The dynamic characteristics of the detecting diodes D1, D2 are associated with the rectifying operational amplifier U1, and have an IV curve crossing zero, a large detecting range, a small dead-band, a large detecting dynamic range, and good consistency of accuracy.
The non-inverting input terminal of the rectifying operational amplifier U1 is provided with resistors R1 and R2 joined in the form of dividing voltage, wherein the resistance of the resistor R1 is at least 1000 times more than the resistance of the resistor R2 so as to ensure that the voltage level of the non-inverting input terminal of the rectifying operational amplifier is less than 0.01 volt, i.e., almost zero level.
The inverting input terminal of the rectifying operational amplifier U1 is provided with a resistor R3. The resistance of the resistor R3 is preferably 50 ohm, which is conducive to the impedance matching of RF signals. This is because the characteristic impedance of each of RF transmission lines used in semiconductor equipments is 50 ohm. A feedback resistor R6 is provided between the inverting input terminal and the output terminal of the rectifying operational amplifier U1. The resistance of the feedback resistor R6 is determined according to the gain and the input range of the precise detecting module. A resistor R7 is provided between the output terminal of the rectifying operational amplifier U1 and the anode of the detecting diode D2.
The filtering-amplifying circuit is mainly composed of operational amplifiers, resistors, and capacitors. The non-inverting terminal of an operational amplifier U2 is connected to an input resistor R9 and a capacitor C1. The other terminal of the resistor R9 is respectively connected to an output terminal of rectifying circuit (i.e., the cathode of the detecting diode D2) and a ground resistor R8. The capacitor C1 is connected to the ground. Resistors R10, R11 is provided between the inverting input terminal and the output terminal of the operational amplifier U2. The resistances of these resistors may be determined according to the gain and the input range of the precise detecting module. From this, a first-order filtering-amplifier circuit is formed, and finally an analog signal representing incident power or reflected power, which can be processed by the microprocessor, is output.
It is shown in
It is shown in
The preferred embodiment further describes the objects, technical scheme and beneficial effects of the present invention in detail. It should be understood that the foregoing description is only intended to illustrate a specific embodiment of the invention and not to limit the invention. Any modification, equivalent replacement and improvement made to the embodiment without departing from the spirit and principles of the invention should fall within the protection scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0389185 | Nov 2011 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/082209 | 9/27/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/078909 | 6/6/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4041395 | Hill | Aug 1977 | A |
5287555 | Wilson et al. | Feb 1994 | A |
5543689 | Ohta et al. | Aug 1996 | A |
5770922 | Gerrish et al. | Jun 1998 | A |
6449568 | Gerrish | Sep 2002 | B1 |
20040150386 | Gonzalez et al. | Aug 2004 | A1 |
20040181718 | Long | Sep 2004 | A1 |
20060220573 | Kotani et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
101529551 | Sep 2009 | CN |
101933225 | Dec 2010 | CN |
102255606 | Nov 2011 | CN |
Entry |
---|
Richard A Scholl Forward and reflected power. What do they mean? http://www.advanced-energy.com/upload/File/White—Papers/SL-WHITE7-270-01.pdf Oct. 2006. |
Dragos Ducu (Op amp rectifiers, Peak detector and clamps), Microchip Technology Inc. Feb. 8, 2011 http://ww1.microchip.com/downloads/en/AppNotes/01353A.pdf. |
Chen, Wai-Kai. (2009). Circuits and Filters Handbook (3rd Edition)—Passive, Active, and Digital Filters. Taylor & Francis. Online version available at: http://app.knovel.com/hotlink/toc/id:kpCFHEPAD2/circuits-filters-handbook/circuits-filters-handbook. |
International Search Report issued in PCT/CN2012/082209 mailed Dec. 13 2012. |
Number | Date | Country | |
---|---|---|---|
20140334209 A1 | Nov 2014 | US |