FIELD OF INVENTION
The invention pertains to the field of RNA interference (RNAi). The invention more specifically relates to nucleic acid molecules with improved in vivo delivery properties without the use of a delivering agent and their use in efficient gene silencing.
BACKGROUND OF INVENTION
Complementary oligonucleotide sequences are promising therapeutic agents and useful research tools in elucidating gene functions. However, prior art oligonucleotide molecules suffer from several problems that may impede their clinical development, and frequently make it difficult to achieve intended efficient inhibition of gene expression (including protein synthesis) using such compositions in vivo.
A major problem has been the delivery of these compounds to cells and tissues. Conventional double-stranded RNAi compounds, 19-29 bases long, form a highly negatively-charged rigid helix of approximately 1.5 by 10-15 nm in size. This rod type molecule cannot get through the cell-membrane and as a result has very limited efficacy both in vitro and in vivo. As a result, all conventional RNAi compounds require some kind of a delivery vehicle to promote their tissue distribution and cellular uptake. This is considered to be a major limitation of the RNAi technology.
There have been previous attempts to apply chemical modifications to oligonucleotides to improve their cellular uptake properties. One such modification was the attachment of a cholesterol molecule to the oligonucleotide. A first report on this approach was by Letsinger et al., in 1989. Subsequently, ISIS Pharmaceuticals, Inc. (Carlsbad, Calif.) reported on more advanced techniques in attaching the cholesterol molecule to the oligonucleotide (Manoharan, 1992).
With the discovery of siRNAs in the late nineties, similar types of modifications were attempted on these molecules to enhance their delivery profiles. Cholesterol molecules conjugated to slightly modified (Soutschek, 2004) and heavily modified (Wolfrum, 2007) siRNAs appeared in the literature. Yamada et al., 2008 also reported on the use of advanced linker chemistries which further improved cholesterol mediated uptake of siRNAs. In spite of all this effort, the uptake of these types of compounds appears to be inhibited in the presence of biological fluids resulting in highly limited efficacy in gene silencing in vivo, limiting the applicability of these compounds in a clinical setting.
Therefore, it would be of great benefit to improve upon the prior art oligonucleotides by designing oligonucleotides that have improved delivery properties in vivo and are clinically meaningful.
SUMMARY OF INVENTION
Described herein are asymmetric chemically modified nucleic acid molecules with minimal double stranded regions, and the use of such molecules in gene expression modulation. RNAi molecules associated with the invention contain single stranded regions and double stranded regions, and can contain a variety of chemical modifications within both the single stranded and double stranded regions of the molecule. Additionally, the RNAi molecules can be attached to a hydrophobic conjugate such as a conventional and advanced sterol-type molecule. This new class of RNAi molecules has superior efficacy both in vitro and in vivo than previously described RNAi molecules.
Aspects of the invention relate to an isolated nucleic acid molecule having a guide strand of 18-23 nucleotides in length that has complementarity to a miRNA sequence and a passenger strand of 8-16 nucleotides in length. The guide strand and the passenger strand form the nucleic acid molecule such that the nucleic acid has a double stranded region and a single stranded region, wherein the single stranded region is the 3′ end of the guide strand and is 2-13 nucleotides in length and comprises at least two phosphorothioate modifications. At least 50% of the pyrimidines in the nucleic acid molecule are modified.
In some embodiments the nucleotide in position one of the guide strand has a 2′-O-methyl modification. For example, the nucleotide in position one of the guide strand may be a 5P-2′O-methyl U.
In other embodiments, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% of the pyrimidines in the nucleic acid molecule are modified. 100% of the pyrimidines in the nucleic acid molecule are modified in other embodiments. The modified pyrimidines may be, for instance, 2′fluoro or 2′O methyl modified.
In some embodiments at least one U or C includes a hydrophobic modification. In other embodiments a plurality of U's and/or C's include a hydrophobic modification. The hydrophobic modification may be, for instance, a methyl or ethyl hydrophobic base modification.
The guide strand may include a number of phosphate backbone modifications, such as phosphorothioate modifications. The guide strand contains 6-8 phosphorothioate modifications in some embodiments. In other embodiments the 3′ terminal 10 nucleotides of the guide strand include at least eight phosphorothioate modifications. In yet other embodiments the guide strand includes 4-14 phosphate modifications. These modifications may be on the single stranded region, the double stranded region or both.
The nucleic acid molecule includes a single stranded and a double stranded region. The single stranded region of the guide strand, in some embodiments, is 6 nucleotides long. In other embodiments the single stranded region of the guide strand is 8 nucleotides long. The double stranded region may be 12-14 or 13 nucleotides long in other embodiments.
Optionally, the double stranded nucleic acid molecule has one end that is blunt or includes a one nucleotide overhang.
The passenger strand is linked at the 3′ end to a lipophilic group according to some embodiments. The lipophilic group may be a sterol, such as cholesterol.
The isolated double stranded nucleic acid molecule in some embodiments is an miRNA mimic. The miRNA sequence to which the guide strand is complementary in the miRNA mimic is a miRNA recognition element. In some embodiments the miRNA mimic is a mimic of an miRNA selected from the group consisting of miR21, miR 139, miR 7, miR29, miR 122, miR 302-367 cluster, miR 221, miR-96, miR 126, miR 225 and miR 206.
In other embodiments the isolated double stranded nucleic acid molecule is an miRNA inhibitor. The miRNA sequence to which the guide strand is complementary in the miRNA inhibitor is an antisense strand of a mature miRNA. In some embodiments the guide strand is at least 50% chemically modified. In other embodiments the mature miRNA is miR 17-92.
According to aspects of the invention, a method for modulating miRNA-mediated gene expression in a mammalian cell is provided. The method involves contacting the mammalian cell with an isolated double stranded nucleic acid molecule described herein in an effective amount to modulate miRNA-mediated gene expression. In some embodiments miRNA-mediated gene expression in the mammalian cell is reduced. In other embodiments miRNA-mediated gene expression in the mammalian cell is increased. The mammalian cell may contacted with the isolated nucleic acid in vivo, ex vivo, or in vitro.
The invention also involves in other aspects a method for modulating miRNA-mediated gene expression in a stem cell. The method involves contacting the stem cell with an isolated double stranded nucleic acid molecule described herein in an effective amount to modulate miRNA-mediated gene expression in the stem cell. The methods are useful for example in promoting or inhibiting stem cell differentiation, tissue remodeling, organ preservation etc.
Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention. This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
BRIEF DESCRIPTION OF DRAWINGS
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
FIGS. 1A-1D are a schematic depicting proposed structures of asymmetric double stranded RNA molecules (adsRNA). Bold lines represent sequences carrying modification patterns compatible with RISC loading. Striped lines represent polynucleotides carrying modifications compatible with passenger strands. Plain lines represent a single stranded polynucleotide with modification patterns optimized for cell interaction and uptake. FIG. 1A depicts adsRNA with extended guide or passenger strands; FIG. 1B depicts adsRNA with length variations of a cell penetrating polynucleotide; FIG. 1C depicts adsRNA with 3′ and 5′ conjugates; FIG. 1D depicts adsRNAs with mismatches.
FIG. 2 is a schematic depicting asymmetric dsRNA molecules with different chemical modification patterns. Several examples of chemical modifications that might be used to increase hydrophobicity are shown including 4-pyridyl, 2-pyridyl, isobutyl and indolyl based position 5 uridine modifications.
FIG. 3 is a schematic depicting the use of dsRNA binding domains, protamine (or other Arg rich peptides), spermidine or similar chemical structures to block duplex charge to facilitate cellular entry.
FIG. 4 is a schematic depicting positively charged chemicals that might be used for polynucleotide charge blockage.
FIG. 5 is a schematic depicting examples of structural and chemical compositions of single stranded RISC entering polynucleotides. The combination of one or more modifications including 2′d, 2′Ome, 2′F, hydrophobic and phosphorothioate modifications can be used to optimize single strand entry into the RISC.
FIG. 6 is a schematic depicting examples of structural and chemical composition of RISC substrate inhibitors. Combinations of one or more chemical modifications can be used to mediate efficient uptake and efficient binding to preloaded RISC complex.
FIGS. 7A-7D are a schematic depicting structures of polynucleotides with sterol type molecules attached, where R represent a polycarbonic tail of 9 carbons or longer. FIG. 7A depicts an adsRNA molecule; FIG. 7B depicts an siRNA molecule of approximately 17-30 bp long; FIG. 7C depicts a RISC entering strand; FIG. 7D depicts a substrate analog strand. Chemical modification patterns, as depicted in FIGS. 7A-7D, can be optimized to promote desired function.
FIG. 8 is a schematic depicting examples of naturally occurring phytosterols with a polycarbon chain that is longer than 8, attached at position 17. More than 250 different types of phytosterols are known.
FIG. 9 is a schematic depicting examples of sterol-like structures, with variations in the size of the polycarbon chains attached at position 17.
FIG. 10 presents schematics and graphs demonstrating that the percentage of liver uptake and plasma clearance of lipid emulsions containing sterol type molecules is directly affected by the size of the polycarbon chain attached at position 17. This figure is adapted from Martins et al, Journal of Lipid Research (1998).
FIGS. 11A-11C are a schematic depicting micelle formation. FIG. 11A depicts a polynucleotide with a hydrophobic conjugate; FIG. 11B depicts linoleic acid; FIG. 11C depicts a micelle formed from a mixture of polynucleotides containing hydrophobic conjugates combined with fatty acids.
FIG. 12 is a schematic depicting how alteration in lipid composition can affect pharmacokinetic behavior and tissue distribution of hydrophobically modified and/or hydrophobically conjugated polynucleotides. In particular, use of lipid mixtures enriched in linoleic acid and cardiolipin results in preferential uptake by cardiomyocites.
FIG. 13 is a schematic showing examples of RNAi constructs and controls used to target MAP4K4 expression. RNAi construct 12083 corresponds to SEQ ID NOs:597 and 598. RNAi construct 12089 corresponds to SEQ ID NO:599.
FIG. 14 is a graph showing MAP4K4 expression following transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 12083 (Nicked), 12085 (13 nt Duplex), 12089 (No Stem Pairing) and 12134 (13 nt miniRNA). Results of transfection were compared to an untransfected control sample. RNAi construct 12083 corresponds to SEQ ID NOs:597 and 598. RNAi construct 12085 corresponds to SEQ ID NOs:600 and 601. RNAi construct 12089 corresponds to SEQ ID NO:599. RNAi construct 12134 corresponds to SEQ ID NOs:602 and 603.
FIG. 15 is a graph showing expression of MAP4K4 24 hours post-transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 11546 (MAP4K4 rxRNA), 12083 (MAP4K4 Nicked Construct), 12134 (12 bp soloRNA) and 12241 (14/3/14 soloRNA). Results of transfection were compared to a filler control sample. RNAi construct 11546 corresponds to SEQ ID NOs:604 and 605. RNAi construct 12083 corresponds to SEQ ID NOs:597 and 598. RNAi construct 12134 corresponds to SEQ ID NOs:602 and 603. RNAi construct 12241 corresponds to SEQ ID NOs:606 and 607.
FIG. 16 presents a graph and several tables comparing parameters associated with silencing of MAP4K4 expression following transfection with RNAi constructs associated with the invention. The rxRNA construct corresponds to SEQ ID NOs:604 and 605. The 14-3-14 soloRNA construct corresponds to SEQ ID NOs:606 and 607. The 13/19 duplex (nicked construct) corresponds to SEQ ID NOs:597 and 598. The 12-bp soloRNA construct corresponds to SEQ ID NOs:602 and 603.
FIG. 17 is a schematic showing examples of RNAi constructs and controls used to target SOD1 expression. The 12084 RNAi construct corresponds to SEQ ID NOs:612 and 613.
FIG. 18 is a graph showing SOD1 expression following transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 12084 (Nicked), 12086 (13 nt Duplex), 12090 (No Stem Pairing) and 12035 (13 nt MiniRNA). Results of transfection were compared to an untransfected control sample. The 12084 RNAi construct corresponds to SEQ ID NOs:612 and 613. The 12086 RNAi construct corresponds to SEQ ID NOs:608 and 609. The 12035 RNAi construct corresponds to SEQ ID NOs:610 and 611.
FIG. 19 is a graph showing expression of SOD1 24 hours post-transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 10015 (SOD1 rxRNA) and 12084 (SOD1 Nicked Construct). Results of transfection were compared to a filler control sample. The 10015 RNAi construct corresponds to SEQ ID NOs:614 and 615. The 12084 RNAi construct corresponds to SEQ ID NOs:612 and 613.
FIG. 20 is a schematic indicating that RNA molecules with double stranded regions that are less than 10 nucleotides are not cleaved by Dicer.
FIG. 21 is a schematic revealing a hypothetical RNAi model for RNA induced gene silencing.
FIG. 22 is a graph showing chemical optimization of asymmetric RNAi compounds. The presence of chemical modifications, in particular 2′F UC, phosphorothioate modifications on the guide strand, and complete CU 2′OMe modification of the passenger strands results in development of functional compounds. Silencing of MAP4K4 following lipid-mediated transfection is shown using RNAi molecules with specific modifications. RNAi molecules tested had sense strands that were 13 nucleotides long and contained the following modifications: unmodified; C and U 2′OMe; C and U 2′OMe and 3′ Chl; rxRNA 2′OMe pattern; or full 2′OMe, except base 1. Additionally, the guide (anti-sense) strands of the RNAi molecules tested contained the following modifications: unmodified; unmodified with 5′P; C and U 2′F; C and U 2′F with 8 PS 3′ end; and unmodified (17 nt length). Results for rxRNA 12/10 Duplex and negative controls are also shown.
FIG. 23 demonstrates that the chemical modifications described herein significantly increase in vitro efficacy in un-assisted delivery of RNAi molecules in HeLa cells. The structure and sequence of the compounds were not altered; only the chemical modification patterns of the molecules were modified. Compounds lacking 2′F, 2′O-me, phosphorothioate modification, or cholesterol conjugates were completely inactive in passive uptake. A combination of all 4 of these types of modifications produced the highest levels of activity (compound 12386).
FIG. 24 is a graph showing MAP4K4 expression in Hela cells following passive uptake transfection of: NT Accell modified siRNA, MAP4K4 Accell siRNA, Non-Chl nanoRNA (12379) and sd-nanoRNA (12386).
FIG. 25 is a graph showing expression of MAP4K4 in HeLa cells following passive uptake transfection of various concentrations of RNA molecules containing the following parameters: Nano Lead with no 3′Chl; Nano Lead; Accell MAP4K4; 21mer GS with 8 PS tail; 21mer GS with 12 PS tail; and 25mer GS with 12 PS tail.
FIG. 26 is a graph demonstrating that reduction in oligonucleotide content increases the efficacy of unassisted uptake. Similar chemical modifications were applied to asymmetric compounds, traditional siRNA compounds and 25 mer RNAi compounds. The asymmetric small compounds demonstrated the most significant efficacy.
FIGS. 27A and 27B are graphs demonstrating the importance of phosphorothioate content for un-assisted delivery. FIG. 27A demonstrates the results of a systematic screen that revealed that the presence of at least 2-12 phosphorothioates in the guide strand significantly improves uptake; in some embodiments, 4-8 phosphorothioate modifications were found to be preferred. FIG. 27B reveals that the presence or absence of phosphorothioate modifications in the sense strand did not alter efficacy.
FIG. 28 is a graph showing expression of MAP4K4 in primary mouse hepatocytes following passive uptake transfection of: Accell Media-Ctrl-UTC; MM APOB Alnylam; Active APOB Alnylam; nanoRNA without chl; nanoRNA MAP4K4; Mouse MAP4K4 Accell Smartpool; DY547 Accell Control; Luc Ctrl rxRNA with Dy547; MAP4K4 rxRNA with DY547; and AS Strand Alone (nano).
FIG. 29 is a graph showing expression of ApoB in mouse primary hepatocytes following passive uptake transfection of: Accell Media-Ctrl-UTC; MM APOB Alnylam; Active APOB Alnylam; nanoRNA without chl; nanoRNA MAP4K4; Mouse MAP4K4 Accell Smartpool; DY547 Accell Control; Luc Ctrl rxRNA with Dy547; MAP4K4 rxRNA with DY547; and AS Strand Alone (nano).
FIG. 30 is a graph showing expression of MAP4K4 in primary human hepatocytes following passive uptake transfection of: 11550 MAP4K4 rxRNA; 12544 MM MAP4K4 nanoRNA; 12539 Active MAP4K4 nanoRNA; Accell Media; and UTC.
FIG. 31 is a graph showing ApoB expression in primary human hepatoctyes following passive uptake transfection of: 12505 Active ApoB chol-siRNA; 12506 MM ApoB chol-siRNA; Accell Media; and UTC.
FIG. 32 is an image depicting localization of sd-rxRNAnano localization.
FIG. 33 is an image depicting localization of Chol-siRNA (Alnylam).
FIG. 34 is a schematic of 1st generation (G1) sd-rxRNAnano molecules associated with the invention indicating regions that are targeted for modification, and functions associated with different regions of the molecules.
FIG. 35 depicts modification patterns that were screened for optimization of sd-rxRNAnano (G1). The modifications that were screened included, on the guide strand, lengths of 19, 21 and 25 nucleotides, phosphorothioate modifications of 0-18 nucleotides, and replacement of 2′F modifications with 2′OMe, 5 Methyl C and/or ribo Thymidine modifications. Modifications on the sense strand that were screened included nucleotide lengths of 11, 13 and 19 nucleotides, phosphorothiote modifications of 0-4 nucleotides and 2′OMe modifications.
FIG. 36 is a schematic depicting modifications of sd-rxRNAnano that were screened for optimization.
FIG. 37 is a graph showing percent MAP4K4 expression in Hek293 cells following transfection of: Risc Free siRNA; rxRNA; Nano (unmodified); GS alone; Nano Lead (no Chl); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 19 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 21 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 21 nt); and Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 25 nt);
FIG. 38 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: GS alone; Nano Lead; Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 19 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 21 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 21 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 25 nt).
FIG. 39 is a graph showing percent MAP4K4 expression in Hek293 cells following lipid mediated transfection of: Guide Strand alone (GS: 8PS, 19 nt); Guide Strand alone (GS: 18PS, 19 nt); Nano (GS: no PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).
FIG. 40 is a graph showing percent MAP4K4 expression in Hek293 cells following lipid mediated transfection of: Guide Strand alone (GS: 8PS, 19 nt); Guide Strand alone (GS: 18PS, 19 nt); Nano (GS: no PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).
FIG. 41 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Nano Lead (no Chl); Guide Strand alone (18 PS); Nano (GS: 0 PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).
FIG. 42 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Nano Lead (no Chl); Guide Strand alone (18 PS); Nano (GS: 0 PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).
FIG. 43 is a schematic depicting guide strand chemical modifications that were screened for optimization.
FIG. 44 is a graph showing percent MAP4K4 expression in Hek293 cells following reverse transfection of: RISC free siRNA; GS only (2′F C and Us); GS only (2′OMe C and Us); Nano Lead (2′F C and Us); nano (GS: (3) 2′OMe, positions 16-18); nano (GS: (3) 2′OMe, positions 16, 17 and 19); nano (GS: (4) 2′OMe, positions 11, 16-18); nano (GS: (10) 2′OMe,C and Us); nano (GS: (6) 2′OMe, positions 1 and 5-9); nano (GS: (3) 2′OMe, positions 1, 18 and 19); and nano (GS: (5) 2′OMe Cs).
FIG. 45 is a graph demonstrating efficacy of various chemical modification patterns. In particular, 2-OMe modification in positions 1 and 11-18 was well tolerated. 2′OMe modifications in the seed area resulted in a slight reduction of efficacy (but were still highly efficient). Ribo-modifications in the seed were well tolerated. This data enabled the generation of self delivering compounds with reduced or no 2′F modifications. This is significant because 2′F modifications may be associated with toxicity in vivo.
FIG. 46 is a schematic depicting sense strand modifications.
FIG. 47 is a graph demonstrating sense strand length optimization. A sense strand length between 10-15 bases was found to be optimal in this assay. Increasing sense strand length resulted in a reduction of passive uptake of these compounds but may be tolerated for other compounds. Sense strands containing LNA modification demonstrated similar efficacy to non-LNA containing compounds. In some embodiments, the addition of LNA or other thermodynamically stabilizing compounds can be beneficial, resulting in converting non-functional sequences into functional sequences.
FIG. 48 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Guide Strand Alone (2′F C and U); Nano Lead; Nano Lead (No Chl); Nano (SS: 11 nt 2′OMe C and Us, Chl); Nano (SS: lint, complete 2′OMe, Chl); Nano (SS: 19 nt, 2′OMe C and Us, Chl); Nano (SS: 19 nt, 2′OMe C and Us, no Chl).
FIG. 49 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Nano Lead (No Chl); Nano (SS no PS); Nano Lead (SS:2 PS); Nano (SS:4 PS).
FIG. 50 is a schematic depicting a sd-rxRNAnano second generation (GII) lead molecule.
FIG. 51 presents a graph indicating EC50 values for MAP4K4 silencing in the presence of sd-rxRNA, and images depicting localization of DY547-labeled rxRNAori and DY547-labeled sd-rxRNA.
FIG. 52 is a graph showing percent MAP4K4 expression in HeLa cells in the presence of optimized sd-rxRNA molecules.
FIG. 53 is a graph depicting the relevance of chemistry content in optimization of sd-rxRNA efficacy.
FIG. 54 presents schematics of sterol-type molecules and a graph revealing that sd-rxRNA compounds are fully functional with a variety of linker chemistries. GII asymmetric compounds were synthesized with sterol type molecules attached through TEG and amino caproic acid linkers. Both linkers showed identical potency. This functionality independent of linker chemistry indicates a significant difference between the molecules described herein and previously described molecules, and offers significant advantages for the molecules described herein in terms of scale up and synthesis.
FIG. 55 demonstrates the stability of chemically modified sd-rxRNA compounds in human serum in comparison to non modified RNA. The oligonucleotides were incubated in 75% serum at 37° C. for the number of hours indicated. The level of degradation was determined by running the samples on non-denaturing gels and staining with SYBGR.
FIG. 56 is a graph depicting optimization of cellular uptake of sd-rxRNA through minimizing oligonucleotide content.
FIG. 57 is a graph showing percent MAP4K4 expression after spontaneous cellular uptake of sd-rxRNA in mouse PEC-derived macrophages, and phase and fluorescent images showing localization of sd-rxRNA.
FIG. 58 is a graph showing percent MAP4K4 expression after spontaneous cellular uptake of sd-rxRNA (targeting) and sd-rxRNA (mismatch) in mouse primary hepatocytes, and phase and fluorescent images showing localization of sd-rxRNA.
FIG. 59 presents images depicting localization of DY547-labeled sd-rxRNA delivered to RPE cells with no formulation.
FIG. 60 is a graph showing silencing of MAP4K4 expression in RPE cells treated with sd-rxRNAnano without formulation.
FIG. 61 presents a graph and schematics of RNAi compounds showing the chemical/structural composition of highly effective sd-rxRNA compounds. Highly effective compounds were found to have the following characteristics: anti sense strands of 17-21 nucleotides, sense strands of 10-15 nucleotides, single-stranded regions that contained 2-12 phosphorothioate modifications, preferentially 6-8 phosphorothioate modifications, and sense strands in which the majority of nucleotides were 2′OMe modified, with or without phosphorothioate modification. Any linker chemistry can be used to attach these molecules to hydrophobic moieties such as cholesterol at the 3′ end of the sense strand. Version GIIa-b of these RNA compounds demonstrate that elimination of 2′F content has no impact on efficacy.
FIG. 62 presents a graph and schematics of RNAi compounds demonstrating the superior performance of sd-rxRNA compounds compared to compounds published by Wolfrum et. al. Nature Biotech, 2007. Both generation I and II compounds (GI and GIIa) developed herein show great efficacy. By contrast, when the chemistry described in Wolfrum et al. (all oligos contain cholesterol conjugated to the 3′ end of the sense strand) was applied to the same sequence in a context of conventional siRNA (19 bp duplex with two overhang) the compound was practically inactive. These data emphasize the significance of the combination of chemical modifications and asymmetrical molecules described herein, producing highly effective RNA compounds.
FIG. 63 presents images showing that sd-rxRNA accumulates inside cells while other less effective conjugate RNAs accumulate on the surface of cells.
FIG. 64 presents images showing that sd-rxRNA molecules, but not other molecules, are internalized into cells within minutes.
FIGS. 65A-65F present images demonstrating that sd-rxRNA compounds have drastically better cellular and tissue uptake characteristics when compared to conventional cholesterol conjugated siRNAs (such as those published by Soucheck et al). FIG. 65A-65B compare uptake in RPE cells, FIG. 65C-65D compare uptake upon local administration to skin and FIG. 65E-65F compare uptake by the liver upon systemic administration. The level of uptake is at least an order of magnitude higher for the sd-rxRNA compounds relative to the regular siRNA-cholesterol compounds.
FIG. 66 presents images depicting localization of rxRNAori and sd-rxRNA following local delivery.
FIG. 67 presents images depicting localization of sd-rxRNA and other conjugate RNAs following local delivery.
FIG. 68 presents a graph revealing the results of a screen performed with sd-rxRNAGII chemistry to identify functional compounds targeting the SPP1 gene. Multiple effective compounds were identified, with 14131 being the most effective. The compounds were added to A-549 cells and the level of the ratio of SPP 1/PPM was determined by B-DNA after 48 hours.
FIG. 69 presents a graph and several images demonstrating efficient cellular uptake of sd-rxRNA within minutes of exposure. This is a unique characteristics of the sd-rxRNA compounds described herein, not observed with any other RNAi compounds. The Soutschek et al. compound was used as a negative control.
FIG. 70 presents a graph and several images demonstrating efficient uptake and silencing of sd-rxRNA compounds in multiple cell types with multiple sequences. In each case silencing was confirmed by looking at target gene expression using a Branched DNA assay.
FIG. 71 presents a graph revealing that sd-rxRNA is active in the presence and absence of serum. A slight reduction in efficacy (2-5 fold) was observed in the presence of serum. This minimal reduction in efficacy in the presence of serum differentiates the sd-rxRNA compounds described herein from previously described RNAi compounds, which had a greater reduction in efficacy, and thus creates a foundation for in vivo efficacy of the sd-rxRNA molecules described herein.
FIG. 72 presents images demonstrating efficient tissue penetration and cellular uptake upon single intradermal injection of sd-rxRNA compounds described herein. This represents a model for local delivery of sd-rxRNA compounds as well as an effective demonstration of delivery of sd-rxRNA compounds and silencing of genes in dermatological applications.
FIG. 73 presents images and a graph demonstrating efficient cellular uptake and in vivo silencing with sd-rxRNA following intradermal injection.
FIG. 74 presents graphs demonstrating that sd-rxRNA compounds have improved blood clearance and induce effective gene silencing in vivo in the liver upon systemic administration.
FIG. 75 presents a graph demonstrating that the presence of 5-Methyl C in an RNAi compound resulted in an increase in potency of lipid mediated transfection, demonstrating that hydrophobic modification of Cs and Us in the content of RNAi compounds can be beneficial. In some embodiments, these types of modifications can be used in the context of 2′ ribose modified bases to insure optimal stability and efficacy.
FIG. 76 presents a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Guide strand alone; Nano Lead; Nano Lead (No cholesterol); Guide Strand w/5MeC and 2′F Us Alone; Nano Lead w/GS 5MeC and 2′F Us; Nano Lead w/GS riboT and 5 Methyl Cs; and Nano Lead w/Guide dT and 5 Methyl Cs.
FIG. 77 presents images comparing localization of sd-rxRNA and other RNA conjugates following systemic delivery to the liver.
FIG. 78A presents schematics demonstrating 5-uridyl modifications with improved hydrophobicity characteristics. Incorporation of such modifications into sd-rxRNA compounds can increase cellular and tissue uptake properties. FIG. 78B presents a new type of RNAi compound modification which can be applied to compounds to improve cellular uptake and pharmacokinetic behavior. This type of modification, when applied to sd-rxRNA compounds, may contribute to making such compounds orally available.
FIG. 79 presents schematics revealing the structures of synthesized modified sterol type molecules, where the length and structure of the C17 attached tail is modified. Without wishing to be bound by any theory, the length of the C17 attached tail may contribute to improving in vitro and in vivo efficacy of sd-rxRNA compounds.
FIG. 80 presents a schematic demonstrating the lithocholic acid route to long side chain cholesterols.
FIG. 81 presents a schematic demonstrating a route to 5-uridyl phosphoramidite synthesis.
FIG. 82 presents a schematic demonstrating synthesis of tri-functional hydroxyprolinol linker for 3′-cholesterol attachment.
FIG. 83 presents a schematic demonstrating synthesis of solid support for the manufacture of a shorter asymmetric RNAi compound strand.
FIG. 84 demonstrates SPPI sd-rxRNA compound selection. Sd-rxRNA compounds targeting SPP1 were added to A549 cells (using passive transfection) and the level of SPP1 expression was evaluated after 48 hours. Several novel compounds effective in SPP1 silencing were identified, the most potent of which was compound 14131.
FIG. 85 demonstrates independent validation of sd-rxRNA compounds 14116, 14121, 14131, 14134, 14139, 14149, and 14152 efficacy in SPP1 silencing.
FIG. 86 demonstrates results of sd-rxRNA compound screens to identify sd-rxRNA compounds functional in CTGF knockdown.
FIG. 87 demonstrates results of sd-rxRNA compound screens to identify sd-rxRNA functional in CTGF knockdown.
FIG. 88 demonstrates a systematic screen identifying the minimal length of the asymmetric compounds. The passenger strand of 10-19 bases was hybridized to a guide strand of 17-25 bases. In this assay, compounds with duplex regions as short as 10 bases were found to be effective in inducing.
FIG. 89 demonstrates that positioning of the sense strand relative to the guide strand is critical for RNAi Activity. In this assay, a blunt end was found to be optimal, a 3′ overhang was tolerated, and a 5′ overhang resulted in complete loss of functionality.
FIG. 90 demonstrates that the guide strand, which has homology to the target only at nucleotides 2-17, resulted in effective RNAi when hybridized with sense strands of different lengths. The compounds were introduced into HeLa cells via lipid mediated transfection.
FIG. 91 is a schematic depicting a panel of sterol-type molecules which can be used as a hydrophobic entity in place of cholesterol. In some instances, the use of sterol-type molecules comprising longer chains results in generation of sd-rxRNA compounds with significantly better cellular uptake and tissue distribution properties.
FIG. 92 presents schematics depicting a panel of hydrophobic molecules which might be used as a hydrophobic entity in place of cholesterol. These list just provides representative examples; any small molecule with substantial hydrophobicity can be used.
DETAILED DESCRIPTION
Aspects of the invention relate to methods and compositions involved in gene silencing. The invention is based at least in part on the surprising discovery that asymmetric nucleic acid molecules with a double stranded region of a minimal length such as 8-14 nucleotides, are effective in silencing gene expression. Molecules with such a short double stranded region have not previously been demonstrated to be effective in mediating RNA interference. It had previously been assumed that that there must be a double stranded region of 19 nucleotides or greater. The molecules described herein are optimized through chemical modification, and in some instances through attachment of hydrophobic conjugates.
The invention is based at least in part on another surprising discovery that asymmetric nucleic acid molecules with reduced double stranded regions are much more effectively taken up by cells compared to conventional siRNAs. These molecules are highly efficient in silencing of target gene expression and offer significant advantages over previously described RNAi molecules including high activity in the presence of serum, efficient self delivery, compatibility with a wide variety of linkers, and reduced presence or complete absence of chemical modifications that are associated with toxicity.
In contrast to single-stranded polynucleotides, duplex polynucleotides have been difficult to deliver to a cell as they have rigid structures and a large number of negative charges which makes membrane transfer difficult. Unexpectedly, it was found that the polynucleotides of the present invention, although partially double-stranded, are recognized in vivo as single-stranded and, as such, are capable of efficiently being delivered across cell membranes. As a result the polynucleotides of the invention are capable in many instances of self delivery. Thus, the polynucleotides of the invention may be formulated in a manner similar to conventional RNAi agents or they may be delivered to the cell or subject alone (or with non-delivery type carriers) and allowed to self deliver. In one embodiment of the present invention, self delivering asymmetric double-stranded RNA molecules are provided in which one portion of the molecule resembles a conventional RNA duplex and a second portion of the molecule is single stranded.
The polynucleotides of the invention are referred to herein as isolated double stranded or duplex nucleic acids, oligonucleotides or polynucleotides, nano molecules, nano RNA, sd-rxRNAnano, sd-rxRNA or RNA molecules of the invention.
The oligonucleotides of the invention in some aspects have a combination of asymmetric structures including a double stranded region and a single stranded region of 5 nucleotides or longer, specific chemical modification patterns and are conjugated to lipophilic or hydrophobic molecules. This new class of RNAi like compounds have superior efficacy in vitro and in vivo. Based on the data described herein it is believed that the reduction in the size of the rigid duplex region in combination with phosphorothioate modifications applied to a single stranded region are new and important for achieving the observed superior efficacy. Thus, the RNA molecules described herein are different in both structure and composition as well as in vitro and in vivo activity.
In a preferred embodiment the RNAi compounds of the invention comprise an asymmetric compound comprising a duplex region (required for efficient RISC entry of 10-15 bases long) and single stranded region of 4-12 nucleotides long; with a 13 nucleotide duplex. A 6 nucleotide single stranded region is preferred in some embodiments. The single stranded region of the new RNAi compounds also comprises 2-12 phosphorothioate internucleotide linkages (referred to as phosphorothioate modifications). 6-8 phosphorothioate internucleotide linkages are preferred in some embodiments. Additionally, the RNAi compounds of the invention also include a unique chemical modification pattern, which provides stability and is compatible with RISC entry. The combination of these elements has resulted in unexpected properties which are highly useful for delivery of RNAi reagents in vitro and in vivo.
The chemically modification pattern, which provides stability and is compatible with RISC entry includes modifications to the sense, or passenger, strand as well as the antisense, or guide, strand. For instance the passenger strand can be modified with any chemical entities which confirm stability and do not interfere with activity. Such modifications include 2′ ribo modifications (O-methyl, 2′ F, 2 deoxy and others) and backbone modification like phosphorothioate modifications. A preferred chemical modification pattern in the passenger strand includes O-methyl modification of C and U nucleotides within the passenger strand or alternatively the passenger strand may be completely O-methyl modified.
The guide strand, for example, may also be modified by any chemical modification which confirms stability without interfering with RISC entry. A preferred chemical modification pattern in the guide strand includes the majority of C and U nucleotides being 2′F modified and the 5′end being phosphorylated. Another preferred chemical modification pattern in the guide strand includes 2′Omethyl modification of position 1 and C/U in positions 11-18 and 5′end chemical phosphorylation. Yet another preferred chemical modification pattern in the guide strand includes 2′Omethyl modification of position 1 and C/U in positions 11-18 and 5′ end chemical phosphorylation and 2′F modification of C/U in positions 2-10.
It was surprisingly discovered according to the invention that the above-described chemical modification patterns of the oligonucleotides of the invention are well tolerated and actually improved efficacy of asymmetric RNAi compounds. See, for instance, FIG. 22.
It was also demonstrated experimentally herein that the combination of modifications to RNAi when used together in a polynucleotide results in the achievement of optimal efficacy in passive uptake of the RNAi. Elimination of any of the described components (Guide strand stabilization, phosphorothioate stretch, sense strand stabilization and hydrophobic conjugate) or increase in size results in sub-optimal efficacy and in some instances complete lost of efficacy. The combination of elements results in development of compound, which is fully active following passive delivery to cells such as HeLa cells. (FIG. 23). The degree to which the combination of elements results in efficient self delivery of RNAi molecules was completely unexpected.
The data shown in FIGS. 26, 27 and 43 demonstrated the importance of the various modifications to the RNAi in achieving stabilization and activity. For instance, FIG. 26 demonstrates that use off asymmetric configuration is important in getting efficacy in passive uptake. When the same chemical composition is applied to compounds of traditional configurations (19-21 bases duplex and 25 mer duplex) the efficacy was drastically decreased in a length dependent manner. FIG. 27 demonstrated a systematic screen of the impact of phosphorothioate chemical modifications on activity. The sequence, structure, stabilization chemical modifications, hydrophobic conjugate were kept constant and compound phosphorothioate content was varied (from 0 to 18 PS bond). Both compounds having no phosphorothioate linkages and having 18 phosphorothioate linkages were completely inactive in passive uptake. Compounds having 2-16 phosphorothioate linkages were active, with compounds having 4-10 phosphorothioate being the most active compounds.
The data in the Examples presented below demonstrates high efficacy of the oligonucleotides of the invention both in vitro in variety of cell types (supporting data) and in vivo upon local and systemic administration. For instance, the data compares the ability of several competitive RNAi molecules having different chemistries to silence a gene. Comparison of sd-rxRNA (oligonucleotides of the invention) with RNAs described in Soucheck et al. and Wolfrum at al., as applied to the same targeting region, demonstrated that only sd-rxRNA chemistry showed a significant functionality in passive uptake. The composition of the invention achieved EC50 values of 10-50 pM. This level of efficacy is un-attainable with conventional chemistries like those described in Sauthceck at al and Accell. Similar comparisons were made in other systems, such as in vitro (RPE cell line), in vivo upon local administration (wounded skin) and systemic (50 mg/kg) as well as other genes (FIGS. 65 and 68). In each case the oligonucleotides of the invention achieved better results. FIG. 64 includes data demonstrating efficient cellular uptake and resulting silencing by sd-rxRNA compounds only after 1 minute of exposure. Such an efficacy is unique to this composition and have not been seen with other types of molecules in this class. FIG. 70 demonstrates efficient uptake and silencing of sd-rxRNA compounds in multiple cell types with multiple sequences. The sd-rxRNA compounds are also active in cells in presence and absence of serum and other biological liquids. FIG. 71 demonstrates only a slight reduction in activity in the presence of serum. This ability to function in biologically aggressive environment effectively further differentiates sd-rxRNA compounds from other compounds described previously in this group, like Accell and Soucheck et al, in which uptake is drastically inhibited in a presence of serum.
Significant amounts of data also demonstrate the in vivo efficacy of the compounds of the invention. For instance FIGS. 72-74 involve multiple routes of in vivo delivery of the compounds of the invention resulting in significant activity. FIG. 72, for example, demonstrates efficient tissue penetration and cellular uptake upon single intradermal injection. This is a model for local delivery of sd-rxRNA compounds as well as an effective delivery mode for sd-rxRNA compounds and silencing genes in any dermatology applications. FIG. 73 demonstrated efficient tissue penetration, cellular uptake and silencing upon local in vivo intradermal injection of sd-rxRNA compounds. The data of FIG. 74 demonstrate that sd-rxRNA compounds result in highly effective liver uptake upon IV administration. Comparison to Souicheck at al molecule showed that the level of liver uptake at identical dose level was quite surprisingly, at least 50 fold higher with the sd-rxRNA compound than the Souicheck at al molecule.
The sd-rxRNA can be further improved in some instances by improving the hydrophobicity of compounds using of novel types of chemistries. For example one chemistry is related to use of hydrophobic base modifications. Any base in any position might be modified, as long as modification results in an increase of the partition coefficient of the base. The preferred locations for modification chemistries are positions 4 and 5 of the pyrimidines. Preferably the base modification is a methyl or ethyl modification. The major advantage of these positions is (a) ease of synthesis and (b) lack of interference with base-pairing and A form helix formation, which are essential for RISC complex loading and target recognition. Examples of these chemistries is shown in FIGS. 75-83. A version of sd-rxRNA compounds where multiple deoxy Uridines are present without interfering with overall compound efficacy was used. In addition major improvement in tissue distribution and cellular uptake might be obtained by optimizing the structure of the hydrophobic conjugate. In some of the preferred embodiment the structure of sterol is modified to alter (increase/decrease) C17 attached chain. This type of modification results in significant increase in cellular uptake and improvement of tissue uptake prosperities in vivo.
This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Thus, aspects of the invention relate to isolated double stranded nucleic acid molecules comprising a guide (antisense) strand and a passenger (sense) strand. As used herein, the term “double-stranded” refers to one or more nucleic acid molecules in which at least a portion of the nucleomonomers are complementary and hydrogen bond to form a double-stranded region. In some embodiments, the length of the guide strand ranges from 16-29 nucleotides long. In certain embodiments, the guide strand is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 nucleotides long. The guide strand has complementarity to a target gene. Complementarity between the guide strand and the target gene may exist over any portion of the guide strand. Complementarity as used herein may be perfect complementarity or less than perfect complementarity as long as the guide strand is sufficiently complementary to the target that it mediates RNAi. In some embodiments complementarity refers to less than 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% mismatch between the guide strand and the target. Perfect complementarity refers to 100% complementarity. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence. For example, siRNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Moreover, not all positions of a siRNA contribute equally to target recognition. Mismatches in the center of the siRNA are most critical and essentially abolish target RNA cleavage. Mismatches upstream of the center or upstream of the cleavage site referencing the antisense strand are tolerated but significantly reduce target RNA cleavage. Mismatches downstream of the center or cleavage site referencing the antisense strand, preferably located near the 3′ end of the antisense strand, e.g. 1, 2, 3, 4, 5 or 6 nucleotides from the 3′ end of the antisense strand, are tolerated and reduce target RNA cleavage only slightly.
While not wishing to be bound by any particular theory, in some embodiments, the guide strand is at least 16 nucleotides in length and anchors the Argonaute protein in RISC. In some embodiments, when the guide strand loads into RISC it has a defined seed region and target mRNA cleavage takes place across from position 10-11 of the guide strand. In some embodiments, the 5′ end of the guide strand is or is able to be phosphorylated. The nucleic acid molecules described herein may be referred to as minimum trigger RNA.
In some embodiments, the length of the passenger strand ranges from 8-14 nucleotides long. In certain embodiments, the passenger strand is 8, 9, 10, 11, 12, 13 or 14 nucleotides long. The passenger strand has complementarity to the guide strand. Complementarity between the passenger strand and the guide strand can exist over any portion of the passenger or guide strand. In some embodiments, there is 100% complementarity between the guide and passenger strands within the double stranded region of the molecule.
Aspects of the invention relate to double stranded nucleic acid molecules with minimal double stranded regions. In some embodiments the region of the molecule that is double stranded ranges from 8-14 nucleotides long. In certain embodiments, the region of the molecule that is double stranded is 8, 9, 10, 11, 12, 13 or 14 nucleotides long. In certain embodiments the double stranded region is 13 nucleotides long. There can be 100% complementarity between the guide and passenger strands, or there may be one or more mismatches between the guide and passenger strands. In some embodiments, on one end of the double stranded molecule, the molecule is either blunt-ended or has a one-nucleotide overhang. The single stranded region of the molecule is in some embodiments between 4-12 nucleotides long. For example the single stranded region can be 4, 5, 6, 7, 8, 9, 10, 11 or 12 nucleotides long. However, in certain embodiments, the single stranded region can also be less than 4 or greater than 12 nucleotides long. In certain embodiments, the single stranded region is 6 nucleotides long.
RNAi constructs associated with the invention can have a thermodynamic stability (ΔG) of less than −13 kkal/mol. In some embodiments, the thermodynamic stability (ΔG) is less than −20 kkal/mol. In some embodiments there is a loss of efficacy when (ΔG) goes below −21 kkal/mol. In some embodiments a (ΔG) value higher than −13 kkal/mol is compatible with aspects of the invention. Without wishing to be bound by any theory, in some embodiments a molecule with a relatively higher (ΔG) value may become active at a relatively higher concentration, while a molecule with a relatively lower (ΔG) value may become active at a relatively lower concentration. In some embodiments, the (ΔG) value may be higher than −9 kkcal/mol. The gene silencing effects mediated by the RNAi constructs associated with the invention, containing minimal double stranded regions, are unexpected because molecules of almost identical design but lower thermodynamic stability have been demonstrated to be inactive (Rana et al 2004).
Without wishing to be bound by any theory, results described herein suggest that a stretch of 8-10 bp of dsRNA or dsDNA will be structurally recognized by protein components of RISC or co-factors of RISC. Additionally, there is a free energy requirement for the triggering compound that it may be either sensed by the protein components and/or stable enough to interact with such components so that it may be loaded into the Argonaute protein. If optimal thermodynamics are present and there is a double stranded portion that is preferably at least 8 nucleotides then the duplex will be recognized and loaded into the RNAi machinery.
In some embodiments, thermodynamic stability is increased through the use of LNA bases. In some embodiments, additional chemical modifications are introduced. Several non-limiting examples of chemical modifications include: 5′ Phosphate, 2′-O-methyl, 2′-O-ethyl, 2′-fluoro, ribothymidine, C-5 propynyl-dC (pdC) and C-5 propynyl-dU (pdU); C-5 propynyl-C (pC) and C-5 propynyl-U (pU); 5-methyl C, 5-methyl U, 5-methyl dC, 5-methyl dU methoxy, (2,6-diaminopurine), 5′-Dimethoxytrityl-N4-ethyl-2′-deoxyCytidine and MGB (minor groove binder). It should be appreciated that more than one chemical modification can be combined within the same molecule.
Molecules associated with the invention are optimized for increased potency and/or reduced toxicity. For example, nucleotide length of the guide and/or passenger strand, and/or the number of phosphorothioate modifications in the guide and/or passenger strand, can in some aspects influence potency of the RNA molecule, while replacing 2′-fluoro (2′F) modifications with 2′-O-methyl (2′OMe) modifications can in some aspects influence toxicity of the molecule. Specifically, reduction in 2′F content of a molecule is predicted to reduce toxicity of the molecule. The Examples section presents molecules in which 2′F modifications have been eliminated, offering an advantage over previously described RNAi compounds due to a predicted reduction in toxicity. Furthermore, the number of phosphorothioate modifications in an RNA molecule can influence the uptake of the molecule into a cell, for example the efficiency of passive uptake of the molecule into a cell. Preferred embodiments of molecules described herein have no 2′F modification and yet are characterized by equal efficacy in cellular uptake and tissue penetration. Such molecules represent a significant improvement over prior art, such as molecules described by Accell and Wolfrum, which are heavily modified with extensive use of 2′F.
In some embodiments, a guide strand is approximately 18-19 nucleotides in length and has approximately 2-14 phosphate modifications. For example, a guide strand can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more than 14 nucleotides that are phosphate-modified. The guide strand may contain one or more modifications that confer increased stability without interfering with RISC entry. The phosphate modified nucleotides, such as phosphorothioate modified nucleotides, can be at the 3′ end, 5′ end or spread throughout the guide strand. In some embodiments, the 3′ terminal 10 nucleotides of the guide strand contains 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 phosphorothioate modified nucleotides. The guide strand can also contain 2′F and/or 2′OMe modifications, which can be located throughout the molecule. In some embodiments, the nucleotide in position one of the guide strand (the nucleotide in the most 5′ position of the guide strand) is 2′OMe modified and/or phosphorylated. C and U nucleotides within the guide strand can be 2′F modified. For example, C and U nucleotides in positions 2-10 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′F modified. C and U nucleotides within the guide strand can also be 2′OMe modified. For example, C and U nucleotides in positions 11-18 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′OMe modified. In some embodiments, the nucleotide at the most 3′ end of the guide strand is unmodified. In certain embodiments, the majority of Cs and Us within the guide strand are 2′F modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified, the 5′ end of the guide strand is phosphorylated, and the Cs or Us in position 2-10 are 2′F modified.
In some aspects, an optimal passenger strand is approximately 11-14 nucleotides in length. The passenger strand may contain modifications that confer increased stability. One or more nucleotides in the passenger strand can be 2′OMe modified. In some embodiments, one or more of the C and/or U nucleotides in the passenger strand is 2′OMe modified, or all of the C and U nucleotides in the passenger strand are 2′OMe modified. In certain embodiments, all of the nucleotides in the passenger strand are 2′OMe modified. One or more of the nucleotides on the passenger strand can also be phosphate-modified such as phosphorothioate modified. The passenger strand can also contain 2′ ribo, 2′F and 2 deoxy modifications or any combination of the above. As demonstrated in the Examples, chemical modification patterns on both the guide and passenger strand are well tolerated and a combination of chemical modifications is shown herein to lead to increased efficacy and self-delivery of RNA molecules.
Aspects of the invention relate to RNAi constructs that have extended single-stranded regions relative to double stranded regions, as compared to molecules that have been used previously for RNAi. The single stranded region of the molecules may be modified to promote cellular uptake or gene silencing. In some embodiments, phosphorothioate modification of the single stranded region influences cellular uptake and/or gene silencing. The region of the guide strand that is phosphorothioate modified can include nucleotides within both the single stranded and double stranded regions of the molecule. In some embodiments, the single stranded region includes 2-12 phosphorothioate modifications. For example, the single stranded region can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphorothioate modifications. In some instances, the single stranded region contains 6-8 phosphorothioate modifications.
Molecules associated with the invention are also optimized for cellular uptake. In RNA molecules described herein, the guide and/or passenger strands can be attached to a conjugate. In certain embodiments the conjugate is hydrophobic. The hydrophobic conjugate can be a small molecule with a partition coefficient that is higher than 10. The conjugate can be a sterol-type molecule such as cholesterol, or a molecule with an increased length polycarbon chain attached to C17, and the presence of a conjugate can influence the ability of an RNA molecule to be taken into a cell with or without a lipid transfection reagent. The conjugate can be attached to the passenger or guide strand through a hydrophobic linker. In some embodiments, a hydrophobic linker is 5-12C in length, and/or is hydroxypyrrolidine-based. In some embodiments, a hydrophobic conjugate is attached to the passenger strand and the CU residues of either the passenger and/or guide strand are modified. In some embodiments, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% of the CU residues on the passenger strand and/or the guide strand are modified. In some aspects, molecules associated with the invention are self-delivering (sd). As used herein, “self-delivery” refers to the ability of a molecule to be delivered into a cell without the need for an additional delivery vehicle such as a transfection reagent.
Aspects of the invention relate to selecting molecules for use in RNAi. Based on the data described herein, molecules that have a double stranded region of 8-14 nucleotides can be selected for use in RNAi. In some embodiments, molecules are selected based on their thermodynamic stability (ΔG). In some embodiments, molecules will be selected that have a (ΔG) of less than −13 kkal/mol. For example, the (ΔG) value may be −13, −14, −15, −16, −17, −18, −19, −21, −22 or less than −22 kkal/mol. In other embodiments, the (ΔG) value may be higher than −13 kkal/mol. For example, the (ΔG) value may be −12, ×11, ×10, ×9, ×8, ×7 or more than −7 kkal/mol. It should be appreciated that ΔG can be calculated using any method known in the art. In some embodiments ΔG is calculated using Mfold, available through the Mfold internet site (mfold.bioinfo.rpi.edu/cgi-bin/rna-forml.cgi). Methods for calculating ΔG are described in, and are incorporated by reference from, the following references: Zuker, M. (2003) Nucleic Acids Res., 31(13):3406-15; Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) J. Mol. Biol. 288:911-940; Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. 101:7287-7292; Duan, S., Mathews, D. H., and Turner, D. H. (2006) Biochemistry 45:9819-9832; Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P. (1999) Biopolymers 49:145-165.
Aspects of the invention relate to using nucleic acid molecules described herein, with minimal double stranded regions and/or with a (4G) of less than −13 kkal/mol, for gene silencing. RNAi molecules can be administered in vivo or in vitro, and gene silencing effects can be achieved in vivo or in vitro.
In certain embodiments, the polynucleotide contains 5′- and/or 3′-end overhangs. The number and/or sequence of nucleotides overhang on one end of the polynucleotide may be the same or different from the other end of the polynucleotide. In certain embodiments, one or more of the overhang nucleotides may contain chemical modification(s), such as phosphorothioate or 2′-OMe modification.
In certain embodiments, the polynucleotide is unmodified. In other embodiments, at least one nucleotide is modified. In further embodiments, the modification includes a 2′-H or 2′-modified ribose sugar at the 2nd nucleotide from the 5′-end of the guide sequence. The “2nd nucleotide” is defined as the second nucleotide from the 5′-end of the polynucleotide.
As used herein, “2′-modified ribose sugar” includes those ribose sugars that do not have a 2′-OH group. “2′-modified ribose sugar” does not include 2′-deoxyribose (found in unmodified canonical DNA nucleotides). For example, the 2′-modified ribose sugar may be 2′-0-alkyl nucleotides, 2′-deoxy-2′-fluoro nucleotides, 2′-deoxy nucleotides, or combination thereof.
In certain embodiments, the 2′-modified nucleotides are pyrimidine nucleotides (e.g., C/U). Examples of 2′-O-alkyl nucleotides include 2′-O-methyl nucleotides, or 2′-O-allyl nucleotides.
In certain embodiments, the miniRNA polynucleotide of the invention with the above-referenced 5′-end modification exhibits significantly (e.g., at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) less “off-target” gene silencing when compared to similar constructs without the specified 5′-end modification, thus greatly improving the overall specificity of the RNAi reagent or therapeutics.
As used herein, “off-target” gene silencing refers to unintended gene silencing due to, for example, spurious sequence homology between the antisense (guide) sequence and the unintended target mRNA sequence.
According to this aspect of the invention, certain guide strand modifications further increase nuclease stability, and/or lower interferon induction, without significantly decreasing RNAi activity (or no decrease in RNAi activity at all).
In some embodiments, the 5′-stem sequence may comprise a 2′-modified ribose sugar, such as 2′-O-methyl modified nucleotide, at the 2nd nucleotide on the 5′-end of the polynucleotide and, in some embodiments, no other modified nucleotides. The hairpin structure having such modification may have enhanced target specificity or reduced off-target silencing compared to a similar construct without the 2′-O-methyl modification at said position.
Certain combinations of specific 5′-stem sequence and 3′-stem sequence modifications may result in further unexpected advantages, as partly manifested by enhanced ability to inhibit target gene expression, enhanced serum stability, and/or increased target specificity, etc.
In certain embodiments, the guide strand comprises a 2′-O-methyl modified nucleotide at the 2nd nucleotide on the 5′-end of the guide strand and no other modified nucleotides.
In other aspects, the miniRNA structures of the present invention mediates sequence-dependent gene silencing by a microRNA mechanism. As used herein, the term “microRNA” (“miRNA”), also referred to in the art as “small temporal RNAs” (“stRNAs”), refers to a small (10-50 nucleotide) RNA which are genetically encoded (e.g., by viral, mammalian, or plant genomes) and are capable of directing or mediating RNA silencing. An “miRNA disorder” shall refer to a disease or disorder characterized by an aberrant expression or activity of an miRNA.
miRNAs are important modulators of cellular homeostasis and differention. Reduced levels of miRNA expreression or excessive expression of miRNA have been shown to be involved in many diseases. microRNAs are involved in down-regulating target genes in critical pathways, such as development and cancer, in mice, worms and mammals. In particular significant reduction of different miRNA expression is related to tumor development and progression. Gene silencing through a microRNA mechanism is achieved by specific yet, in some cases, imperfect base-pairing of the miRNA and its target messenger RNA (mRNA). Various mechanisms may be used in microRNA-mediated down-regulation of target mRNA expression.
miRNAs are noncoding RNAs of approximately 22 nucleotides which can regulate gene expression at the post transcriptional or translational level during plant and animal development. One common feature of miRNAs is that they are all excised from an approximately 70 nucleotide precursor RNA stem-loop termed pre-miRNA, probably by Dicer, an RNase III-type enzyme, or a homolog thereof. Naturally-occurring miRNAs are expressed by endogenous genes in vivo and are processed from a hairpin or stem-loop precursor (pre-miRNA or pri-miRNAs) by Dicer or other RNAses. miRNAs can exist transiently in vivo as a double-stranded duplex but only one strand is taken up by the RISC complex to direct gene silencing.
In some embodiments a version of sd-rxRNA compounds, which are effective in cellular uptake and modulating miRNA activity are described. Essentially the compounds are similar to RISC entering version but large strand chemical modification patterns are optimized in the way to block cleavage and act as an effective inhibitor of the RISC action. For example, the compound might be completely or mostly O-methyl modified with the PS content described previously. For these types of compounds the 5′ phosphorylation is not necessary. The presence of double stranded region is preferred as it is promotes cellular uptake and efficient RISC loading.
Finding a way to modulate miRNA expression is an important unresolved problem in miRNA based drug development. The invention describes novel miRNA modulating compounds (miRNA mimics and miRNA inhibitors). The miRNA modulating compounds of the invention have the same basic structural properties described herein for self delivering RNA. Exemplary, non-limiting, sequences of the miRNA modulating compounds of the invention are shown in Tables 4-5.
In general, the miRNA modulating compounds have two strands, a guide (or antisense) strand that is 18-23 bases long and a passenger (or sense) strand that is 8-16 bases long. The size difference of the two strands results in a double stranded and a single strand region of the molecule. In some embodiments the single stranded region is substantially modified, for example, with phosphorothioates. The presence of this phosphorothioated region is believed to be important for improved PK/PD, tissue distribution and cellular uptake properties of these molecules.
In some instances it is preferred that the first position of the guide strand has a 2′O-methyl modification such as a 5P-2 o-methyl U. The presence of this modification in the guide strand further promotes the association with and loading into RISC complex.
Preferably both strands of the miRNA modulators are extensively modified, as described herein. For instance many of the pyrimidines are preferably 2′ modified. These modifications contribute to the stability of the molecule.
Additionally the overall hydrophobicity of the miRNA modulating compounds of the invention is increased to enhance cellular entry. This may be accomplished through the presence of some hydrophobic modification in the bases. For instance, position 5 or 4 of uridines and cytidine may include hydrophobic base modifications. These modifications increase and promote RISC association, stability, specificity and cellular entry. An example of a preferred hydrophobic base modification is methyl or ethyl. The presence of these type of modifications appear to not interfere with RISC entry of the miRNA modulating compounds and actually seem to promotes RISC entry.
In addition to hydrophobic base modification, other hydrophobic moieties may be linked to the molecule. A preferred location for linkage of hydrophobic moieties is the 3′ end position of the passenger strand.
The compounds of the invention having these structural properties are excellent modulators of miRNA expression in vivo. Administration of these compounds is expected to mimic natural miRNA expression in a targeted cells or inhibit undesirable miRNA, depending on the specificity of the guide strand. These compounds are useful in modulating miRNA level and activity in many tissues, such as brain, spinal cord, tumors, liver, lung, kidney skin, heart, vasculature, and spleen. Additionally these compounds may be used ex vivo and in primary, dentritic or stem cells to modulate cellular properties prior to introduction or reintroduction of the cells into a subject. For instance they may be used in dendritic cells or primary tumors to help with a cancer vaccine development. The compounds may be used in stem cells or tissues or organs ex vivo or in vitro to promote or stop stem cells differentiation, tissue remodeling, organ preservation and many other applications.
The miRNA modulating compounds of the invention are miRNA mimics or miRNA inhibitors. An miRNA mimic as used herein refers to a double stranded nucleic acid having a guide strand that has a nucleic acid sequence that is similar, or in some cases identical, to a guide strand of a naturally occurring mature miRNA. Naturally occurring miRNA are processed from long nucleic acids having secondary structural properties (referred to as pri-miRNA and pre-miRNA) to produce naturally occurring mature miRNA. The mature miRNA is a double stranded molecule of about 22 nucleotides in length having a guide strand that binds to an miRNA recognition element (MRE) in the 3′ untranslated region (UTR) of a target mRNA (in a RISC complex) and suppresses its translation or initiates degradation of the mRNA.
The miRNA mimic of the invention includes a guide strand that is identical to or similar to the sequence of a guide strand of a naturally occurring mature miRNA. Identical to the sequence, as used herein refers to the same nucleic acid bases in the nucleotide as are found in the mature miRNA. Similar to the sequence, in this context, refers to a nucleic acid molecule having a sequence which is less than identical but at least 75% homologous to the mature miRNA. In some instances “similar to the sequence” refers to a sequence which is less than identical but at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% homologous to the mature miRNA. In some cases the sequence of the miRNA mimic may include the same bases, but the base of the mimic may be modified, i.e. hydrophobically modified. In other cases the mimic may include one or more different bases or nucleotides than the naturally occurring mature miRNA.
The guide strand of the miRNA mimic is complementary to a miRNA recognition element (MRE). “Complementary to a miRNA recognition element” as used herein refers to base complementarity between at least 6 or 7 nucleotides of the miRNA mimic guide strand (preferably the 5′ end of the guide strand) and the MRE. The region of complementarity is referred to as the seed region. In some embodiments the seed region or region of complementarity is 6, 7, 8, 9, 10, 11, 12 or 13 nucleotides in length. The complementarity of the seed region may be perfect (100%) or may be less i.e. greater than 90%, 95%, 96%, 97%, 98%, or 99%, but preferably is 100%. The complementarity between the entire miRNA and the MRE may be greater than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.
The miRNA mimics of the invention are useful for mimicking the activity of any naturally occurring miRNA. Non-limiting examples include: miR21, miR 139, miR 7, miR29, miR 122, miR 302-367 cluster, miR 221, miR-96, miR 126, miR 225 and miR 206.
An miRNA inhibitor as used herein refers to a double stranded nucleic acid having a guide strand that has a nucleic acid sequence that is complementary to a guide strand or antisense strand of a naturally occurring mature miRNA. “Complementary to an antisense strand of a naturally occurring mature miRNA” as used herein refers to base complementarity between the guide strand of the inhibitor and the antisense strand of the naturally occurring mature miRNA. In some embodiments the complementarity may be perfect (100%) or may be less than perfect i.e. greater than 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% complementarity. The guide strand of the miRNA inhibitor is extensively chemically modified (i.e. with O-methyls or other modification), to prevent its entry into RISC. The association of the miRNA inhibitor guide strand with the naturally occurring (or miRNA mimic guide strand) miRNA loaded RISC is enhanced by the chemical modifications and sequence complementarily, such that it competes for binding with the naturally occurring mRNA.
The structure and function of miRNAs has been the subject of extensive research and several miRNAs have been sequenced and investigated regarding their function in human disease. Some non-limiting examples of known human miRNAs, the expression of which can be modulated with agents and methods provided herein are let-7, let-7a-1, let-7a-2, let-7a-3, let-7b, let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7g, let-7i, mir-1, mir-10, mir-100, mir-101, mir-101-1, mir-101-2, mir-103, mir-103-1, mir-103-2, mir-105, mir-105-1, mir-105-2, mir-106a, mir-106b, mir-107, mir-10a, mir-10b, mir-1-1, mir-1-2, mir-124, mir-124-1, mir-124-2, mir-124-3, mir-125, mir-125a, mir-125b-1, mir-125b-2, mir-128, mir-128a, mir-128b, mir-129, mir-129-1, mir-129-2, mir-130, mir-130a, mir-130b, mir-132, mir-132, mir-133, mir-133a-1, mir-133a-2, mir-133b, mir-135, mir-135a-1, mir-135a-2, mir-135b, mir-138, mir-138-1, mir-138-2, mir-141, mir-146, mir-146a, mir-146b, mir-147, mir-147a, mir-147b, mir-148, mir-148a, mir-148b, mir-15, mir-151, mir-152, mir-153, mir-153-1, mir-153-2, mir-154, mir-154, mir-15a, mir-15b, mir-16-1, mir-16-2, mir-17, mir-181, mir-181a-1, mir-181a-2, mir-181b-1, mir-181b-2, mir-181c, mir-181d, mir-188, mir-188, mir-18a, mir-18b, mir-19, mir-190, mir-190, mir-190b, mir-192, mir-192, mir-193, mir-193a, mir-193b, mir-194, mir-194-1, mir-194-2, mir-195, mir-196, mir-196a-1, mir-196a-2, mir-196b, mir-199, mir-199a-1, mir-199a-2, mir-199b, mir-19a, mir-19b-1, mir-19b-2, mir-200a, mir-200b, mir-200c, mir-204, mir-204, mir-206, mir-208, mir-208, mir-208b, mir-20a, mir-20b, mir-211, mir-212, mir-215, mir-216, mir-216a, mir-216b, mir-218, mir-218-1, mir-218-2, mir-219, mir-219-1, mir-219-2, mir-220, mir-220, mir-220b, mir-221, mir-221, mir-222, mir-23, mir-23a, mir-23b, mir-24, mir-24-1, mir-24-2, mir-25, mir-25, mir-26, mir-26a-1, mir-26a-2, mir-26b, mir-27, mir-27a, mir-27b, mir-28, mir-28, mir-29, mir-290, mir-29a, mir-29b-1, mir-29b-2, mir-29c, mir-30, mir-300, mir-301a, mir-301b, mir-302, mir-302a, mir-302b, mir-302c, mir-302d, mir-30a, mir-30b, mir-30c-1, mir-30c-2, mir-30d, mir-30e, mir-323, mir-329, mir-329-1, mir-329-2, mir-33, mir-33a, mir-33b, mir-34, mir-34a, mir-34b, mir-34c, mir-365, mir-365-1, mir-365-2, mir-368, mir-369, mir-371, mir-372, mir-374, mir-374a, mir-374b, mir-376a-1, mir-376a-2, mir-376b, mir-376c, mir-377, mir-379, mir-379, mir-380, mir-381, mir-382, mir-409, mir-410, mir-411, mir-421, mir-429, mir-449, mir-449a, mir-449b, mir-450, mir-450a-1, mir-450a-2, mir-450b, mir-453, mir-487a, mir-487b, mir-494, mir-495, mir-496, mir-500, mir-500, mir-501, mir-502, mir-506, mir-506, mir-507, mir-508, mir-509, mir-509-1, mir-509-2, mir-509-3, mir-510, mir-511, mir-511-1, mir-511-2, mir-512, mir-512-1, mir-512-2, mir-513, mir-513-1, mir-513-2, mir-514-1, mir-514-2, mir-514-3, mir-515, mir-515-1, mir-515-2, mir-516a-1, mir-516a-2, mir-516b-1, mir-516b-2, mir-517a, mir-517b, mir-517c, mir-518a-1, mir-518a-2, mir-518b, mir-518c, mir-518d, mir-518e, mir-518f, mir-519a-1, mir-519a-2, mir-519b, mir-519c, mir-519d, mir-519e, mir-520a, mir-520b, mir-520c, mir-520d, mir-520e, mir-520f, mir-520g, mir-520h, mir-521-1, mir-521-2, mir-522, mir-523, mir-524, mir-525, mir-526a-1, mir-526a-2, mir-526b, mir-527, mir-532, mir-539, mir-543, mir-545, mir-548, mir-548a-1, mir-548a-2, mir-548a-3, mir-548b, mir-548c, mir-548d-1, mir-548d-2, mir-550, mir-550-1, mir-550-2, mir-551, mir-551a, mir-551b, mir-570, mir-579, mir-603, mir-655, mir-656, mir-660, mir-7, mir-7-1, mir-7-2, mir-7-3, mir-758, mir-8, mir-891, mir-891a, mir-891b, mir-892, mir-892a, mir-892b, mir-9, mir-9-1, mir-9-2, mir-92a-1, mir-92a-2, mir-92b, mir-93, mir-9-3, mir-941, mir-941-1, mir-941-2, mir-941-3, mir-941-4, mir-95, mir-95, mir-98, mir-99, mir-99a, mir-99b. Sequence, structural information, and functions of these and other miRNAs are well known to those of skill in the art and are described, for example, in the miRBase database, Release 16, September 2010, accessible at www.mirbase.org, and described in more detail in “miRBase: tools for microRNA genomics” by Griffiths-Jones S, Saini H K, van Dongen S, Enright A J, Nucleic Acids Res. 2008 36:D154-D158; “miRBase: microRNA sequences, targets and gene nomenclature” by Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J, Nucleic Acids Res. 2006 34:D140-D144; and “The miRNA Registry” by Griffiths-Jones S, Nucleic Acids Res. 2004 32:D109-D111. The entire contents of miRBase, Release 16, September 2010, and the three references provided immediately above are incorporated herein in their entirety by reference for disclosure of miRNA sequences, structure, and function.
In some embodiments, the miRNA that is modulated using an agent or method provided herein is an miRNA that is implicated or known to be involved in the pathogenesis or the progression of a human disease, for example, in a cancer or neoplastic disease. MiRNAs implicated or known to be involved in the pathogenesis or the progression of a human disease are well known to those of skill in the art and include, but are not limited to the miRNAs described in the Human MiRNA & Disease Database (HMDD), Release January 2011, accessible at 202.38.126.151/hmdd/mirna/md/, and described in more detail in Lu M, Zhang Q, Deng M, Miao J, Guo Y, et al. (2008) An Analysis of Human MicroRNA and Disease Associations. PLoS ONE 3(10): e3420; the mir2disease base, Release March 2011, accessible at www.mir2disease.org, and described in more detail in Jiang Q., Wang Y., Hao Y., Juan L., Teng M., Zhang X., Li M., Wang G., Liu Y., (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98-104; the entire contents of each database and reference are incorporated herein by reference.
In some embodiments, an miRNA modulating agent or method is provided that targets a particular miRNA or a particular miRNA cluster. For example, in some embodiments, the target miRNA is mir139 (e.g., miRBase accession: MI0000261). Mir139 has been described to act as a tumor suppressor and aberrant expression of mir139 has been reported to be associated with leukemia, for example, chronic lymphocytic leukemia, and with certain carcinomas, for example, adenocarcinoma, epithelial ovarian carcinoma, gastric carcinoma, and non-small cell lung carcinoma. In some embodiments, a miRNA modulating agent or method provided herein is useful for the alleviation of a disease or condition associated with aberrant mir139.
In some embodiments, the target miRNA is let-7 (e.g., miRBase accession: MI0000060-MI0000068). Let-7 has been reported to act as a tumor suppressor and aberrant expression of let-7 has been reported to be associated with tumorigenesis and tumor progression. In some embodiments, a let-7 mimic as provided herein is introduced into a neoplastic cell or tissue, for example, into a tumor cell or tumor tissue to alleviate tumor growth and/or any associated disease or condition. In some embodiments, introduction of a let-7 mimic into a tumor results in tumor regression.
In some embodiments, the target miRNA is mir-29 (e.g., miRBase accession: MI0000087, MI0000105, MI0000107). Aberrant expression of mir-29 has been reported to be associated with abnormal cell or tissue proliferation. For example, lack of miR-29a and/or miR-29b is implicated in progression of HCV infection, fibrosis or neuron remodeling and degeneration during Alzeheimer's disease. In some embodiments, introduction of a mir-29 mimic into an affected cell or tissue of a diseased subject is of therapeutic benefit in neurological disorders, liver and pulmonary fibrosis, HCV or other liver infection, cardiac hypertension and other indications with a reported involvement of mir-29. In some embodiments, introduction of a mir-29 mimic, as provided herein, for example, of a mir-29b mimic, can result in PDPN downregulation, which is involved in glioblastoma progression. In some embodiments, introduction of a mir-29 mimic as provided herein into a glioblastoma cell or tissue, for example, brain tissue of a glioblastoma patient, results in arrest or delay of tumor progression, tumor regression, or an alleviation of the disease state.
In some embodiments, the target miRNA is mir-133 (e.g., miRBase accession: MI0000450, MI0000451, MI0000822). Aberrant expression of miR-133 has been reported to be associated with CTGF downregulation as well as downregulation of molecular signaling pathways implicated in fibrosis. In some embodiments, a mir-133 mimic provided herein is used as an anti-fibrotic agent.
In some embodiments, the target miRNA is a miRNA of the mir-302-367 cluster, comprising mir-302a-mir302d and mir-367 (e.g., miRBase accession: MI0000738, MI0000772, MI0000773, MI0000775). Aberrant expression of the miRNA 302-367 cluster has been reported to be associated with inhibition of HDac2-regulated reprogramming of somatic cells into pluripotent stem cells. In some embodiments, introduction of a mimic of a miRNA in the miRNA 302-367 cluster into somatic stem cells supports or enhances the reprogramming of the somatic cells into pluripotent stem cells, which can be used for regenerative medicine approaches, and organ and tissue development.
In some embodiments, the target miRNA is mir-221 (e.g., miRBase accession: MI0000298). Mir-221 has been reported to act as a tumor suppressor, and aberrant expression of mir-221 has been reported to be associated with glioblastoma progression. In some embodiments, introduction, e.g., by direct ingection or intrabrain infusion of a mir-221 mimic provided herein is used to treat or alleviate a symptom observed in glioblastoma patients.
In some embodiments, the target miRNA is mir-96 (e.g., miRBase accession: MI0000098). Mir-96 has been reported to be involved in hair growth regulation and aberrant expression of mir-96 has been reported to be associated with alopecia, for example, or chemotherapy-induced alopecia. In some embodiments, a mir-96 mimic as provided herein is used to treat alopecia.
In some embodiments, the target miRNA is mir-126, mir-335, or mir-206 (e.g., miRBase accession: MI0000471, MI0000816, MI0000490). These miRNAs are potent suppressors of tumor metastasis formation or maturation. For example, mir-126 has been reported to suppress endothelium cellular recruitment and, thus, metastasis maturation. In some embodiment, introduction of a mir-126, mir-335, or mir-206 mimic as provided herein into a primary tumor, or systemic administration to a subject having a tumor results in a partial or complete inhibition of metastasis formation.
In some embodiments, the target miRNA is a miRNA of the mir-17-92 cluster, comprising mir-17, mir-18a, mir-19a, mir-20a, mir-19b-1, and mir-92a-1 (e.g., miRBase accession: MI0000071, MI0000072, MI0000073, MI0000076, MI0000074, MI0000093). The mir-17-92 cluster has been reported to act as an oncogene and overexpression of the cluster, or of any member of the cluster has been reported to be associated with tumorigenesis. In some embodiments, a miRNA inhibitory agent targeting the mir-17-92 cluster as provided herein is administered to a tumor cell or tissue, or systemically, to a patient diagnosed with or suspected to have a tumor. Another pathway that uses small RNAs as sequence-specific regulators is the RNA interference (RNAi) pathway, which is an evolutionarily conserved response to the presence of double-stranded RNA (dsRNA) in the cell. The dsRNAs are cleaved into −20-base pair (bp) duplexes of small-interfering RNAs (siRNAs) by Dicer. These small RNAs get assembled into multiprotein effector complexes called RNA-induced silencing complexes (RISCs). The siRNAs then guide the cleavage of target mRNAs with perfect complementarity.
Some aspects of biogenesis, protein complexes, and function are shared between the siRNA pathway and the miRNA pathway. The subject single-stranded polynucleotides may mimic the dsRNA in the siRNA mechanism, or the microRNA in the miRNA mechanism.
In certain embodiments, the modified RNAi constructs may have improved stability in serum and/or cerebral spinal fluid compared to an unmodified RNAi constructs having the same sequence.
In certain embodiments, the structure of the RNAi construct does not induce interferon response in primary cells, such as mammalian primary cells, including primary cells from human, mouse and other rodents, and other non-human mammals. In certain embodiments, the RNAi construct may also be used to inhibit expression of a target gene in an invertebrate organism.
To further increase the stability of the subject constructs in vivo, the 3′-end of the hairpin structure may be blocked by protective group(s). For example, protective groups such as inverted nucleotides, inverted abasic moieties, or amino-end modified nucleotides may be used. Inverted nucleotides may comprise an inverted deoxynucleotide. Inverted abasic moieties may comprise an inverted deoxyabasic moiety, such as a 3′, 3′-linked or 5′, 5′-linked deoxyabasic moiety.
The RNAi constructs of the invention are capable of inhibiting the synthesis of any target protein encoded by target gene(s). The invention includes methods to inhibit expression of a target gene either in a cell in vitro, or in vivo. As such, the RNAi constructs of the invention are useful for treating a patient with a disease characterized by the overexpression of a target gene.
The target gene can be endogenous or exogenous (e.g., introduced into a cell by a virus or using recombinant DNA technology) to a cell. Such methods may include introduction of RNA into a cell in an amount sufficient to inhibit expression of the target gene. By way of example, such an RNA molecule may have a guide strand that is complementary to the nucleotide sequence of the target gene, such that the composition inhibits expression of the target gene.
The invention also relates to vectors expressing the nucleic acids of the invention, and cells comprising such vectors or the nucleic acids. The cell may be a mammalian cell in vivo or in culture, such as a human cell.
The invention further relates to compositions comprising the subject RNAi constructs, and a pharmaceutically acceptable carrier or diluent.
Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with any of the subject RNAi constructs.
The method may be carried out in vitro, ex vivo, or in vivo, in, for example, mammalian cells in culture, such as a human cell in culture.
The target cells (e.g., mammalian cell) may be contacted in the presence of a delivery reagent, such as a lipid (e.g., a cationic lipid) or a liposome.
Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with a vector expressing the subject RNAi constructs.
In one aspect of the invention, a longer duplex polynucleotide is provided, including a first polynucleotide that ranges in size from about 16 to about 30 nucleotides; a second polynucleotide that ranges in size from about 26 to about 46 nucleotides, wherein the first polynucleotide (the antisense strand) is complementary to both the second polynucleotide (the sense strand) and a target gene, and wherein both polynucleotides form a duplex and wherein the first polynucleotide contains a single stranded region longer than 6 bases in length and is modified with alternative chemical modification pattern, and/or includes a conjugate moiety that facilitates cellular delivery. In this embodiment, between about 40% to about 90% of the nucleotides of the passenger strand between about 40% to about 90% of the nucleotides of the guide strand, and between about 40% to about 90% of the nucleotides of the single stranded region of the first polynucleotide are chemically modified nucleotides.
In an embodiment, the chemically modified nucleotide in the polynucleotide duplex may be any chemically modified nucleotide known in the art, such as those discussed in detail above. In a particular embodiment, the chemically modified nucleotide is selected from the group consisting of 2′ F modified nucleotides, 2′-O-methyl modified and 2′deoxy nucleotides. In another particular embodiment, the chemically modified nucleotides results from “hydrophobic modifications” of the nucleotide base. In another particular embodiment, the chemically modified nucleotides are phosphorothioates. In an additional particular embodiment, chemically modified nucleotides are combination of phosphorothioates, 2′-O-methyl, 2′deoxy, hydrophobic modifications and phosphorothioates. As these groups of modifications refer to modification of the ribose ring, back bone and nucleotide, it is feasible that some modified nucleotides will carry a combination of all three modification types.
In another embodiment, the chemical modification is not the same across the various regions of the duplex. In a particular embodiment, the first polynucleotide (the passenger strand), has a large number of diverse chemical modifications in various positions. For this polynucleotide up to 90% of nucleotides might be chemically modified and/or have mismatches introduced.
In another embodiment, chemical modifications of the first or second polynucleotide include, but not limited to, 5′ position modification of Uridine and Cytosine (4-pyridyl, 2-pyridyl, indolyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), isobutyl, butyl, aminobenzyl; phenyl; naphthyl, etc), where the chemical modification might alter base pairing capabilities of a nucleotide. For the guide strand an important feature of this aspect of the invention is the position of the chemical modification relative to the 5′ end of the antisense and sequence. For example, chemical phosphorylation of the 5′ end of the guide strand is usually beneficial for efficacy. 0-methyl modifications in the seed region of the sense strand (position 2-7 relative to the 5′ end) are not generally well tolerated, whereas 2′F and deoxy are well tolerated. The mid part of the guide strand and the 3′ end of the guide strand are more permissive in a type of chemical modifications applied. Deoxy modifications are not tolerated at the 3′ end of the guide strand.
A unique feature of this aspect of the invention involves the use of hydrophobic modification on the bases. In one embodiment, the hydrophobic modifications are preferably positioned near the 5′ end of the guide strand, in other embodiments, they localized in the middle of the guides strand, in other embodiment they localized at the 3′ end of the guide strand and yet in another embodiment they are distributed thought the whole length of the polynucleotide. The same type of patterns is applicable to the passenger strand of the duplex.
The other part of the molecule is a single stranded region. The single stranded region is expected to range from 7 to 40 nucleotides.
In one embodiment, the single stranded region of the first polynucleotide contains modifications selected from the group consisting of between 40% and 90% hydrophobic base modifications, between 40%-90% phosphorothioates, between 40%-90% modification of the ribose moiety, and any combination of the preceding.
Efficiency of guide strand (first polynucleotide) loading into the RISC complex might be altered for heavily modified polynucleotides, so in one embodiment, the duplex polynucleotide includes a mismatch between nucleotide 9, 11, 12, 13, or 14 on the guide strand (first polynucleotide) and the opposite nucleotide on the sense strand (second polynucleotide) to promote efficient guide strand loading.
More detailed aspects of the invention are described in the sections below.
Duplex Characteristics
Double-stranded oligonucleotides of the invention may be formed by two separate complementary nucleic acid strands. Duplex formation can occur either inside or outside the cell containing the target gene.
As used herein, the term “duplex” includes the region of the double-stranded nucleic acid molecule(s) that is (are) hydrogen bonded to a complementary sequence. Double-stranded oligonucleotides of the invention may comprise a nucleotide sequence that is sense to a target gene and a complementary sequence that is antisense to the target gene. The sense and antisense nucleotide sequences correspond to the target gene sequence, e.g., are identical or are sufficiently identical to effect target gene inhibition (e.g., are about at least about 98% identical, 96% identical, 94%, 90% identical, 85% identical, or 80% identical) to the target gene sequence.
In certain embodiments, the double-stranded oligonucleotide of the invention is double-stranded over its entire length, i.e., with no overhanging single-stranded sequence at either end of the molecule, i.e., is blunt-ended. In other embodiments, the individual nucleic acid molecules can be of different lengths. In other words, a double-stranded oligonucleotide of the invention is not double-stranded over its entire length. For instance, when two separate nucleic acid molecules are used, one of the molecules, e.g., the first molecule comprising an antisense sequence, can be longer than the second molecule hybridizing thereto (leaving a portion of the molecule single-stranded). Likewise, when a single nucleic acid molecule is used a portion of the molecule at either end can remain single-stranded.
In one embodiment, a double-stranded oligonucleotide of the invention contains mismatches and/or loops or bulges, but is double-stranded over at least about 70% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 80% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 90%-95% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 96%-98% of the length of the oligonucleotide. In certain embodiments, the double-stranded oligonucleotide of the invention contains at least or up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mismatches.
Modifications
The nucleotides of the invention may be modified at various locations, including the sugar moiety, the phosphodiester linkage, and/or the base.
Sugar moieties include natural, unmodified sugars, e.g., monosaccharide (such as pentose, e.g., ribose, deoxyribose), modified sugars and sugar analogs. In general, possible modifications of nucleomonomers, particularly of a sugar moiety, include, for example, replacement of one or more of the hydroxyl groups with a halogen, a heteroatom, an aliphatic group, or the functionalization of the hydroxyl group as an ether, an amine, a thiol, or the like.
One particularly useful group of modified nucleomonomers are 2′-O-methyl nucleotides. Such 2′-O-methyl nucleotides may be referred to as “methylated,” and the corresponding nucleotides may be made from unmethylated nucleotides followed by alkylation or directly from methylated nucleotide reagents. Modified nucleomonomers may be used in combination with unmodified nucleomonomers. For example, an oligonucleotide of the invention may contain both methylated and unmethylated nucleomonomers.
Some exemplary modified nucleomonomers include sugar- or backbone-modified ribonucleotides. Modified ribonucleotides may contain a non-naturally occurring base (instead of a naturally occurring base), such as uridines or cytidines modified at the 5′-position, e.g., 5′-(2-amino)propyl uridine and 5′-bromo uridine; adenosines and guanosines modified at the 8-position, e.g., 8-bromo guanosine; deaza nucleotides, e.g., 7-deaza-adenosine; and N-alkylated nucleotides, e.g., N6-methyl adenosine. Also, sugar-modified ribonucleotides may have the 2′-OH group replaced by a H, alxoxy (or OR), R or alkyl, halogen, SH, SR, amino (such as NH2, NHR, NR2,), or CN group, wherein R is lower alkyl, alkenyl, or alkynyl.
Modified ribonucleotides may also have the phosphodiester group connecting to adjacent ribonucleotides replaced by a modified group, e.g., of phosphorothioate group. More generally, the various nucleotide modifications may be combined.
Although the antisense (guide) strand may be substantially identical to at least a portion of the target gene (or genes), at least with respect to the base pairing properties, the sequence need not be perfectly identical to be useful, e.g., to inhibit expression of a target gene's phenotype. Generally, higher homology can be used to compensate for the use of a shorter antisense gene. In some cases, the antisense strand generally will be substantially identical (although in antisense orientation) to the target gene.
The use of 2′-O-methyl modified RNA may also be beneficial in circumstances in which it is desirable to minimize cellular stress responses. RNA having 2′-O-methyl nucleomonomers may not be recognized by cellular machinery that is thought to recognize unmodified RNA. The use of 2′-O-methylated or partially 2′-O-methylated RNA may avoid the interferon response to double-stranded nucleic acids, while maintaining target RNA inhibition. This may be useful, for example, for avoiding the interferon or other cellular stress responses, both in short RNAi (e.g., siRNA) sequences that induce the interferon response, and in longer RNAi sequences that may induce the interferon response.
Overall, modified sugars may include D-ribose, 2′-O-alkyl (including 2′-O-methyl and 2′-O-ethyl), i.e., 2′-alkoxy, 2′-amino, 2′-S-alkyl, 2′-halo (including 2′-fluoro), 2′-methoxyethoxy, 2′-allyloxy (—OCH2CH═CH2), 2′-propargyl, 2′-propyl, ethynyl, ethenyl, propenyl, and cyano and the like. In one embodiment, the sugar moiety can be a hexose and incorporated into an oligonucleotide as described (Augustyns, K., et al., Nucl. Acids. Res. 18:4711 (1992)). Exemplary nucleomonomers can be found, e.g., in U.S. Pat. No. 5,849,902, incorporated by reference herein.
The term “alkyl” includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In certain embodiments, a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., C1-C6 for straight chain, C3-C6 for branched chain), and more preferably 4 or fewer. Likewise, preferred cycloalkyls have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C1-C6 includes alkyl groups containing 1 to 6 carbon atoms.
Moreover, unless otherwise specified, the term alkyl includes both “unsubstituted alkyls” and “substituted alkyls,” the latter of which refers to alkyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkyl carbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e.g., with the substituents described above. An “alkylaryl” or an “arylalkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). The term “alkyl” also includes the side chains of natural and unnatural amino acids. The term “n-alkyl” means a straight chain (i.e., unbranched) unsubstituted alkyl group.
The term “alkenyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond. For example, the term “alkenyl” includes straight-chain alkenyl groups (e.g., ethylenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups. In certain embodiments, a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain). Likewise, cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C2-C6 includes alkenyl groups containing 2 to 6 carbon atoms.
Moreover, unless otherwise specified, the term alkenyl includes both “unsubstituted alkenyls” and “substituted alkenyls,” the latter of which refers to alkenyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.
The term “alkynyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond. For example, the term “alkynyl” includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups. In certain embodiments, a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain). The term C2-C6 includes alkynyl groups containing 2 to 6 carbon atoms.
Moreover, unless otherwise specified, the term alkynyl includes both “unsubstituted alkynyls” and “substituted alkynyls,” the latter of which refers to alkynyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.
Unless the number of carbons is otherwise specified, “lower alkyl” as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure. “Lower alkenyl” and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms.
The term “alkoxy” includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups. Examples of substituted alkoxy groups include halogenated alkoxy groups. The alkoxy groups can be substituted with independently selected groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulffiydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfmyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moieties. Examples of halogen substituted alkoxy groups include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, etc.
The term “heteroatom” includes atoms of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.
The term “hydroxy” or “hydroxyl” includes groups with an —OH or —O− (with an appropriate counterion).
The term “halogen” includes fluorine, bromine, chlorine, iodine, etc. The term “perhalogenated” generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.
The term “substituted” includes independently selected substituents which can be placed on the moiety and which allow the molecule to perform its intended function. Examples of sub stituents include alkyl, alkenyl, alkynyl, aryl, (CR′R″)0-3NR′R″, (CR′R″)0-3CN, NO2, halogen, (CR′R″)0-3C(halogen)3, (CR′R″)0-3CH(halogen)2, (CR′R″)0-3CH2(halogen), (CR′R″)0-3CONR′R″, (CR′R″)0-3S(O)1-2NR′R″, (CR′R″)0-3CHO, (CR′R″)0-3O(CR′R″)0-3H, (CR′R″)0-3S(O)0-2R′, (CR′R″)0-3O(CR′R″)0-3H, (CR′R″)0-3COR′, (CR′R″)0-3CO2R′, or (CR′R″)0-3OR′ groups; wherein each R′ and R″ are each independently hydrogen, a C1-C5 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, or aryl group, or R′ and R″ taken together are a benzylidene group or a —(CH2)2O(CH2)2— group.
The term “amine” or “amino” includes compounds or moieties in which a nitrogen atom is covalently bonded to at least one carbon or heteroatom. The term “alkyl amino” includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group. The term “dialkyl amino” includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups.
The term “ether” includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms. For example, the term includes “alkoxyalkyl,” which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.
The term “base” includes the known purine and pyrimidine heterocyclic bases, deazapurines, and analogs (including heterocyclic substituted analogs, e.g., aminoethyoxy phenoxazine), derivatives (e.g., 1-alkyl-, 1-alkenyl-, heteroaromatic- and 1-alkynyl derivatives) and tautomers thereof. Examples of purines include adenine, guanine, inosine, diaminopurine, and xanthine and analogs (e.g., 8-oxo-N6-methyladenine or 7-diazaxanthine) and derivatives thereof. Pyrimidines include, for example, thymine, uracil, and cytosine, and their analogs (e.g., 5-methylcytosine, 5-methyluracil, 5-(1-propynyl)uracil, 5-(1-propynyl)cytosine and 4,4-ethanocytosine). Other examples of suitable bases include non-purinyl and non-pyrimidinyl bases such as 2-aminopyridine and triazines.
In a preferred embodiment, the nucleomonomers of an oligonucleotide of the invention are RNA nucleotides. In another preferred embodiment, the nucleomonomers of an oligonucleotide of the invention are modified RNA nucleotides. Thus, the oligunucleotides contain modified RNA nucleotides.
The term “nucleoside” includes bases which are covalently attached to a sugar moiety, preferably ribose or deoxyribose. Examples of preferred nucleosides include ribonucleosides and deoxyribonucleosides. Nucleosides also include bases linked to amino acids or amino acid analogs which may comprise free carboxyl groups, free amino groups, or protecting groups. Suitable protecting groups are well known in the art (see P. G. M. Wuts and T. W. Greene, “Protective Groups in Organic Synthesis”, 2nd Ed., Wiley-Interscience, New York, 1999).
The term “nucleotide” includes nucleosides which further comprise a phosphate group or a phosphate analog.
As used herein, the term “linkage” includes a naturally occurring, unmodified phosphodiester moiety (—O—(PO2−)—O—) that covalently couples adjacent nucleomonomers. As used herein, the term “substitute linkage” includes any analog or derivative of the native phosphodiester group that covalently couples adjacent nucleomonomers. Substitute linkages include phosphodiester analogs, e.g., phosphorothioate, phosphorodithioate, and P-ethyoxyphosphodiester, P-ethoxyphosphodiester, P-alkyloxyphosphotriester, methylphosphonate, and nonphosphorus containing linkages, e.g., acetals and amides. Such substitute linkages are known in the art (e.g., Bjergarde et al. 1991. Nucleic Acids Res. 19:5843; Caruthers et al. 1991. Nucleosides Nucleotides. 10:47). In certain embodiments, non-hydrolizable linkages are preferred, such as phosphorothiate linkages.
In certain embodiments, oligonucleotides of the invention comprise hydrophobically modified nucleotides or “hydrophobic modifications.” As used herein “hydrophobic modifications” refers to bases that are modified such that (1) overall hydrophobicity of the base is significantly increased, and/or (2) the base is still capable of forming close to regular Watson-Crick interaction. Several non-limiting examples of base modifications include 5-position uridine and cytidine modifications such as methyl, ethyl, phenyl, 4-pyridyl, 2-pyridyl, indolyl, and isobutyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), butyl, aminobenzyl; and naphthyl.
In certain embodiments, oligonucleotides of the invention comprise 3′ and 5′ termini (except for circular oligonucleotides). In one embodiment, the 3′ and 5′ termini of an oligonucleotide can be substantially protected from nucleases e.g., by modifying the 3′ or 5′ linkages (e.g., U.S. Pat. No. 5,849,902 and WO 98/13526). For example, oligonucleotides can be made resistant by the inclusion of a “blocking group.” The term “blocking group” as used herein refers to substituents (e.g., other than OH groups) that can be attached to oligonucleotides or nucleomonomers, either as protecting groups or coupling groups for synthesis (e.g., FITC, propyl (CH2—CH2—CH3), glycol (—O—CH2—CH2—O—) phosphate (PO32−), hydrogen phosphonate, or phosphoramidite). “Blocking groups” also include “end blocking groups” or “exonuclease blocking groups” which protect the 5′ and 3′ termini of the oligonucleotide, including modified nucleotides and non-nucleotide exonuclease resistant structures.
Exemplary end-blocking groups include cap structures (e.g., a 7-methylguanosine cap), inverted nucleomonomers, e.g., with 3′-3′ or 5′-5′ end inversions (see, e.g., Ortiagao et al. 1992. Antisense Res. Dev. 2:129), methylphosphonate, phosphoramidite, non-nucleotide groups (e.g., non-nucleotide linkers, amino linkers, conjugates) and the like. The 3′ terminal nucleomonomer can comprise a modified sugar moiety. The 3′ terminal nucleomonomer comprises a 3′-O that can optionally be substituted by a blocking group that prevents 3′-exonuclease degradation of the oligonucleotide. For example, the 3′-hydroxyl can be esterified to a nucleotide through a 3′→3′ internucleotide linkage. For example, the alkyloxy radical can be methoxy, ethoxy, or isopropoxy, and preferably, ethoxy. Optionally, the 3′→3′ linked nucleotide at the 3′ terminus can be linked by a substitute linkage. To reduce nuclease degradation, the 5′ most 3′→5′ linkage can be a modified linkage, e.g., a phosphorothioate or a P-alkyloxyphosphotriester linkage. Preferably, the two 5′ most 3′→5′ linkages are modified linkages. Optionally, the 5′ terminal hydroxy moiety can be esterified with a phosphorus containing moiety, e.g., phosphate, phosphorothioate, or P-ethoxyphosphate.
Another type of conjugates that can be attached to the end (3′ or 5′ end), the loop region, or any other parts of the miniRNA might include a sterol, sterol type molecule, peptide, small molecule, protein, etc. In some embodiments, a miniRNA may contain more than one conjugates (same or different chemical nature). In some embodiments, the conjugate is cholesterol.
Another way to increase target gene specificity, or to reduce off-target silencing effect, is to introduce a 2′-modification (such as the 2′-O methyl modification) at a position corresponding to the second 5′-end nucleotide of the guide sequence. This allows the positioning of this 2′-modification in the Dicer-resistant hairpin structure, thus enabling one to design better RNAi constructs with less or no off-target silencing.
In one embodiment, a hairpin polynucleotide of the invention can comprise one nucleic acid portion which is DNA and one nucleic acid portion which is RNA. Antisense (guide) sequences of the invention can be “chimeric oligonucleotides” which comprise an RNA-like and a DNA-like region.
The language “RNase H activating region” includes a region of an oligonucleotide, e.g., a chimeric oligonucleotide, that is capable of recruiting RNase H to cleave the target RNA strand to which the oligonucleotide binds. Typically, the RNase activating region contains a minimal core (of at least about 3-5, typically between about 3-12, more typically, between about 5-12, and more preferably between about 5-10 contiguous nucleomonomers) of DNA or DNA-like nucleomonomers. (See, e.g., U.S. Pat. No. 5,849,902). Preferably, the RNase H activating region comprises about nine contiguous deoxyribose containing nucleomonomers.
The language “non-activating region” includes a region of an antisense sequence, e.g., a chimeric oligonucleotide, that does not recruit or activate RNase H. Preferably, a non-activating region does not comprise phosphorothioate DNA. The oligonucleotides of the invention comprise at least one non-activating region. In one embodiment, the non-activating region can be stabilized against nucleases or can provide specificity for the target by being complementary to the target and forming hydrogen bonds with the target nucleic acid molecule, which is to be bound by the oligonucleotide.
In one embodiment, at least a portion of the contiguous polynucleotides are linked by a substitute linkage, e.g., a phosphorothioate linkage.
In certain embodiments, most or all of the nucleotides beyond the guide sequence (2′-modified or not) are linked by phosphorothioate linkages. Such constructs tend to have improved pharmacokinetics due to their higher affinity for serum proteins. The phosphorothioate linkages in the non-guide sequence portion of the polynucleotide generally do not interfere with guide strand activity, once the latter is loaded into RISC.
Antisense (guide) sequences of the present invention may include “morpholino oligonucleotides.” Morpholino oligonucleotides are non-ionic and function by an RNase H-independent mechanism. Each of the 4 genetic bases (Adenine, Cytosine, Guanine, and Thymine/Uracil) of the morpholino oligonucleotides is linked to a 6-membered morpholine ring. Morpholino oligonucleotides are made by joining the 4 different subunit types by, e.g., non-ionic phosphorodiamidate inter-subunit linkages. Morpholino oligonucleotides have many advantages including: complete resistance to nucleases (Antisense & Nucl. Acid Drug Dev. 1996. 6:267); predictable targeting (Biochemica Biophysica Acta. 1999. 1489:141); reliable activity in cells (Antisense & Nucl. Acid Drug Dev. 1997. 7:63); excellent sequence specificity (Antisense & Nucl. Acid Drug Dev. 1997. 7:151); minimal non-antisense activity (Biochemica Biophysica Acta. 1999. 1489:141); and simple osmotic or scrape delivery (Antisense & Nucl. Acid Drug Dev. 1997. 7:291). Morpholino oligonucleotides are also preferred because of their non-toxicity at high doses. A discussion of the preparation of morpholino oligonucleotides can be found in Antisense & Nucl. Acid Drug Dev. 1997. 7:187.
The chemical modifications described herein are believed, based on the data described herein, to promote single stranded polynucleotide loading into the RISC. Single stranded polynucleotides have been shown to be active in loading into RISC and inducing gene silencing. However, the level of activity for single stranded polynucleotides appears to be 2 to 4 orders of magnitude lower when compared to a duplex polynucleotide.
The present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient loading of the polynucleotide into the RISC complex and (c) improve uptake of the single stranded nucleotide by the cell. FIG. 5 provides some non-limiting examples of the chemical modification patterns which may be beneficial for achieving single stranded polynucleotide efficacy inside the cell. The chemical modification patterns may include combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications. In addition, in some of the embodiments, the 5′ end of the single polynucleotide may be chemically phosphorylated.
In yet another embodiment, the present invention provides a description of the chemical modifications patterns, which improve functionality of RISC inhibiting polynucleotides. Single stranded polynucleotides have been shown to inhibit activity of a preloaded RISC complex through the substrate competition mechanism. For these types of molecules, conventionally called antagomers, the activity usually requires high concentration and in vivo delivery is not very effective. The present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient recognition of the polynucleotide by the RISC as a substrate and/or (c) improve uptake of the single stranded nucleotide by the cell. FIG. 6 provides some non-limiting examples of the chemical modification patterns that may be beneficial for achieving single stranded polynucleotide efficacy inside the cell. The chemical modification patterns may include combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications.
The modifications provided by the present invention are applicable to all polynucleotides. This includes single stranded RISC entering polynucleotides, single stranded RISC inhibiting polynucleotides, conventional duplexed polynucleotides of variable length (15-40 bp),asymmetric duplexed polynucleotides, and the like. Polynucleotides may be modified with wide variety of chemical modification patterns, including 5′ end, ribose, backbone and hydrophobic nucleoside modifications.
Synthesis
Oligonucleotides of the invention can be synthesized by any method known in the art, e.g., using enzymatic synthesis and/or chemical synthesis. The oligonucleotides can be synthesized in vitro (e.g., using enzymatic synthesis and chemical synthesis) or in vivo (using recombinant DNA technology well known in the art).
In a preferred embodiment, chemical synthesis is used for modified polynucleotides. Chemical synthesis of linear oligonucleotides is well known in the art and can be achieved by solution or solid phase techniques. Preferably, synthesis is by solid phase methods. Oligonucleotides can be made by any of several different synthetic procedures including the phosphoramidite, phosphite triester, H-phosphonate, and phosphotriester methods, typically by automated synthesis methods.
Oligonucleotide synthesis protocols are well known in the art and can be found, e.g., in U.S. Pat. No. 5,830,653; WO 98/13526; Stec et al. 1984. J. Am. Chem. Soc. 106:6077; Stec et al. 1985. J. Org. Chem. 50:3908; Stec et al. J. Chromatog. 1985. 326:263; LaPlanche et al. 1986. Nucl. Acid. Res. 1986. 14:9081; Fasman G. D., 1989. Practical Handbook of Biochemistry and Molecular Biology. 1989. CRC Press, Boca Raton, Fla.; Lamone. 1993. Biochem. Soc. Trans. 21:1; U.S. Pat. Nos. 5,013,830; 5,214,135; 5,525,719; Kawasaki et al. 1993. J. Med. Chem. 36:831; WO 92/03568; U.S. Pat. Nos. 5,276,019; and 5,264,423.
The synthesis method selected can depend on the length of the desired oligonucleotide and such choice is within the skill of the ordinary artisan. For example, the phosphoramidite and phosphite triester method can produce oligonucleotides having 175 or more nucleotides, while the H-phosphonate method works well for oligonucleotides of less than 100 nucleotides. If modified bases are incorporated into the oligonucleotide, and particularly if modified phosphodiester linkages are used, then the synthetic procedures are altered as needed according to known procedures. In this regard, Uhlmann et al. (1990, Chemical Reviews 90:543-584) provide references and outline procedures for making oligonucleotides with modified bases and modified phosphodiester linkages. Other exemplary methods for making oligonucleotides are taught in Sonveaux. 1994. “Protecting Groups in Oligonucleotide Synthesis”; Agrawal. Methods in Molecular Biology 26:1. Exemplary synthesis methods are also taught in “Oligonucleotide Synthesis—A Practical Approach” (Gait, M. J. IRL Press at Oxford University Press. 1984). Moreover, linear oligonucleotides of defined sequence, including some sequences with modified nucleotides, are readily available from several commercial sources.
The oligonucleotides may be purified by polyacrylamide gel electrophoresis, or by any of a number of chromatographic methods, including gel chromatography and high pressure liquid chromatography. To confirm a nucleotide sequence, especially unmodified nucleotide sequences, oligonucleotides may be subjected to DNA sequencing by any of the known procedures, including Maxam and Gilbert sequencing, Sanger sequencing, capillary electrophoresis sequencing, the wandering spot sequencing procedure or by using selective chemical degradation of oligonucleotides bound to Hybond paper. Sequences of short oligonucleotides can also be analyzed by laser desorption mass spectroscopy or by fast atom bombardment (McNeal, et al., 1982, J. Am. Chem. Soc. 104:976; Viari, et al., 1987, Biomed. Environ. Mass Spectrom. 14:83; Grotjahn et al., 1982, Nuc. Acid Res. 10:4671). Sequencing methods are also available for RNA oligonucleotides.
The quality of oligonucleotides synthesized can be verified by testing the oligonucleotide by capillary electrophoresis and denaturing strong anion HPLC (SAX-HPLC) using, e.g., the method of Bergot and Egan. 1992. J. Chrom. 599:35.
Other exemplary synthesis techniques are well known in the art (see, e.g., Sambrook et al., Molecular Cloning: a Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and II (DN Glover Ed. 1985); Oligonucleotide Synthesis (M J Gait Ed, 1984; Nucleic Acid Hybridisation (B D Hames and S J Higgins eds. 1984); A Practical Guide to Molecular Cloning (1984); or the series, Methods in Enzymology (Academic Press, Inc.)).
In certain embodiments, the subject RNAi constructs or at least portions thereof are transcribed from expression vectors encoding the subject constructs. Any art recognized vectors may be use for this purpose. The transcribed RNAi constructs may be isolated and purified, before desired modifications (such as replacing an unmodified sense strand with a modified one, etc.) are carried out.
Delivery/Carrier
Uptake of Oligonucleotides by Cells
Oligonucleotides and oligonucleotide compositions are contacted with (i.e., brought into contact with, also referred to herein as administered or delivered to) and taken up by one or more cells or a cell lysate. The term “cells” includes prokaryotic and eukaryotic cells, preferably vertebrate cells, and, more preferably, mammalian cells. In a preferred embodiment, the oligonucleotide compositions of the invention are contacted with human cells.
Oligonucleotide compositions of the invention can be contacted with cells in vitro, e.g., in a test tube or culture dish, (and may or may not be introduced into a subject) or in vivo, e.g., in a subject such as a mammalian subject. Oligonucleotides are taken up by cells at a slow rate by endocytosis, but endocytosed oligonucleotides are generally sequestered and not available, e.g., for hybridization to a target nucleic acid molecule. In one embodiment, cellular uptake can be facilitated by electroporation or calcium phosphate precipitation. However, these procedures are only useful for in vitro or ex vivo embodiments, are not convenient and, in some cases, are associated with cell toxicity.
In another embodiment, delivery of oligonucleotides into cells can be enhanced by suitable art recognized methods including calcium phosphate, DMSO, glycerol or dextran, electroporation, or by transfection, e.g., using cationic, anionic, or neutral lipid compositions or liposomes using methods known in the art (see e.g., WO 90/14074; WO 91/16024; WO 91/17424; U.S. Pat. No. 4,897,355; Bergan et al. 1993. Nucleic Acids Research. 21:3567). Enhanced delivery of oligonucleotides can also be mediated by the use of vectors (See e.g., Shi, Y. 2003. Trends Genet 2003 Jan. 19:9; Reichhart J M et al. Genesis. 2002. 34(1-2):1604, Yu et al. 2002. Proc. Natl. Acad Sci. USA 99:6047; Sui et al. 2002. Proc. Natl. Acad Sci. USA 99:5515) viruses, polyamine or polycation conjugates using compounds such as polylysine, protamine, or Ni, N12-bis (ethyl) spermine (see, e.g., Bartzatt, R. et al. 1989. Biotechnol. Appl. Biochem. 11:133; Wagner E. et al. 1992. Proc. Natl. Acad. Sci. 88:4255).
In certain embodiments, the miniRNA of the invention may be delivered by using various beta-glucan containing particles, such as those described in US 2005/0281781 A1, WO 2006/007372, and WO 2007/050643 (all incorporated herein by reference). In certain embodiments, the beta-glucan particle is derived from yeast. In certain embodiments, the payload trapping molecule is a polymer, such as those with a molecular weight of at least about 1000 Da, 10,000 Da, 50,000 Da, 100 kDa, 500 kDa, etc. Preferred polymers include (without limitation) cationic polymers, chitosans, or PEI (polyethylenimine), etc.
Such beta-glucan based delivery system may be formulated for oral delivery, where the orally delivered beta-glucan/miniRNA constructs may be engulfed by macrophages or other related phagocytic cells, which may in turn release the miniRNA constructs in selected in vivo sites. Alternatively or in addition, the miniRNA may changes the expression of certain macrophage target genes.
The optimal protocol for uptake of oligonucleotides will depend upon a number of factors, the most crucial being the type of cells that are being used. Other factors that are important in uptake include, but are not limited to, the nature and concentration of the oligonucleotide, the confluence of the cells, the type of culture the cells are in (e.g., a suspension culture or plated) and the type of media in which the cells are grown.
Encapsulating Agents
Encapsulating agents entrap oligonucleotides within vesicles. In another embodiment of the invention, an oligonucleotide may be associated with a carrier or vehicle, e.g., liposomes or micelles, although other carriers could be used, as would be appreciated by one skilled in the art. Liposomes are vesicles made of a lipid bilayer having a structure similar to biological membranes. Such carriers are used to facilitate the cellular uptake or targeting of the oligonucleotide, or improve the oligonucleotide's pharmacokinetic or toxicologic properties.
For example, the oligonucleotides of the present invention may also be administered encapsulated in liposomes, pharmaceutical compositions wherein the active ingredient is contained either dispersed or variously present in corpuscles consisting of aqueous concentric layers adherent to lipidic layers. The oligonucleotides, depending upon solubility, may be present both in the aqueous layer and in the lipidic layer, or in what is generally termed a liposomic suspension. The hydrophobic layer, generally but not exclusively, comprises phopholipids such as lecithin and sphingomyelin, steroids such as cholesterol, more or less ionic surfactants such as diacetylphosphate, stearylamine, or phosphatidic acid, or other materials of a hydrophobic nature. The diameters of the liposomes generally range from about 15 nm to about 5 microns.
A “hydrophobic modified polynucleotide” as used herein is a polynucleotide of the invention(i.e. sd-rxRNA) that has at least one modification that renders the polynucleotide more hydrophobic than the polynucleotide was prior to modification. The modification may be achieved by attaching (covalently or non-covalently) a hydrophobic molecule to the polynucleotide. In some instances the hydrophobic molecule is or includes a lipophilic group.
The term “lipophilic group” means a group that has a higher affinity for lipids than its affinity for water. Examples of lipophilic groups include, but are not limited to, cholesterol, a cholesteryl or modified cholesteryl residue, adamantine, dihydrotesterone, long chain alkyl, long chain alkenyl, long chain alkynyl, olely-lithocholic, cholenic, oleoyl-cholenic, palmityl, heptadecyl, myrisityl, bile acids, cholic acid or taurocholic acid, deoxycholate, oleyl litocholic acid, oleoyl cholenic acid, glycolipids, phospholipids, sphingolipids, isoprenoids, such as steroids, vitamins, such as vitamin E, fatty acids either saturated or unsaturated, fatty acid esters, such as triglycerides, pyrenes, porphyrines, Texaphyrine, adamantane, acridines, biotin, coumarin, fluorescein, rhodamine, Texas-Red, digoxygenin, dimethoxytrityl, t-butyldimethylsilyl, t-butyldiphenylsilyl, cyanine dyes (e.g. Cy3 or Cy5), Hoechst 33258 dye, psoralen, or ibuprofen. The cholesterol moiety may be reduced (e.g. as in cholestan) or may be substituted (e.g. by halogen). A combination of different lipophilic groups in one molecule is also possible.
The hydrophobic molecule may be attached at various positions of the polynucleotide. As described above, the hydrophobic molecule may be linked to the terminal residue of the polynucleotide such as the 3′ of 5′-end of the polynucleotide. Alternatively, it may be linked to an internal nucleotide or a nucleotide on a branch of the polynucleotide. The hydrophobic molecule may be attached, for instance to a 2′-position of the nucleotide. The hydrophobic molecule may also be linked to the heterocyclic base, the sugar or the backbone of a nucleotide of the polynucleotide.
The hydrophobic molecule may be connected to the polynucleotide by a linker moiety. Optionally the linker moiety is a non-nucleotidic linker moiety. Non-nucleotidic linkers are e.g. abasic residues (dSpacer), oligoethyleneglycol, such as triethyleneglycol (spacer 9) or hexaethylenegylcol (spacer 18), or alkane-diol, such as butanediol. The spacer units are preferably linked by phosphodiester or phosphorothioate bonds. The linker units may appear just once in the molecule or may be incorporated several times, e.g. via phosphodiester, phosphorothioate, methylphosphonate, or amide linkages.
Typical conjugation protocols involve the synthesis of polynucleotides bearing an aminolinker at one or more positions of the sequence, however, a linker is not required. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the polynucleotide still bound to a solid support or following cleavage of the polynucleotide in solution phase. Purification of the modified polynucleotide by HPLC typically results in a pure material.
In some embodiments the hydrophobic molecule is a sterol type conjugate, a PhytoSterol conjugate, cholesterol conjugate, sterol type conjugate with altered side chain length, fatty acid conjugate, any other hydrophobic group conjugate, and/or hydrophobic modifications of the internal nucleoside, which provide sufficient hydrophobicity to be incorporated into micelles.
For purposes of the present invention, the term “sterols”, refers or steroid alcohols are a subgroup of steroids with a hydroxyl group at the 3-position of the A-ring. They are amphipathic lipids synthesized from acetyl-coenzyme A via the HMG-CoA reductase pathway. The overall molecule is quite flat. The hydroxyl group on the A ring is polar. The rest of the aliphatic chain is non-polar. Usually sterols are considered to have an 8 carbon chain at position 17.
For purposes of the present invention, the term “sterol type molecules”, refers to steroid alcohols, which are similar in structure to sterols. The main difference is the structure of the ring and number of carbons in a position 21 attached side chain.
For purposes of the present invention, the term “PhytoSterols” (also called plant sterols) are a group of steroid alcohols, phytochemicals naturally occurring in plants. There are more then 200 different known PhytoSterols
For purposes of the present invention, the term “Sterol side chain” refers to a chemical composition of a side chain attached at the position 17 of sterol-type molecule. In a standard definition sterols are limited to a 4 ring structure carrying a 8 carbon chain at position 17. In this invention, the sterol type molecules with side chain longer and shorter than conventional are described. The side chain may branched or contain double back bones.
Thus, sterols useful in the invention, for example, include cholesterols, as well as unique sterols in which position 17 has attached side chain of 2-7 or longer then 9 carbons. In a particular embodiment, the length of the polycarbon tail is varied between 5 and 9 carbons. FIG. 9 demonstrates that there is a correlation between plasma clearance, liver uptake and the length of the polycarbon chain. Such conjugates may have significantly better in vivo efficacy, in particular delivery to liver. These types of molecules are expected to work at concentrations 5 to 9 fold lower then oligonucleotides conjugated to conventional cholesterols.
Alternatively the polynucleotide may be bound to a protein, peptide or positively charged chemical that functions as the hydrophobic molecule. The proteins may be selected from the group consisting of protamine, dsRNA binding domain, and arginine rich peptides. Exemplary positively charged chemicals include spermine, spermidine, cadaverine, and putrescine.
In another embodiment hydrophobic molecule conjugates may demonstrate even higher efficacy when it is combined with optimal chemical modification patterns of the polynucleotide (as described herein in detail), containing but not limited to hydrophobic modifications, phosphorothioate modifications, and 2′ ribo modifications.
In another embodiment the sterol type molecule may be a naturally occurring PhytoSterols such as those shown in FIG. 8. The polycarbon chain may be longer than 9 and may be linear, branched and/or contain double bonds. Some PhytoSterol containing polynucleotide conjugates may be significantly more potent and active in delivery of polynucleotides to various tissues. Some PhytoSterols may demonstrate tissue preference and thus be used as a way to delivery RNAi specifically to particular tissues.
Targeting Agents
The delivery of oligonucleotides can also be improved by targeting the oligonucleotides to a cellular receptor. The targeting moieties can be conjugated to the oligonucleotides or attached to a carrier group (i.e., poly(L-lysine) or liposomes) linked to the oligonucleotides. This method is well suited to cells that display specific receptor-mediated endocytosis.
For instance, oligonucleotide conjugates to 6-phosphomannosylated proteins are internalized 20-fold more efficiently by cells expressing mannose 6-phosphate specific receptors than free oligonucleotides. The oligonucleotides may also be coupled to a ligand for a cellular receptor using a biodegradable linker. In another example, the delivery construct is mannosylated streptavidin which forms a tight complex with biotinylated oligonucleotides. Mannosylated streptavidin was found to increase 20-fold the internalization of biotinylated oligonucleotides. (Vlassov et al. 1994. Biochimica et Biophysica Acta 1197:95-108).
In addition specific ligands can be conjugated to the polylysine component of polylysine-based delivery systems. For example, transferrin-polylysine, adenovirus-polylysine, and influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides-polylysine conjugates greatly enhance receptor-mediated DNA delivery in eucaryotic cells. Mannosylated glycoprotein conjugated to poly(L-lysine) in aveolar macrophages has been employed to enhance the cellular uptake of oligonucleotides. Liang et al. 1999. Pharmazie 54:559-566.
Because malignant cells have an increased need for essential nutrients such as folic acid and transferrin, these nutrients can be used to target oligonucleotides to cancerous cells. For example, when folic acid is linked to poly(L-lysine) enhanced oligonucleotide uptake is seen in promyelocytic leukaemia (HL-60) cells and human melanoma (M-14) cells. Ginobbi et al. 1997. Anticancer Res. 17:29. In another example, liposomes coated with maleylated bovine serum albumin, folic acid, or ferric protoporphyrin IX, show enhanced cellular uptake of oligonucleotides in murine macrophages, KB cells, and 2.2.15 human hepatoma cells. Liang et al. 1999. Pharmazie 54:559-566.
Liposomes naturally accumulate in the liver, spleen, and reticuloendothelial system (so-called, passive targeting). By coupling liposomes to various ligands such as antibodies are protein A, they can be actively targeted to specific cell populations. For example, protein A-bearing liposomes may be pretreated with H-2K specific antibodies which are targeted to the mouse major histocompatibility complex-encoded H-2K protein expressed on L cells. (Vlassov et al. 1994. Biochimica et Biophysica Acta 1197:95-108).
Other in vitro and/or in vivo delivery of RNAi reagents are known in the art, and can be used to deliver the subject RNAi constructs. See, for example, U.S. patent application publications 20080152661, 20080112916, 20080107694, 20080038296, 20070231392, 20060240093, 20060178327, 20060008910, 20050265957, 20050064595, 20050042227, 20050037496, 20050026286, 20040162235, 20040072785, 20040063654, 20030157030, WO 2008/036825, WO04/065601, and AU2004206255B2, just to name a few (all incorporated by reference).
Administration
The optimal course of administration or delivery of the oligonucleotides may vary depending upon the desired result and/or on the subject to be treated. As used herein “administration” refers to contacting cells with oligonucleotides and can be performed in vitro or in vivo. The dosage of oligonucleotides may be adjusted to optimally reduce expression of a protein translated from a target nucleic acid molecule, e.g., as measured by a readout of RNA stability or by a therapeutic response, without undue experimentation.
For example, expression of the protein encoded by the nucleic acid target can be measured to determine whether or not the dosage regimen needs to be adjusted accordingly. In addition, an increase or decrease in RNA or protein levels in a cell or produced by a cell can be measured using any art recognized technique. By determining whether transcription has been decreased, the effectiveness of the oligonucleotide in inducing the cleavage of a target RNA can be determined.
Any of the above-described oligonucleotide compositions can be used alone or in conjunction with a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” includes appropriate solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, it can be used in the therapeutic compositions. Supplementary active ingredients can also be incorporated into the compositions.
Oligonucleotides may be incorporated into liposomes or liposomes modified with polyethylene glycol or admixed with cationic lipids for parenteral administration. Incorporation of additional substances into the liposome, for example, antibodies reactive against membrane proteins found on specific target cells, can help target the oligonucleotides to specific cell types.
Moreover, the present invention provides for administering the subject oligonucleotides with an osmotic pump providing continuous infusion of such oligonucleotides, for example, as described in Rataiczak et al. (1992 Proc. Natl. Acad. Sci. USA 89:11823-11827). Such osmotic pumps are commercially available, e.g., from Alzet Inc. (Palo Alto, Calif.). Topical administration and parenteral administration in a cationic lipid carrier are preferred.
With respect to in vivo applications, the formulations of the present invention can be administered to a patient in a variety of forms adapted to the chosen route of administration, e.g., parenterally, orally, or intraperitoneally. Parenteral administration, which is preferred, includes administration by the following routes: intravenous; intramuscular; interstitially; intraarterially; subcutaneous; intra ocular; intrasynovial; trans epithelial, including transdermal; pulmonary via inhalation; ophthalmic; sublingual and buccal; topically, including ophthalmic; dermal; ocular; rectal; and nasal inhalation via insufflation.
Pharmaceutical preparations for parenteral administration include aqueous solutions of the active compounds in water-soluble or water-dispersible form. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, or dextran, optionally, the suspension may also contain stabilizers. The oligonucleotides of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the oligonucleotides may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included in the invention.
Pharmaceutical preparations for topical administration include transdermal patches, ointments, lotions, creams, gels, drops, sprays, suppositories, liquids and powders. In addition, conventional pharmaceutical carriers, aqueous, powder or oily bases, or thickeners may be used in pharmaceutical preparations for topical administration.
Pharmaceutical preparations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. In addition, thickeners, flavoring agents, diluents, emulsifiers, dispersing aids, or binders may be used in pharmaceutical preparations for oral administration.
For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives, and detergents. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the oligonucleotides are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, the oligonucleotides of the invention are formulated into ointments, salves, gels, or creams as known in the art.
Drug delivery vehicles can be chosen e.g., for in vitro, for systemic, or for topical administration. These vehicles can be designed to serve as a slow release reservoir or to deliver their contents directly to the target cell. An advantage of using some direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles have been shown to increase the circulation half-life of drugs that would otherwise be rapidly cleared from the blood stream. Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.
The described oligonucleotides may be administered systemically to a subject. Systemic absorption refers to the entry of drugs into the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include: intravenous, subcutaneous, intraperitoneal, and intranasal. Each of these administration routes delivers the oligonucleotide to accessible diseased cells. Following subcutaneous administration, the therapeutic agent drains into local lymph nodes and proceeds through the lymphatic network into the circulation. The rate of entry into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier localizes the oligonucleotide at the lymph node. The oligonucleotide can be modified to diffuse into the cell, or the liposome can directly participate in the delivery of either the unmodified or modified oligonucleotide into the cell.
The chosen method of delivery will result in entry into cells. Preferred delivery methods include liposomes (10-400 nm), hydrogels, controlled-release polymers, and other pharmaceutically applicable vehicles, and microinjection or electroporation (for ex vivo treatments).
The pharmaceutical preparations of the present invention may be prepared and formulated as emulsions. Emulsions are usually heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. The emulsions of the present invention may contain excipients such as emulsifiers, stabilizers, dyes, fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives, and anti-oxidants may also be present in emulsions as needed. These excipients may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase.
Examples of naturally occurring emulsifiers that may be used in emulsion formulations of the present invention include lanolin, beeswax, phosphatides, lecithin and acacia. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. Examples of finely divided solids that may be used as emulsifiers include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montrnorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.
Examples of preservatives that may be included in the emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Examples of antioxidants that may be included in the emulsion formulations include free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.
In one embodiment, the compositions of oligonucleotides are formulated as microemulsions. A microemulsion is a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution. Typically microemulsions are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a 4th component, generally an intermediate chain-length alcohol to form a transparent system.
Surfactants that may be used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (S0750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules.
Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.
Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both oil/water and water/oil) have been proposed to enhance the oral bioavailability of drugs.
Microemulsions offer improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11:1385; Ho et al., J. Pharm. Sci., 1996, 85:138-143). Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.
In an embodiment, the present invention employs various penetration enhancers to affect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to increasing the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also act to enhance the permeability of lipophilic drugs.
Five categories of penetration enhancers that may be used in the present invention include: surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Other agents may be utilized to enhance the penetration of the administered oligonucleotides include: glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-15 pyrrol, azones, and terpenes such as limonene, and menthone.
The oligonucleotides, especially in lipid formulations, can also be administered by coating a medical device, for example, a catheter, such as an angioplasty balloon catheter, with a cationic lipid formulation. Coating may be achieved, for example, by dipping the medical device into a lipid formulation or a mixture of a lipid formulation and a suitable solvent, for example, an aqueous-based buffer, an aqueous solvent, ethanol, methylene chloride, chloroform and the like. An amount of the formulation will naturally adhere to the surface of the device which is subsequently administered to a patient, as appropriate. Alternatively, a lyophilized mixture of a lipid formulation may be specifically bound to the surface of the device. Such binding techniques are described, for example, in K. Ishihara et al., Journal of Biomedical Materials Research, Vol. 27, pp. 1309-1314 (1993), the disclosures of which are incorporated herein by reference in their entirety.
The useful dosage to be administered and the particular mode of administration will vary depending upon such factors as the cell type, or for in vivo use, the age, weight and the particular animal and region thereof to be treated, the particular oligonucleotide and delivery method used, the therapeutic or diagnostic use contemplated, and the form of the formulation, for example, suspension, emulsion, micelle or liposome, as will be readily apparent to those skilled in the art. Typically, dosage is administered at lower levels and increased until the desired effect is achieved. When lipids are used to deliver the oligonucleotides, the amount of lipid compound that is administered can vary and generally depends upon the amount of oligonucleotide agent being administered. For example, the weight ratio of lipid compound to oligonucleotide agent is preferably from about 1:1 to about 15:1, with a weight ratio of about 5:1 to about 10:1 being more preferred. Generally, the amount of cationic lipid compound which is administered will vary from between about 0.1 milligram (mg) to about 1 gram (g). By way of general guidance, typically between about 0.1 mg and about 10 mg of the particular oligonucleotide agent, and about 1 mg to about 100 mg of the lipid compositions, each per kilogram of patient body weight, is administered, although higher and lower amounts can be used.
The agents of the invention are administered to subjects or contacted with cells in a biologically compatible form suitable for pharmaceutical administration. By “biologically compatible form suitable for administration” is meant that the oligonucleotide is administered in a form in which any toxic effects are outweighed by the therapeutic effects of the oligonucleotide. In one embodiment, oligonucleotides can be administered to subjects. Examples of subjects include mammals, e.g., humans and other primates; cows, pigs, horses, and farming (agricultural) animals; dogs, cats, and other domesticated pets; mice, rats, and transgenic non-human animals.
Administration of an active amount of an oligonucleotide of the present invention is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example, an active amount of an oligonucleotide may vary according to factors such as the type of cell, the oligonucleotide used, and for in vivo uses the disease state, age, sex, and weight of the individual, and the ability of the oligonucleotide to elicit a desired response in the individual. Establishment of therapeutic levels of oligonucleotides within the cell is dependent upon the rates of uptake and efflux or degradation. Decreasing the degree of degradation prolongs the intracellular half-life of the oligonucleotide. Thus, chemically-modified oligonucleotides, e.g., with modification of the phosphate backbone, may require different dosing.
The exact dosage of an oligonucleotide and number of doses administered will depend upon the data generated experimentally and in clinical trials. Several factors such as the desired effect, the delivery vehicle, disease indication, and the route of administration, will affect the dosage. Dosages can be readily determined by one of ordinary skill in the art and formulated into the subject pharmaceutical compositions. Preferably, the duration of treatment will extend at least through the course of the disease symptoms.
Dosage regim may be adjusted to provide the optimum therapeutic response. For example, the oligonucleotide may be repeatedly administered, e.g., several doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. One of ordinary skill in the art will readily be able to determine appropriate doses and schedules of administration of the subject oligonucleotides, whether the oligonucleotides are to be administered to cells or to subjects.
Physical methods of introducing nucleic acids include injection of a solution containing the nucleic acid, bombardment by particles covered by the nucleic acid, soaking the cell or organism in a solution of the nucleic acid, or electroporation of cell membranes in the presence of the nucleic acid. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of nucleic acid encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, such as calcium phosphate, and the like. Thus the nucleic acid may be introduced along with components that perform one or more of the following activities: enhance nucleic acid uptake by the cell, inhibit annealing of single strands, stabilize the single strands, or other-wise increase inhibition of the target gene.
Nucleic acid may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally or by inhalation, or may be introduced by bathing a cell or organism in a solution containing the nucleic acid. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the nucleic acid may be introduced.
The cell with the target gene may be derived from or contained in any organism. The organism may a plant, animal, protozoan, bacterium, virus, or fungus. The plant may be a monocot, dicot or gymnosperm; the animal may be a vertebrate or invertebrate. Preferred microbes are those used in agriculture or by industry, and those that are pathogenic for plants or animals.
Alternatively, vectors, e.g., transgenes encoding a siRNA of the invention can be engineered into a host cell or transgenic animal using art recognized techniques.
Another use for the nucleic acids of the present invention (or vectors or transgenes encoding same) is a functional analysis to be carried out in eukaryotic cells, or eukaryotic non-human organisms, preferably mammalian cells or organisms and most preferably human cells, e.g. cell lines such as HeLa or 293 or rodents, e.g. rats and mice. By administering a suitable nucleic acid of the invention which is sufficiently complementary to a target mRNA sequence to direct target-specific RNA interference, a specific knockout or knockdown phenotype can be obtained in a target cell, e.g. in cell culture or in a target organism.
Thus, a further subject matter of the invention is a eukaryotic cell or a eukaryotic non-human organism exhibiting a target gene-specific knockout or knockdown phenotype comprising a fully or at least partially deficient expression of at least one endogenous target gene wherein said cell or organism is transfected with at least one vector comprising DNA encoding an RNAi agent capable of inhibiting the expression of the target gene. It should be noted that the present invention allows a target-specific knockout or knockdown of several different endogenous genes due to the specificity of the RNAi agent.
Gene-specific knockout or knockdown phenotypes of cells or non-human organisms, particularly of human cells or non-human mammals may be used in analytic to procedures, e.g. in the functional and/or phenotypical analysis of complex physiological processes such as analysis of gene expression profiles and/or proteomes. Preferably the analysis is carried out by high throughput methods using oligonucleotide based chips.
Therapeutic Use
By inhibiting the expression of a gene, the oligonucleotide compositions of the present invention can be used to treat any disease involving the expression of a protein. Examples of diseases that can be treated by oligonucleotide compositions, just to illustrate, include: cancer, retinopathies, autoimmune diseases, inflammatory diseases (i.e., ICAM-1 related disorders, Psoriasis, Ulcerative Colitus, Crohn's disease), viral diseases (i.e., HIV, Hepatitis C), miRNA disorders, and cardiovascular diseases.
In one embodiment, in vitro treatment of cells with oligonucleotides can be used for ex vivo therapy of cells removed from a subject (e.g., for treatment of leukemia or viral infection) or for treatment of cells which did not originate in the subject, but are to be administered to the subject (e.g., to eliminate transplantation antigen expression on cells to be transplanted into a subject). In addition, in vitro treatment of cells can be used in non-therapeutic settings, e.g., to evaluate gene function, to study gene regulation and protein synthesis or to evaluate improvements made to oligonucleotides designed to modulate gene expression or protein synthesis. In vivo treatment of cells can be useful in certain clinical settings where it is desirable to inhibit the expression of a protein. There are numerous medical conditions for which antisense therapy is reported to be suitable (see, e.g., U.S. Pat. No. 5,830,653) as well as respiratory syncytial virus infection (WO 95/22,553) influenza virus (WO 94/23,028), and malignancies (WO 94/08,003). Other examples of clinical uses of antisense sequences are reviewed, e.g., in Glaser. 1996. Genetic Engineering News 16:1. Exemplary targets for cleavage by oligonucleotides include, e.g., protein kinase Ca, ICAM-1, c-raf kinase, p53, c-myb, and the bcr/abl fusion gene found in chronic myelogenous leukemia.
The subject nucleic acids can be used in RNAi-based therapy in any animal having RNAi pathway, such as human, non-human primate, non-human mammal, non-human vertebrates, rodents (mice, rats, hamsters, rabbits, etc.), domestic livestock animals, pets (cats, dogs, etc.), Xenopus, fish, insects (Drosophila, etc.), and worms (C. elegans), etc.
The invention provides methods for inhibiting or preventing in a subject, a disease or condition associated with an aberrant or unwanted target gene expression or activity, by administering to the subject a nucleic acid of the invention. If appropriate, subjects are first treated with a priming agent so as to be more responsive to the subsequent RNAi therapy. Subjects at risk for a disease which is caused or contributed to by aberrant or unwanted target gene expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays known in the art. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the target gene aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of target gene aberrancy, for example, a target gene, target gene agonist or target gene antagonist agent can be used for treating the subject.
In another aspect, the invention pertains to methods of modulating target gene expression, protein expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the methods of the invention involve contacting a cell capable of expressing target gene with a nucleic acid of the invention that is specific for the target gene or protein (e.g., is specific for the mRNA encoded by said gene or specifying the amino acid sequence of said protein) such that expression or one or more of the activities of target protein is modulated. These methods can be performed in vitro (e.g., by culturing the cell with the agent), in vivo (e.g., by administering the agent to a subject), or ex vivo. The subjects may be first treated with a priming agent so as to be more responsive to the subsequent RNAi therapy if desired. As such, the present invention provides methods of treating a subject afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a target gene polypeptide or nucleic acid molecule. Inhibition of target gene activity is desirable in situations in which target gene is abnormally unregulated and/or in which decreased target gene activity is likely to have a beneficial effect.
Thus the therapeutic agents of the invention can be administered to subjects to treat (prophylactically or therapeutically) disorders associated with aberrant or unwanted target gene activity. In conjunction with such treatment, pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a therapeutic agent as well as tailoring the dosage and/or therapeutic regimen of treatment with a therapeutic agent. Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons.
For the purposes of the invention, ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
Moreover, for the purposes of the present invention, the term “a” or “an” entity refers to one or more of that entity; for example, “a protein” or “a nucleic acid molecule” refers to one or more of those compounds or at least one compound. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably. Furthermore, a compound “selected from the group consisting of” refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds. According to the present invention, an isolated, or biologically pure, protein or nucleic acid molecule is a compound that has been removed from its natural milieu. As such, “isolated” and “biologically pure” do not necessarily reflect the extent to which the compound has been purified. An isolated compound of the present invention can be obtained from its natural source, can be produced using molecular biology techniques or can be produced by chemical synthesis.
The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.
EXAMPLES
Example 1: Inhibition of Gene Expression Using Minimum Length Trigger RNAs
Transfection of Minimum Length Trigger (mlt) RNA
mltRNA constructs were chemically synthesized (Integrated DNA Technologies, Coralville, Iowa) and transfected into HEK293 cells (ATCC, Manassas, Va.) using the Lipofectamine RNAiMAX (Invitrogen, Carlsbad, Calif.) reagent according to manufacturer's instructions. In brief, RNA was diluted to a 12× concentration and then combined with a 12× concentration of Lipofectamine RNAiMAX to complex. The RNA and transfection reagent were allowed to complex at room temperature for 20 minutes and make a 6× concentration. While complexing, HEK293 cells were washed, trypsinized and counted. The cells were diluted to a concentration recommended by the manufacturer and previously described conditions which was at 1×105cells/ml. When RNA had completed complexing with the RNAiMAX transfection reagent, 20 ul of the complexes were added to the appropriate well of the 96-well plate in triplicate. Cells were added to each well (100 ul volume) to make the final cell count per well at 1×104 cells/well. The volume of cells diluted the 6× concentration of complex to 1× which was equal to a concentration noted (between 10-0.05 nM). Cells were incubated for 24 or 48 hours under normal growth conditions.
After 24 or 48 hour incubation cells were lysed and gene silencing activity was measured using the QuantiGene assay (Panomics, Freemont, Calif.) which employs bDNA hybridization technology. The assay was carried out according to manufacturer's instructions.
ΔG Calculation
ΔG was calculated using Mfold, available through the Mfold internet site (mfold.bioinfarpi.edu/cgi-bin/rna-forml.cgi). Methods for calculating ΔG are described in, and are incorporated by reference from, the following references: Zuker, M. (2003) Nucleic Acids Res., 31(13):3406-15; Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) J. Mol. Biol. 288:911-940; Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. 101:7287-7292; Duan, S., Mathews, D. H., and Turner, D. H. (2006) Biochemistry 45:9819-9832; Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P. (1999) Biopolymers 49:145-165.
Example 2: Optimization of sd-rxRNAnano Molecules for Gene Silencing
Asymmetric double stranded RNAi molecules, with minimal double stranded regions, were developed herein and are highly effective at gene silencing. These molecules can contain a variety of chemical modifications on the sense and/or anti-sense strands, and can be conjugated to sterol-like compounds such as cholesterol.
FIGS. 1-3 present schematics of RNAi molecules associated with the invention. In the asymmetric molecules, which contain a sense and anti-sense strand, either of the strands can be the longer strand. Either strand can also contain a single-stranded region. There can also be mismatches between the sense and anti-sense strand, as indicated in FIG. 1D. Preferably, one end of the double-stranded molecule is either blunt-ended or contains a short overhang such as an overhang of one nucleotide. FIG. 2 indicates types of chemical modifications applied to the sense and anti-sense strands including 2′F, 2′OMe, hydrophobic modifications and phosphorothioate modifications. Preferably, the single stranded region of the molecule contains multiple phosphorothioate modifications. Hydrophobicity of molecules can be increased using such compounds as 4-pyridyl at 5-U, 2-pyridyl at 5-U, isobutyl at 5-U and indolyl at 5-U (FIG. 2). Proteins or peptides such as protamine (or other Arg rich peptides), spermidine or other similar chemical structures can also be used to block duplex charge and facilitate cellular entry (FIG. 3). Increased hydrophobicity can be achieved through either covalent or non-covalent modifications. Several positively charged chemicals, which might be used for polynucleotide charge blockage are depicted in FIG. 4.
Chemical modifications of polynucleotides, such as the guide strand in a duplex molecule, can facilitate RISC entry. FIG. 5 depicts single stranded polynucleotides, representing a guide strand in a duplex molecule, with a variety of chemical modifications including 2′d, 2′OMe, 2′F, hydrophobic modifications, phosphorothioate modifications, and attachment of conjugates such as “X” in FIG. 5, where X can be a small molecule with high affinity to a PAZ domain, or sterol-type entity. Similarly, FIG. 6 depicts single stranded polynucleotides, representing a passenger strand in a duplex molecule, with proposed structural and chemical compositions of RISC substrate inhibitors. Combinations of chemical modifications can ensure efficient uptake and efficient binding to preloaded RISC complexes.
FIG. 7 depicts structures of polynucleotides with sterol-type molecules attached, where R represents a polycarbonic tail of 9 carbons or longer. FIG. 8 presents examples of naturally occurring phytosterols with a polycarbon chain longer than 8 attached at position 17. More than 250 different types of phytosterols are known. FIG. 9 presents examples of sterol-like structures with variations in the sizes of the polycarbon chains attached at position 17. FIG. 91 presents further examples of sterol-type molecules that can be used as a hydrophobic entity in place of cholesterol. FIG. 92 presents further examples of hydrophobic molecules that might be used as hydrophobic entities in place of cholestesterol. Optimization of such characteristics can improve uptake properties of the RNAi molecules. FIG. 10 presents data adapted from Martins et al. (J Lipid Research), showing that the percentage of liver uptake and plasma clearance of lipid emulsions containing sterol-type molecules is directly affected by the size of the attached polycarbon chain at position 17. FIG. 11 depicts a micelle formed from a mixture of polynucleotides attached to hydrophobic conjugates and fatty acids. FIG. 12 describes how alteration in lipid composition can affect pharmacokinetic behavior and tissue distribution of hydrophobically modified and/or hydrophobically conjugated polynucleotides. In particular, the use of lipid mixtures that are enriched in linoleic acid and cardiolipin results in preferential uptake by cardiomyocites.
FIG. 13 depicts examples of RNAi constructs and controls designed to target MAP4K4 expression. FIGS. 14 and 15 reveal that RNAi constructs with minimal duplex regions (such as duplex regions of approximately 13 nucleotides) are effective in mediating RNA silencing in cell culture. Parameters associated with these RNA molecules are shown in FIG. 16. FIG. 17 depicts examples of RNAi constructs and controls designed to target SOD1 expression. FIGS. 18 and 19 reveal the results of gene silencing experiments using these RNAi molecules to target SOD1 in cells. FIG. 20 presents a schematic indicating that RNA molecules with double stranded regions that are less than 10 nucleotides are not cleaved by Dicer, and FIG. 21 presents a schematic of a hypothetical RNAi model for RNA induced gene silencing.
The RNA molecules described herein were subject to a variety of chemical modifications on the sense and antisense strands, and the effects of such modifications were observed. RNAi molecules were synthesized and optimized through testing of a variety of modifications. In first generation optimization, the sense (passenger) and anti-sense (guide) strands of the sd-rxRNAnano molecules were modified for example through incorporation of C and U 2′OMe modifications, 2′F modifications, phosphorothioate modifications, phosphorylation, and conjugation of cholesterol. Molecules were tested for inhibition of MAP4K4 expression in cells including HeLa, primary mouse hepatocytes and primary human hepatocytes through both lipid-mediated and passive uptake transfection.
FIG. 22 reveals that chemical modifications can enhance gene silencing. In particular, modifying the guide strand with 2′F UC modifications, and with a stretch of phosphorothioate modifications, combined with complete CU O′Me modification of the passenger strands, resulted in molecules that were highly effective in gene silencing. The effect of chemical modification on in vitro efficacy in un-assisted delivery in HeLa cells was also examined. FIG. 23 reveals that compounds lacking any of 2′F, 2′OMe, a stretch of phosphorothioate modifications, or cholesterol conjugates, were completely inactive in passive uptake. A combination of all 4 types of chemical modifications, for example in compound 12386, was found to be highly effective in gene silencing. FIG. 24 also shows the effectiveness of compound 12386 in gene silencing.
Optimization of the length of the oligonucleotide was also investigated. FIGS. 25 and 26 reveal that oligonucleotides with a length of 21 nucleotides were more effective than oligonucletides with a length of 25 nucleotides, indicating that reduction in the size of an RNA molecule can improve efficiency, potentially by assisting in its uptake. Screening was also conducted to optimize the size of the duplex region of double stranded RNA molecules. FIG. 88 reveals that compounds with duplexes of 10 nucleotides were effective in inducing gene silencing. Positioning of the sense strand relative to the guide strand can also be critical for silencing gene expression (FIG. 89). In this assay, a blunt end was found to be most effective. 3′ overhangs were tolerated, but 5′ overhangs resulted in a complete loss of functionality. The guide strand can be effective in gene silencing when hybiridized to a sense strand of varying lengths (FIG. 90). In this assay presented in FIG. 90, the compounds were introduced into HeLa cells via lipid mediated transfection.
The importance of phosphorothioate content of the RNA molecule for unassisted delivery was also investigated. FIG. 27 presents the results of a systematic screen that identified that the presence of at least 2-12 phosphorothioates in the guide strand as being highly advantageous for achieving uptake, with 4-8 being the preferred number. FIG. 27 also shows that presence or absence of phosphorothioate modifications in the sense strand did not alter efficacy.
FIGS. 28-29 reveal the effects of passive uptake of RNA compounds on gene silencing in primary mouse hepatocytes. nanoRNA molecules were found to be highly effective, especially at a concentration of 1 μM (FIG. 28). FIGS. 30 and 31 reveal that the RNA compounds associated with the invention were also effective in gene silencing following passive uptake in primary human hepatocytes. The cellular localization of the RNA molecules associated with the invention was examined and compared to the localization of Chol-siRNA (Alnylam) molecules, as shown in FIGS. 32 and 33.
A summary of 1st generation sd-rxRNA molecules is presented in FIG. 21. Chemical modifications were introduced into the RNA molecules, at least in part, to increase potency, such as through optimization of nucleotide length and phosphorothioate content, to reduce toxicity, such as through replacing 2′F modifications on the guide strand with other modifications, to improve delivery such as by adding or conjugating the RNA molecules to linker and sterol modalities, and to improve the ease of manufacturing the RNA molecules. FIG. 35 presents schematic depictions of some of the chemical modifications that were screened in 1st generation molecules. Parameters that were optimized for the guide strand included nucleotide length (e.g., 19, 21 and 25 nucleotides), phosphorothioate content (e.g., 0-18 phosphorothioate linkages) and replacement of 2′F groups with 2′OMe and 5 Me C or riboThymidine. Parameters that were optimized for the sense strand included nucleotide length (e.g., 11, 13 and 19 nucleotides), phosphorothioate content (e.g., 0-4 phosphorothioate linkages), and 2′OMe modifications. FIG. 36 summarizes parameters that were screened. For example, the nucleotide length and the phosphorothioate tail length were modified and screened for optimization, as were the additions of 2′OMe C and U modifications. Guide strand length and the length of the phosphorothioate modified stretch of nucleotides were found to influence efficacy (FIGS. 37-38). Phosphorothioate modifications were tolerated in the guide strand and were found to influence passive uptake (FIGS. 39-42).
FIG. 43 presents a schematic revealing guide strand chemical modifications that were screened. FIGS. 44 and 45 reveal that 2′OMe modifications were tolerated in the 3′ end of the guide strand. In particular, 2′OMe modifications in positions 1 and 11-18 were well tolerated. The 2′OMe modifications in the seed area were tolerated but resulted in slight reduction of efficacy. Ribo-modifications in the seed were also well tolerated. These data indicate that the molecules associated with the invention offer the significant advantage of having reduced or no 2′F modification content. This is advantageous because 2′F modifications are thought to generate toxicity in vivo. In some instances, a complete substitution of 2′F modifications with 2′OMe was found to lead to some reduction in potency. However, the 2′OMe substituted molecules were still very active. A molecule with 50% reduction in 2′F content (including at positions 11, 16-18 which were changed to 2′OMe modifications), was found to have comparable efficacy to a compound with complete 2′F C and U modification. 2′OMe modification in position was found in some instances to reduce efficacy, although this can be at least partially compensated by 2′OMe modification in position 1 (with chemical phosphate). In some instances, 5 Me C and/or ribothymidine substitution for 2′F modifications led to a reduction in passive uptake efficacy, but increased potency in lipid mediated transfections compared to 2′F modifications. Optimization results for lipid mediated transfection were not necessarily the same as for passive uptake.
Modifications to the sense strand were also developed and tested, as depicted in FIG. 46. FIG. 47 reveals that in some instances, a sense strand length between 10-15 bases was found to be optimal. For the molecules tested in FIG. 47, an increase in the sense strand length resulted in reduction of passive uptake, however an increase in sense strand length may be tolerated for some compounds. FIG. 47 also reveals that LNA modification of the sense strand demonstrated similar efficacy to non-LNA containing compounds. In general, the addition of LNA or other thermodynamically stabilizing compounds has been found to be beneficial, in some instances resulting in converting non-functional sequences to functional sequences. FIG. 48 also presents data on sense strand length optimization, while FIG. 49 shows that phosphorothioate modification of the sense strand is not required for passive uptake.
Based on the above-described optimization experiments, 2nd generation RNA molecules were developed. As shown in FIG. 50, these molecules contained reduced phosphorothioate modification content and reduced 2′F modification content, relative to 1st generation RNA molecules. Significantly, these RNA molecules exhibit spontaneous cellular uptake and efficacy without a delivery vehicle (FIG. 51). These molecules can achieve self-delivery (i.e., with no transfection reagent) and following self-delivery can exhibit nanomolar activity in cell culture. These molecules can also be delivered using lipid-mediated transfection, and exhibit picomolar activity levels following transfection. Significantly, these molecules exhibit highly efficient uptake, 95% by most cells in cell culture, and are stable for more than three days in the presence of 100% human serum. These molecules are also highly specific and exhibit little or no immune induction. FIGS. 52 and 53 reveal the significance of chemical modifications and the configurations of such modifications in influencing the properties of the RNA molecules associated with the invention.
Linker chemistry was also tested in conjunction with the RNA molecules associated with the invention. As depicted in FIG. 54, 2nd generation RNA molecules were synthesized with sterol-type molecules attached through TEG and amino caproic acid linkers. Both linkers showed identical potency. This functionality of the RNA molecules, independent of linker chemistry offers additional advantages in terms of scale up and synthesis and demonstrates that the mechanism of function of these RNA molecules is very different from other previously described RNA molecules.
Stability of the chemically modified sd-rxRNA molecules described herein in human serum is shown in FIG. 55 in comparison to unmodified RNA. The duplex molecules were incubated in 75% serum at 37° C. for the indicated periods of time. The level of degradation was determined by running the samples on non-denaturing gels and staining with SYBGR.
FIGS. 56 and 57 present data on cellular uptake of the sd-rxRNA molecules. FIG. 56 shows that minimizing the length of the RNA molecule is importance for cellular uptake, while FIG. 57 presents data showing target gene silencing after spontaneous cellular uptake in mouse PEC-derived macrophages. FIG. 58 demonstrates spontaneous uptake and target gene silencing in primary cells. FIG. 59 shows the results of delivery of sd-rxRNA molecules associated with the invention to RPE cells with no formulation. Imaging with Hoechst and DY547 reveals the clear presence of a signal representing the RNA molecule in the sd-rxRNA sample, while no signal is detectable in the other samples including the samples competing a competing conjugate, an rxRNA, and an untransfected control. FIG. 60 reveals silencing of target gene expression in RPE cells treated with sd-rxRNA molecules associated with the invention following 24-48 hours without any transfection formulation.
FIG. 61 shows further optimization of the chemical/structural composition of sd-rxRNA compounds. In some instances, preferred properties included an antisense strand that was 17-21 nucleotides long, a sense strand that was 10-15 nucleotides long, phosphorothioate modification of 2-12 nucleotides within the single stranded region of the molecule, preferentially phosphorothioate modification of 6-8 nucleotides within the single stranded region, and 2′OMe modification at the majority of positions within the sense strand, with or without phosphorothioate modification. Any linker chemistry can be used to attach the hydrophobic moiety, such as cholesterol, to the 3′ end of the sense strand. Version GIIb molecules, as shown in FIG. 61, have no 2′F modifications. Significantly, there is was no impact on efficacy in these molecules.
FIG. 62 demonstrates the superior performance of sd-rxRNA compounds compared to compounds published by Wolfrum et. al. Nature Biotech, 2007. Both generation I and II compounds (GI and GIIa) developed herein show great efficacy in reducing target gene expression. By contrast, when the chemistry described in Wolfrum et al. (all oligos contain cholesterol conjugated to the 3′ end of the sense strand) was applied to the same sequence in a context of conventional siRNA (19 bp duplex with two overhang) the compound was practically inactive. These data emphasize the significance of the combination of chemical modifications and assymetrical molecules described herein, producing highly effective RNA compounds.
FIG. 63 shows localization of sd-rxRNA molecules developed herein compared to localization of other RNA molecules such as those described in Soutschek et al. (2004) Nature, 432:173. sd-rxRNA molecules accumulate inside the cells whereas competing conjugate RNAs accumulate on the surface of cells. Significantly, FIG. 64 shows that sd-rxRNA molecules, but not competitor molecules such as those described in Soutschek et al. are internalized within minutes. FIG. 65 compares localization of sd-rxRNA molecules compared to regular siRNA-cholesterol, as described in Soutschek et al. A signal representing the RNA molecule is clearly detected for the sd-rxRNA molecule in tissue culture RPE cells, following local delivery to compromised skin, and following systemic delivery where uptake to the liver is seen. In each case, no signal is detected for the regular siRNA-cholesterol molecule. The sd-rxRNA molecule thus has drastically better cellular and tissue uptake characteristics when compared to conventional cholesterol conjugated siRNAs such as those described in Soutschek et al. The level of uptake is at least order of magnitude higher and is due at least in part to the unique combination of chemistries and conjugated structure. Superior delivery of sd-rxRNA relative to previously described RNA molecules is also demonstrated in FIGS. 66 and 67.
Based on the analysis of 2nd generation RNA molecules associated with the invention, a screen was performed to identify functional molecules for targeting the SPP1/PPIB gene. As revealed in FIG. 68, several effective molecules were identified, with 14131 being the most effective. The compounds were added to A-549 cells and then the level of SPP1/PPM ratio was determined by B-DNA after 48 hours.
FIG. 69 reveals efficient cellular uptake of sd-rxRNA within minutes of exposure. This is a unique characteristics of these molecules, not observed with any other RNAi compounds. Compounds described in Soutschek et al. were used as negative controls. FIG. 70 reveals that the uptake and gene silencing of the sd-rxRNA is effective in multiple different cell types including SH-SY5Y neuroblastoma derived cells, ARPE-19 (retinal pigment epithelium) cells, primary hepatocytes, and primary macrophages. In each case silencing was confirmed by looking at target gene expression by a Branched DNA assay.
FIG. 70 reveals that sd-rxRNA is active in the presence or absence of serum. While a slight reduction in efficacy (2-5 fold) was observed in the presence of serum, this small reduction in efficacy in the presence of serum differentiate the sd-rxRNA molecules from previously described molecules which exhibited a larger reduction in efficacy in the presence of serum. This demonstrated level of efficacy in the presence of serum creates a foundation for in vivo efficacy.
FIG. 72 reveals efficient tissue penetration and cellular uptake upon single intradermal injection. This data indicates the potential of the sd-rxRNA compounds described herein for silencing genes in any dermatology applications, and also represents a model for local delivery of sd-rxRNA compounds. FIG. 73 also demonstrates efficient cellular uptake and in vivo silencing with sd-rxRNA following intradermal injection. Silencing is determined as the level of MAP4K4 knockdown in several individual biopsies taken from the site of injection as compared to biopsies taken from a site injected with a negative control. FIG. 74 reveals that sd-rxRNA compounds has improved blood clearance and induced effective gene silencing in vivo in the liver upon systemic administration. In comparison to the RNA molecules described by Soutschek et al., the level of liver uptake at identical dose level is at least 50 fold higher with the sd-rxRNA molecules. The uptake results in productive silencing. sd-rxRNA compounds are also characterized by improved blood clearance kinetics.
The effect of 5-Methly C modifications was also examined. FIG. 75 demonstrates that the presence of 5-Methyl C in an RNAi molecule resulted in increased potency in lipid mediated transfection. This suggests that hydrophobic modification of Cs and Us in an RNAi molecule can be beneficial. These types of modifications can also be used in the context 2′ ribose modified bases to ensure optimal stability and efficacy. FIG. 76 presents data showing that incorporation of 5-Methyl C and/or ribothymidine in the guide strand can in some instances reduce efficacy.
FIG. 77 reveals that sd-rxRNA molecules are more effective than competitor molecules such as molecules described in Soutschek et al., in systemic delivery to the liver. A signal representing the RNA molecule is clearly visible in the sample containing sd-rxRNA, while no signal representing the RNA molecule is visible in the sample containing the competitor RNA molecule.
The addition of hydrophobic conjugates to the sd-rxRNA molecules was also explored (FIGS. 78-83). FIG. 78 presents schematics demonstrating 5-uridyl modifications with improved hydrophobicity characteristics. Incorporation of such modifications into sd-rxRNA compounds can increase cellular and tissue uptake properties. FIG. 78B presents a new type of RNAi compound modification which can be applied to compounds to improve cellular uptake and pharmacokinetic behavior. Significantly, this type of modification, when applied to sd-rxRNA compounds, may contribute to making such compounds orally available. FIG. 79 presents schematics revealing the structures of synthesized modified sterol-type molecules, where the length and structure of the C17 attached tail is modified. Without wishing to be bound by any theory, the length of the C17 attached tail may contribute to improving in vitro and in vivo efficacy of sd-rxRNA compounds.
FIG. 80 presents a schematic demonstrating the lithocholic acid route to long side chain cholesterols. FIG. 81 presents a schematic demonstrating a route to 5-uridyl phosphoramidite synthesis. FIG. 82 presents a schematic demonstrating synthesis of tri-functional hydroxyprolinol linker for 3′-cholesterol attachment. FIG. 83 presents a schematic demonstrating synthesis of solid support for the manufacture of a shorter asymmetric RNAi compound strand.
A screen was conducted to identify compounds that could effectively silence expression of SPP1 (Osteopontin). Compounds targeting SPP1 were added to A549 cells (using passive transfection), and the level of SPP1 expression was evaluated at 48 hours. Several novel compounds effective in SPP1 silencing were identified. Compounds that were effective in silencing of SPP1 included 14116, 14121, 14131, 14134, 14139, 14149, and 14152 (FIGS. 84-86). The most potent compound in this assay was 14131 (FIG. 84). The efficacy of these sd-rxRNA compounds in silencing SPP1 expression was independently validated (FIG. 85).
A similar screen was conducted to identify compounds that could effectively silence expression of CTGF (FIGS. 86-87). Compounds that were effective in silencing of CTGF included 14017, 14013, 14016, 14022, 14025, 14027.
Methods
- Transfection of sd-rxRNAnano
- Lipid Mediated Transfection
sd-rxRNAnano constructs were chemically synthesized (Dharmacon, Lafayette, Colo.) and transfected into HEK293 cells (ATCC, Manassas, Va.) using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, Calif.) according to the manufacturer's instructions. In brief, RNA was diluted to a 12× concentration in Opti-MEM®1 Reduced Serum Media (Invitrogen, Carlsbad, Calif.) and then combined with a 12× concentration of Lipofectamine RNAiMAX. The RNA and transfection reagent were allowed to complex at room temperature for 20 minutes and make a 6× concentration. While complexing, HEK293 cells were washed, trypsinized and counted. The cells were diluted to a concentration recommended by the manufacturer and previously described of 1×105 cells/ml. When RNA had completed complexing with the RNAiMAX transfection reagent, 20 ul of the complexes were added to the appropriate well of the 96-well plate in triplicate. Cells were added to each well (100 ul volume) to make the final cell count per well 1×104 cells/well. The volume of cells diluted the 6× concentration of complex to 1× (between 10-0.05 nM). Cells were incubated for 24 or 48 hours under normal growth conditions. After 24 or 48 hour incubation, cells were lysed and gene silencing activity was measured using the QuantiGene assay (Panomics, Freemont, Calif.) which employs bDNA hybridization technology. The assay was carried out according to manufacturer's instructions.
Passive Uptake Transfection
Sd-rXRNAnano constructs were chemically synthesized (Dharmacon, Lafayette, Colo.). 24 hours prior to transfection, HeLa cells (ATCC, Manassas, Va.) were plated at 1×104 cells/well in a 96 well plate under normal growth conditions (DMEM, 10% FBS and 1% Penicillin and Streptomycin). Prior to transfection of HeLa cells, Sd-rXRNAnano were diluted to a final concentration of 0.01 uM to 1 uM in Accell siRNA Delivery Media (Dharmacon, Lafayette, Colo.). Normal growth media was aspirated off cells and 100 uL of Accell Delivery media containing the appropriate concentration of sd-rxRNAnano was applied to the cells. 48 hours post transfection, delivery media was aspirated off the cells and normal growth media was applied to cells for an additional 24 hours.
After 48 or 72 hour incubation, cells were lysed and gene silencing activity was measured using the QuantiGene assay (Panomics, Freemont, Calif.) according to manufacturer's instructions.
TABLE 1
|
|
Oligo
Accession
Gene
|
ID Number
Number
number
Gene Name
Symbol
|
|
|
APOB-10167-20-12138
12138
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-10167-20-12139
12139
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4-2931-13-12266
12266
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12293
12293
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12383
12383
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12384
12384
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12385
12385
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12386
12386
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12387
12387
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-15-12388
12388
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-13-12432
12432
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-13-12266.2
12266.2
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
APOB--21-12434
12434
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--21-12435
12435
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4-2931-16-12451
12451
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12452
12452
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-16-12453
12453
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-17-12454
12454
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-17-12455
12455
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-19-12456
12456
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
--27-12480
12480
|
--27-12481
12481
|
APOB-10167-21-12505
12505
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-10167-21-12506
12506
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4-2931-16-12539
12539
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
APOB-10167-21-12505.2
12505.2
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-10167-21-12506.2
12506.2
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4--13-12565
12565
MAP4K4
|
MAP4K4-2931-16-12386.2
12386.2
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-13-12815
12815
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
APOB--13-12957
12957
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4--16-12983
12983
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12984
12984
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12985
12985
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12986
12986
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12987
12987
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12988
12988
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12989
12989
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12990
12990
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12991
12991
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12992
12992
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12993
12993
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12994
12994
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4--16-12995
12995
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-19-13012
13012
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
MAP4K4-2931-19-13016
13016
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
PPIB--13-13021
13021
NM_000942
Peptidylprolyl Isomerase B
PPIB
|
(cyclophilin B)
|
pGL3-1172-13-13038
13038
U47296
Cloning vector pGL3-Control
pGL3
|
pGL3-1172-13-13040
13040
U47296
Cloning vector pGL3-Control
pGL3
|
--16-13047
13047
|
SOD1-530-13-13090
13090
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-523-13-13091
13091
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-535-13-13092
13092
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-536-13-13093
13093
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-396-13-13094
13094
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-385-13-13095
13095
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-195-13-13096
13096
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
APOB-4314-13-13115
13115
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-3384-13-13116
13116
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-3547-13-13117
13117
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-4318-13-13118
13118
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-3741-13-13119
13119
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
PPIB--16-13136
13136
NM_000942
Peptidylprolyl Isomerase B
PPIB
|
(cyclophilin B)
|
APOB-4314-15-13154
13154
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-3547-15-13155
13155
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-4318-15-13157
13157
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-3741-15-13158
13158
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--13-13159
13159
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--15-13160
13160
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
SOD1-530-16-13163
13163
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-523-16-13164
13164
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-535-16-13165
13165
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-536-16-13166
13166
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-396-16-13167
13167
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-385-16-13168
13168
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
SOD1-195-16-13169
13169
NM_000454
Superoxide Dismutase 1, soluble
SOD1
|
(amyotrophic lateral sclerosis 1
|
(adult))
|
pGL3-1172-16-13170
13170
U47296
Cloning vector pGL3-Control
pGL3
|
pGL3-1172-16-13171
13171
U47296
Cloning vector pGL3-Control
pGL3
|
MAP4k4-2931-19-13189
13189
NM_004834
Mitogen-Activated Protein Kinase
MAP4k4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
CTGF-1222-13-13190
13190
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-813-13-13192
13192
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-747-13-13194
13194
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-817-13-13196
13196
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1174-13-13198
13198
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1005-13-13200
13200
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-814-13-13202
13202
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-816-13-13204
13204
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1001-13-13206
13206
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1173-13-13208
13208
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-749-13-13210
13210
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-792-13-13212
13212
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1162-13-13214
13214
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-811-13-13216
13216
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-797-13-13218
13218
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1175-13-13220
13220
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1172-13-13222
13222
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1177-13-13224
13224
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1176-13-13226
13226
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-812-13-13228
13228
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-745-13-13230
13230
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1230-13-13232
13232
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-920-13-13234
13234
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-679-13-13236
13236
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-992-13-13238
13238
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1045-13-13240
13240
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1231-13-13242
13242
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-991-13-13244
13244
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-998-13-13246
13246
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1049-13-13248
13248
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1044-13-13250
13250
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1327-13-13252
13252
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1196-13-13254
13254
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-562-13-13256
13256
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-752-13-13258
13258
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-994-13-13260
13260
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1040-13-13262
13262
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1984-13-13264
13264
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2195-13-13266
13266
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2043-13-13268
13268
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1892-13-13270
13270
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1567-13-13272
13272
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1780-13-13274
13274
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2162-13-13276
13276
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1034-13-13278
13278
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2264-13-13280
13280
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1032-13-13282
13282
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1535-13-13284
13284
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1694-13-13286
13286
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1588-13-13288
13288
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-928-13-13290
13290
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1133-13-13292
13292
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-912-13-13294
13294
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-753-13-13296
13296
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-918-13-13298
13298
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-744-13-13300
13300
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-466-13-13302
13302
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-917-13-13304
13304
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1038-13-13306
13306
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1048-13-13308
13308
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1235-13-13310
13310
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-868-13-13312
13312
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1131-13-13314
13314
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1043-13-13316
13316
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-751-13-13318
13318
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1227-13-13320
13320
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-867-13-13322
13322
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1128-13-13324
13324
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-756-13-13326
13326
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1234-13-13328
13328
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-916-13-13330
13330
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-925-13-13332
13332
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1225-13-13334
13334
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-445-13-13336
13336
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-446-13-13338
13338
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-913-13-13340
13340
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-997-13-13342
13342
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-277-13-13344
13344
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1052-13-13346
13346
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-887-13-13348
13348
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-914-13-13350
13350
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1039-13-13352
13352
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-754-13-13354
13354
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1130-13-13356
13356
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-919-13-13358
13358
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-922-13-13360
13360
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-746-13-13362
13362
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-993-13-13364
13364
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-825-13-13366
13366
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-926-13-13368
13368
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-923-13-13370
13370
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-866-13-13372
13372
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-563-13-13374
13374
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-823-13-13376
13376
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1233-13-13378
13378
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-924-13-13380
13380
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-921-13-13382
13382
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-443-13-13384
13384
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1041-13-13386
13386
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1042-13-13388
13388
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-755-13-13390
13390
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-467-13-13392
13392
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-995-13-13394
13394
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-927-13-13396
13396
NM_001901.2
connective tissue growth factor
CTGF
|
SPP1-1025-13-13398
13398
NM_000582.2
Osteopontin
SPP1
|
SPP1-1049-13-13400
13400
NM_000582.2
Osteopontin
SPP1
|
SPP1-1051-13-13402
13402
NM_000582.2
Osteopontin
SPP1
|
SPP1-1048-13-13404
13404
NM_000582.2
Osteopontin
SPP1
|
SPP1-1050-13-13406
13406
NM_000582.2
Osteopontin
SPP1
|
SPP1-1047-13-13408
13408
NM_000582.2
Osteopontin
SPP1
|
SPP1-800-13-13410
13410
NM_000582.2
Osteopontin
SPP1
|
SPP1-492-13-13412
13412
NM_000582.2
Osteopontin
SPP1
|
SPP1-612-13-13414
13414
NM_000582.2
Osteopontin
SPP1
|
SPP1-481-13-13416
13416
NM_000582.2
Osteopontin
SPP1
|
SPP1-614-13-13418
13418
NM_000582.2
Osteopontin
SPP1
|
SPP1-951-13-13420
13420
NM_000582.2
Osteopontin
SPP1
|
SPP1-482-13-13422
13422
NM_000582.2
Osteopontin
SPP1
|
SPP1-856-13-13424
13424
NM_000582.2
Osteopontin
SPP1
|
SPP1-857-13-13426
13426
NM_000582.2
Osteopontin
SPP1
|
SPP1-365-13-13428
13428
NM_000582.2
Osteopontin
SPP1
|
SPP1-359-13-13430
13430
NM_000582.2
Osteopontin
SPP1
|
SPP1-357-13-13432
13432
NM_000582.2
Osteopontin
SPP1
|
SPP1-858-13-13434
13434
NM_000582.2
Osteopontin
SPP1
|
SPP1-1012-13-13436
13436
NM_000582.2
Osteopontin
SPP1
|
SPP1-1014-13-13438
13438
NM_000582.2
Osteopontin
SPP1
|
SPP1-356-13-13440
13440
NM_000582.2
Osteopontin
SPP1
|
SPP1-368-13-13442
13442
NM_000582.2
Osteopontin
SPP1
|
SPP1-1011-13-13444
13444
NM_000582.2
Osteopontin
SPP1
|
SPP1-754-13-13446
13446
NM_000582.2
Osteopontin
SPP1
|
SPP1-1021-13-13448
13448
NM_000582.2
Osteopontin
SPP1
|
SPP1-1330-13-13450
13450
NM_000582.2
Osteopontin
SPP1
|
SPP1-346-13-13452
13452
NM_000582.2
Osteopontin
SPP1
|
SPP1-869-13-13454
13454
NM_000582.2
Osteopontin
SPP1
|
SPP1-701-13-13456
13456
NM_000582.2
Osteopontin
SPP1
|
SPP1-896-13-13458
13458
NM_000582.2
Osteopontin
SPP1
|
SPP1-1035-13-13460
13460
NM_000582.2
Osteopontin
SPP1
|
SPP1-1170-13-13462
13462
NM_000582.2
Osteopontin
SPP1
|
SPP1-1282-13-13464
13464
NM_000582.2
Osteopontin
SPP1
|
SPP1-1537-13-13466
13466
NM_000582.2
Osteopontin
SPP1
|
SPP1-692-13-13468
13468
NM_000582.2
Osteopontin
SPP1
|
SPP1-840-13-13470
13470
NM_000582.2
Osteopontin
SPP1
|
SPP1-1163-13-13472
13472
NM_000582.2
Osteopontin
SPP1
|
SPP1-789-13-13474
13474
NM_000582.2
Osteopontin
SPP1
|
SPP1-841-13-13476
13476
NM_000582.2
Osteopontin
SPP1
|
SPP1-852-13-13478
13478
NM_000582.2
Osteopontin
SPP1
|
SPP1-209-13-13480
13480
NM_000582.2
Osteopontin
SPP1
|
SPP1-1276-13-13482
13482
NM_000582.2
Osteopontin
SPP1
|
SPP1-137-13-13484
13484
NM_000582.2
Osteopontin
SPP1
|
SPP1-711-13-13486
13486
NM_000582.2
Osteopontin
SPP1
|
SPP1-582-13-13488
13488
NM_000582.2
Osteopontin
SPP1
|
SPP1-839-13-13490
13490
NM_000582.2
Osteopontin
SPP1
|
SPP1-1091-13-13492
13492
NM_000582.2
Osteopontin
SPP1
|
SPP1-884-13-13494
13494
NM_000582.2
Osteopontin
SPP1
|
SPP1-903-13-13496
13496
NM_000582.2
Osteopontin
SPP1
|
SPP1-1090-13-13498
13498
NM_000582.2
Osteopontin
SPP1
|
SPP1-474-13-13500
13500
NM_000582.2
Osteopontin
SPP1
|
SPP1-575-13-13502
13502
NM_000582.2
Osteopontin
SPP1
|
SPP1-671-13-13504
13504
NM_000582.2
Osteopontin
SPP1
|
SPP1-924-13-13506
13506
NM_000582.2
Osteopontin
SPP1
|
SPP1-1185-13-13508
13508
NM_000582.2
Osteopontin
SPP1
|
SPP1-1221-13-13510
13510
NM_000582.2
Osteopontin
SPP1
|
SPP1-347-13-13512
13512
NM_000582.2
Osteopontin
SPP1
|
SPP1-634-13-13514
13514
NM_000582.2
Osteopontin
SPP1
|
SPP1-877-13-13516
13516
NM_000582.2
Osteopontin
SPP1
|
SPP1-1033-13-13518
13518
NM_000582.2
Osteopontin
SPP1
|
SPP1-714-13-13520
13520
NM_000582.2
Osteopontin
SPP1
|
SPP1-791-13-13522
13522
NM_000582.2
Osteopontin
SPP1
|
SPP1-813-13-13524
13524
NM_000582.2
Osteopontin
SPP1
|
SPP1-939-13-13526
13526
NM_000582.2
Osteopontin
SPP1
|
SPP1-1161-13-13528
13528
NM_000582.2
Osteopontin
SPP1
|
SPP1-1164-13-13530
13530
NM_000582.2
Osteopontin
SPP1
|
SPP1-1190-13-13532
13532
NM_000582.2
Osteopontin
SPP1
|
SPP1-1333-13-13534
13534
NM_000582.2
Osteopontin
SPP1
|
SPP1-537-13-13536
13536
NM_000582.2
Osteopontin
SPP1
|
SPP1-684-13-13538
13538
NM_000582.2
Osteopontin
SPP1
|
SPP1-707-13-13540
13540
NM_000582.2
Osteopontin
SPP1
|
SPP1-799-13-13542
13542
NM_000582.2
Osteopontin
SPP1
|
SPP1-853-13-13544
13544
NM_000582.2
Osteopontin
SPP1
|
SPP1-888-13-13546
13546
NM_000582.2
Osteopontin
SPP1
|
SPP1-1194-13-13548
13548
NM_000582.2
Osteopontin
SPP1
|
SPP1-1279-13-13550
13550
NM_000582.2
Osteopontin
SPP1
|
SPP1-1300-13-13552
13552
NM_000582.2
Osteopontin
SPP1
|
SPP1-1510-13-13554
13554
NM_000582.2
Osteopontin
SPP1
|
SPP1-1543-13-13556
13556
NM_000582.2
Osteopontin
SPP1
|
SPP1-434-13-13558
13558
NM_000582.2
Osteopontin
SPP1
|
SPP1-600-13-13560
13560
NM_000582.2
Osteopontin
SPP1
|
SPP1-863-13-13562
13562
NM_000582.2
Osteopontin
SPP1
|
SPP1-902-13-13564
13564
NM_000582.2
Osteopontin
SPP1
|
SPP1-921-13-13566
13566
NM_000582.2
Osteopontin
SPP1
|
SPP1-154-13-13568
13568
NM_000582.2
Osteopontin
SPP1
|
SPP1-217-13-13570
13570
NM_000582.2
Osteopontin
SPP1
|
SPP1-816-13-13572
13572
NM_000582.2
Osteopontin
SPP1
|
SPP1-882-13-13574
13574
NM_000582.2
Osteopontin
SPP1
|
SPP1-932-13-13576
13576
NM_000582.2
Osteopontin
SPP1
|
SPP1-1509-13-13578
13578
NM_000582.2
Osteopontin
SPP1
|
SPP1-157-13-13580
13580
NM_000582.2
Osteopontin
SPP1
|
SPP1-350-13-13582
13582
NM_000582.2
Osteopontin
SPP1
|
SPP1-511-13-13584
13584
NM_000582.2
Osteopontin
SPP1
|
SPP1-605-13-13586
13586
NM_000582.2
Osteopontin
SPP1
|
SPP1-811-13-13588
13588
NM_000582.2
Osteopontin
SPP1
|
SPP1-892-13-13590
13590
NM_000582.2
Osteopontin
SPP1
|
SPP1-922-13-13592
13592
NM_000582.2
Osteopontin
SPP1
|
SPP1-1169-13-13594
13594
NM_000582.2
Osteopontin
SPP1
|
SPP1-1182-13-13596
13596
NM_000582.2
Osteopontin
SPP1
|
SPP1-1539-13-13598
13598
NM_000582.2
Osteopontin
SPP1
|
SPP1-1541-13-13600
13600
NM_000582.2
Osteopontin
SPP1
|
SPP1-427-13-13602
13602
NM_000582.2
Osteopontin
SPP1
|
SPP1-533-13-13604
13604
NM_000582.2
Osteopontin
SPP1
|
APOB--13-13763
13763
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--13-13764
13764
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4--16-13766
13766
MAP4K4
|
PPIB--13-13767
13767
NM_000942
peptidylprolyl isomerase B
PPIB
|
(cyclophilin B)
|
PPIB--15-13768
13768
NM_000942
peptidylprolyl isomerase B
PPIB
|
(cyclophilin B)
|
PPIB--17-13769
13769
NM_000942
peptidylprolyl isomerase B
PPIB
|
(cyclophilin B)
|
MAP4K4--16-13939
13939
MAP4K4
|
APOB-4314-16-13940
13940
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-4314-17-13941
13941
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--16-13942
13942
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--18-13943
13943
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--17-13944
13944
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--19-13945
13945
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-4314-16-13946
13946
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB-4314-17-13947
13947
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--16-13948
13948
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--17-13949
13949
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--16-13950
13950
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--18-13951
13951
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--17-13952
13952
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
APOB--19-13953
13953
NM_000384
Apolipoprotein B (including
APOB
|
Ag(x) antigen)
|
MAP4K4--16-13766.2
13766.2
MAP4K4
|
CTGF-1222-16-13980
13980
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-813-16-13981
13981
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-747-16-13982
13982
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-817-16-13983
13983
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1174-16-13984
13984
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1005-16-13985
13985
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-814-16-13986
13986
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-816-16-13987
13987
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1001-16-13988
13988
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1173-16-13989
13989
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-749-16-13990
13990
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-792-16-13991
13991
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1162-16-13992
13992
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-811-16-13993
13993
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-797-16-13994
13994
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1175-16-13995
13995
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1172-16-13996
13996
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1177-16-13997
13997
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1176-16-13998
13998
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-812-16-13999
13999
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-745-16-14000
14000
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1230-16-14001
14001
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-920-16-14002
14002
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-679-16-14003
14003
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-992-16-14004
14004
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1045-16-14005
14005
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1231-16-14006
14006
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-991-16-14007
14007
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-998-16-14008
14008
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1049-16-14009
14009
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1044-16-14010
14010
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1327-16-14011
14011
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1196-16-14012
14012
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-562-16-14013
14013
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-752-16-14014
14014
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-994-16-14015
14015
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1040-16-14016
14016
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1984-16-14017
14017
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2195-16-14018
14018
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2043-16-14019
14019
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1892-16-14020
14020
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1567-16-14021
14021
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1780-16-14022
14022
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2162-16-14023
14023
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1034-16-14024
14024
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-2264-16-14025
14025
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1032-16-14026
14026
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1535-16-14027
14027
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1694-16-14028
14028
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1588-16-14029
14029
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-928-16-14030
14030
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1133-16-14031
14031
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-912-16-14032
14032
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-753-16-14033
14033
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-918-16-14034
14034
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-744-16-14035
14035
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-466-16-14036
14036
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-917-16-14037
14037
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1038-16-14038
14038
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1048-16-14039
14039
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1235-16-14040
14040
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-868-16-14041
14041
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1131-16-14042
14042
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1043-16-14043
14043
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-751-16-14044
14044
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1227-16-14045
14045
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-867-16-14046
14046
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1128-16-14047
14047
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-756-16-14048
14048
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1234-16-14049
14049
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-916-16-14050
14050
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-925-16-14051
14051
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1225-16-14052
14052
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-445-16-14053
14053
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-446-16-14054
14054
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-913-16-14055
14055
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-997-16-14056
14056
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-277-16-14057
14057
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1052-16-14058
14058
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-887-16-14059
14059
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-914-16-14060
14060
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1039-16-14061
14061
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-754-16-14062
14062
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1130-16-14063
14063
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-919-16-14064
14064
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-922-16-14065
14065
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-746-16-14066
14066
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-993-16-14067
14067
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-825-16-14068
14068
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-926-16-14069
14069
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-923-16-14070
14070
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-866-16-14071
14071
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-563-16-14072
14072
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-823-16-14073
14073
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1233-16-14074
14074
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-924-16-14075
14075
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-921-16-14076
14076
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-443-16-14077
14077
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1041-16-14078
14078
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-1042-16-14079
14079
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-755-16-14080
14080
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-467-16-14081
14081
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-995-16-14082
14082
NM_001901.2
connective tissue growth factor
CTGF
|
CTGF-927-16-14083
14083
NM_001901.2
connective tissue growth factor
CTGF
|
SPP1-1091-16-14131
14131
NM_000582.2
Osteopontin
SPP1
|
PPIB--16-14188
14188
NM_000942
peptidylprolyl isomerase B
PPIB
|
(cyclophilin B)
|
PPIB--17-14189
14189
NM_000942
peptidylprolyl isomerase B
PPIB
|
(cyclophilin B)
|
PPIB--18-14190
14190
NM_000942
peptidylprolyl isomerase B
PPIB
|
(cyclophilin B)
|
pGL3-1172-16-14386
14386
U47296
Cloning vector pGL3-Control
pGL3
|
pGL3-1172-16-14387
14387
U47296
Cloning vector pGL3-Control
pGL3
|
MAP4K4-2931-25-14390
14390
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4
|
Kinase Kinase Kinase 4
|
(MAP4K4), transcript variant 1
|
miR-122--23-14391
14391
miR-122
|
14084
NM_000582.2
Osteopontin
SPP1
|
14085
NM_000582.2
Osteopontin
SPP1
|
14086
NM_000582.2
Osteopontin
SPP1
|
14087
NM_000582.2
Osteopontin
SPP1
|
14088
NM_000582.2
Osteopontin
SPP1
|
14089
NM_000582.2
Osteopontin
SPP1
|
14090
NM_000582.2
Osteopontin
SPP1
|
14091
NM_000582.2
Osteopontin
SPP1
|
14092
NM_000582.2
Osteopontin
SPP1
|
14093
NM_000582.2
Osteopontin
SPP1
|
14094
NM_000582.2
Osteopontin
SPP1
|
14095
NM_000582.2
Osteopontin
SPP1
|
14096
NM_000582.2
Osteopontin
SPP1
|
14097
NM_000582.2
Osteopontin
SPP1
|
14098
NM_000582.2
Osteopontin
SPP1
|
14099
NM_000582.2
Osteopontin
SPP1
|
14100
NM_000582.2
Osteopontin
SPP1
|
14101
NM_000582.2
Osteopontin
SPP1
|
14102
NM_000582.2
Osteopontin
SPP1
|
14103
NM_000582.2
Osteopontin
SPP1
|
14104
NM_000582.2
Osteopontin
SPP1
|
14105
NM_000582.2
Osteopontin
SPP1
|
14106
NM_000582.2
Osteopontin
SPP1
|
14107
NM_000582.2
Osteopontin
SPP1
|
14108
NM_000582.2
Osteopontin
SPP1
|
14109
NM_000582.2
Osteopontin
SPP1
|
14110
NM_000582.2
Osteopontin
SPP1
|
14111
NM_000582.2
Osteopontin
SPP1
|
14112
NM_000582.2
Osteopontin
SPP1
|
14113
NM_000582.2
Osteopontin
SPP1
|
14114
NM_000582.2
Osteopontin
SPP1
|
14115
NM_000582.2
Osteopontin
SPP1
|
14116
NM_000582.2
Osteopontin
SPP1
|
14117
NM_000582.2
Osteopontin
SPP1
|
14118
NM_000582.2
Osteopontin
SPP1
|
14119
NM_000582.2
Osteopontin
SPP1
|
14120
NM_000582.2
Osteopontin
SPP1
|
14121
NM_000582.2
Osteopontin
SPP1
|
14122
NM_000582.2
Osteopontin
SPP1
|
14123
NM_000582.2
Osteopontin
SPP1
|
14124
NM_000582.2
Osteopontin
SPP1
|
14125
NM_000582.2
Osteopontin
SPP1
|
14126
NM_000582.2
Osteopontin
SPP1
|
14127
NM_000582.2
Osteopontin
SPP1
|
14128
NM_000582.2
Osteopontin
SPP1
|
14129
NM_000582.2
Osteopontin
SPP1
|
14130
NM_000582.2
Osteopontin
SPP1
|
14132
NM_000582.2
Osteopontin
SPP1
|
14133
NM_000582.2
Osteopontin
SPP1
|
14134
NM_000582.2
Osteopontin
SPP1
|
14135
NM_000582.2
Osteopontin
SPP1
|
14136
NM_000582.2
Osteopontin
SPP1
|
14137
NM_000582.2
Osteopontin
SPP1
|
14138
NM_000582.2
Osteopontin
SPP1
|
14139
NM_000582.2
Osteopontin
SPP1
|
14140
NM_000582.2
Osteopontin
SPP1
|
14141
NM_000582.2
Osteopontin
SPP1
|
14142
NM_000582.2
Osteopontin
SPP1
|
14143
NM_000582.2
Osteopontin
SPP1
|
14144
NM_000582.2
Osteopontin
SPP1
|
14145
NM_000582.2
Osteopontin
SPP1
|
14146
NM_000582.2
Osteopontin
SPP1
|
14147
NM_000582.2
Osteopontin
SPP1
|
14148
NM_000582.2
Osteopontin
SPP1
|
14149
NM_000582.2
Osteopontin
SPP1
|
14150
NM_000582.2
Osteopontin
SPP1
|
14151
NM_000582.2
Osteopontin
SPP1
|
14152
NM_000582.2
Osteopontin
SPP1
|
14153
NM_000582.2
Osteopontin
SPP1
|
14154
NM_000582.2
Osteopontin
SPP1
|
14155
NM_000582.2
Osteopontin
SPP1
|
14156
NM_000582.2
Osteopontin
SPP1
|
14157
NM_000582.2
Osteopontin
SPP1
|
14158
NM_000582.2
Osteopontin
SPP1
|
14159
NM_000582.2
Osteopontin
SPP1
|
14160
NM_000582.2
Osteopontin
SPP1
|
14161
NM_000582.2
Osteopontin
SPP1
|
14162
NM_000582.2
Osteopontin
SPP1
|
14163
NM_000582.2
Osteopontin
SPP1
|
14164
NM_000582.2
Osteopontin
SPP1
|
14165
NM_000582.2
Osteopontin
SPP1
|
14166
NM_000582.2
Osteopontin
SPP1
|
14167
NM_000582.2
Osteopontin
SPP1
|
14168
NM_000582.2
Osteopontin
SPP1
|
14169
NM_000582.2
Osteopontin
SPP1
|
14170
NM_000582.2
Osteopontin
SPP1
|
14171
NM_000582.2
Osteopontin
SPP1
|
14172
NM_000582.2
Osteopontin
SPP1
|
14173
NM_000582.2
Osteopontin
SPP1
|
14174
NM_000582.2
Osteopontin
SPP1
|
14175
NM_000582.2
Osteopontin
SPP1
|
14176
NM_000582.2
Osteopontin
SPP1
|
14177
NM_000582.2
Osteopontin
SPP1
|
14178
NM_000582.2
Osteopontin
SPP1
|
14179
NM_000582.2
Osteopontin
SPP1
|
14180
NM_000582.2
Osteopontin
SPP1
|
14181
NM_000582.2
Osteopontin
SPP1
|
14182
NM_000582.2
Osteopontin
SPP1
|
14183
NM_000582.2
Osteopontin
SPP1
|
14184
NM_000582.2
Osteopontin
SPP1
|
14185
NM_000582.2
Osteopontin
SPP1
|
14186
NM_000582.2
Osteopontin
SPP1
|
14187
NM_000582.2
Osteopontin
SPP1
|
|
TABLE 2
|
|
SEQ
|
Oligo
ID
|
ID Number
#
AntiSense Backbone
AntiSense Chemistry
AntiSense Sequence
NO:
|
|
|
APOB-10167-20-
12138
ooooooooooooooooooo
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
1
|
12138
|
|
APOB-10167-20-
12139
ooooooooooooooooooo
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
2
|
12139
|
|
MAP4K4-2931-
12293
ooooooooooooooooooo
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
3
|
16-12293
|
|
MAP4K4-2931-
12383
ooooooooooooooooooo
0000000000000000000
UAGACUUCCACAGAACUCU
4
|
16-12383
|
|
MAP4K4-2931-
12384
ooooooooooooooooooo
P0000000000000000000
UAGACUUCCACAGAACUCU
5
|
16-12384
|
|
MAP4K4-2931-
12385
ooooooooooooooooooo
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
6
|
16-12385
|
|
MAP4K4-2931-
12386
oooooooooosssssssso
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
7
|
16-12386
|
|
MAP4K4-2931-
12387
oooooooooosssssssso
P0000000000000000000
UAGACUUCCACAGAACUCU
8
|
16-12387
|
|
MAP4K4-2931-
12388
ooooooooooooooooo
00000000000000000
UAGACUUCCACAGAACU
9
|
15-12388
|
|
APOB--21-12434
12434
ooooooooooooooooooo
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
10
|
oo
AC
|
|
APOB--21-12435
12435
ooooooooooooooooooo
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
|
oo
AC
11
|
|
MAP4K4-2931-
12451
oooooooooosssssssso
Pf000fffff0f0000ffmm
UAGACUUCCACAGAACUCU
12
|
16-12451
|
|
MAP4K4-2931-
12452
oooooooooosssssssso
Pm000fffff0000ffmm
UAGACUUCCACAGAACUCU
13
|
16-12452
|
|
MAP4K4-2931-
12453
oooooosssssssssssso
Pm000fffff0f0000ffmm
UAGACUUCCACAGAACUCU
14
|
16-12453
|
|
MAP4K4-2931-
12454
oooooooooooosssssssso
Pm000fffff0f0000ffffmm
UAGACUUCCACAGAACUCUU
15
|
17-12454
C
|
|
MAP4K4-2931-
12455
oooooooosssssssssssso
Pm000fffff0f0000ffffmm
UAGACUUCCACAGAACUCUU
16
|
17-12455
C
|
|
MAP4K4-2931-
12456
oooooooooooosssssssss
Pm000fffff0f0000ffffff
UAGACUUCCACAGAACUCUU
17
|
19-12456
ssso
00mm
CAAAG
|
|
APOB-10167-21-
12505
ooooooooooooooooooo
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
18
|
12505
os
AC
|
|
APOB-10167-21-
12506
ooooooooooooooooooo
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
19
|
12506
os
AC
|
|
MAP4K4-2931-
12539
ooooooooooossssssss
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
20
|
16-12539
|
|
APOB-10167-21-
12505.2
ooooooooooooooooooo
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
21
|
12505.2
oo
AC
|
|
APOB-10167-21-
12506.2
ooooooooooooooooooo
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
22
|
12506.2
oo
AC
|
|
MAP4K4-2931-
12386.2
oooooooooosssssssso
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
23
|
16-12386.2
|
|
MAP4K4--16-
12983
oooooooooooosssssso
Pm000fffff0m0000mmm0
uagacuuccacagaacucu
24
|
12983
|
|
MAP4K4--16-
12984
oooooooooooossssss
Pm000fffff0m0000mmm0
uagacuuccacagaacucu
25
|
12984
|
|
MAP4K4--16-
12985
oooooooooooosssssso
Pm000fffff0m0000mmm0
uagacuuccacagaacucu
26
|
12985
|
|
MAP4K4--16-
12986
oooooooooosssssssso
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
27
|
12986
|
|
MAP4K4--16-
12987
ooooooooooooossssss
P0000f00ff0m0000m0m0
UagacUUccacagaacUcU
28
|
12987
|
|
MAP4K4--16-
12988
ooooooooooooossssss
P0000f00ff0m0000m0m0
UagacUUccacagaacUcu
29
|
12988
|
|
MAP4K4--16-
12989
ooooooooooooossssss
P0000ff0ff0m0000m0m0
UagacuUccacagaacUcu
30
|
12989
|
|
MAP4K4--16-
12990
ooooooooooooossssss
Pf0000ff000000000m00
uagaCuuCCaCagaaCuCu
31
|
12990
|
|
MAP4K4--16-
12991
ooooooooooooossssss
Pf0000fff00m00000mm0
uagaCuucCacagaaCucu
32
|
12991
|
|
MAP4K4--16-
12992
ooooooooooooossssss
Pf000fffff0000000m00
uagacuuccaCagaaCuCu
33
|
12992
|
|
MAP4K4--16-
12993
ooooooooooooossssss
P0000000000000000000
UagaCUUCCaCagaaCUCU
34
|
12993
|
|
MAP4K4--16-
12994
ooooooooooooossssss
P0000f0f0f0000000m00
UagacUuCcaCagaaCuCu
35
|
12994
|
|
MAP4K4--16-
12995
oooooooooooosssssso
Pf000fffff0000000000
uagacuuccaCagaaCUCU
36
|
12995
|
|
--16-13047
13047
oooooooooooossssss
Pm000000000m0000mm
UAGACUUCCACAGAACUCU
37
|
m0
|
|
PP1B-16-13136
13136
oooooooooooossssss
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
38
|
|
SOD1-530-16-
13163
oooooooooooosssssso
Pm0ffffffff0mmmmm0m0
UACUUUCUUCAUUUCCACC
39
|
13163
|
|
SOD1-523-16-
13164
oooooooooooosssssso
Pmff0fffff0fmmmm0mm0
UUCAUUUCCACCUUUGCCC
40
|
13164
|
|
SOD1-535-16-
13165
oooooooooooosssssso
Pmfff0f0ffffmmmm0mm0
CUUUGUACUUUCUUCAUUU
41
|
13165
|
|
SOD1-536-16-
13166
oooooooooooosssssso
Pmffff0f0fffmmmmm0m0
UCUUUGUACUUUCUUCAUU
42
|
13166
|
|
SOD1-396-16-
13167
oooooooooooosssssso
Pmf00f00ff0f0mm0mmm0
UCAGCAGUCACAUUGCCCA
43
|
13167
|
|
SOD1-385-16-
13168
oooooooooooosssssso
Pmff0fff000fmmmm00m0
AUUGCCCAAGUCUCCAACA
44
|
13168
|
|
SOD1-195-16-
13169
oooooooooooosssssso
Pmfff0fff0000mm00m00
UUCUGCUCGAAAUUGAUGA
45
|
13169
|
|
pGL3-1172-16-
13170
oooooooooooosssssso
Pm00ff0f0ffm0ff00mm0
AAAUCGUAUUUGUCAAUCA
46
|
13170
|
|
pGL3-1172-16-
13171
ooooooooooooossssss
Pm00ff0f0ffm0ff00mm0
AAAUCGUAUUUGUCAAUCA
47
|
13171
|
|
MAP4k4-2931-
13189
ooooooooooooooooooo
0000000000000000000
UAGACUUCCACAGAACUCU
48
|
19-13189
|
|
MAP4K4--16-
13766
oooooooooooosssssso
Pm000fffff0m0000mmm0
UAGACUUCCACAGAACUCU
49
|
13766
|
|
MAP4K4--16-
13939
oooooooooooosssssso
m000f0ffff0m0m00m0m
UAGACAUCCUACACAGCAC
50
|
13939
|
|
APOB-4314-16-
13940
oooooooooooosssssso
Pm0fffffff000mmmmm00
UGUUUCUCCAGAUCCUUGC
51
|
13940
|
|
APOB-4314-17-
13941
oooooooooooosssssso
Pm0fffffff000mmmmm00
UGUUUCUCCAGAUCCUUGC
52
|
13941
|
|
APOB--16-13942
13942
oooooooooooosssssso
Pm00f000f000mmm0mm
UAGCAGAUGAGUCCAUUUG
53
|
m0
|
|
APOB--18-13943
13943
oooooooooooooooossss
Pm00f000f000mmm0mm
UAGCAGAUGAGUCCAUUUG
54
|
sso
m00000
GAGA
|
|
APOB--17-13944
13944
oooooooooooosssssso
Pm00f000f000mmm0mm
UAGCAGAUGAGUCCAUUUG
55
|
mo
|
|
APOB--19-13945
13945
oooooooooooooooossss
Pm00f000f000mmm0mm
UAGCAGAUGAGUCCAUUUG
56
|
sso
m00000
GAGA
|
|
APOB-4314-16-
13946
oooooooooooosssssso
Pmf0ff0ffffmmm000mm0
AUGUUGUUUCUCCAGAUCC
57
|
13946
|
|
APOB-4314-17-
13947
oooooooooooosssssso
Pmf0ff0ffffmmm000mm0
AUGUUGUUUCUCCAGAUCC
58
|
13947
|
|
APOB--16-13948
13948
oooooooooooosssssso
Pm0fff000000mmmm0m0
UGUUUGAGGGACUCUGUGA
59
|
o
|
|
APOB--17-13949
13949
oooooooooooosssssso
Pm0fff000000mmmm0m0
UGUUUGAGGGACUCUGUGA
60
|
o
|
|
APOB--16-13950
13950
oooooooooooosssssso
Pmff00f0fff00m0m00m0
AUUGGUAUUCAGUGUGAUG
61
|
|
APOB--18-13951
13951
oooooooooooooooossss
Pmff00f0fff00m0m00m00
AUUGGUAUUCAGUGUGAUG
62
|
sso
m00
ACAC
|
|
APOB--17-13952
13952
oooooooooooosssssso
Pmff00f0fff00m0m00m0
AUUGGUAUUCAGUGUGAUG
63
|
|
APOB--19-13953
13953
oooooooooooooooossss
Pmff00f0fff00m0m00m00
AUUGGUAUUCAGUGUGAUG
64
|
sso
m00
ACAC
|
|
MAP4K4--16-
13766.2
oooooooooooosssssso
Pm000fffff0m0000mmm0
UAGACUUCCACAGAACUCU
65
|
13766.2
|
|
CTGF-1222-16-
13980
oooooooooooosssssso
Pm0f0ffffffm0m00m0m0
UACAUCUUCCUGUAGUACA
66
|
13980
|
|
CTGF-813-16-
13981
oooooooooooosssssso
Pm0f0ffff0mmmm0m000
AGGCGCUCCACUCUGUGGU
67
|
13981
|
|
CTGF-747-16-
13982
oooooooooooosssssso
Pm0ffffff00mm0m0000
UGUCUUCCAGUCGGUAAGC
68
|
13982
|
|
CTGF-817-16-
13983
oooooooooooosssssso
Pm00f000f0fmmm0mmm
GAACAGGCGCUCCACUCUG
69
|
13983
m0
|
|
CTGF-1174-16-
13984
oooooooooooosssssso
Pm00ff0f00f00m000m00
CAGUUGUAAUGGCAGGCAC
70
|
13984
|
|
CTGF-1005-16-
13985
oooooooooooosssssso
Pmff000000mmm000mm0
AGCCAGAAAGCUCAAACUU
71
|
13985
|
|
CTGF-814-16-
13986
oooooooooooosssssso
Pm000f0ffff0mmmm0m00
CAGGCGCUCCACUCUGUGG
72
|
13986
|
|
CTGF-816-16-
13987
oooooooooooosssssso
Pm0f000f0ffmm0mmmm0
AACAGGCGCUCCACUCUGU
73
|
13987
0
|
|
CTGF-1001-16-
13988
oooooooooooosssssso
Pm0000fff000mmm00m0
AGAAAGCUCAAACUUGAUA
74
|
13988
|
|
CTGF-1173-16-
13989
oooooooooooosssssso
Pmff0f00f00m000m0m0
AGUUGUAAUGGCAGGCACA
75
|
13989
|
|
CTGF-749-16-
13990
oooooooooooosssssso
Pmf0ffffff00mm00m00
CGUGUCUUCCAGUCGGUAA
76
|
13990
|
|
CTGF-792-16-
13991
oooooooooooosssssso
Pm00ff000f00mm00mmm
GGACCAGGCAGUUGGCUCU
77
|
13991
0
|
|
CTGF-1162-16-
13992
oooooooooooosssssso
Pm000f0f000mmmm00m0
CAGGCACAGGUCUUGAUGA
78
|
13992
0
|
|
CTGF-811-16-
13993
oooooooooooosssssso
Pmf0ffff0ffmm0m00mm0
GCGCUCCACUCUGUGGUCU
79
|
13993
|
|
CTGF-797-16-
13994
oooooooooooosssssso
Pm0fff000ff000m00mm0
GGUCUGGACCAGGCAGUUG
80
|
13994
|
|
CTGF-1175-16-
13995
oooooooooooosssssso
Pmf00ff0f00m00m000m0
ACAGUUGUAAUGGCAGGCA
81
|
13995
|
|
CTGF-1172-16-
13996
oooooooooooosssssso
Pmff0f00f00m000m0m00
GUUGUAAUGGCAGGCACAG
82
|
13996
|
|
CTGF-1177-16-
13997
oooooooooooosssssso
Pm00f00ff0f00m00m000
GGACAGUUGUAAUGGCAGG
83
|
13997
|
|
CTGF-1176-16-
13998
oooooooooooosssssso
Pm0f00ff0f00m00m0000
GACAGUUGUAAUGGCAGGC
84
|
13998
|
|
CTGF-812-16-
13999
oooooooooooosssssso
Pm0f0ffff0fmmm0m00m0
GGCGCUCCACUCUGUGGUC
85
|
13999
|
|
CTGF-745-16-
14000
oooooooooooosssssso
Pmfffff00ff00m000mm0
UCUUCCAGUCGGUAAGCCG
86
|
14000
|
|
CTGF-1230-16-
14001
oooooooooooosssssso
Pm0fffff0f0m0mmmmmm
UGUCUCCGUACAUCUUCCU
87
|
14001
0
|
|
CTGF-920-16-
14002
oooooooooooosssssso
Pmffff0f0000mmm00m0
AGCUUCGCAAGGCCUGACC
88
|
14002
|
|
CTGF-679-16-
14003
oooooooooooosssssso
Pm0ffffff0f00m0mmmm0
CACUCCUCGCAGCAUUUCC
89
|
14003
|
|
CTGF-992-16-
14004
oooooooooooosssssso
Pm00fff00f000mmm0000
AAACUUGAUAGGCUUGGAG
90
|
14004
|
|
CTGF-1045-16-
14005
oooooooooooosssssso
Pmffff0f0000mmm00mm0
ACUCCACAGAAUUUAGCUC
91
|
14005
|
|
CTGF-1231-16-
14006
oooooooooooosssssso
Pmf0fffff0f0m0mmmmm0
AUGUCUCCGUACAUCUUCC
92
|
14006
|
|
CTGF-991-16-
14007
oooooooooooosssssso
Pm0fff00f000mmm00000
AACUUGAUAGGCUUGGAGA
93
|
14007
|
|
CTGF-998-16-
14008
oooooooooooosssssso
Pm00fff000fmm00m0000
AAGCUCAAACUUGAUAGGC
94
|
14008
|
|
CTGF-1049-16-
14009
oooooooooooosssssso
Pmf0f0ffff0m0000mmm0
ACAUACUCCACAGAAUUUA
95
|
14009
|
|
CTGF-1044-16-
14010
oooooooooooosssssso
Pmfff0f0000mmm00mmm
CUCCACAGAAUUUAGCUCG
96
|
14010
0
|
|
CTGF-1327-16-
14011
oooooooooooosssssso
Pm0f0ff0ff0000mm0mm0
UGUGCUACUGAAAUCAUUU
97
|
14011
|
|
CTGF-1196-16-
14012
oooooooooooosssssso
Pm0000f0ff0mm0mmmm
AAAGAUGUCAUUGUCUCCG
98
|
14012
m0
|
|
CTGF-562-16-
14013
oooooooooooosssssso
Pmf0f0ff00f0mmm0m000
GUGCACUGGUACUUGCAGC
99
|
14013
|
|
CTGF-752-16-
14014
oooooooooooosssssso
Pm00f0f0fffmmm00mm00
AAACGUGUCUUCCAGUCGG
100
|
14014
|
|
CTGF-994-16-
14015
oooooooooooosssssso
Pmf000fff00m000mmm00
UCAAACUUGAUAGGCUUGG
101
|
14015
|
|
CTGF-1040-16-
14016
oooooooooooosssssso
Pmf0000fff00mmm00m00
ACAGAAUUUAGCUCGGUAU
102
|
14016
|
|
CTGF-1984-16-
14017
oooooooooooosssssso
Pmf0f0ffff0mmm0m00m0
UUACAUUCUACCUAUGGUG
103
|
14017
|
|
CTGF-2195-16-
14018
oooooooooooosssssso
Pm00ff00ff00mm0m0m00
AAACUGAUCAGCUAUAUAG
104
|
14018
|
|
CTGF-2043-16-
14019
oooooooooooosssssso
Pm0fff000f0000mmmmm
UAUCUGAGCAGAAUUUCCA
105
|
14019
0
|
|
CTGF-1892-16-
14020
oooooooooooosssssso
Pmf00fff000m00mm0m00
UUAACUUAGAUAACUGUAC
106
|
14020
|
|
CTGF-1567-16-
14021
oooooooooooosssssso
Pm0ff0fff0f0m0000m00
UAUUACUCGUAUAAGAUGC
107
|
14021
|
|
CTGF-1780-16-
14022
oooooooooooosssssso
Pm00ff0fff00mmm00mm0
AAGCUGUCCAGUCUAAUCG
108
|
14022
|
|
CTGF-2162-16-
14023
oooooooooooosssssso
Pm00f00000fm0mmm0m
UAAUAAAGGCCAUUUGUUC
109
|
14023
m0
|
|
CTGF-1034-16-
14024
oooooooooooosssssso
Pmff00fff00m0m0mmmm
UUUAGCUCGGUAUGUCUUC
110
|
14024
0
|
|
CTGF-2264-16-
14025
oooooooooooosssssso
Pmf0fffff00m000m0000
ACACUCUCAACAAAUAAAC
111
|
14025
|
|
CTGF-1032-16-
14026
oooooooooooosssssso
Pm00fff00f0m0mmmmm0
UAGCUCGGUAUGUCUUCAU
112
|
14026
0
|
|
CTGF-1535-16-
14027
oooooooooooosssssso
Pm00fffffff0mm00m0m0
UAACCUUUCUGCUGGUACC
113
|
14027
|
|
CTGF-1694-16-
14028
oooooooooooosssssso
Pmf000000f00mmm00mm
UUAAGGAACAACUUGACUC
114
|
14028
0
|
|
CTGF-1588-16-
14029
oooooooooooosssssso
Pmf0f0ffff000m00m000
UUACACUUCAAAUAGCAGG
115
|
14029
|
|
CTGF-928-16-
14030
oooooooooooosssssso
Pmff000ff00mmmm0m00
UCCAGGUCAGCUUCGCAAG
116
|
14030
0
|
|
CTGF-1133-16-
14031
oooooooooooosssssso
Pmffffff0f00mmmm0mm0
CUUCUUCAUGACCUCGCCG
117
|
14031
|
|
CTGF-912-16-
14032
oooooooooooosssssso
Pm000fff00fm0m0m0m00
AAGGCCUGACCAUGCACAG
118
|
14032
|
|
CTGF-753-16-
14033
oooooooooooosssssso
Pm000f0f0ffmmmm00mm
CAAACGUGUCUUCCAGUCG
119
|
14033
0
|
|
CTGF-918-16-
14034
oooooooooooosssssso
Pmfff0f0000mmm00mm0
CUUCGCAAGGCCUGACCAU
120
|
14034
0
|
|
CTGF-744-16-
14035
oooooooooooosssssso
Pmffff00ff00m000mm00
CUUCCAGUCGGUAAGCCGC
121
|
14035
|
|
CTGF-466-16-
14036
oooooooooooosssssso
Pmf00ffff0f00mm00mm0
CCGAUCUUGCGGUUGGCCG
122
|
14036
|
|
CTGF-917-16-
14037
oooooooooooosssssso
Pmff0f0000fmm00mm0m
UUCGCAAGGCCUGACCAUG
123
|
14037
0
|
|
CTGF-1038-16-
14038
oooooooooooosssssso
Pm00fff00fmm0m0m00
AGAAUUUAGCUCGGUAUGU
124
|
14038
|
|
CTGF-1048-16-
14039
oooooooooooosssssso
Pm0f0ffff0f0000mmm00
CAUACUCCACAGAAUUUAG
125
|
14039
|
|
CTGF-1235-16-
14040
oooooooooooosssssso
Pm0ff0f0fffmmm0m0m0
UGCCAUGUCUCCGUACAUC
126
|
14040
|
|
CTGF-868-16-
14041
oooooooooooosssssso
Pm000f0ff0fm0mm00m00
GAGGCGUUGUCAUUGGUAA
127
|
14041
|
|
CTGF-1131-16-
14042
oooooooooooosssssso
Pmffff0f00fmmm0mm0m
UCUUCAUGACCUCGCCGUC
128
|
14042
0
|
|
CTGF-1043-16-
14043
oooooooooooosssssso
Pmff0f0000fmm00mmm0
UCCACAGAAUUUAGCUCGG
129
|
14043
0
|
|
CTGF-751-16-
14044
oooooooooooosssssso
Pm0f0f0ffffmm00mm000
AACGUGUCUUCCAGUCGGU
130
|
14044
|
|
CTGF-1227-16-
14045
oooooooooooosssssso
Pmfff0f0f0fmmmmmm0m
CUCCGUACAUCUUCCUGUA
131
|
14045
0
|
|
CTGF-867-16-
14046
oooooooooooosssssso
Pm0f0ff0ff0mm00m000
AGGCGUUGUCAUUGGUAAC
132
|
14046
|
|
CTGF-1128-16-
14047
oooooooooooosssssso
Pmf0f00ffff0mm0mm000
UCAUGACCUCGCCGUCAGG
133
|
14047
|
|
CTGF-756-16-
14048
oooooooooooosssssso
Pm0ff000f0f0mmmmmm0
GGCCAAACGUGUCUUCCAG
134
|
14048
0
|
|
CTGF-1234-16-
14049
oooooooooooosssssso
Pmff0f0ffffmm0m0mm0
GCCAUGUCUCCGUACAUCU
135
|
14049
|
|
CTGF-916-16-
14050
oooooooooooosssssso
Pmf0f0000ffm00mm0m00
UCGCAAGGCCUGACCAUGC
136
|
14050
|
|
CTGF-925-16-
14051
oooooooooooosssssso
Pm0ff00fffmm0000m0
AGGUCAGCUUCGCAAGGCC
137
|
14051
|
|
CTGF-1225-16-
14052
oooooooooooosssssso
Pmf0f0f0fffmmmm0m000
CCGUACAUCUUCCUGUAGU
138
|
14052
|
|
CTGF-445-16-
14053
oooooooooooosssssso
Pm00ff0000fm0m000000
GAGCCGAAGUCACAGAAGA
139
|
14053
|
|
CTGF-446-16-
14054
oooooooooooosssssso
Pm000ff0000mm0m00000
GGAGCCGAAGUCACAGAAG
140
|
14054
|
|
CTGF-913-16-
14055
oooooooooooosssssso
Pm0000fff00mm0m0m0m
CAAGGCCUGACCAUGCACA
141
|
14055
0
|
|
CTGF-997-16-
14056
oooooooooooosssssso
Pmfff000ffm00m000m0
AGCUCAAACUUGAUAGGCU
142
|
14056
|
|
CTGF-277-16-
14057
oooooooooooosssssso
Pmf0f00ffff00mm00m00
CUGCAGUUCUGGCCGACGG
143
|
14057
|
|
CTGF-1052-16-
14058
oooooooooooosssssso
Pm0f0f0f0ffmm0m00000
GGUACAUACUCCACAGAAU
144
|
14058
|
|
CTGF-887-16-
14059
oooooooooooosssssso
Pmf0fffffff00mmm0m00
CUGCUUCUCUAGCCUGCAG
145
|
14059
|
|
CTGF-914-16-
14060
oooooooooooosssssso
Pmf0000fff00mm0m0m00
GCAAGGCCUGACCAUGCAC
146
|
14060
|
|
CTGF-1039-16-
14061
oooooooooooosssssso
Pm0000fff00mmm00m0m
CAGAAUUUAGCUCGGUAUG
147
|
14061
0
|
|
CTGF-754-16-
14062
oooooooooooosssssso
Pmf000f0f0fmmmmm00m
CCAAACGUGUCUUCCAGUC
148
|
14062
0
|
|
CTGF-1130-16-
14063
oooooooooooosssssso
Pmfff0f00ffmmmm0mm0
CUUCAUGACCUCGCCGUCA
149
|
14063
|
|
CTGF-919-16-
14064
oooooooooooosssssso
Pmffff0f0000mmm00mm0
GCUUCGCAAGGCCUGACCA
150
|
14064
|
|
CTGF-922-16-
14065
oooooooooooosssssso
Pmf00ffffM000mmm00
UCAGCUUCGCAAGGCCUGA
151
|
14065
|
|
CTGF-746-16-
14066
oooooooooooosssssso
Pmffffff00fm0m000m0
GUCUUCCAGUCGGUAAGCC
152
|
14066
|
|
CTGF-993-16-
14067
oooooooooooosssssso
Pm000fff00f000mmm000
CAAACUUGAUAGGCUUGGA
153
|
14067
|
|
CTGF-825-16-
14068
oooooooooooosssssso
Pm0ffff0000m000m0m0
AGGUCUUGGAACAGGCGCU
154
|
14068
|
|
CTGF-926-16-
14069
oooooooooooosssssso
Pm000ff00ffmmm00000
CAGGUCAGCUUCGCAAGGC
155
|
14069
|
|
CTGF-923-16-
14070
oooooooooooosssssso
Pmff00ffff0m0000mmm0
GUCAGCUUCGCAAGGCCUG
156
|
14070
|
|
CTGF-866-16-
14071
oooooooooooosssssso
Pm0fffff0ff0mm00m00m0
GGCGUUGUCAUUGGUAACC
157
|
14071
|
|
CTGF-563-16-
14072
oooooooooooosssssso
Pmffff0ff00m0mmm0m00
CGUGCACUGGUACUUGCAG
158
|
14072
|
|
CTGF-823-16-
14073
oooooooooooosssssso
Pmffff0000f000m0mmm0
GUCUUGGAACAGGCGCUCC
159
|
14073
|
|
CTGF-1233-16-
14074
oooooooooooosssssso
Pmf0f0fffff0m0m0mmm0
CCAUGUCUCCGUACAUCUU
160
|
14074
|
|
CTGF-924-16-
14075
oooooooooooosssssso
Pm0ff00ffffffm0000mm0
GGUCAGCUUCGCAAGGCCU
161
|
14075
|
|
CTGF-921-16-
14076
oooooooooooosssssso
Pm00ffff0f0000mmm000
CAGCUUCGCAAGGCCUGAC
162
|
14076
|
|
CTGF-443-16-
14077
oooooooooooosssssso
Pmff0000ffffm00000000
GCCGAAGUCACAGAAGAGG
163
|
14077
|
|
CTGF-1041-16-
14078
oooooooooooosssssso
Pm0f0000fffff0mmm00m0
CACAGAAUUUAGCUCGGUA
164
|
14078
|
|
CTGF-1042-16-
14079
oooooooooooosssssso
Pmffff0000ffm00mmm000
CCACAGAAUUUAGCUCGGU
165
|
14079
|
|
CTGF-755-16-
14080
oooooooooooosssssso
Pmff000f0f0mmmmmm00
GCCAAACGUGUCUUCCAGU
166
|
14080
0
|
|
CTGF-467-16-
14081
oooooooooooosssssso
Pmffff00ffff0m0mm00m0
GCCGAUCUUGCGGUUGGCC
167
|
14081
|
|
CTGF-995-16-
14082
oooooooooooosssssso
Pmff000fffff0m000mmm0
CUCAAACUUGAUAGGCUUG
168
|
14082
|
|
CTGF-927-16-
14083
oooooooooooosssssso
Pmf000ff00fmmm0m0000
CCAGGUCAGCUUCGCAAGG
169
|
14083
|
|
SPP1-1091-16-
14131
oooooooooooosssssso
Pmff00ff000m0m0000m0
UUUGACUAAAUGCAAAGUG
170
|
14131
|
|
PP113-16-14188
14188
ooooooooooooossssss
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
171
|
|
PP113-17-14189
14189
ooooooooooooossssss
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
172
|
|
PP113-18-14190
14190
ooooooooooooossssss
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
173
|
|
pGL3-1172-16-
14386
oooooooooooosssssso
Pm00ff0f0ffm0mm00mm0
AAAUCGUAUUUGUCAAUCA
174
|
14386
|
|
pGL3-1172-16-
14387
oooooooooooosssssso
Pm00ff0f0ffm0mm00mm0
AAAUCGUAUUUGUCAAUCA
175
|
14387
|
|
miR-122--23-
14391
|
14391
|
|
14084
oooooooooooosssssso
Pmff00fff0f000000m00
UCUAAUUCAUGAGAAAUAC
616
|
|
14085
oooooooooooosssssso
Pm00ff00fffm000000m0
UAAUUGACCUCAGAAGAUG
617
|
|
14086
oooooooooooosssssso
Pmff00ff00fmmm000000
UUUAAUUGACCUCAGAAGA
618
|
|
14087
oooooooooooosssssso
Pm0ff00ffff000000m00
AAUUGACCUCAGAAGAUGC
619
|
|
14088
oooooooooooosssssso
Pmf00ff00ffmm0000000
UUAAUUGACCUCAGAAGAU
620
|
|
14089
oooooooooooosssssso
Pmff00ffff000000m0m0
AUUGACCUCAGAAGAUGCA
621
|
|
14090
oooooooooooosssssso
Pmf0fff00ff00mmm0mm0
UCAUCCAGCUGACUCGUUU
622
|
|
14091
oooooooooooosssssso
Pm0fff0ff0000m00m00
AGAUUCAUCAGAAUGGUGA
623
|
|
14092
oooooooooooosssssso
Pm00ffff00fmm0m000m0
UGACCUCAGUCCAUAAACC
624
|
|
14093
oooooooooooosssssso
Pm0100f0000mmm0mm00
AAUGGUGAGACUCAUCAGA
625
|
0
|
|
14094
oooooooooooosssssso
Pmff00ffff00mmm0m000
UUUGACCUCAGUCCAUAAA
626
|
|
14095
oooooooooooosssssso
Pmff0f00ff0m0000mmm0
UUCAUGGCUGUGAAAUUCA
627
|
|
14096
oooooooooooosssssso
Pm00f00f0000mmm0mm0
GAAUGGUGAGACUCAUCAG
628
|
0
|
|
14097
oooooooooooosssssso
Pm00ffffff0mmm0m0m00
UGGCUUUCCGCUUAUAUAA
629
|
|
14098
oooooooooooosssssso
Pmf00ffffff0mmm0m0m0
UUGGCUUUCCGCUUAUAUA
630
|
|
14099
oooooooooooosssssso
Pmf0fff0f0f00mm0m000
UCAUCCAUGUGGUCAUGGC
631
|
|
14100
oooooooooooosssssso
Pmf0f00ff0f00mmmmm00
AUGUGGUCAUGGCUUUCGU
632
|
|
14101
oooooooooooosssssso
Pmf00ff0f00mmmmm0m
GUGGUCAUGGCUUUCGUUG
633
|
m0
|
|
14102
oooooooooooosssssso
Pmff00fffffmmmm0m00
AUUGGCUUUCCGCUUAUAU
634
|
|
14103
oooooooooooosssssso
Pm00f0f0000mmmm000m
AAAUACGAAAUUUCAGGUG
635
|
0
|
|
14104
oooooooooooosssssso
Pm000f0f0000mmmm000
AGAAAUACGAAAUUUCAGG
636
|
|
14105
oooooooooooosssssso
Pm00ff0f00fmmmm0mm0
UGGUCAUGGCUUUCGUUGG
637
|
0
|
|
14106
oooooooooooosssssso
Pmf0ff0fff0m0m00mm00
AUAUCAUCCAUGUGGUCAU
638
|
|
14107
oooooooooooosssssso
Pm0f0f0000fmmm000m0
AAUACGAAAUUUCAGGUGU
639
|
0
|
|
14108
oooooooooooosssssso
Pm0ff000000mm0mmm00
AAUCAGAAGGCGCGUUCAG
640
|
|
14109
oooooooooooosssssso
Pmfff0f000000m0m0000
AUUCAUGAGAAAUACGAAA
641
|
|
14110
oooooooooooosssssso
Pmf0fff0f0000000m000
CUAUUCAUGAGAGAAUAAC
642
|
|
14111
oooooooooooosssssso
Pmfff0ff000mmm0mmm0
UUUCGUUGGACUUACUUGG
643
|
0
|
|
14112
oooooooooooosssssso
Pmf0fffff0fm0mm00mm0
UUGCUCUCAUCAUUGGCUU
644
|
|
14113
oooooooooooosssssso
Pmff00fffffmmmmmmm0
UUCAACUCCUCGCUUUCCA
645
|
|
14114
oooooooooooosssssso
Pm00ff0ff00mm0m0mm0
UGACUAUCAAUCACAUCGG
646
|
0
|
|
14115
oooooooooooosssssso
Pm0f0f0ff0mmm00mmm0
AGAUGCACUAUCUAAUUCA
647
|
|
14116
oooooooooooosssssso
Pm0f000f0f0m0mmm00m
AAUAGAUACACAUUCAACC
648
|
0
|
|
14117
oooooooooooosssssso
Pmffffff0f0000m000m0
UUCUUCUAUAGAAUGAACA
649
|
|
14118
oooooooooooosssssso
Pm0ff0ff000m00mm0m00
AAUUGCUGGACAACCGUGG
650
|
|
14119
oooooooooooosssssso
Pmf0ffffff0m0m0m0000
UCGCUUUCCAUGUGUGAGG
651
|
|
14120
oooooooooooosssssso
Pm00fff000fm0mmm0m0
UAAUCUGGACUGCUUGUGG
652
|
0
|
|
14121
oooooooooooosssssso
Pmf0f0fff00mm00m0000
ACACAUUCAACCAAUAAAC
653
|
|
14122
oooooooooooosssssso
Pmfff0ffff0m00mm0mm0
ACUCGUUUCAUAACUGUCC
654
|
|
14123
oooooooooooosssssso
Pmf00fff000mm0mmm0m
AUAAUCUGGACUGCUUGUG
655
|
0
|
|
14124
oooooooooooosssssso
Pmffff0fff0m0m00mmm0
UUUCCGCUUAUAUAAUCUG
656
|
|
14125
oooooooooooosssssso
Pm0fff00ff00m0m00m00
UGUUUAACUGGUAUGGCAC
657
|
|
14126
oooooooooooosssssso
Pm0f0000f000m0m000m0
UAUAGAAUGAACAUAGACA
658
|
|
14127
oooooooooooosssssso
Pmffffff00fm0m0mmm0
UUUCCUUGGUCGGCGUUUG
659
|
|
14128
oooooooooooosssssso
Pmf0f0f0ff0mmm00mmm
GUAUGCACCAUUCAACUCC
660
|
0
|
|
14129
oooooooooooosssssso
Pmf00ff0ff0m0m0m0mm0
UCGGCCAUCAUAUGUGUCU
661
|
|
14130
oooooooooooosssssso
Pm0fff000ff0mmm0m000
AAUCUGGACUGCUUGUGGC
662
|
|
14132
oooooooooooosssssso
Pmf0ff0000f0mmm0mm0
ACAUCGGAAUGCUCAUUGC
663
|
0
|
|
14133
oooooooooooosssssso
Pm00fffff00mm0mm00m0
AAGUUCCUGACUAUCAAUC
664
|
|
14134
oooooooooooosssssso
Pmf00ff000f0m0000m00
UUGACUAAAUGCAAAGUGA
665
|
|
14135
oooooooooooosssssso
Pm0fff0ff000mm00m00
AGACUCAUCAGACUGGUGA
666
|
|
14136
oooooooooooosssssso
Pmf0f0f0f0fmm0mm0m00
UCAUAUGUGUCUACUGUGG
667
|
|
14137
oooooooooooosssssso
Pmf0fffff0fmm0m00m00
AUGUCCUCGUCUGUAGCAU
668
|
|
14138
oooooooooooosssssso
Pm00fff0f00mm00mmmm
GAAUUCACGGCUGACUUUG
669
|
0
|
|
14139
oooooooooooosssssso
Pmf0fffff000mmm000m0
UUAUUUCCAGACUCAAAUA
670
|
|
14140
oooooooooooosssssso
Pm000ff0f000mm000mm
GAAGCCACAAACUAAACUA
671
|
0
|
|
14141
oooooooooooosssssso
Pmffff0ff000mmm0mmm
CUUUCGUUGGACUUACUUG
672
|
0
|
|
14142
oooooooooooosssssso
Pmfff0f0000mmmmmm00
GUCUGCGAAACUUCUUAGA
673
|
0
|
|
14143
oooooooooooosssssso
Pm0f0fff0ff0mmmmm0m
AAUGCUCAUUGCUCUCAUC
674
|
0
|
|
14144
oooooooooooosssssso
Pmf0f0ff0ffm00mmm0m0
AUGCACUAUCUAAUUCAUG
675
|
|
14145
oooooooooooosssssso
Pmff0f0f0f0mm0mmm000
CUUGUAUGCACCAUUCAAC
676
|
|
14146
oooooooooooosssssso
Pm00fff0fffm0m00mm00
UGACUCGUUUCAUAACUGU
677
|
|
14147
oooooooooooosssssso
Pmff00f0fffm00mm0mm0
UUCAGCACUCUGGUCAUCC
678
|
|
14148
oooooooooooosssssso
Pm00fff0f00mm0m00000
AAAUUCAUGGCUGUGGAAU
679
|
|
14149
oooooooooooosssssso
Pmf0fff00ff00m000mm0
ACAUUCAACCAAUAAACUG
680
|
|
14150
oooooooooooosssssso
Pm0f0f0fff00mm00m000
UACACAUUCAACCAAUAAA
681
|
|
14151
oooooooooooosssssso
Pmff00ff0ffmmm000mm0
AUUAGUUAUUUCCAGACUC
682
|
|
14152
oooooooooooosssssso
Pmffff0fff0m00000000
UUUCUAUUCAUGAGAGAAU
683
|
|
14153
oooooooooooosssssso
Pmff00ff0ff00m000mm0
UUCGGUUGCUGGCAGGUCC
684
|
|
14154
oooooooooooosssssso
Pm0f0f0f0000m00m0mm
CAUGUGUGAGGUGAUGUCC
685
|
0
|
|
14155
oooooooooooosssssso
Pmf0ff0fff00mmmmmm0
GCACCAUUCAACUCCUCGC
686
|
0
|
|
14156
oooooooooooosssssso
Pm0fff00ff00mmm0mmm
CAUCCAGCUGACUCGUUUC
687
|
0
|
|
14157
oooooooooooosssssso
Pmfffff0fff0m0m00mm0
CUUUCCGCUUAUAUAAUCU
688
|
|
14158
oooooooooooosssssso
Pm0ff0f0ff0000m0mmm0
AAUCACAUCGGAAUGCUCA
689
|
|
14159
oooooooooooosssssso
Pmf0f0ff00fm0mmmmm0
ACACAUUAGUUAUUUCCAG
690
|
0
|
|
14160
oooooooooooosssssso
Pmfff0f0000m000m0m00
UUCUAUAGAAUGAACAUAG
691
|
|
14161
oooooooooooosssssso
Pm0f00f00f00mmm0m0m
UACAGUGAUAGUUUGCAUU
692
|
0
|
|
14162
oooooooooooosssssso
Pmf000f00ff00m0mm0m0
AUAAGCAAUUGACACCACC
693
|
|
14163
oooooooooooosssssso
Pmff0ff00ff0mm000m00
UUUAUUAAUUGCUGGACAA
694
|
|
14164
oooooooooooosssssso
Pmf0ff0000fmmmm0000
UCAUCAGAGUCGUUCGAGU
695
|
|
14165
oooooooooooosssssso
Pmf000ff0f0mm0mm0mm
AUAAACCACACUAUCACCU
696
|
0
|
|
14166
oooooooooooosssssso
Pmf0ff0ff00mmmmmm0
UCAUCAUUGGCUUUCCGCU
697
|
m0
|
|
14167
oooooooooooosssssso
Pmfffff00fm0mm00mm0
AGUUCCUGACUAUCAAUCA
698
|
|
14168
oooooooooooosssssso
Pmfffff00ff00mmmm0000
UUCACGGCUGACUUUGGAA
699
|
|
14169
oooooooooooosssssso
Pmffff0f00f00m000mm0
UUCUCAUGGUAGUGAGUUU
700
|
|
14170
oooooooooooosssssso
Pm0ff00fff0mmm00mm00
AAUCAGCCUGUUUAACUGG
701
|
|
14171
oooooooooooosssssso
Pm0ffff00f0mmmm00mm
GGUUUCAGCACUCUGGUCA
702
|
0
|
|
14172
oooooooooooosssssso
Pmff0000f0fmm0mm0mm
AUCGGAAUGCUCAUUGCUC
703
|
0
|
|
14173
oooooooooooosssssso
Pm00ff0f0000mmm0m00
UGGCUGUGGAAUUCACGGC
704
|
0
|
|
14174
oooooooooooosssssso
Pm000f00ff00m0mm0mm
UAAGCAAUUGACACCACCA
705
|
0
|
|
14175
oooooooooooosssssso
Pm00fffff0f00m00m000
CAAUUCUCAUGGUAGUGAG
706
|
|
14176
oooooooooooosssssso
Pm00fffff0fm000mmm00
UGGCUUUCGUUGGACUUAC
707
|
|
14177
oooooooooooosssssso
Pm0ff00100fm00mmm0m
AAUCAGUGACCAGUUCAUC
708
|
0
|
|
14178
oooooooooooosssssso
Pmfff0f000mm0m0mm00
AGUCCAUAAACCACACUAU
709
|
|
14179
oooooooooooosssssso
Pm00f0ffff00mm0mmm00
CAGCACUCUGGUCAUCCAG
710
|
|
14180
oooooooooooosssssso
Pm0ff00ff0f0mm0000m0
UAUCAAUCACAUCGGAAUG
711
|
|
14181
oooooooooooosssssso
Pmfff0f00ff00mmmm000
AUUCACGGCUGACUUUGGA
712
|
|
14182
oooooooooooosssssso
Pmf000f0f0f0mmm00mm
AUAGAUACACAUUCAACCA
713
|
0
|
|
14183
oooooooooooosssssso
Pmffff000ffm000m0000
UUUCCAGACUCAAAUAGAU
714
|
|
14184
oooooooooooosssssso
Pmf00ff0ff000m00mm00
UUAAUUGCUGGACAACCGU
715
|
|
14185
oooooooooooosssssso
Pm0ff00ff0fm000m00m0
UAUUAAUUGCUGGACAACC
716
|
|
14186
oooooooooooosssssso
Pmff0fff000mm00m000
AGUCGUUCGAGUCAAUGGA
717
|
|
14187
oooooooooooosssssso
Pmff0ff00f000mmm0m00
GUUGCUGGCAGGUCCGUGG
718
|
|
Antisense backbone, chemistry, and sequence information.
|
o: phosphodiester;
|
s: phosphorothioate;
|
P: 5′ phosphorylation;
|
0: 2′-OH;
|
F: 2′-fluoro;
|
m: 2′ O-methyl;
|
+: LNA modification.
|
Capital letters in the sequence signify riobonucleotides, lower case letters signify deoxyribonucleotides.
|
TABLE 3
|
|
Sense backbone, chemistry, and sequence information.
|
OHang
SEQ
|
Oligo
Sense
Sense
ID
|
ID Number
Number
Chem.
Backbone
Sense Chemistry
Sense Sequence
NO:
|
|
APOB-10167-
12138
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
176
|
20-12138
ooooooso
000
UACCAAU
|
|
APOB-10167-
12139
chl
ooooooooooooo
00000000000000000
GUGAUCAGACUCAA
177
|
20-12139
ooooooso
000
UACGAAU
|
|
MAP4K4-2931-
12266
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
178
|
13-12266
|
|
MAP4K4-2931-
12293
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
179
|
16-12293
|
|
MAP4K4-2931-
12383
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
180
|
16-12383
|
|
MAP4K4-2931-
12384
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
181
|
16-12384
|
|
MAP4K4-2931-
12385
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
182
|
16-12385
|
|
MAP4K4-2931-
12386
chl
oooooooooosso
0mm0m00000mmm0
CUGUGGAAGUCUA
183
|
16-12386
|
|
MAP4K4-2931-
12387
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
184
|
16-12387
|
|
MAP4K4-2931-
12388
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
185
|
15-12388
|
|
MAP4K4-2931-
12432
chl
ooooooooooooo
DY547mm0m00000mmm
CUGUGGAAGUCUA
186
|
13-12432
0
|
|
MAP4K4-2931-
12266.2
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
187
|
13-12266.2
|
|
APOB--21-
12434
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
188
|
12434
ooooooso
000
UACCAAU
|
|
APOB--21-
12435
chl
ooooooooooooo
DY547000000000000
GUGAUCAGACUCAA
189
|
12435
ooooooso
00000000
UACGAAU
|
|
MAP4K4-2931-
12451
chl
oooooooooooss
0mm0m00000mmm0
CUGUGGAAGUCUA
190
|
16-12451
|
|
MAP4K4-2931-
12452
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
191
|
16-12452
|
|
MAP4K4-2931-
12453
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
192
|
16-12453
|
|
MAP4K4-2931-
12454
chl
oooooooooooss
0mm0m00000mmm0
CUGUGGAAGUCUA
193
|
17-12454
|
|
MAP4K4-2931-
12455
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
194
|
17-12455
|
|
MAP4K4-2931-
12456
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
195
|
19-12456
|
|
--27-12480
12480
chl
ooooooooooooo
DY547mm0f000f0055
UCAUAGGUAACCUC
196
|
oooooooooooss
f5f00mm00000m000
UGGUUGAAAGUGA
|
o
|
|
--27-12481
12481
chl
ooooooooooooo
DY547mm05f05000f0
CGGCUACAGGUGCU
197
|
oooooooooooss
5ff0m00000000m00
UAUGAAGAAAGUA
|
o
|
|
APOB-10167-
12505
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
198
|
21-12505
ooooooos
0000
UACCAAU
|
|
APOB-10167-
12506
chl
ooooooooooooo
00000000000000000
GUGAUCAGACUCAA
199
|
21-12506
ooooooos
0000
UACGAAU
|
|
MAP4K4-2931-
12539
chl
oooooooooooss
DY547mm0m00000mmm
CUGUGGAAGUCUA
200
|
16-12539
0
|
|
APOB-10167-
12505.2
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
201
|
21-12505.2
ooooooso
000
UACCAAU
|
|
APOB-10167-
12506.2
chl
ooooooooooooo
00000000000000000
GUGAUCAGACUCAA
202
|
21-12506.2
ooooooso
000
UACGAAU
|
|
MAP4K4--13-
12565
Chl
ooooooooooooo
m0m0000m0mmm0
UGUAGGAUGUCUA
203
|
12565
|
|
MAP4K4-2931-
12386.2
chl
ooooooooooooo
0mm0m00000mmm0
CUGUGGAAGUCUA
204
|
16-12386.2
|
|
MAP4K4-2931-
12815
chl
ooooooooooooo
m0m0m0m0m0m0m0m0m
CUGUGGAAGUCUA
205
|
13-12815
0m0m0m0m0
|
|
APOB--13-
12957
Chl
oooooooooooss
0mmmmmmmmmmmmm
ACUGAAUACCAAU
206
|
12957
TEG
|
|
MAP4K4--16-
12983
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
207
|
12983
|
|
MAP4K4--16-
12984
Chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
208
|
12984
o
|
|
MAP4K4--16-
12985
chl
oooooooooosso
mmmmmmmmmmmmm
CUGUGGAAGUCUA
209
|
12985
|
|
MAP4K4--16-
12986
chl
oooooooooosso
mmmmmmmmmmmmm
CUGUGGAAGUCUA
210
|
12986
|
|
MAP4K4--16-
12987
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
211
|
12987
|
|
MAP4K4--16-
12988
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
212
|
12988
|
|
MAP4K4--16-
12989
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
213
|
12989
|
|
MAP4K4--16-
12990
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
214
|
12990
|
|
MAP4K4--16-
12991
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
215
|
12991
|
|
MAP4K4--16-
12992
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
216
|
12992
|
|
MAP4K4--16-
12993
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
217
|
12993
|
|
MAP4K4--16-
12994
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
218
|
12994
|
|
MAP4K4--16-
12995
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
219
|
12995
|
|
MAP4K4-2931-
13012
chl
ooooooooooooo
00000000000000000
AGAGUUCUGUGGAA
220
|
19-13012
oooooo
0000
GUCUA
|
|
MAP4K4-2931-
13016
chl
ooooooooooooo
DY547000000000000
AGAGUUCUGUGGAA
221
|
19-13016
oooooo
000000000
GUCUA
|
|
PPIB--13-
13021
Chl
ooooooooooooo
0mmm00mm0m000
AUUUGGCUACAAA
222
|
13021
|
|
pGL3-1172-
13038
chl
ooooooooooooo
00m000m0m00mmm
ACAAAUACGAUUU
223
|
13-13038
|
|
pGL3-1172-
13040
chl
ooooooooooooo
DY5470m000m0m00mm
ACAAAUACGAUUU
224
|
13-13040
m
|
|
--16-13047
13047
Chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
225
|
o
|
|
SOD1-530-13-
13090
chl
ooooooooooooo
00m00000000m0
AAUGAAGAAAGUA
226
|
13090
|
|
SOD1-523-13-
13091
chl
ooooooooooooo
000m00000m000
AGGUGGAAAUGAA
227
|
13091
|
|
SOD1-535-13-
13092
chl
ooooooooooooo
000000m0m0000
AGAAAGUACAAAG
228
|
13092
|
|
SOD1-536-13-
13093
chl
ooooooooooooo
00000m0m00000
GAAAGUACAAAGA
229
|
13093
|
|
SOD1-396-13-
13094
chl
ooooooooooooo
0m0m00mm0mm00
AUGUGACUGCUGA
230
|
13094
|
|
SOD1-385-13-
13095
chl
ooooooooooooo
000mmm000m00m
AGACUUGGGCAAU
231
|
13095
|
|
SOD1-195-13-
13096
chl
ooooooooooooo
0mmmm000m0000
AUUUCGAGCAGAA
232
|
13096
|
|
APOB-4314-
13115
Chl
ooooooooooooo
0mmm0000000m0
AUCUGGAGAAACA
233
|
13-13115
|
|
APOB-3384-
13116
Chl
ooooooooooooo
mm0000m000000
UCAGAACAAGAAA
234
|
13-13116
|
|
APOB-3547-
13117
Chl
ooooooooooooo
00mmm0mmm0mm0
GACUCAUCUGCUA
235
|
13-13117
|
|
APOB-4318-
13118
Chl
ooooooooooooo
0000000m00m0m
GGAGAAACAACAU
236
|
13-13118
|
|
APOB-3741-
13119
Chl
ooooooooooooo
00mmmmmm000m0
AGUCCCUCAAACA
237
|
13-13119
|
|
PPIB--16-
13136
Chl
ooooooooooooo
00mm0m00000m0
GGCUACAAAAACA
238
|
13136
o
|
|
APOB-4314-
13154
chl
ooooooooooooo
000mmm0000000m0
AGAUCUGGAGAAAC
239
|
15-13154
o
A
|
|
APOB-3547-
13155
chl
ooooooooooooo
m000mmm0mmm0mm0
UGGACUCAUCUGCU
240
|
15-13155
o
A
|
|
APOB-4318-
13157
chl
ooooooooooooo
mm0000000m00m0m
CUGGAGAAACAACA
241
|
15-13157
o
U
|
|
APOB-3741-
13158
chl
ooooooooooooo
0000mmmmmm0000m0
AGAGUCCCUCAAAC
242
|
15-13158
o
A
|
|
APOB--13-
13159
chl
000000000000
0mm000m0mm00m
ACUGAAUACCAAU
243
|
13159
|
|
APOB--15-
13160
chl
ooooooooooooo
0m0mm000m0mm00m
ACACUGAAUACCAA
244
|
13160
o
U
|
|
SOD1-530-16-
13163
chl
ooooooooooooo
00m00000000m0
AAUGAAGAAAGUA
245
|
13163
|
|
SOD1-523-16-
13164
chl
ooooooooooooo
000m00000m000
AGGUGGAAAUGAA
246
|
13164
|
|
SOD1-535-16-
13165
chl
ooooooooooooo
000000m0m0000
AGAAAGUACAAAG
247
|
13165
|
|
SOD1-536-16-
13166
chl
ooooooooooooo
00000m0m00000
GAAAGUACAAAGA
248
|
13166
|
|
SOD1-396-16-
13167
chl
ooooooooooooo
0m0m00mm0mm00
AUGUGACUGCUGA
249
|
13167
|
|
SOD1-385-16-
13168
chl
ooooooooooooo
000mmm000m00m
AGACUUGGGCAAU
250
|
13168
|
|
SOD1-195-16-
13169
chl
ooooooooooooo
0mmmm000m0000
AUUUCGAGCAGAA
251
|
13169
|
|
pGL3-1172-
13170
chl
ooooooooooooo
0m000m0m00mmm
ACAAAUACGAUUU
252
|
16-13170
|
|
pGL3-1172-
13171
chl
ooooooooooooo
DY5470m000m0m00mm
ACAAAUACGAUUU
253
|
16-13171
m
|
|
MAP4k4-2931-
13189
chl
ooooooooooooo
00000000000000000
AGAGUUCUGUGGAA
254
|
19-13189
oooooo
0000
GUCUA
|
|
CTGF-1222-
13190
Chl
ooooooooooooo
0m0000000m0m0
ACAGGAAGAUGUA
255
|
13-13190
|
|
CTGF-813-13-
13192
Chl
ooooooooooooo
000m0000m0mmm
GAGUGGAGCGCCU
256
|
13192
|
|
CTGF-747-13-
13194
Chl
ooooooooooooo
m00mm000000m0
CGACUGGAAGACA
257
|
13194
|
|
CTGF-817-13-
13196
Chl
ooooooooooooo
0000m0mmm0mmm
GGAGCGCCUGUUC
258
|
13196
|
|
CTGF-1174-
13198
Chl
ooooooooooooo
0mm0mm0m00mm0
GCCAUUACAACUG
259
|
13-13198
|
|
CTGF-1005-
13200
Chl
ooooooooooooo
000mmmmmm00mm
GAGCUUUCUGGCU
260
|
13-13200
|
|
CTGF-814-13-
13202
Chl
ooooooooooooo
00m0000m0mmm0
AGUGGAGCGCCUG
261
|
13202
|
|
CTGF-816-13-
13204
Chl
ooooooooooooo
m0000m0mmm0mm
UGGAGCGCCUGUU
262
|
13204
|
|
CTGF-1001-
13206
Chl
ooooooooooooo
0mmm000mmmmmm
GUUUGAGCUUUCU
263
|
13-13206
|
|
CTGF-1173-
13208
Chl
ooooooooooooo
m0mm0mm0m00mm
UGCCAUUACAACU
264
|
13-13208
|
|
CTGF-749-13-
13210
Chl
ooooooooooooo
0mm000000m0m0
ACUGGAAGACACG
265
|
13210
|
|
CTGF-792-13-
13212
Chl
ooooooooooooo
00mm0mmm00mmm
AACUGCCUGGUCC
266
|
13212
|
|
CTGF-1162-
13214
Chl
ooooooooooooo
000mmm0m0mmm0
AGACCUGUGCCUG
267
|
13-13214
|
|
CTGF-811-13-
13216
Chl
ooooooooooooo
m0000m0000m0m
CAGAGUGGAGCGC
268
|
13216
|
|
CTGF-797-13-
13218
Chl
ooooooooooooo
mmm00mmm000mm
CCUGGUCCAGACC
269
|
13218
|
|
CTGF-1175-
13220
Chl
ooooooooooooo
mm0mm0m00mm0m
CCAUUACAACUGU
270
|
13-13220
|
|
CTGF-1172-
13222
Chl
ooooooooooooo
mm0mm0mm0m0m
CUGCCAUUACAAC
271
|
13-13222
|
|
CTGF-1177-
13224
Chl
ooooooooooooo
0mm0m00mm0mmm
AUUACAACUGUCC
272
|
13-13224
|
|
CTGF-1176-
13226
Chl
ooooooooooooo
m0mm0m00mm0mm
CAUUACAACUGUC
273
|
13-13226
|
|
CTGF-812-13-
13228
Chl
ooooooooooooo
0000m0000m0mm
AGAGUGGAGCGCC
274
|
13228
|
|
CTGF-745-13-
13230
Chl
ooooooooooooo
0mm00mm000000
ACCGACUGGAAGA
275
|
13230
|
|
CTGF-1230-
13232
Chl
ooooooooooooo
0m0m0m00000m0
AUGUACGGAGACA
276
|
13-13232
|
|
CTGF-920-13-
13234
Chl
ooooooooooooo
0mmmm0m0000mm
GCCUUGCGAAGCU
277
|
13234
|
|
CTGF-679-13-
13236
Chl
ooooooooooooo
0mm0m000000m0
GCUGCGAGGAGUG
278
|
13236
|
|
CTGF-992-13-
13238
Chl
ooooooooooooo
0mmm0mm000mmm
GCCUAUCAAGUUU
279
|
13238
|
|
CTGF-1045-
13240
Chl
ooooooooooooo
00mmmm0m0000m
AAUUCUGUGGAGU
280
|
13-13240
|
|
CTGF-1231-
13242
Chl
ooooooooooooo
m0m0m00000m0m
UGUACGGAGACAU
281
|
13-13242
|
|
CTGF-991-13-
13244
Chl
ooooooooooooo
00mmm0mm000mm
AGCCUAUCAAGUU
282
|
13244
|
|
CTGF-998-13-
13246
Chl
ooooooooooooo
m000mmm000mmm
CAAGUUUGAGCUU
283
|
13246
|
|
CTGF-1049-
13248
Chl
ooooooooooooo
mm0m0000m0m0m
CUGUGGAGUAUGU
284
|
13-13248
|
|
CTGF-1044-
13250
Chl
ooooooooooooo
000mmmm0m0000
AAAUUCUGUGGAG
285
|
13-13250
|
|
CTGF-1327-
13252
Chl
ooooooooooooo
mmmm00m00m0m0
UUUCAGUAGCACA
286
|
13-13252
|
|
CTGF-1196-
13254
Chl
ooooooooooooo
m00m00m0mmmmm
CAAUGACAUCUUU
287
|
13-13254
|
|
CTGF-562-13-
13256
Chl
ooooooooooooo
00m0mm00m0m0m
AGUACCAGUGCAC
288
|
13256
|
|
CTGF-752-13-
13258
Chl
ooooooooooooo
000000m0m0mmm
GGAAGACACGUUU
289
|
13258
|
|
CTGF-994-13-
13260
Chl
ooooooooooooo
mm0mm000mmm00
CUAUCAAGUUUGA
290
|
13260
|
|
CTGF-1040-
13262
Chl
ooooooooooooo
00mm000mmmm0m
AGCUAAAUUCUGU
291
|
13-13262
|
|
CTGF-1984-
13264
Chl
ooooooooooooo
000m0000m0m00
AGGUAGAAUGUAA
292
|
13-13264
|
|
CTGF-2195-
13266
Chl
ooooooooooooo
00mm00mm00mmm
AGCUGAUCAGUUU
293
|
13-13266
|
|
CTGF-2043-
13268
Chl
ooooooooooooo
mmmm0mmm000m0
UUCUGCUCAGAUA
294
|
13-13268
|
|
CTGF-1892-
13270
Chl
ooooooooooooo
mm0mmm000mm00
UUAUCUAAGUUAA
295
|
13-13270
|
|
CTGF-1567-
13272
Chl
ooooooooooooo
m0m0m000m00m0
UAUACGAGUAAUA
296
|
13-13272
|
|
CTGF-1780-
13274
Chl
ooooooooooooo
00mm000m00mmm
GACUGGACAGCUU
297
|
13-13274
|
|
CTGF-2162-
13276
Chl
ooooooooooooo
0m00mmmmm0mm0
AUGGCCUUUAUUA
298
|
13-13276
|
|
CTGF-1034-
13278
Chl
ooooooooooooo
0m0mm000mm000
AUACCGAGCUAAA
299
|
13-13278
|
|
CTGF-2264-
13280
Chl
ooooooooooooo
mm0mm00000m0m
UUGUUGAGAGUGU
300
|
13-13280
|
|
CTGF-1032-
13282
Chl
ooooooooooooo
0m0m0mm000mm0
ACAUACCGAGCUA
301
|
13-13282
|
|
CTGF-1535-
13284
Chl
ooooooooooooo
00m0000000mm0
AGCAGAAAGGUUA
302
|
13-13284
|
|
CTGF-1694-
13286
Chl
ooooooooooooo
00mm0mmmmmm00
AGUUGUUCCUUAA
303
|
13-13286
|
|
CTGF-1588-
13288
Chl
ooooooooooooo
0mmm0000m0m00
AUUUGAAGUGUAA
304
|
13-13288
|
|
CTGF-928-13-
13290
Chl
ooooooooooooo
000mm00mmm000
AAGCUGACCUGGA
305
|
13290
|
|
CTGF-1133-
13292
Chl
ooooooooooooo
00mm0m0000000
GGUCAUGAAGAAG
306
|
13-13292
|
|
CTGF-912-13-
13294
Chl
ooooooooooooo
0m00mm000mmmm
AUGGUCAGGCCUU
307
|
13294
|
|
CTGF-753-13-
13296
Chl
ooooooooooooo
00000m0m0mmm0
GAAGACACGUUUG
308
|
13296
|
|
CTGF-918-13-
13298
Chl
ooooooooooooo
000mmmm0m0000
AGGCCUUGCGAAG
309
|
13298
|
|
CTGF-744-13-
13300
Chl
ooooooooooooo
m0mm0mm00000
UACCGACUGGAAG
310
|
13300
|
|
CTGF-466-13-
13302
Chl
ooooooooooooo
0mm0m0000mm0
ACCGCAAGAUCGG
311
|
13302
|
|
CTGF-917-13-
13304
Chl
ooooooooooooo
m000mmmm0m000
CAGGCCUUGCGAA
312
|
13304
|
|
CTGF-1038-
13306
Chl
ooooooooooooo
m000mm000mmmm
CGAGCUAAAUUCU
313
|
13-13306
|
|
CTGF-1048-
13308
Chl
ooooooooooooo
mmm0m0000m0m0
UCUGUGGAGUAUG
314
|
13-13308
|
|
CTGF-1235-
13310
Chl
ooooooooooooo
m00000m0m00m0
CGGAGACAUGGCA
315
|
13-13310
|
|
CTGF-868-13-
13312
Chl
ooooooooooooo
0m00m00m0mmmm
AUGACAACGCCUC
316
|
13312
|
|
CTGF-1131-
13314
Chl
ooooooooooooo
0000mm0m00000
GAGGUCAUGAAGA
317
|
13-13314
|
|
CTGF-1043-
13316
Chl
ooooooooooooo
m000mmmm0m000
UAAAUUCUGUGGA
318
|
13-13316
|
|
CTGF-751-13-
13318
Chl
ooooooooooooo
m000000m0m0mm
UGGAAGACACGUU
319
|
13318
|
|
CTGF-1227-
13320
Chl
ooooooooooooo
0000m0m0m0000
AAGAUGUACGGAG
320
|
13-13320
|
|
CTGF-867-13-
13322
Chl
ooooooooooooo
00m00m00m0mmm
AAUGACAACGCCU
321
|
13322
|
|
CTGF-1128-
13324
Chl
ooooooooooooo
00m0000mm0m00
GGCGAGGUCAUGA
322
|
13-13324
|
|
CTGF-756-13-
13326
Chl
ooooooooooooo
00m0m0mmm00mm
GACACGUUUGGCC
323
|
13326
|
|
CTGF-1234-
13328
Chl
ooooooooooooo
0m00000m0m00m
ACGGAGACAUGGC
324
|
13-13328
|
|
CTGF-916-13-
13330
Chl
ooooooooooooo
mm000mmmm0m00
UCAGGCCUUGCGA
325
|
13330
|
|
CTGF-925-13-
13332
Chl
ooooooooooooo
0m0000mm00mmm
GCGAAGCUGACCU
326
|
13332
|
|
CTGF-1225-
13334
Chl
ooooooooooooo
000000m0m0m00
GGAAGAUGUACGG
327
|
13-13334
|
|
CTGF-445-13-
13336
Chl
ooooooooooooo
0m00mmmm00mmm
GUGACUUCGGCUC
328
|
13336
|
|
CTGF-446-13-
13338
Chl
ooooooooooooo
m00mmmm00mmmm
UGACUUCGGCUCC
329
|
13338
|
|
CTGF-913-13-
13340
Chl
ooooooooooooo
m00mm000mmmm0
UGGUCAGGCCUUG
330
|
13340
|
|
CTGF-997-13-
13342
Chl
ooooooooooooo
mm000mmm000mm
UCAAGUUUGAGCU
331
|
13342
|
|
CTGF-277-13-
13344
Chl
ooooooooooooo
0mm0000mm0m00
GCCAGAACUGCAG
332
|
13344
|
|
CTGF-1052-
13346
Chl
ooooooooooooo
m0000m0m0m0mm
UGGAGUAUGUACC
333
|
13-13346
|
|
CTGF-887-13-
13348
Chl
ooooooooooooo
0mm0000000m00
GCUAGAGAAGCAG
334
|
13348
|
|
CTGF-914-13-
13350
Chl
ooooooooooooo
00mm000mmmm0m
GGUCAGGCCUUGC
335
|
13350
|
|
CTGF-1039-
13352
Chl
ooooooooooooo
000mm000mmmm0
GAGCUAAAUUCUG
336
|
13-13352
|
|
CTGF-754-13-
13354
Chl
ooooooooooooo
0000m0m0mmm00
AAGACACGUUUGG
337
|
13354
|
|
CTGF-1130-
13356
Chl
ooooooooooooo
m0000mm0m0000
CGAGGUCAUGAAG
338
|
13-13356
|
|
CTGF-919-13-
13358
Chl
ooooooooooooo
00mmmm0m0000m
GGCCUUGCGAAGC
339
|
13358
|
|
CTGF-922-13-
13360
Chl
ooooooooooooo
mmm0m0000mm00
CUUGCGAAGCUGA
340
|
13360
|
|
CTGF-746-13-
13362
Chl
ooooooooooooo
mm00mm000000m
CCGACUGGAAGAC
341
|
13362
|
|
CTGF-993-13-
13364
Chl
ooooooooooooo
mmm0mm000mmm0
CCUAUCAAGUUUG
342
|
13364
|
|
CTGF-825-13-
13366
Chl
ooooooooooooo
m0mmmm0000mmm
UGUUCCAAGACCU
343
|
13366
|
|
CTGF-926-13-
13368
Chl
ooooooooooooo
m0000mm00mmm0
CGAAGCUGACCUG
344
|
13368
|
|
CTGF-923-13-
13370
Chl
ooooooooooooo
mm0m0000mm00m
UUGCGAAGCUGAC
345
|
13370
|
|
CTGF-866-13-
13372
Chl
ooooooooooooo
m00m00m00m0mm
CAAUGACAACGCC
346
|
13372
|
|
CTGF-563-13-
13374
Chl
ooooooooooooo
0m0mm00m0m0m0
GUACCAGUGCACG
347
|
13374
|
|
CTGF-823-13-
13376
Chl
ooooooooooooo
mmm0mmmm0000m
CCUGUUCCAAGAC
348
|
13376
|
|
CTGF-1233-
13378
Chl
ooooooooooooo
m0m00000m0m00
UACGGAGACAUGG
349
|
13-13378
|
|
CTGF-924-13-
13380
Chl
ooooooooooooo
m0m0000mm00mm
UGCGAAGCUGACC
350
|
13380
|
|
CTGF-921-13-
13382
Chl
ooooooooooooo
mmmm0m0000mm0
CCUUGCGAAGCUG
351
|
13382
|
|
CTGF-443-13-
13384
Chl
ooooooooooooo
mm0m00mmmm00m
CUGUGACUUCGGC
352
|
13384
|
|
CTGF-1041-
13386
Chl
ooooooooooooo
0mm000mmmm0m0
GCUAAAUUCUGUG
353
|
13-13386
|
|
CTGF-1042-
13388
Chl
ooooooooooooo
mm000mmmm0m00
CUAAAUUCUGUGG
354
|
13-13388
|
|
CTGF-755-13-
13390
Chl
ooooooooooooo
000m0m0mmm00m
AGACACGUUUGGC
355
|
13390
|
|
CTGF-467-13-
13392
Chl
ooooooooooooo
mm0m0000mm00m
CCGCAAGAUCGGC
356
|
13392
|
|
CTGF-995-13-
13394
Chl
ooooooooooooo
m0mm000mmm000
UAUCAAGUUUGAG
357
|
13394
|
|
CTGF-927-13-
13396
Chl
ooooooooooooo
0000mm00mmm00
GAAGCUGACCUGG
358
|
13396
|
|
SPP1-1025-
13398
Chl
ooooooooooooo
mmm0m000mm000
CUCAUGAAUUAGA
359
|
13-13398
|
|
SPP1-1049-
13400
Chl
ooooooooooooo
mm0000mm00mm0
CUGAGGUCAAUUA
360
|
13-13400
|
|
SPP1-1051-
13402
Chl
ooooooooooooo
0000mm00mm000
GAGGUCAAUUAAA
361
|
13-13402
|
|
SPP1-1048-
13404
Chl
ooooooooooooo
mmm0000mm00mm
UCUGAGGUCAAUU
362
|
13-13404
|
|
SPP1-1050-
13406
Chl
ooooooooooooo
m0000mm00mm00
UGAGGUCAAUUAA
363
|
13-13406
|
|
SPP1-1047-
13408
Chl
ooooooooooooo
mmmm0000mm00m
UUCUGAGGUCAAU
364
|
13-13408
|
|
SPP1-800-13-
13410
Chl
ooooooooooooo
0mm00mm000m00
GUCAGCUGGAUGA
365
|
13410
|
|
SPP1-492-13-
13412
Chl
ooooooooooooo
mmmm00m000mmm
UUCUGAUGAAUCU
366
|
13412
|
|
SPP1-612-13-
13414
Chl
ooooooooooooo
m000mm0000mm0
UGGACUGAGGUCA
367
|
13414
|
|
SPP1-481-13-
13416
Chl
ooooooooooooo
000mmmm0mm0mm
GAGUCUCACCAUU
368
|
13416
|
|
SPP1-614-13-
13418
Chl
ooooooooooooo
00mm0000mm000
GACUGAGGUCAAA
369
|
13418
|
|
SPP1-951-13-
13420
Chl
ooooooooooooo
mm0m00mm0m000
UCACAGCCAUGAA
370
|
13420
|
|
SPP1-482-13-
13422
Chl
ooooooooooooo
00mmmm0mm0mmm
AGUCUCACCAUUC
371
|
13422
|
|
SPP1-856-13-
13424
Chl
ooooooooooooo
000m000000mm0
AAGCGGAAAGCCA
372
|
13424
|
|
SPP1-857-13-
13426
Chl
ooooooooooooo
00m000000mm00
AGCGGAAAGCCAA
373
|
13426
|
|
SPP1-365-13-
13428
Chl
ooooooooooooo
0mm0m0m000m00
ACCACAUGGAUGA
374
|
13428
|
|
SPP1-359-13-
13430
Chl
ooooooooooooo
0mm0m00mm0m0m
GCCAUGACCACAU
375
|
13430
|
|
SPP1-357-13-
13432
Chl
ooooooooooooo
000mm0m00mm0m
AAGCCAUGACCAC
376
|
13432
|
|
SPP1-858-13-
13434
Chl
ooooooooooooo
0m000000mm00m
GCGGAAAGCCAAU
377
|
13434
|
|
SPP1-1012-
13436
Chl
ooooooooooooo
000mmmm0m0mmm
AAAUUUCGUAUUU
378
|
13-13436
|
|
SPP1-1014-
13438
Chl
ooooooooooooo
0mmmm0m0mmmmm
AUUUCGUAUUUCU
379
|
13-13438
|
|
SPP1-356-13-
13440
Chl
ooooooooooooo
0000mm0m00mm0
AAAGCCAUGACCA
380
|
13440
|
|
SPP1-368-13-
13442
Chl
ooooooooooooo
0m0m000m00m0m
ACAUGGAUGAUAU
381
|
13442
|
|
SPP1-1011-
13444
Chl
ooooooooooooo
0000mmmm0m0mm
GAAAUUUCGUAUU
382
|
13-13444
|
|
SPP1-754-13-
13446
Chl
ooooooooooooo
0m0mmmmmm00mm
GCGCCUUCUGAUU
383
|
13446
|
|
SPP1-1021-
13448
Chl
ooooooooooooo
0mmmmmm0m000m
AUUUCUCAUGAAU
384
|
13-13448
|
|
SPP1-1330-
13450
Chl
ooooooooooooo
mmmmm0m000m00
CUCUCAUGAAUAG
385
|
13-13450
|
|
SPP1-346-13-
13452
Chl
ooooooooooooo
000mmm00m0000
AAGUCCAACGAAA
386
|
13452
|
|
SPP1-869-13-
13454
Chl
ooooooooooooo
0m00m00000m00
AUGAUGAGAGCAA
387
|
13454
|
|
SPP1-701-13-
13456
Chl
ooooooooooooo
0m000000mm000
GCGAGGAGUUGAA
388
|
13456
|
|
SPP1-896-13-
13458
Chl
ooooooooooooo
m00mm00m00mm0
UGAUUGAUAGUCA
389
|
13458
|
|
SPP1-1035-
13460
Chl
ooooooooooooo
000m00m0m0mmm
AGAUAGUGCAUCU
390
|
13-13460
|
|
SPP1-1170-
13462
Chl
ooooooooooooo
0m0m0m0mmm0mm
AUGUGUAUCUAUU
391
|
13-13462
|
|
SPP1-1282-
13464
Chl
ooooooooooooo
mmmm0m0000000
UUCUAUAGAAGAA
392
|
13-13464
|
|
SPP1-1537-
13466
Chl
ooooooooooooo
mm0mmm00m00mm
UUGUCCAGCAAUU
393
|
13-13466
|
|
SPP1-692-13-
13468
Chl
ooooooooooooo
0m0m000000m00
ACAUGGAAAGCGA
394
|
13468
|
|
SPP1-840-13-
13470
Chl
ooooooooooooo
0m00mmm000mm0
GCAGUCCAGAUUA
395
|
13470
|
|
SPP1-1163-
13472
Chl
ooooooooooooo
m00mm000m0m0m
UGGUUGAAUGUGU
396
|
13-13472
|
|
SPP1-789-13-
13474
Chl
ooooooooooooo
mm0m0000m000m
UUAUGAAACGAGU
397
|
13474
|
|
SPP1-841-13-
13476
Chl
ooooooooooooo
m00mmm000mm0m
CAGUCCAGAUUAU
398
|
13476
|
|
SPP1-852-13-
13478
Chl
ooooooooooooo
0m0m000m00000
AUAUAAGCGGAAA
399
|
13478
|
|
SPP1-209-13-
13480
Chl
ooooooooooooo
m0mm00mm000m0
UACCAGUUAAACA
400
|
13480
|
|
SPP1-1276-
13482
Chl
ooooooooooooo
m0mmm0mmmm0m0
UGUUCAUUCUAUA
401
|
13-13482
|
|
SPP1-137-13-
13484
Chl
ooooooooooooo
mm00mm0000000
CCGACCAAGGAAA
402
|
13484
|
|
SPP1-711-13-
13486
Chl
ooooooooooooo
000m00m0m0m0m
GAAUGGUGCAUAC
403
|
13486
|
|
SPP1-582-13-
13488
Chl
ooooooooooooo
0m0m00m00mm00
AUAUGAUGGCCGA
404
|
13488
|
|
SPP1-839-13-
13490
Chl
ooooooooooooo
00m00mmm000mm
AGCAGUCCAGAUU
405
|
13490
|
|
SPP1-1091-
13492
Chl
ooooooooooooo
0m0mmm00mm000
GCAUUUAGUCAAA
406
|
13-13492
|
|
SPP1-884-13-
13494
Chl
ooooooooooooo
00m0mmmm00m0m
AGCAUUCCGAUGU
407
|
13494
|
|
SPP1-903-13-
13496
Chl
ooooooooooooo
m00mm00000mmm
UAGUCAGGAACUU
408
|
13496
|
|
SPP1-1090-
13498
Chl
ooooooooooooo
m0m0mmm00mm00
UGCAUUUAGUCAA
409
|
13-13498
|
|
SPP1-474-13-
13500
Chl
ooooooooooooo
0mmm00m000mmm
GUCUGAUGAGUCU
410
|
13500
|
|
SPP1-575-13-
13502
Chl
ooooooooooooo
m000m0m0m0m00
UAGACACAUAUGA
411
|
13502
|
|
SPP1-671-13-
13504
Chl
ooooooooooooo
m000m00000m0m
CAGACGAGGACAU
412
|
13504
|
|
SPP1-924-13-
13506
Chl
ooooooooooooo
m00mm0m000mmm
CAGCCGUGAAUUC
413
|
13506
|
|
SPP1-1185-
13508
Chl
ooooooooooooo
00mmm00000m00
AGUCUGGAAAUAA
414
|
13-13508
|
|
SPP1-1221-
13510
Chl
ooooooooooooo
00mmm0m00mmmm
AGUUUGUGGCUUC
415
|
13-13510
|
|
SPP1-347-13-
13512
Chl
ooooooooooooo
00mmm00m00000
AGUCCAACGAAAG
416
|
13512
|
|
SPP1-634-13-
13514
Chl
ooooooooooooo
000mmmm0m000m
AAGUUUCGCAGAC
417
|
13514
|
|
SPP1-877-13-
13516
Chl
ooooooooooooo
00m00m000m0mm
AGCAAUGAGCAUU
418
|
13516
|
|
SPP1-1033-
13518
Chl
ooooooooooooo
mm000m00m0m0m
UUAGAUAGUGCAU
419
|
13-13518
|
|
SPP1-714-13-
13520
Chl
ooooooooooooo
m00m0m0m0m000
UGGUGCAUACAAG
420
|
13520
|
|
SPP1-791-13-
13522
Chl
ooooooooooooo
0m0000m000mm0
AUGAAACGAGUCA
421
|
13522
|
|
SPP1-813-13-
13524
Chl
ooooooooooooo
mm0000m0mm000
CCAGAGUGCUGAA
422
|
13524
|
|
SPP1-939-13-
13526
Chl
ooooooooooooo
m00mm0m000mmm
CAGCCAUGAAUUU
423
|
13526
|
|
SPP1-1161-
13528
Chl
ooooooooooooo
0mm00mm000m0m
AUUGGUUGAAUGU
424
|
13-13528
|
|
SPP1-1164-
13530
Chl
ooooooooooooo
00mm000m0m0m0
GGUUGAAUGUGUA
425
|
13-13530
|
|
SPP1-1190-
13532
Chl
ooooooooooooo
00000m00mm00m
GGAAAUAACUAAU
426
|
13-13532
|
|
SPP1-1333-
13534
Chl
ooooooooooooo
mm0m000m00000
UCAUGAAUAGAAA
427
|
13-13534
|
|
SPP1-537-13-
13536
Chl
ooooooooooooo
0mm00m00mm000
GCCAGCAACCGAA
428
|
13536
|
|
SPP1-684-13-
13538
Chl
ooooooooooooo
m0mmmm0m0m0m0
CACCUCACACAUG
429
|
13538
|
|
SPP1-707-13-
13540
Chl
ooooooooooooo
00mm000m00m0m
AGUUGAAUGGUGC
430
|
13540
|
|
SPP1-799-13-
13542
Chl
ooooooooooooo
00mm00mm000m0
AGUCAGCUGGAUG
431
|
13542
|
|
SPP1-853-13-
13544
Chl
ooooooooooooo
m0m000m000000
UAUAAGCGGAAAG
432
|
13544
|
|
SPP1-888-13-
13546
Chl
ooooooooooooo
mmmm00m0m00mm
UUCCGAUGUGAUU
433
|
13546
|
|
SPP1-1194-
13548
Chl
ooooooooooooo
0m00mm00m0m0m
AUAACUAAUGUGU
434
|
13-13548
|
|
SPP1-1279-
13550
Chl
ooooooooooooo
mm0mmmm0m0000
UCAUUCUAUAGAA
435
|
13-13550
|
|
SPP1-1300-
13552
Chl
ooooooooooooo
00mm0mm0mm0m0
AACUAUCACUGUA
436
|
13-13552
|
|
SPP1-1510-
13554
Chl
ooooooooooooo
0mm00mm0mmm0m
GUCAAUUGCUUAU
437
|
13-13554
|
|
SPP1-1543-
13556
Chl
ooooooooooooo
00m00mm00m000
AGCAAUUAAUAAA
438
|
13-13556
|
|
SPP1-434-13-
13558
Chl
ooooooooooooo
0m00mmmm00m00
ACGACUCUGAUGA
439
|
13558
|
|
SPP1-600-13-
13560
Chl
ooooooooooooo
m00m0m00mmm0m
UAGUGUGGUUUAU
440
|
13560
|
|
SPP1-863-13-
13562
Chl
ooooooooooooo
000mm00m00m00
AAGCCAAUGAUGA
441
|
13562
|
|
SPP1-902-13-
13564
Chl
ooooooooooooo
0m00mm00000mm
AUAGUCAGGAACU
442
|
13564
|
|
SPP1-921-13-
13566
Chl
ooooooooooooo
00mm00mm0m000
AGUCAGCCGUGAA
443
|
13566
|
|
SPP1-154-13-
13568
Chl
ooooooooooooo
0mm0mm0m00000
ACUACCAUGAGAA
444
|
13568
|
|
SPP1-217-13-
13570
Chl
ooooooooooooo
000m000mm00mm
AAACAGGCUGAUU
445
|
13570
|
|
SPP1-816-13-
13572
Chl
ooooooooooooo
000m0mm0000mm
GAGUGCUGAAACC
446
|
13572
|
|
SPP1-882-13-
13574
Chl
ooooooooooooo
m000m0mmmm00m
UGAGCAUUCCGAU
447
|
13574
|
|
SPP1-932-13-
13576
Chl
ooooooooooooo
00mmmm0m00mm0
AAUUCCACAGCCA
448
|
13576
|
|
SPP1-1509-
13578
Chl
ooooooooooooo
m0mm00mm0mmm0
UGUCAAUUGCUUA
449
|
13-13578
|
|
SPP1-157-13-
13580
Chl
ooooooooooooo
0mm0m00000mm0
ACCAUGAGAAUUG
450
|
13580
|
|
SPP1-350-13-
13582
Chl
ooooooooooooo
mm00m00000mm0
CCAACGAAAGCCA
451
|
13582
|
|
SPP1-511-13-
13584
Chl
ooooooooooooo
mm00mm0mm00mm
CUGGUCACUGAUU
452
|
13584
|
|
SPP1-605-13-
13586
Chl
ooooooooooooo
m00mmm0m000mm
UGGUUUAUGGACU
453
|
13586
|
|
SPP1-811-13-
13588
Chl
ooooooooooooo
00mm0000m0mm0
GACCAGAGUGCUG
454
|
13588
|
|
SPP1-892-13-
13590
Chl
ooooooooooooo
00m0m00mm00m0
GAUGUGAUUGAUA
455
|
13590
|
|
SPP1-922-13-
13592
Chl
ooooooooooooo
0mm00mm0m000m
GUCAGCCGUGAAU
456
|
13592
|
|
SPP1-1169-
13594
Chl
ooooooooooooo
00m0m0m0mmm0m
AAUGUGUAUCUAU
457
|
13-13594
|
|
SPP1-1182-
13596
Chl
ooooooooooooo
mm000mmm00000
UUGAGUCUGGAAA
458
|
13-13596
|
|
SPP1-1539-
13598
Chl
ooooooooooooo
0mmm00m00mm00
GUCCAGCAAUUAA
459
|
13-13598
|
|
SPP1-1541-
13600
Chl
ooooooooooooo
mm00m00mm00m0
CCAGCAAUUAAUA
460
|
13-13600
|
|
SPP1-427-13-
13602
Chl
ooooooooooooo
00mmm000m00mm
GACUCGAACGACU
461
|
13602
|
|
SPP1-533-13-
13604
Chl
ooooooooooooo
0mmm0mm00m00m
ACCUGCCAGCAAC
462
|
13604
|
|
APOB--13-
13763
Chl
ooooooooooooo
0m+00+m0+m0+m
ACtGAaUAcCAaU
463
|
13763
TEG
|
|
APOB--13-
13764
Chl
ooooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
464
|
13764
TEG
|
|
MAP4K4--16-
13766
Chl
ooooooooooooo
DY547mm0m00000mmm
CUGUGGAAGUCUA
465
|
13766
0
|
|
PPIB--13-
13767
Chl
ooooooooooooo
mmmmmmmmmmmmm
GGCUACAAAAACA
466
|
13767
|
|
PPIB--15-
13768
Chl
ooooooooooooo
mm00mm0m00000m0
UUGGCUACAAAAAC
467
|
13768
oo
A
|
|
PPIB--17-
13769
Chl
ooooooooooooo
0mmm00mm0m00000m0
AUUUGGCUACAAAA
468
|
13769
oooo
ACA
|
|
MAP4K4--16-
13939
Chl
ooooooooooooo
m0m0000m0mmm0
UGUAGGAUGUCUA
469
|
13939
|
|
APOB-4314-
13940
Chl
ooooooooooooo
0mmm0000000m0
AUCUGGAGAAACA
470
|
16-13940
|
|
APOB-4314-
13941
Chl
ooooooooooooo
000mmm0000000m0
AGAUCUGGAGAAAC
471
|
17-13941
oo
A
|
|
APOB--16-
13942
Chl
ooooooooooooo
00mmm0mmm0mm0
GACUCAUCUGCUA
472
|
13942
|
|
APOB--18-
13943
Chl
ooooooooooooo
00mmm0mmm0mm0
GACUCAUCUGCUA
473
|
13943
|
|
APOB--17-
13944
Chl
ooooooooooooo
m000mmm0mmm0mm0
UGGACUCAUCUGCU
474
|
13944
oo
A
|
|
APOB--19-
13945
Chl
ooooooooooooo
m000mmm0mmm0mm0
UGGACUCAUCUGCU
475
|
13945
oo
A
|
|
APOB-4314-
13946
Chl
ooooooooooooo
0000000m00m0m
GGAGAAACAACAU
476
|
16-13946
|
|
APOB-4314-
13947
Chl
ooooooooooooo
mm0000000m00m0m
CUGGAGAAACAACA
477
|
17-13947
oo
U
|
|
APOB--16-
13948
Chl
ooooooooooooo
00mmmmmm000m0
AGUCCCUCAAACA
478
|
13948
|
|
APOB--17-
13949
Chl
ooooooooooooo
0000mmmmmm000m0
AGAGUCCCUCAAAC
479
|
13949
oo
A
|
|
APOB--16-
13950
Chl
ooooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
480
|
13950
|
|
APOB--18-
13951
Chl
ooooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
481
|
13951
|
|
APOB--17-
13952
Chl
ooooooooooooo
0m0mm000m0mm00m
ACACUGAAUACCAA
482
|
13952
oo
U
|
|
APOB--19-
13953
Chl
ooooooooooooo
0m0mm000m0mm00m
ACACUGAAUACCAA
483
|
13953
oo
U
|
|
MAP4K4--16-
13766.2
Chl
ooooooooooooo
DY547mm0m00000mmm
CUGUGGAAGUCUA
484
|
13766.2
0
|
|
CTGF-1222-
13980
Chl
ooooooooooooo
0m0000000m0m0
ACAGGAAGAUGUA
485
|
16-13980
|
|
CTGF-813-16-
13981
Chl
ooooooooooooo
000m0000mmmm
GAGUGGAGCGCCU
486
|
13981
|
|
CTGF-747-16-
13982
Chl
ooooooooooooo
m0mm000000m0
CGACUGGAAGACA
487
|
13982
|
|
CTGF-817-16-
13983
Chl
ooooooooooooo
0000mmmm0mmm
GGAGCGCCUGUUC
488
|
13983
|
|
CTGF-1174-
13984
Chl
ooooooooooooo
0mm0mm0m00mm0
GCCAUUACAACUG
489
|
16-13984
|
|
CTGF-1005-
13985
Chl
ooooooooooooo
000mmmmmm00mm
GAGCUUUCUGGCU
490
|
16-13985
|
|
CTGF-814-16-
13986
Chl
ooooooooooooo
00m0000mmmm0
AGUGGAGCGCCUG
491
|
13986
|
|
CTGF-816-16-
13987
Chl
ooooooooooooo
m0000mmmm0mm
UGGAGCGCCUGUU
492
|
13987
|
|
CTGF-1001-
13988
Chl
ooooooooooooo
0mmm000mmmmmm
GUUUGAGCUUUCU
493
|
16-13988
|
|
CTGF-1173-
13989
Chl
ooooooooooooo
m0mm0mm0m00mm
UGCCAUUACAACU
494
|
16-13989
|
|
CTGF-749-16-
13990
Chl
ooooooooooooo
0mm000000m0m
ACUGGAAGACACG
495
|
13990
|
|
CTGF-792-16-
13991
Chl
ooooooooooooo
00mm0mmm00mmm
AACUGCCUGGUCC
496
|
13991
|
|
CTGF-1162-
13992
Chl
ooooooooooooo
000mmm0m0mmm0
AGACCUGUGCCUG
497
|
16-13992
|
|
CTGF-811-16-
13993
Chl
ooooooooooooo
m0000m0000mm
CAGAGUGGAGCGC
498
|
13993
|
|
CTGF-797-16-
13994
Chl
ooooooooooooo
mmm00mmm000mm
CCUGGUCCAGACC
499
|
13994
|
|
CTGF-1175-
13995
Chl
ooooooooooooo
mm0mm0m00mm0m
CCAUUACAACUGU
500
|
16-13995
|
|
CTGF-1172-
13996
Chl
ooooooooooooo
mm0mm0mm0m00m
CUGCCAUUACAAC
501
|
16-13996
|
|
CTGF-1177-
13997
Chl
ooooooooooooo
0mm0m00mm0mmm
AUUACAACUGUCC
502
|
16-13997
|
|
CTGF-1176-
13998
Chl
ooooooooooooo
m0mm0m00mm0mm
CAUUACAACUGUC
503
|
16-13998
|
|
CTGF-812-16-
13999
Chl
ooooooooooooo
0000m0000mmm
AGAGUGGAGCGCC
504
|
13999
|
|
CTGF-745-16-
14000
Chl
ooooooooooooo
0mm0mm000000
ACCGACUGGAAGA
505
|
14000
|
|
CTGF-1230-
14001
Chl
ooooooooooooo
0m0m0m0000m0
AUGUACGGAGACA
506
|
16-14001
|
|
CTGF-920-16-
14002
Chl
ooooooooooooo
0mmmm0m000mm
GCCUUGCGAAGCU
507
|
14002
|
|
CTGF-679-16-
14003
Chl
ooooooooooooo
0mm0m00000m0
GCUGCGAGGAGUG
508
|
14003
|
|
CTGF-992-16-
14004
Chl
ooooooooooooo
0mmm0mm000mmm
GCCUAUCAAGUUU
509
|
14004
|
|
CTGF-1045-
14005
Chl
ooooooooooooo
00mmmm0m0000m
AAUUCUGUGGAGU
510
|
16-14005
|
|
CTGF-1231-
14006
Chl
ooooooooooooo
m0m0m0000m0m
UGUACGGAGACAU
511
|
16-14006
|
|
CTGF-991-16-
14007
Chl
ooooooooooooo
00mmm0mm000mm
AGCCUAUCAAGUU
512
|
14007
|
|
CTGF-998-16-
14008
Chl
ooooooooooooo
m000mmm000mmm
CAAGUUUGAGCUU
513
|
14008
|
|
CTGF-1049-
14009
Chl
ooooooooooooo
mm0m0000m0m0m
CUGUGGAGUAUGU
514
|
16-14009
|
|
CTGF-1044-
14010
Chl
ooooooooooooo
000mmmm0m0000
AAAUUCUGUGGAG
515
|
16-14010
|
|
CTGF-1327-
14011
Chl
ooooooooooooo
mmmm00m00m0m0
UUUCAGUAGCACA
516
|
16-14011
|
|
CTGF-1196-
14012
Chl
ooooooooooooo
m00m00m0mmmmm
CAAUGACAUCUUU
517
|
16-14012
|
|
CTGF-562-16-
14013
Chl
ooooooooooooo
00m0mm00m0m0m
AGUACCAGUGCAC
518
|
14013
|
|
CTGF-752-16-
14014
Chl
ooooooooooooo
000000m0mmmm
GGAAGACACGUUU
519
|
14014
|
|
CTGF-994-16-
14015
Chl
ooooooooooooo
mm0mm000mmm00
CUAUCAAGUUUGA
520
|
14015
|
|
CTGF-1040-
14016
Chl
ooooooooooooo
00mm000mmmm0m
AGCUAAAUUCUGU
521
|
16-14016
|
|
CTGF-1984-
14017
Chl
ooooooooooooo
000m0000m0m00
AGGUAGAAUGUAA
522
|
16-14017
|
|
CTGF-2195-
14018
Chl
ooooooooooooo
00mm00mm00mmm
AGCUGAUCAGUUU
523
|
16-14018
|
|
CTGF-2043-
14019
Chl
ooooooooooooo
mmmm0mmm000m0
UUCUGCUCAGAUA
524
|
16-14019
|
|
CTGF-1892-
14020
Chl
ooooooooooooo
mm0mmm000mm00
UUAUCUAAGUUAA
525
|
16-14020
|
|
CTGF-1567-
14021
Chl
ooooooooooooo
m0m0m00m00m0
UAUACGAGUAAUA
526
|
16-14021
|
|
CTGF-1780-
14022
Chl
ooooooooooooo
00mm000m00mmm
GACUGGACAGCUU
527
|
16-14022
|
|
CTGF-2162-
14023
Chl
ooooooooooooo
0m00mmmmm0mm0
AUGGCCUUUAUUA
528
|
16-14023
|
|
CTGF-1034-
14024
Chl
ooooooooooooo
0m0mm00mm000
AUACCGAGCUAAA
529
|
16-14024
|
|
CTGF-2264-
14025
Chl
ooooooooooooo
mm0mm00000m0m
UUGUUGAGAGUGU
530
|
16-14025
|
|
CTGF-1032-
14026
Chl
ooooooooooooo
0m0m0mm00mm0
ACAUACCGAGCUA
531
|
16-14026
|
|
CTGF-1535-
14027
Chl
ooooooooooooo
00m0000000mm0
AGCAGAAAGGUUA
532
|
16-14027
|
|
CTGF-1694-
14028
Chl
ooooooooooooo
00mm0mmmmmm00
AGUUGUUCCUUAA
533
|
16-14028
|
|
CTGF-1588-
14029
Chl
ooooooooooooo
0mmm0000m0m00
AUUUGAAGUGUAA
534
|
16-14029
|
|
CTGF-928-16-
14030
Chl
ooooooooooooo
000mm00mmm000
AAGCUGACCUGGA
535
|
14030
|
|
CTGF-1133-
14031
Chl
ooooooooooooo
00mm0m0000000
GGUCAUGAAGAAG
536
|
16-14031
|
|
CTGF-912-16-
14032
Chl
ooooooooooooo
0m00mm000mmmm
AUGGUCAGGCCUU
537
|
14032
|
|
CTGF-753-16-
14033
Chl
ooooooooooooo
00000m0mmmm0
GAAGACACGUUUG
538
|
14033
|
|
CTGF-918-16-
14034
Chl
ooooooooooooo
000mmmm0m000
AGGCCUUGCGAAG
539
|
14034
|
|
CTGF-744-16-
14035
Chl
ooooooooooooo
m0mm0mm00000
UACCGACUGGAAG
540
|
14035
|
|
CTGF-466-16-
14036
Chl
ooooooooooooo
0mmm0000mm0
ACCGCAAGAUCGG
541
|
14036
|
|
CTGF-917-16-
14037
Chl
ooooooooooooo
m000mmmm0m00
CAGGCCUUGCGAA
542
|
14037
|
|
CTGF-1038-
14038
Chl
ooooooooooooo
m00mm000mmmm
CGAGCUAAAUUCU
543
|
16-14038
|
|
CTGF-1048-
14039
Chl
ooooooooooooo
mmm0m0000m0m0
UCUGUGGAGUAUG
544
|
16-14039
|
|
CTGF-1235-
14040
Chl
ooooooooooooo
m0000m0m00m0
CGGAGACAUGGCA
545
|
16-14040
|
|
CTGF-868-16-
14041
Chl
ooooooooooooo
0m00m00mmmmm
AUGACAACGCCUC
546
|
14041
|
|
CTGF-1131-
14042
Chl
ooooooooooooo
0000mm0m00000
GAGGUCAUGAAGA
547
|
16-14042
|
|
CTGF-1043-
14043
Chl
ooooooooooooo
m000mmmm0m000
UAAAUUCUGUGGA
548
|
16-14043
|
|
CTGF-751-16-
14044
Chl
ooooooooooooo
m000000m0mmm
UGGAAGACACGUU
549
|
14044
|
|
CTGF-1227-
14045
Chl
ooooooooooooo
0000m0m0m000
AAGAUGUACGGAG
550
|
16-14045
|
|
CTGF-867-16-
14046
Chl
ooooooooooooo
00m00m00mmmm
AAUGACAACGCCU
551
|
14046
|
|
CTGF-1128-
14047
Chl
ooooooooooooo
00m000mm0m00
GGCGAGGUCAUGA
552
|
16-14047
|
|
CTGF-756-16-
14048
Chl
ooooooooooooo
00m0m0mmm00mm
GACACGUUUGGCC
553
|
14048
|
|
CTGF-1234-
14049
Chl
ooooooooooooo
0m00000m0m00m
ACGGAGACAUGGC
554
|
16-14049
|
|
CTGF-916-16-
14050
Chl
ooooooooooooo
mm000mmmm0m00
UCAGGCCUUGCGA
555
|
14050
|
|
CTGF-925-16-
14051
Chl
ooooooooooooo
0m0000mm00mmm
GCGAAGCUGACCU
556
|
14051
|
|
CTGF-1225-
14052
Chl
ooooooooooooo
000000m0m0m00
GGAAGAUGUACGG
557
|
16-14052
|
|
CTGF-445-16-
14053
Chl
ooooooooooooo
0m00mmmm00mmm
GUGACUUCGGCUC
558
|
14053
|
|
CTGF-446-16-
14054
Chl
ooooooooooooo
m00mmmm00mmmm
UGACUUCGGCUCC
559
|
14054
|
|
CTGF-913-16-
14055
Chl
ooooooooooooo
m00mm000mmmm0
UGGUCAGGCCUUG
560
|
14055
|
|
CTGF-997-16-
14056
Chl
ooooooooooooo
mm000mmm000mm
UCAAGUUUGAGCU
561
|
14056
|
|
CTGF-277-16-
14057
Chl
ooooooooooooo
0mm0000mm0m00
GCCAGAACUGCAG
562
|
14057
|
|
CTGF-1052-
14058
Chl
ooooooooooooo
m0000m0m0m0mm
UGGAGUAUGUACC
563
|
16-14058
|
|
CTGF-887-16-
14059
Chl
ooooooooooooo
0mm0000000m00
GCUAGAGAAGCAG
564
|
14059
|
|
CTGF-914-16-
14060
Chl
ooooooooooooo
00mm000mmmm0m
GGUCAGGCCUUGC
565
|
14060
|
|
CTGF-1039-
14061
Chl
ooooooooooooo
000mm000mmmm0
GAGCUAAAUUCUG
566
|
16-14061
|
|
CTGF-754-16-
14062
Chl
ooooooooooooo
0000m0m0mmm00
AAGACACGUUUGG
567
|
14062
|
|
CTGF-1130-
14063
Chl
ooooooooooooo
m0000mm0m0000
CGAGGUCAUGAAG
568
|
16-14063
|
|
CTGF-919-16-
14064
Chl
ooooooooooooo
00mmmm0m0000m
GGCCUUGCGAAGC
569
|
14064
|
|
CTGF-922-16-
14065
Chl
ooooooooooooo
mmm0m0000mm00
CUUGCGAAGCUGA
570
|
14065
|
|
CTGF-746-16-
14066
Chl
ooooooooooooo
mm00mm000000m
CCGACUGGAAGAC
571
|
14066
|
|
CTGF-993-16-
14067
Chl
ooooooooooooo
mmm0mm000mmm0
CCUAUCAAGUUUG
572
|
14067
|
|
CTGF-825-16-
14068
Chl
ooooooooooooo
m0mmmm0000mmm
UGUUCCAAGACCU
573
|
14068
|
|
CTGF-926-16-
14069
Chl
ooooooooooooo
m0000mm00mmm0
CGAAGCUGACCUG
574
|
14069
|
|
CTGF-923-16-
14070
Chl
ooooooooooooo
mm0m0000mm00m
UUGCGAAGCUGAC
575
|
14070
|
|
CTGF-866-16-
14071
Chl
ooooooooooooo
m00m00m00m0mm
CAAUGACAACGCC
576
|
14071
|
|
CTGF-563-16-
14072
Chl
ooooooooooooo
0m0mm00m0m0m0
GUACCAGUGCACG
577
|
14072
|
|
CTGF-823-16-
14073
Chl
ooooooooooooo
mmm0mmmm0000m
CCUGUUCCAAGAC
578
|
14073
|
|
CTGF-1233-
14074
Chl
ooooooooooooo
m0m00000m0m00
UACGGAGACAUGG
579
|
16-14074
|
|
CTGF-924-16-
14075
Chl
ooooooooooooo
m0m0000mm00mm
UGCGAAGCUGACC
580
|
14075
|
|
CTGF-921-16-
14076
Chl
ooooooooooooo
mmmm0m0000mm0
CCUUGCGAAGCUG
581
|
14076
|
|
CTGF-443-16-
14077
Chl
ooooooooooooo
mm0m00mmmm00m
CUGUGACUUCGGC
582
|
14077
|
|
CTGF-1041-
14078
Chl
ooooooooooooo
0mm000mmmm0m0
GCUAAAUUCUGUG
583
|
16-14078
|
|
CTGF-1042-
14079
Chl
ooooooooooooo
mm000mmmm0m00
CUAAAUUCUGUGG
584
|
16-14079
|
|
CTGF-755-16-
14080
Chl
ooooooooooooo
000m0m0mmm00m
AGACACGUUUGGC
585
|
14080
|
|
CTGF-467-16-
14081
Chl
ooooooooooooo
mm0m0000mm00m
CCGCAAGAUCGGC
586
|
14081
|
|
CTGF-995-16-
14082
Chl
ooooooooooooo
m0mm000mmm000
UAUCAAGUUUGAG
587
|
14082
|
|
CTGF-927-16-
14083
Chl
ooooooooooooo
0000mm00mmm00
GAAGCUGACCUGG
588
|
14083
|
|
SPP1-1091-
14131
Chl
ooooooooooooo
0m0mmm00mm000
GCAUUUAGUCAAA
589
|
16-14131
|
|
PPIB--16-
14188
Chl
ooooooooooooo
mmmmmmmmmmmmm
GGCUACAAAAACA
590
|
14188
|
|
PPIB--17-
14189
Chl
ooooooooooooo
mm00mm0m00000m0
UUGGCUACAAAAAC
591
|
14189
oo
A
|
|
PPIB--18-
14190
Chl
ooooooooooooo
0mmm00mm0m00000m0
AUUUGGCUACAAAA
592
|
14190
oooo
ACA
|
|
pGL3-1172-
14386
chl
ooooooooooooo
0m000m0m00mmm
ACAAAUACGAUUU
593
|
16-14386
|
|
pGL3-1172-
14387
chl
ooooooooooooo
DY5470m000m0m00mm
ACAAAUACGAUUU
594
|
16-14387
m
|
|
MAP4K4-2931-
14390
Chl
ooooooooooooo
Pmmmmmmmmmmmm000m
CUUUGAAGAGUUCU
595
|
25-14390
oooooooooooo
mmmmmmmmm
GUGGAAGUCUA
|
|
miR-122--23-
14391
Chl
ssooooooooooo
mmmmmmmmmmmmmmmmm
ACAAACACCAUUGU
596
|
14391
oooooossss
mmmmmm
CACACUCCA
|
|
14084
Chl
ooooooooooooo
mmm0m000mm000
CUCAUGAAUUAGA
719
|
|
14085
Chl
ooooooooooooo
mm0000mm00mm0
CUGAGGUCAAUUA
720
|
|
14086
Chl
ooooooooooooo
0000mm00mm000
GAGGUCAAUUAAA
721
|
|
14087
Chl
ooooooooooooo
mmm0000mm00mm
UCUGAGGUCAAUU
722
|
|
14088
Chl
ooooooooooooo
m0000mm00mm00
UGAGGUCAAUUAA
723
|
|
14089
Chl
ooooooooooooo
mmmm0000mm00m
UUCUGAGGUCAAU
724
|
|
14090
Chl
ooooooooooooo
0mm00mm000m00
GUCAGCUGGAUGA
725
|
|
14091
Chl
ooooooooooooo
mmmm00m000mmm
UUCUGAUGAAUCU
726
|
|
14092
Chl
ooooooooooooo
m000mm0000mm0
UGGACUGAGGUCA
727
|
|
14093
Chl
ooooooooooooo
000mmmm0mm0mm
GAGUCUCACCAUU
728
|
|
14094
Chl
ooooooooooooo
00mm0000mm000
GACUGAGGUCAAA
729
|
|
14095
Chl
ooooooooooooo
mm0m00mm0m000
UCACAGCCAUGAA
730
|
|
14096
Chl
ooooooooooooo
00mmmm0mm0mmm
AGUCUCACCAUUC
731
|
|
14097
Chl
ooooooooooooo
000m00000mm0
AAGCGGAAAGCCA
732
|
|
14098
Chl
ooooooooooooo
00m00000mm00
AGCGGAAAGCCAA
733
|
|
14099
Chl
ooooooooooooo
0mm0m0m000m00
ACCACAUGGAUGA
734
|
|
14100
Chl
ooooooooooooo
0mm0m00mm0m0m
GCCAUGACCACAU
735
|
|
14101
Chl
ooooooooooooo
000mm0m00mm0m
AAGCCAUGACCAC
736
|
|
14102
Chl
ooooooooooooo
0m00000mm00m
GCGGAAAGCCAAU
737
|
|
14103
Chl
ooooooooooooo
000mmmmm0mmm
AAAUUUCGUAUUU
738
|
|
14104
Chl
ooooooooooooo
0mmmmm0mmmmm
AUUUCGUAUUUCU
739
|
|
14105
Chl
ooooooooooooo
0000mm0m00mm0
AAAGCCAUGACCA
740
|
|
14106
Chl
ooooooooooooo
0m0m000m00m0m
ACAUGGAUGAUAU
741
|
|
14107
Chl
ooooooooooooo
0000mmmmm0mm
GAAAUUUCGUAUU
742
|
|
14108
Chl
ooooooooooooo
0mmmmmmm00mm
GCGCCUUCUGAUU
743
|
|
14109
Chl
ooooooooooooo
0mmmmmm0m000m
AUUUCUCAUGAAU
744
|
|
14110
Chl
ooooooooooooo
mmmmm0m000m00
CUCUCAUGAAUAG
745
|
|
14111
Chl
ooooooooooooo
000mmm00m000
AAGUCCAACGAAA
746
|
|
14112
Chl
ooooooooooooo
0m00m00000m00
AUGAUGAGAGCAA
747
|
|
14113
Chl
ooooooooooooo
0m00000mm000
GCGAGGAGUUGAA
748
|
|
14114
Chl
ooooooooooooo
m00mm00m00mm0
UGAUUGAUAGUCA
749
|
|
14115
Chl
ooooooooooooo
000m00m0m0mmm
AGAUAGUGCAUCU
750
|
|
14116
Chl
ooooooooooooo
0m0m0m0mmm0mm
AUGUGUAUCUAUU
751
|
|
14117
Chl
ooooooooooooo
mmmm0m0000000
UUCUAUAGAAGAA
752
|
|
14118
Chl
ooooooooooooo
mm0mmm00m00mm
UUGUCCAGCAAUU
753
|
|
14119
Chl
ooooooooooooo
0m0m000000m0
ACAUGGAAAGCGA
754
|
|
14120
Chl
ooooooooooooo
0m00mmm000mm0
GCAGUCCAGAUUA
755
|
|
14121
Chl
ooooooooooooo
m00mm000m0m0m
UGGUUGAAUGUGU
756
|
|
14122
Chl
ooooooooooooo
mm0m0000m00m
UUAUGAAACGAGU
757
|
|
14123
Chl
ooooooooooooo
m00mmm000mm0m
CAGUCCAGAUUAU
758
|
|
14124
Chl
ooooooooooooo
0m0m000m0000
AUAUAAGCGGAAA
759
|
|
14125
Chl
ooooooooooooo
m0mm00mm000m0
UACCAGUUAAACA
760
|
|
14126
Chl
ooooooooooooo
m0mmm0mmmm0m0
UGUUCAUUCUAUA
761
|
|
14127
Chl
ooooooooooooo
mm0mm0000000
CCGACCAAGGAAA
762
|
|
14128
Chl
ooooooooooooo
000m00m0m0m0m
GAAUGGUGCAUAC
763
|
|
14129
Chl
ooooooooooooo
0m0m00m00mm0
AUAUGAUGGCCGA
764
|
|
14130
Chl
ooooooooooooo
00m00mmm000mm
AGCAGUCCAGAUU
765
|
|
14132
Chl
ooooooooooooo
00m0mmmm0m0m
AGCAUUCCGAUGU
766
|
|
14133
Chl
ooooooooooooo
m00mm00000mmm
UAGUCAGGAACUU
767
|
|
14134
Chl
ooooooooooooo
m0m0mmm00mm00
UGCAUUUAGUCAA
768
|
|
14135
Chl
ooooooooooooo
0mmm00m000mmm
GUCUGAUGAGUCU
769
|
|
14136
Chl
ooooooooooooo
m000m0m0m0m00
UAGACACAUAUGA
770
|
|
14137
Chl
ooooooooooooo
m000m0000m0m
CAGACGAGGACAU
771
|
|
14138
Chl
ooooooooooooo
m00mmm000mmm
CAGCCGUGAAUUC
772
|
|
14139
Chl
ooooooooooooo
00mmm00000m00
AGUCUGGAAAUAA
773
|
|
14140
Chl
ooooooooooooo
00mmm0m00mmmm
AGUUUGUGGCUUC
774
|
|
14141
Chl
ooooooooooooo
00mmm00m0000
AGUCCAACGAAAG
775
|
|
14142
Chl
ooooooooooooo
000mmmmm000m
AAGUUUCGCAGAC
776
|
|
14143
Chl
ooooooooooooo
00m00m000m0mm
AGCAAUGAGCAUU
777
|
|
14144
Chl
ooooooooooooo
mm000m00m0m0m
UUAGAUAGUGCAU
778
|
|
14145
Chl
ooooooooooooo
m00m0m0m0m000
UGGUGCAUACAAG
779
|
|
14146
Chl
ooooooooooooo
0m0000m00mm0
AUGAAACGAGUCA
780
|
|
14147
Chl
ooooooooooooo
mm0000m0mm000
CCAGAGUGCUGAA
781
|
|
14148
Chl
ooooooooooooo
m00mm0m000mmm
CAGCCAUGAAUUU
782
|
|
14149
Chl
ooooooooooooo
0mm00mm000m0m
AUUGGUUGAAUGU
783
|
|
14150
Chl
ooooooooooooo
00mm000m0m0m0
GGUUGAAUGUGUA
784
|
|
14151
Chl
ooooooooooooo
00000m00mm00m
GGAAAUAACUAAU
785
|
|
14152
Chl
ooooooooooooo
mm0m000m00000
UCAUGAAUAGAAA
786
|
|
14153
Chl
ooooooooooooo
0mm00m00mm00
GCCAGCAACCGAA
787
|
|
14154
Chl
ooooooooooooo
m0mmmm0m0m0m0
CACCUCACACAUG
788
|
|
14155
Chl
ooooooooooooo
00mm000m00m0m
AGUUGAAUGGUGC
789
|
|
14156
Chl
ooooooooooooo
00mm00mm000m0
AGUCAGCUGGAUG
790
|
|
14157
Chl
ooooooooooooo
m0m000m00000
UAUAAGCGGAAAG
791
|
|
14158
Chl
ooooooooooooo
mmmm0m0m00mm
UUCCGAUGUGAUU
792
|
|
14159
Chl
ooooooooooooo
0m00mm00m0m0m
AUAACUAAUGUGU
793
|
|
14160
Chl
ooooooooooooo
mm0mmmm0m0000
UCAUUCUAUAGAA
794
|
|
14161
Chl
ooooooooooooo
00mm0mm0mm0m0
AACUAUCACUGUA
795
|
|
14162
Chl
ooooooooooooo
0mm00mm0mmm0m
GUCAAUUGCUUAU
796
|
|
14163
Chl
ooooooooooooo
00m00mm00m000
AGCAAUUAAUAAA
797
|
|
14164
Chl
ooooooooooooo
0m0mmmm00m00
ACGACUCUGAUGA
798
|
|
14165
Chl
ooooooooooooo
m00m0m00mmm0m
UAGUGUGGUUUAU
799
|
|
14166
Chl
ooooooooooooo
000mm00m00m00
AAGCCAAUGAUGA
800
|
|
14167
Chl
ooooooooooooo
0m00mm00000mm
AUAGUCAGGAACU
801
|
|
14168
Chl
ooooooooooooo
00mm00mmm000
AGUCAGCCGUGAA
802
|
|
14169
Chl
ooooooooooooo
0mm0mm0m00000
ACUACCAUGAGAA
803
|
|
14170
Chl
ooooooooooooo
000m000mm00mm
AAACAGGCUGAUU
804
|
|
14171
Chl
ooooooooooooo
000m0mm0000mm
GAGUGCUGAAACC
805
|
|
14172
Chl
ooooooooooooo
m000m0mmmm0m
UGAGCAUUCCGAU
806
|
|
14173
Chl
ooooooooooooo
00mmmm0m00mm0
AAUUCCACAGCCA
807
|
|
14174
Chl
ooooooooooooo
m0mm00mm0mmm0
UGUCAAUUGCUUA
808
|
|
14175
Chl
ooooooooooooo
0mm0m00000mm0
ACCAUGAGAAUUG
809
|
|
14176
Chl
ooooooooooooo
mm00m0000mm0
CCAACGAAAGCCA
810
|
|
14177
Chl
ooooooooooooo
mm00mm0mm00mm
CUGGUCACUGAUU
811
|
|
14178
Chl
ooooooooooooo
m00mmm0m000mm
UGGUUUAUGGACU
812
|
|
14179
Chl
ooooooooooooo
00mm0000m0mm0
GACCAGAGUGCUG
813
|
|
14180
Chl
ooooooooooooo
00m0m00mm00m0
GAUGUGAUUGAUA
814
|
|
14181
Chl
ooooooooooooo
0mm00mmm000m
GUCAGCCGUGAAU
815
|
|
14182
Chl
ooooooooooooo
00m0m0m0mmm0m
AAUGUGUAUCUAU
816
|
|
14183
Chl
ooooooooooooo
mm000mmm00000
UUGAGUCUGGAAA
817
|
|
14184
Chl
ooooooooooooo
0mmm00m00mm00
GUCCAGCAAUUAA
818
|
|
14185
Chl
ooooooooooooo
mm00m00mm00m0
CCAGCAAUUAAUA
819
|
|
14186
Chl
ooooooooooooo
00mmm00m0mm
GACUCGAACGACU
820
|
|
14187
Chl
ooooooooooooo
0mmm0mm00m00m
ACCUGCCAGCAAC
821
|
|
o: phosphodiester; s: phosphorothioate; P: 5′ phosphorylation; 0: 2′-OH; F: 2′-fluoro; m: 2′ O-methyl; +: LNA modification. Capital letters in the sequence signify ribonucleotides, lower case letters signify deoxyribonucleotides.
|
TABLE 4
|
|
sd-rxRNA miRNA designs
|
SEQ
mIRNA Sequence
SEQ ID
sd-rxRNA
SEQ
sd-rxRNA
|
mIRNA Name
ID NO
mature
NO
Antisense
ID NO
Sense
|
|
hsa-let-7a
822
UGAGGUAGUAGGUUGUA
823
UGAGGUAGUAGG
824
AACCUACUACC
|
MIMAT0000062
UAGUU
UUGUAUAG
UCA
|
|
hsa-let-7a*
825
CUAUACAAUCUACUGUC
826
CUAUACAAUCUA
827
AGUAGAUUGUA
|
MIMAT0004481
UUUC
CUGUCUUU
UAG
|
|
hsa-let-7a-2*
828
CUGUACAGCCUCCUAGC
829
CUGUACAGCCUC
830
AGGAGGCUGUA
|
MIMAT0010195
UUUCC
CUAGCUUU
CAG
|
|
hsa-let-7b
831
UGAGGUAGUAGGUUGUG
832
UGAGGUAGUAGG
833
AACCUACUACC
|
MIMAT0000063
UGGUU
UUGUGUGG
UCA
|
|
hsa-let-7b*
834
CUAUACAACCUACUGCC
835
CUAUACAACCUA
836
AGUAGGUUGUA
|
MIMAT0004482
UUCCC
CUGCCUUC
UAG
|
|
hsa-let-7c
837
UGAGGUAGUAGGUUGUA
838
UGAGGUAGUAGG
839
AACCUACUACC
|
MIMAT0000064
UGGUU
UUGUAUGG
UCA
|
|
hsa-let-7c*
840
UAGAGUUACACCCUGGG
841
UAGAGUUACACC
842
AGGGUGUAACU
|
MIMAT0004483
AGUUA
CUGGGAGU
CUA
|
|
hsa-let-7d
843
AGAGGUAGUAGGUUGCA
844
AGAGGUAGUAGG
845
AACCUACUACC
|
MIMAT0000065
UAGUU
UUGCAUAG
UCU
|
|
hsa-let-7d*
846
CUAUACGACCUGCUGCC
847
CUAUACGACCUG
848
AGCAGGUCGUA
|
MIMAT0004484
UUUCU
CUGCCUUU
UAG
|
|
hsa-let-7e
849
UGAGGUAGGAGGUUGUA
850
UGAGGUAGGAGG
851
AACCUCCUACC
|
MIMAT0000066
UAGUU
UUGUAUAG
UCA
|
|
hsa-let-7e*
852
CUAUACGGCCUCCUAGC
853
CUAUACGGCCUC
854
AGGAGGCCGUA
|
MIMAT0004485
UUUCC
CUAGCUUU
UAG
|
|
hsa-let-7f
855
UGAGGUAGUAGAUUGUA
856
UGAGGUAGUAGA
857
AAUCUACUACC
|
MIMAT0000067
UAGUU
UUGUAUAG
UCA
|
|
hsa-let-7f-1*
858
CUAUACAAUCUAUUGCC
859
CUAUACAAUCUA
860
AAUAGAUUGUA
|
MIMAT0004486
UUCCC
UUGCCUUC
UAG
|
|
hsa-let-7f-2*
861
CUAUACAGUCUACUGUC
862
CUAUACAGUCUA
863
AGUAGACUGUA
|
MIMAT0004487
UUUCC
CUGUCUUU
UAG
|
|
hsa-let-7g
864
UGAGGUAGUAGUUUGUA
865
UGAGGUAGUAGU
866
AAACUACUACC
|
MIMAT0000414
CAGUU
UUGUACAG
UCA
|
|
hsa-let-7g*
867
CUGUACAGGCCACUGCC
868
CUGUACAGGCCA
869
AGUGGCCUGUA
|
MIMAT0004584
UUGC
CUGCCUUG
CAG
|
|
hsa-let-7i
870
UGAGGUAGUAGUUUGUG
871
UGAGGUAGUAGU
872
AAACUACUACC
|
MIMAT0000415
CUGUU
UUGUGCUG
UCA
|
|
hsa-let-7i*
873
CUGCGCAAGCUACUGCC
874
CUGCGCAAGCUA
875
AGUAGCUUGCG
|
MIMAT0004585
UUGCU
CUGCCUUG
CAG
|
|
hsa-miR-1
876
UGGAAUGUAAAGAAGUA
877
UGGAAUGUAAAG
878
UUCUUUACAUU
|
MIMAT0000416
UGUAU
AAGUAUGU
CCA
|
|
hsa-miR-100
879
AACCCGUAGAUCCGAAC
880
AACCCGUAGAUC
881
CGGAUCUACGG
|
MIMAT0000098
UUGUG
CGAACUUG
GUU
|
|
hsa-miR-100*
882
CAAGCUUGUAUCUAUAG
883
CAAGCUUGUAUC
884
UAGAUACAAGC
|
MIMAT0004512
GUAUG
UAUAGGUA
UUG
|
|
hsa-miR-101
885
UACAGUACUGUGAUAAC
886
UACAGUACUGUG
887
AUCACAGUACU
|
MIMAT0000099
UGAA
AUAACUGA
GUA
|
|
hsa-miR-101*
888
CAGUUAUCACAGUGCUG
889
CAGUUAUCACAG
890
CACUGUGAUAA
|
MIMAT0004513
AUGCU
UGCUGAUG
CUG
|
|
hsa-miR-103
891
AGCAGCAUUGUACAGGG
892
AGCAGCAUUGUA
893
UGUACAAUGCU
|
MIMAT0000101
CUAUGA
CAGGGCUA
GCU
|
|
hsa-miR-103-2*
894
AGCUUCUUUACAGUGCU
895
AGCUUCUUUACA
896
ACUGUAAAGAA
|
MIMAT0009196
GCCUUG
GUGCUGCC
GCU
|
|
hsa-miR-103-as
897
UCAUAGCCCUGUACAAU
898
UCAUAGCCCUGU
899
GUACAGGGCUA
|
MIMAT0007402
GCUGCU
ACAAUGCU
UGA
|
|
hsa-miR-105
900
UCAAAUGCUCAGACUCC
901
UCAAAUGCUCAG
902
GUCUGAGCAUU
|
MIMAT0000102
UGUGGU
ACUCCUGU
UGA
|
|
hsa-miR-105*
903
ACGGAUGUUUGAGCAUG
904
ACGGAUGUUUGA
905
GCUCAAACAUC
|
MIMAT0004516
UGCUA
GCAUGUGC
CGU
|
|
hsa-miR-106a
906
AAAAGUGCUUACAGUGC
907
AAAAGUGCUUAC
908
CUGUAAGCACU
|
MIMAT0000103
AGGUAG
AGUGCAGG
UUU
|
|
hsa-miR-106a*
909
CUGCAAUGUAAGCACUU
910
CUGCAAUGUAAG
911
UGCUUACAUUG
|
MIMAT0004517
CUUAC
CACUUCUU
CAG
|
|
hsa-miR-106b
912
UAAAGUGCUGACAGUGC
913
UAAAGUGCUGAC
914
CUGUCAGCACU
|
MIMAT0000680
AGAU
AGUGCAGA
UUA
|
|
hsa-miR-106b*
915
CCGCACUGUGGGUACUU
916
CCGCACUGUGGG
917
UACCCACAGUG
|
MIMAT0004672
GCUGC
UACUUGCU
CGG
|
|
hsa-miR-107
918
AGCAGCAUUGUACAGGG
919
AGCAGCAUUGUA
920
UGUACAAUGCU
|
MIMAT0000104
CUAUCA
CAGGGCUA
GCU
|
|
hsa-miR-10a
921
UACCCUGUAGAUCCGAA
922
UACCCUGUAGAU
923
GGAUCUACAGG
|
MIMAT0000253
UUUGUG
CCGAAUUU
GUA
|
|
hsa-miR-10a*
924
CAAAUUCGUAUCUAGGG
925
CAAAUUCGUAUC
926
UAGAUACGAAU
|
MIMAT0004555
GAAUA
UAGGGGAA
UUG
|
|
hsa-miR-10b
927
UACCCUGUAGAACCGAA
928
UACCCUGUAGAA
929
GGUUCUACAGG
|
MIMAT0000254
UUUGUG
CCGAAUUU
GUA
|
|
hsa-miR-10b*
930
ACAGAUUCGAUUCUAGG
931
ACAGAUUCGAUU
932
AGAAUCGAAUC
|
MIMAT0004556
GGAAU
CUAGGGGA
UGU
|
|
hsa-miR-1178
933
UUGCUCACUGUUCUUCC
934
UUGCUCACUGUU
935
AGAACAGUGAG
|
MIMAT0005823
CUAG
CUUCCCUA
CAA
|
|
hsa-miR-1179
936
AAGCAUUCUUUCAUUGG
937
AAGCAUUCUUUC
938
AUGAAAGAAUG
|
MIMAT0005824
UUGG
AUUGGUUG
CUU
|
|
hsa-miR-1180
939
UUUCCGGCUCGCGUGGG
940
UUUCCGGCUCGC
941
ACGCGAGCCGG
|
MIMAT0005825
UGUGU
GUGGGUGU
AAA
|
|
hsa-miR-1181
942
CCGUCGCCGCCACCCGA
943
CCGUCGCCGCCA
944
GGUGGCGGCGA
|
MIMAT0005826
GCCG
CCCGAGCC
CGG
|
|
hsa-miR-1182
945
GAGGGUCUUGGGAGGGA
946
GAGGGUCUUGGG
947
CUCCCAAGACC
|
MIMAT0005827
UGUGAC
AGGGAUGU
CUC
|
|
hsa-miR-1183
948
CACUGUAGGUGAUGGUG
949
CACUGUAGGUGA
950
CAUCACCUACA
|
MIMAT0005828
AGAGUGGGCA
UGGUGAGA
GUG
|
|
hsa-miR-1184
951
CCUGCAGCGACUUGAUG
952
CCUGCAGCGACU
953
CAAGUCGCUGC
|
MIMAT0005829
GCUUCC
UGAUGGCU
AGG
|
|
hsa-miR-1185
954
AGAGGAUACCCUUUGUA
955
AGAGGAUACCCU
956
AAAGGGUAUCC
|
MIMAT0005798
UGUU
UUGUAUGU
UCU
|
|
hsa-miR-1193
957
GGGAUGGUAGACCGGUG
958
GGGAUGGUAGAC
959
CGGUCUACCAU
|
MIMAT0015049
ACGUGC
CGGUGACG
CCC
|
|
hsa-miR-1197
960
UAGGACACAUGGUCUAC
961
UAGGACACAUGG
962
GACCAUGUGUC
|
MIMAT0005955
UUCU
UCUACUUC
CUA
|
|
hsa-miR-1200
963
CUCCUGAGCCAUUCUGA
964
CUCCUGAGCCAU
965
GAAUGGCUCAG
|
MIMAT0005863
GCCUC
UCUGAGCC
GAG
|
|
hsa-miR-1202
966
GUGCCAGCUGCAGUGGG
967
GUGCCAGCUGCA
968
ACUGCAGCUGG
|
MIMAT0005865
GGAG
GUGGGGGA
CAC
|
|
hsa-miR-1203
969
CCCGGAGCCAGGAUGCA
970
CCCGGAGCCAGG
971
AUCCUGGCUCC
|
MIMAT0005866
GCUC
AUGCAGCU
GGG
|
|
hsa-miR-1204
972
UCGUGGCCUGGUCUCCA
973
UCGUGGCCUGGU
974
AGACCAGGCCA
|
MIMAT0005868
UUAU
CUCCAUUA
CGA
|
|
hsa-miR-1205
975
UCUGCAGGGUUUGCUUU
976
UCUGCAGGGUUU
977
GCAAACCCUGC
|
MIMAT0005869
GAG
GCUUUGAG
AGA
|
|
hsa-miR-1206
978
UGUUCAUGUAGAUGUUU
979
UGUUCAUGUAGA
980
CAUCUACAUGA
|
MIMAT0005870
AAGC
UGUUUAAG
ACA
|
|
hsa-miR-1207-
981
UCAGCUGGCCCUCAUUU
982
UCAGCUGGCCCU
983
UGAGGGCCAGC
|
3p
C
CAUUUC
UGA
|
MIMAT0005872
|
|
hsa-miR-1207-
984
UGGCAGGGAGGCUGGGA
985
UGGCAGGGAGGC
986
CAGCCUCCCUG
|
5p
GGGG
UGGGAGGG
CCA
|
MIMAT0005871
|
|
hsa-miR-1208
987
UCACUGUUCAGACAGGC
988
UCACUGUUCAGA
989
UGUCUGAACAG
|
MIMAT0005873
GGA
CAGGCGGA
UGA
|
|
hsa-miR-122
990
UGGAGUGUGACAAUGGU
991
UGGAGUGUGACA
992
AUUGUCACACU
|
MIMAT0000421
GUUUG
AUGGUGUU
CCA
|
|
hsa-miR-122*
993
AACGCCAUUAUCACACU
994
AACGCCAUUAUC
995
GUGAUAAUGGC
|
MIMAT0004590
AAAUA
ACACUAAA
GUU
|
|
hsa-miR-1224-
996
CCCCACCUCCUCUCUCC
997
CCCCACCUCCUC
998
GAGAGGAGGUG
|
3p
UCAG
UCUCCUCA
GGG
|
MIMAT0005459
|
|
hsa-miR-1224-
999
GUGAGGACUCGGGAGGU
1000
GUGAGGACUCGG
1001
UCCCGAGUCCU
|
5p
GG
GAGGUGG
CAC
|
MIMAT0005458
|
|
hsa-miR-1225-
1002
UGAGCCCCUGUGCCGCC
1003
UGAGCCCCUGUG
1004
GGCACAGGGGC
|
3p
CCCAG
CCGCCCCC
UCA
|
MIMAT0005573
|
|
hsa-miR-1225-
1005
GUGGGUACGGCCCAGUG
1006
GUGGGUACGGCC
1007
UGGGCCGUACC
|
5p
GGGGG
CAGUGGGG
CAC
|
MIMAT0005572
|
|
hsa-miR-1226
1008
UCACCAGCCCUGUGUUC
1009
UCACCAGCCCUG
1010
CACAGGGCUGG
|
MIMAT0005577
CCUAG
UGUUCCCU
UGA
|
|
hsa-miR-1226*
1011
GUGAGGGCAUGCAGGCC
1012
GUGAGGGCAUGC
1013
CUGCAUGCCCU
|
MIMAT0005576
UGGAUGGGG
AGGCCUGG
CAC
|
|
hsa-miR-1227
1014
CGUGCCACCCUUUUCCC
1015
CGUGCCACCCUU
1016
AAAAGGGUGGC
|
MIMAT0005580
CAG
UUCCCCAG
ACG
|
|
hsa-miR-1228
1017
UCACACCUGCCUCGCCC
1018
UCACACCUGCCU
1019
CGAGGCAGGUG
|
MIMAT0005583
CCC
CGCCCCCC
UGA
|
|
hsa-miR-1228*
1020
GUGGGCGGGGGCAGGUG
1021
GUGGGCGGGGGC
1022
CUGCCCCCGCC
|
MIMAT0005582
UGUG
AGGUGUGU
CAC
|
|
hsa-miR-1229
1023
CUCUCACCACUGCCCUC
1024
CUCUCACCACUG
1025
GGCAGUGGUGA
|
MIMAT0005584
CCACAG
CCCUCCCA
GAG
|
|
hsa-miR-1231
1026
GUGUCUGGGCGGACAGC
1027
GUGUCUGGGCGG
1028
GUCCGCCCAGA
|
MIMAT0005586
UGC
ACAGCUGC
CAC
|
|
hsa-miR-1233
1029
UGAGCCCUGUCCUCCCG
1030
UGAGCCCUGUCC
1031
GAGGACAGGGC
|
MIMAT0005588
CAG
UCCCGCAG
UCA
|
|
hsa-miR-1234
1032
UCGGCCUGACCACCCAC
1033
UCGGCCUGACCA
1034
GGUGGUCAGGC
|
MIMAT0005589
CCCAC
CCCACCCC
CGA
|
|
hsa-miR-1236
1035
CCUCUUCCCCUUGUCUC
1036
CCUCUUCCCCUU
1037
ACAAGGGGAAG
|
MIMAT0005591
UCCAG
GUCUCUCC
AGG
|
|
hsa-miR-1237
1038
UCCUUCUGCUCCGUCCC
1039
UCCUUCUGCUCC
1040
ACGGAGCAGAA
|
MIMAT0005592
CCAG
GUCCCCCA
GGA
|
|
hsa-miR-1238
1041
CUUCCUCGUCUGUCUGC
1042
CUUCCUCGUCUG
1043
GACAGACGAGG
|
MIMAT0005593
CCC
UCUGCCCC
AAG
|
|
hsa-miR-124
1044
UAAGGCACGCGGUGAAU
1045
UAAGGCACGCGG
1046
CACCGCGUGCC
|
MIMAT0000422
GCC
UGAAUGCC
UUA
|
|
hsa-miR-124*
1047
CGUGUUCACAGCGGACC
1048
CGUGUUCACAGC
1049
CCGCUGUGAAC
|
MIMAT0004591
UUGAU
GGACCUUG
ACG
|
|
hsa-miR-1243
1050
AACUGGAUCAAUUAUAG
1051
AACUGGAUCAAU
1052
UAAUUGAUCCA
|
MIMAT0005894
GAGUG
UAUAGGAG
GUU
|
|
hsa-miR-1244
1053
AAGUAGUUGGUUUGUAU
1054
AAGUAGUUGGUU
1055
CAAACCAACUA
|
MIMAT0005896
GAGAUGGUU
UGUAUGAG
CUU
|
|
hsa-miR-1245
1056
AAGUGAUCUAAAGGCCU
1057
AAGUGAUCUAAA
1058
CCUUUAGAUCA
|
MIMAT0005897
ACAU
GGCCUACA
CUU
|
|
hsa-miR-1246
1059
AAUGGAUUUUUGGAGCA
1060
AAUGGAUUUUUG
1061
UCCAAAAAUCC
|
MIMAT0005898
GG
GAGCAGG
AUU
|
|
hsa-miR-1247
1062
ACCCGUCCCGUUCGUCC
1063
ACCCGUCCCGUU
1064
CGAACGGGACG
|
MIMAT0005899
CCGGA
CGUCCCCG
GGU
|
|
hsa-miR-1248
1065
ACCUUCUUGUAUAAGCA
1066
ACCUUCUUGUAU
1067
UUAUACAAGAA
|
MIMAT0005900
CUGUGCUAAA
AAGCACUG
GGU
|
|
hsa-miR-1249
1068
ACGCCCUUCCCCCCCUU
1069
ACGCCCUUCCCC
1070
GGGGGGAAGGG
|
MIMAT0005901
CUUCA
CCCUUCUU
CGU
|
|
hsa-miR-1250
1071
ACGGUGCUGGAUGUGGC
1072
ACGGUGCUGGAU
1073
ACAUCCAGCAC
|
MIMAT0005902
CUUU
GUGGCCUU
CGU
|
|
hsa-miR-1251
1074
ACUCUAGCUGCCAAAGG
1075
ACUCUAGCUGCC
1076
UUGGCAGCUAG
|
MIMAT0005903
CGCU
AAAGGCGC
AGU
|
|
hsa-miR-1252
1077
AGAAGGAAAUUGAAUUC
1078
AGAAGGAAAUUG
1079
UUCAAUUUCCU
|
MIMAT0005944
AUUUA
AAUUCAUU
UCU
|
|
hsa-miR-1253
1080
AGAGAAGAAGAUCAGCC
1081
AGAGAAGAAGAU
1082
UGAUCUUCUUC
|
MIMAT0005904
UGCA
CAGCCUGC
UCU
|
|
hsa-miR-1254
1083
AGCCUGGAAGCUGGAGC
1084
AGCCUGGAAGCU
1085
CCAGCUUCCAG
|
MIMAT0005905
CUGCAGU
GGAGCCUG
GCU
|
|
hsa-miR-1255a
1086
AGGAUGAGCAAAGAAAG
1087
AGGAUGAGCAAA
1088
UCUUUGCUCAU
|
MIMAT0005906
UAGAUU
GAAAGUAG
CCU
|
|
hsa-miR-1255b
1089
CGGAUGAGCAAAGAAAG
1090
CGGAUGAGCAAA
1091
UCUUUGCUCAU
|
MIMAT0005945
UGGUU
GAAAGUGG
CCG
|
|
hsa-miR-1256
1092
AGGCAUUGACUUCUCAC
1093
AGGCAUUGACUU
1094
AGAAGUCAAUG
|
MIMAT0005907
UAGCU
CUCACUAG
CCU
|
|
hsa-miR-1257
1095
AGUGAAUGAUGGGUUCU
1096
AGUGAAUGAUGG
1097
ACCCAUCAUUC
|
MIMAT0005908
GACC
GUUCUGAC
ACU
|
|
hsa-miR-1258
1098
AGUUAGGAUUAGGUCGU
1099
AGUUAGGAUUAG
1100
ACCUAAUCCUA
|
MIMAT0005909
GGAA
GUCGUGGA
ACU
|
|
hsa-miR-125a-
1101
ACAGGUGAGGUUCUUGG
1102
ACAGGUGAGGUU
1103
AGAACCUCACC
|
3p
GAGCC
CUUGGGAG
UGU
|
MIMAT0004602
|
|
hsa-miR-125a-
1104
UCCCUGAGACCCUUUAA
1105
UCCCUGAGACCC
1106
AAGGGUCUCAG
|
5p
CCUGUGA
UUUAACCU
GGA
|
MIMAT0000443
|
|
hsa-miR-125b
1107
UCCCUGAGACCCUAACU
1108
UCCCUGAGACCC
1109
UAGGGUCUCAG
|
MIMAT0000423
UGUGA
UAACUUGU
GGA
|
|
hsa-miR-125b-
1110
ACGGGUUAGGCUCUUGG
1111
ACGGGUUAGGCU
1112
AGAGCCUAACC
|
1*
GAGCU
CUUGGGAG
CGU
|
MIMAT0004592
|
|
hsa-miR-125b-
1113
UCACAAGUCAGGCUCUU
1114
UCACAAGUCAGG
1115
AGCCUGACUUG
|
2*
GGGAC
CUCUUGGG
UGA
|
MIMAT0004603
|
|
hsa-miR-126
1116
UCGUACCGUGAGUAAUA
1117
UCGUACCGUGAG
1118
UACUCACGGUA
|
MIMAT0000445
AUGCG
UAAUAAUG
CGA
|
|
hsa-miR-126*
1119
CAUUAUUACUUUUGGUA
1120
CAUUAUUACUUU
1121
CAAAAGUAAUA
|
MIMAT0000444
CGCG
UGGUACGC
AUG
|
|
hsa-miR-1260
1122
AUCCCACCUCUGCCACC
1123
AUCCCACCUCUG
1124
GGCAGAGGUGG
|
MIMAT0005911
A
CCACCA
GAU
|
|
hsa-miR-1260b
1125
AUCCCACCACUGCCACC
1126
AUCCCACCACUG
1127
GGCAGUGGUGG
|
MIMAT0015041
AU
CCACCAU
GAU
|
|
hsa-miR-1261
1128
AUGGAUAAGGCUUUGGC
1129
AUGGAUAAGGCU
1130
AAAGCCUUAUC
|
MIMAT0005913
UU
UUGGCUU
CAU
|
|
hsa-miR-1262
1131
AUGGGUGAAUUUGUAGA
1132
AUGGGUGAAUUU
1133
ACAAAUUCACC
|
MIMAT0005914
AGGAU
GUAGAAGG
CAU
|
|
hsa-miR-1263
1134
AUGGUACCCUGGCAUAC
1135
AUGGUACCCUGG
1136
UGCCAGGGUAC
|
MIMAT0005915
UGAGU
CAUACUGA
CAU
|
|
hsa-miR-1264
1137
CAAGUCUUAUUUGAGCA
1138
CAAGUCUUAUUU
1139
UCAAAUAAGAC
|
MIMAT0005791
CCUGUU
GAGCACCU
UUG
|
|
hsa-miR-1265
1140
CAGGAUGUGGUCAAGUG
1141
CAGGAUGUGGUC
1142
UUGACCACAUC
|
MIMAT0005918
UUGUU
AAGUGUUG
CUG
|
|
hsa-miR-1266
1143
CCUCAGGGCUGUAGAAC
1144
CCUCAGGGCUGU
1145
CUACAGCCCUG
|
MIMAT0005920
AGGGCU
AGAACAGG
AGG
|
|
hsa-miR-1267
1146
CCUGUUGAAGUGUAAUC
1147
CCUGUUGAAGUG
1148
UACACUUCAAC
|
MIMAT0005921
CCCA
UAAUCCCC
AGG
|
|
hsa-miR-1268
1149
CGGGCGUGGUGGUGGGG
1150
CGGGCGUGGUGG
1151
CACCACCACGC
|
MIMAT0005922
G
UGGGGG
CCG
|
|
hsa-miR-1269
1152
CUGGACUGAGCCGUGCU
1153
CUGGACUGAGCC
1154
ACGGCUCAGUC
|
MIMAT0005923
ACUGG
GUGCUACU
CAG
|
|
hsa-miR-1270
1155
CUGGAGAUAUGGAAGAG
1156
CUGGAGAUAUGG
1157
UUCCAUAUCUC
|
MIMAT0005924
CUGUGU
AAGAGCUG
CAG
|
|
hsa-miR-1271
1158
CUUGGCACCUAGCAAGC
1159
CUUGGCACCUAG
1160
UGCUAGGUGCC
|
MIMAT0005796
ACUCA
CAAGCACU
AAG
|
|
hsa-miR-1272
1161
GAUGAUGAUGGCAGCAA
1162
GAUGAUGAUGGC
1163
CUGCCAUCAUC
|
MIMAT0005925
AUUCUGAAA
AGCAAAUU
AUC
|
|
hsa-miR-1273
1164
GGGCGACAAAGCAAGAC
1165
GGGCGACAAAGC
1166
UUGCUUUGUCG
|
MIMAT0005926
UCUUUCUU
AAGACUCU
CCC
|
|
hsa-miR-1273c
1167
GGCGACAAAACGAGACC
1168
GGCGACAAAACG
1169
CUCGUUUUGUC
|
MIMAT0015017
CUGUC
AGACCCUG
GCC
|
|
hsa-miR-1273d
1170
GAACCCAUGAGGUUGAG
1171
GAACCCAUGAGG
1172
AACCUCAUGGG
|
MIMAT0015090
GCUGCAGU
UUGAGGCU
UUC
|
|
hsa-miR-1273e
1173
UUGCUUGAACCCAGGAA
1174
UUGCUUGAACCC
1175
CUGGGUUCAAG
|
MIMAT0018079
GUGGA
AGGAAGUG
CAA
|
|
hsa-miR-127-3p
1176
UCGGAUCCGUCUGAGCU
1177
UCGGAUCCGUCU
1178
UCAGACGGAUC
|
MIMAT0000446
UGGCU
GAGCUUGG
CGA
|
|
hsa-miR-1274a
1179
GUCCCUGUUCAGGCGCC
1180
GUCCCUGUUCAG
1181
GCCUGAACAGG
|
MIMAT0005927
A
GCGCCA
GAC
|
|
hsa-miR-1274b
1182
UCCCUGUUCGGGCGCCA
1183
UCCCUGUUCGGG
1184
CGCCCGAACAG
|
MIMAT0005938
CGCCA
GGA
|
|
hsa-miR-1275
1185
GUGGGGGAGAGGCUGUC
1186
GUGGGGGAGAGG
1187
AGCCUCUCCCC
|
MIMAT0005929
CUGUC
CAC
|
|
hsa-miR-127-5p
1188
CUGAAGCUCAGAGGGCU
1189
CUGAAGCUCAGA
1190
CCUCUGAGCUU
|
MIMAT0004604
CUGAU
GGGCUCUG
CAG
|
|
hsa-miR-1276
1191
UAAAGAGCCCUGUGGAG
1192
UAAAGAGCCCUG
1193
CACAGGGCUCU
|
MIMAT0005930
ACA
UGGAGACA
UUA
|
|
hsa-miR-1277
1194
UACGUAGAUAUAUAUGU
1195
UACGUAGAUAUA
1196
UAUAUAUCUAC
|
MIMAT0005933
AUUUU
UAUGUAUU
GUA
|
|
hsa-miR-1278
1197
UAGUACUGUGCAUAUCA
1198
UAGUACUGUGCA
1199
UAUGCACAGUA
|
MIMAT0005936
UCUAU
UAUCAUCU
CUA
|
|
hsa-miR-1279
1200
UCAUAUUGCUUCUUUCU
1201
UCAUAUUGCUUC
1202
AAGAAGCAAUA
|
MIMAT0005937
UUUCU
UGA
|
|
hsa-miR-128
1203
UCACAGUGAACCGGUCU
1204
UCACAGUGAACC
1205
CCGGUUCACUG
|
MIMAT0000424
CUUU
GGUCUCUU
UGA
|
|
hsa-miR-1280
1206
UCCCACCGCUGCCACCC
1207
UCCCACCGCUGC
1208
UGGCAGCGGUG
|
MIMAT0005946
CACCC
GGA
|
|
hsa-miR-1281
1209
UCGCCUCCUCCUCUCCC
1210
UCGCCUCCUCCU
1211
AGAGGAGGAGG
|
MIMAT0005939
CUCCC
CGA
|
|
hsa-miR-1282
1212
UCGUUUGCCUUUUUCUG
1213
UCGUUUGCCUUU
1214
AAAAAGGCAAA
|
MIMAT0005940
CUU
UUCUGCUU
CGA
|
|
hsa-miR-1283
1215
UCUACAAAGGAAAGCGC
1216
UCUACAAAGGAA
1217
CUUUCCUUUGU
|
MIMAT0005799
UUUCU
AGCGCUUU
AGA
|
|
hsa-miR-1284
1218
UCUAUACAGACCCUGGC
1219
UCUAUACAGACC
1220
AGGGUCUGUAU
|
MIMAT0005941
UUUUC
CUGGCUUU
AGA
|
|
hsa-miR-1285
1221
UCUGGGCAACAAAGUGA
1222
UCUGGGCAACAA
1223
CUUUGUUGCCC
|
MIMAT0005876
GACCU
AGUGAGAC
AGA
|
|
hsa-miR-1286
1224
UGCAGGACCAAGAUGAG
1225
UGCAGGACCAAG
1226
AUCUUGGUCCU
|
MIMAT0005877
CCCU
AUGAGCCC
GCA
|
|
hsa-miR-1287
1227
UGCUGGAUCAGUGGUUC
1228
UGCUGGAUCAGU
1229
CCACUGAUCCA
|
MIMAT0005878
GAGUC
GGUUCGAG
GCA
|
|
hsa-miR-1288
1230
UGGACUGCCCUGAUCUG
1231
UGGACUGCCCUG
1232
AUCAGGGCAGU
|
MIMAT0005942
GAGA
AUCUGGAG
CCA
|
|
hsa-miR-1289
1233
UGGAGUCCAGGAAUCUG
1234
UGGAGUCCAGGA
1235
AUUCCUGGACU
|
MIMAT0005879
CAUUUU
AUCUGCAU
CCA
|
|
hsa-miR-129*
1236
AAGCCCUUACCCCAAAA
1237
AAGCCCUUACCC
1238
UGGGGUAAGGG
|
MIMAT0004548
AGUAU
CAAAAAGU
CUU
|
|
hsa-miR-1290
1239
UGGAUUUUUGGAUCAGG
1240
UGGAUUUUUGGA
1241
GAUCCAAAAAU
|
MIMAT0005880
GA
UCAGGGA
CCA
|
|
hsa-miR-1291
1242
UGGCCCUGACUGAAGAC
1243
UGGCCCUGACUG
1244
UUCAGUCAGGG
|
MIMAT0005881
CAGCAGU
AAGACCAG
CCA
|
|
hsa-miR-1292
1245
UGGGAACGGGUUCCGGC
1246
UGGGAACGGGUU
1247
GGAACCCGUUC
|
MIMAT0005943
AGACGCUG
CCGGCAGA
CCA
|
|
hsa-miR-1293
1248
UGGGUGGUCUGGAGAUU
1249
UGGGUGGUCUGG
1250
CUCCAGACCAC
|
MIMAT0005883
UGUGC
AGAUUUGU
CCA
|
|
hsa-miR-129-3p
1251
AAGCCCUUACCCCAAAA
1252
AAGCCCUUACCC
1253
UGGGGUAAGGG
|
MIMAT0004605
AGCAU
CAAAAAGC
CUU
|
|
hsa-miR-1294
1254
UGUGAGGUUGGCAUUGU
1255
UGUGAGGUUGGC
1256
AUGCCAACCUC
|
MIMAT0005884
UGUCU
AUUGUUGU
ACA
|
|
hsa-miR-1295
1257
UUAGGCCGCAGAUCUGG
1258
UUAGGCCGCAGA
1259
GAUCUGCGGCC
|
MIMAT0005885
GUGA
UCUGGGUG
UAA
|
|
hsa-miR-129-5p
1260
CUUUUUGCGGUCUGGGC
1261
CUUUUUGCGGUC
1262
CAGACCGCAAA
|
MIMAT0000242
UUGC
UGGGCUUG
AAG
|
|
hsa-miR-1296
1263
UUAGGGCCCUGGCUCCA
1264
UUAGGGCCCUGG
1265
AGCCAGGGCCC
|
MIMAT0005794
UCUCC
CUCCAUCU
UAA
|
|
hsa-miR-1297
1266
UUCAAGUAAUUCAGGUG
1267
UUCAAGUAAUUC
1268
CUGAAUUACUU
|
MIMAT0005886
AGGUG
GAA
|
|
hsa-miR-1298
1269
UUCAUUCGGCUGUCCAG
1270
UUCAUUCGGCUG
1271
GACAGCCGAAU
|
MIMAT0005800
AUGUA
UCCAGAUG
GAA
|
|
hsa-miR-1299
1272
UUCUGGAAUUCUGUGUG
1273
UUCUGGAAUUCU
1274
ACAGAAUUCCA
|
MIMAT0005887
AGGGA
GUGUGAGG
GAA
|
|
hsa-miR-1301
1275
UUGCAGCUGCCUGGGAG
1276
UUGCAGCUGCCU
1277
CCAGGCAGCUG
|
MIMAT0005797
UGACUUC
GGGAGUGA
CAA
|
|
hsa-miR-1302
1278
UUGGGACAUACUUAUGC
1279
UUGGGACAUACU
1280
UAAGUAUGUCC
|
MIMAT0005890
UAAA
UAUGCUAA
CAA
|
|
hsa-miR-1303
1281
UUUAGAGACGGGGUCUU
1282
UUUAGAGACGGG
1283
ACCCCGUCUCU
|
MIMAT0005891
GCUCU
GUCUUGCU
AAA
|
|
hsa-miR-1304
1284
UUUGAGGCUACAGUGAG
1285
UUUGAGGCUACA
1286
ACUGUAGCCUC
|
MIMAT0005892
AUGUG
GUGAGAUG
AAA
|
|
hsa-miR-1305
1287
UUUUCAACUCUAAUGGG
1288
UUUUCAACUCUA
1289
AUUAGAGUUGA
|
MIMAT0005893
AGAGA
AUGGGAGA
AAA
|
|
hsa-miR-1306
1290
ACGUUGGCUCUGGUGGU
1291
ACGUUGGCUCUG
1292
ACCAGAGCCAA
|
MIMAT0005950
G
GUGGUG
CGU
|
|
hsa-miR-1307
1293
ACUCGGCGUGGCGUCGG
1294
ACUCGGCGUGGC
1295
ACGCCACGCCG
|
MIMAT0005951
UCGUG
GUCGGUCG
AGU
|
|
hsa-miR-130a
1296
CAGUGCAAUGUUAAAAG
1297
CAGUGCAAUGUU
1298
UUAACAUUGCA
|
MIMAT0000425
GGCAU
AAAAGGGC
CUG
|
|
hsa-miR-130a*
1299
UUCACAUUGUGCUACUG
1300
UUCACAUUGUGC
1301
UAGCACAAUGU
|
MIMAT0004593
UCUGC
UACUGUCU
GAA
|
|
hsa-miR-130b
1302
CAGUGCAAUGAUGAAAG
1303
CAGUGCAAUGAU
1304
UCAUCAUUGCA
|
MIMAT0000691
GGCAU
GAAAGGGC
CUG
|
|
hsa-miR-130b*
1305
ACUCUUUCCCUGUUGCA
1306
ACUCUUUCCCUG
1307
AACAGGGAAAG
|
MIMAT0004680
CUAC
UUGCACUA
AGU
|
|
hsa-miR-132
1308
UAACAGUCUACAGCCAU
1309
UAACAGUCUACA
1310
GCUGUAGACUG
|
MIMAT0000426
GGUCG
GCCAUGGU
UUA
|
|
hsa-miR-132*
1311
ACCGUGGCUUUCGAUUG
1312
ACCGUGGCUUUC
1313
UCGAAAGCCAC
|
MIMAT0004594
UUACU
GAUUGUUA
GGU
|
|
hsa-miR-1321
1314
CAGGGAGGUGAAUGUGA
1315
CAGGGAGGUGAA
1316
CAUUCACCUCC
|
MIMAT0005952
U
UGUGAU
CUG
|
|
hsa-miR-1322
1317
GAUGAUGCUGCUGAUGC
1318
GAUGAUGCUGCU
1319
UCAGCAGCAUC
|
MIMAT0005953
UG
GAUGCUG
AUC
|
|
hsa-miR-1323
1320
UCAAAACUGAGGGGCAU
1321
UCAAAACUGAGG
1322
CCCCUCAGUUU
|
MIMAT0005795
UUUCU
GGCAUUUU
UGA
|
|
hsa-miR-1324
1323
CCAGACAGAAUUCUAUG
1324
CCAGACAGAAUU
1325
AGAAUUCUGUC
|
MIMAT0005956
CACUUUC
CUAUGCAC
UGG
|
|
hsa-miR-133a
1326
UUUGGUCCCCUUCAACC
1327
UUUGGUCCCCUU
1328
UGAAGGGGACC
|
MIMAT0000427
AGCUG
CAACCAGC
AAA
|
|
hsa-miR-133b
1329
UUUGGUCCCCUUCAACC
1330
UUUGGUCCCCUU
1331
UGAAGGGGACC
|
MIMAT0000770
AGCUA
CAACCAGC
AAA
|
|
hsa-miR-134
1332
UGUGACUGGUUGACCAG
1333
UGUGACUGGUUG
1334
GUCAACCAGUC
|
MIMAT0000447
AGGGG
ACCAGAGG
ACA
|
|
hsa-miR-135a
1335
UAUGGCUUUUUAUUCCU
1336
UAUGGCUUUUUA
1337
AAUAAAAAGCC
|
MIMAT0000428
AUGUGA
UUCCUAUG
AUA
|
|
hsa-miR-135a*
1338
UAUAGGGAUUGGAGCCG
1339
UAUAGGGAUUGG
1340
CUCCAAUCCCU
|
MIMAT0004595
UGGCG
AGCCGUGG
AUA
|
|
hsa-miR-135b
1341
UAUGGCUUUUCAUUCCU
1342
UAUGGCUUUUCA
1343
AAUGAAAAGCC
|
MIMAT0000758
AUGUGA
UUCCUAUG
AUA
|
|
hsa-miR-135b*
1344
AUGUAGGGCUAAAAGCC
1345
AUGUAGGGCUAA
1346
UUUUAGCCCUA
|
MIMAT0004698
AUGGG
AAGCCAUG
CAU
|
|
hsa-miR-136
1347
ACUCCAUUUGUUUUGAU
1348
ACUCCAUUUGUU
1349
AAAACAAAUGG
|
MIMAT0000448
GAUGGA
UUGAUGAU
AGU
|
|
hsa-miR-136*
1350
CAUCAUCGUCUCAAAUG
1351
CAUCAUCGUCUC
1352
UUGAGACGAUG
|
MIMAT0004606
AGUCU
AAAUGAGU
AUG
|
|
hsa-miR-137
1353
UUAUUGCUUAAGAAUAC
1354
UUAUUGCUUAAG
1355
UUCUUAAGCAA
|
MIMAT0000429
GCGUAG
AAUACGCG
UAA
|
|
hsa-miR-138
1356
AGCUGGUGUUGUGAAUC
1357
AGCUGGUGUUGU
1358
UCACAACACCA
|
MIMAT0000430
AGGCCG
GAAUCAGG
GCU
|
|
hsa-miR-138-1*
1359
GCUACUUCACAACACCA
1360
GCUACUUCACAA
1361
UGUUGUGAAGU
|
MIMAT0004607
GGGCC
CACCAGGG
AGC
|
|
hsa-miR-138-2*
1362
GCUAUUUCACGACACCA
1363
GCUAUUUCACGA
1364
UGUCGUGAAAU
|
MIMAT0004596
GGGUU
CACCAGGG
AGC
|
|
hsa-miR-139-3p
1365
GGAGACGCGGCCCUGUU
1366
GGAGACGCGGCC
1367
AGGGCCGCGUC
|
MIMAT0004552
GGAGU
CUGUUGGA
UCC
|
|
hsa-miR-139-5p
1368
UCUACAGUGCACGUGUC
1369
UCUACAGUGCAC
1370
ACGUGCACUGU
|
MIMAT0000250
UCCAG
GUGUCUCC
AGA
|
|
hsa-miR-140-3p
1371
UACCACAGGGUAGAACC
1372
UACCACAGGGUA
1373
UCUACCCUGUG
|
MIMAT0004597
ACGG
GAACCACG
GUA
|
|
hsa-miR-140-5p
1374
CAGUGGUUUUACCCUAU
1375
CAGUGGUUUUAC
1376
GGGUAAAACCA
|
MIMAT0000431
GGUAG
CCUAUGGU
CUG
|
|
hsa-miR-141
1377
UAACACUGUCUGGUAAA
1378
UAACACUGUCUG
1379
ACCAGACAGUG
|
MIMAT0000432
GAUGG
GUAAAGAU
UUA
|
|
hsa-miR-141*
1380
CAUCUUCCAGUACAGUG
1381
CAUCUUCCAGUA
1382
UGUACUGGAAG
|
MIMAT0004598
UUGGA
CAGUGUUG
AUG
|
|
hsa-miR-142-3p
1383
UGUAGUGUUUCCUACUU
1384
UGUAGUGUUUCC
1385
UAGGAAACACU
|
MIMAT0000434
UAUGGA
UACUUUAU
ACA
|
|
hsa-miR-142-5p
1386
CAUAAAGUAGAAAGCAC
1387
CAUAAAGUAGAA
1388
CUUUCUACUUU
|
MIMAT0000433
UACU
AGCACUAC
AUG
|
|
hsa-miR-143
1389
UGAGAUGAAGCACUGUA
1390
UGAGAUGAAGCA
1391
AGUGCUUCAUC
|
MIMAT0000435
GCUC
CUGUAGCU
UCA
|
|
hsa-miR-143*
1392
GGUGCAGUGCUGCAUCU
1393
GGUGCAGUGCUG
1394
UGCAGCACUGC
|
MIMAT0004599
CUGGU
CAUCUCUG
ACC
|
|
hsa-miR-144
1395
UACAGUAUAGAUGAUGU
1396
UACAGUAUAGAU
1397
UCAUCUAUACU
|
MIMAT0000436
ACU
GAUGUACU
GUA
|
|
hsa-miR-144*
1398
GGAUAUCAUCAUAUACU
1399
GGAUAUCAUCAU
1400
AUAUGAUGAUA
|
MIMAT0004600
GUAAG
AUACUGUA
UCC
|
|
hsa-miR-145
1401
GUCCAGUUUUCCCAGGA
1402
GUCCAGUUUUCC
1403
UGGGAAAACUG
|
MIMAT0000437
AUCCCU
CAGGAAUC
GAC
|
|
hsa-miR-145*
1404
GGAUUCCUGGAAAUACU
1405
GGAUUCCUGGAA
1406
AUUUCCAGGAA
|
MIMAT0004601
GUUCU
AUACUGUU
UCC
|
|
hsa-miR-1468
1407
CUCCGUUUGCCUGUUUC
1408
CUCCGUUUGCCU
1409
ACAGGCAAACG
|
MIMAT0006789
GCUG
GUUUCGCU
GAG
|
|
hsa-miR-1469
1410
CUCGGCGCGGGGCGCGG
1411
CUCGGCGCGGGG
1412
CGCCCCGCGCC
|
MIMAT0007347
GCUCC
CGCGGGCU
GAG
|
|
hsa-miR-146a
1413
UGAGAACUGAAUUCCAU
1414
UGAGAACUGAAU
1415
GAAUUCAGUUC
|
MIMAT0000449
GGGUU
UCCAUGGG
UCA
|
|
hsa-miR-146a*
1416
CCUCUGAAAUUCAGUUC
1417
CCUCUGAAAUUC
1418
CUGAAUUUCAG
|
MIMAT0004608
UUCAG
AGUUCUUC
AGG
|
|
hsa-miR-146b-
1419
UGCCCUGUGGACUCAGU
1420
UGCCCUGUGGAC
1421
GAGUCCACAGG
|
3p
UCUGG
UCAGUUCU
GCA
|
MIMAT0004766
|
|
hsa-miR-146b-
1422
UGAGAACUGAAUUCCAU
1423
UGAGAACUGAAU
1424
GAAUUCAGUUC
|
5p
AGGCU
UCCAUAGG
UCA
|
MIMAT0002809
|
|
hsa-miR-147
1425
GUGUGUGGAAAUGCUUC
1426
GUGUGUGGAAAU
1427
GCAUUUCCACA
|
MIMAT0000251
UGC
GCUUCUGC
CAC
|
|
hsa-miR-1470
1428
GCCCUCCGCCCGUGCAC
1429
GCCCUCCGCCCG
1430
CACGGGCGGAG
|
MIMAT0007348
CCCG
UGCACCCC
GGC
|
|
hsa-miR-1471
1431
GCCCGCGUGUGGAGCCA
1432
GCCCGCGUGUGG
1433
CUCCACACGCG
|
MIMAT0007349
GGUGU
AGCCAGGU
GGC
|
|
hsa-miR-147b
1434
GUGUGCGGAAAUGCUUC
1435
GUGUGCGGAAAU
1436
GCAUUUCCGCA
|
MIMAT0004928
UGCUA
GCUUCUGC
CAC
|
|
hsa-miR-148a
1437
UCAGUGCACUACAGAAC
1438
UCAGUGCACUAC
1439
CUGUAGUGCAC
|
MIMAT0000243
UUUGU
AGAACUUU
UGA
|
|
hsa-miR-148a*
1440
AAAGUUCUGAGACACUC
1441
AAAGUUCUGAGA
1442
UGUCUCAGAAC
|
MIMAT0004549
CGACU
CACUCCGA
UUU
|
|
hsa-miR-148b
1443
UCAGUGCAUCACAGAAC
1444
UCAGUGCAUCAC
1445
CUGUGAUGCAC
|
MIMAT0000759
UUUGU
AGAACUUU
UGA
|
|
hsa-miR-148b*
1446
AAGUUCUGUUAUACACU
1447
AAGUUCUGUUAU
1448
GUAUAACAGAA
|
MIMAT0004699
CAGGC
ACACUCAG
CUU
|
|
hsa-miR-149
1449
UCUGGCUCCGUGUCUUC
1450
UCUGGCUCCGUG
1451
GACACGGAGCC
|
MIMAT0000450
ACUCCC
UCUUCACU
AGA
|
|
hsa-miR-149*
1452
AGGGAGGGACGGGGGCU
1453
AGGGAGGGACGG
1454
CCCCGUCCCUC
|
MIMAT0004609
GUGC
GGGCUGUG
CCU
|
|
hsa-miR-150
1455
UCUCCCAACCCUUGUAC
1456
UCUCCCAACCCU
1457
CAAGGGUUGGG
|
MIMAT0000451
CAGUG
UGUACCAG
AGA
|
|
hsa-miR-150*
1458
CUGGUACAGGCCUGGGG
1459
CUGGUACAGGCC
1460
CAGGCCUGUAC
|
MIMAT0004610
GACAG
UGGGGGAC
CAG
|
|
hsa-miR-151-3p
1461
CUAGACUGAAGCUCCUU
1462
CUAGACUGAAGC
1463
GAGCUUCAGUC
|
MIMAT0000757
GAGG
UCCUUGAG
UAG
|
|
hsa-miR-151-5p
1464
UCGAGGAGCUCACAGUC
1465
UCGAGGAGCUCA
1466
UGUGAGCUCCU
|
MIMAT0004697
UAGU
CAGUCUAG
CGA
|
|
hsa-miR-152
1467
UCAGUGCAUGACAGAAC
1468
UCAGUGCAUGAC
1469
CUGUCAUGCAC
|
MIMAT0000438
UUGG
AGAACUUG
UGA
|
|
hsa-miR-153
1470
UUGCAUAGUCACAAAAG
1471
UUGCAUAGUCAC
1472
UUGUGACUAUG
|
MIMAT0000439
UGAUC
AAAAGUGA
CAA
|
|
hsa-miR-1537
1473
AAAACCGUCUAGUUACA
1474
AAAACCGUCUAG
1475
AACUAGACGGU
|
MIMAT0007399
GUUGU
UUACAGUU
UUU
|
|
hsa-miR-1538
1476
CGGCCCGGGCUGCUGCU
1477
CGGCCCGGGCUG
1478
AGCAGCCCGGG
|
MIMAT0007400
GUUCCU
CUGCUGUU
CCG
|
|
hsa-miR-1539
1479
UCCUGCGCGUCCCAGAU
1480
UCCUGCGCGUCC
1481
UGGGACGCGCA
|
MIMAT0007401
GCCC
CAGAUGCC
GGA
|
|
hsa-miR-154
1482
UAGGUUAUCCGUGUUGC
1483
UAGGUUAUCCGU
1484
ACACGGAUAAC
|
MIMAT0000452
CUUCG
GUUGCCUU
CUA
|
|
hsa-miR-154*
1485
AAUCAUACACGGUUGAC
1486
AAUCAUACACGG
1487
AACCGUGUAUG
|
MIMAT0000453
CUAUU
UUGACCUA
AUU
|
|
hsa-miR-155
1488
UUAAUGCUAAUCGUGAU
1489
UUAAUGCUAAUC
1490
ACGAUUAGCAU
|
MIMAT0000646
AGGGGU
GUGAUAGG
UAA
|
|
hsa-miR-155*
1491
CUCCUACAUAUUAGCAU
1492
CUCCUACAUAUU
1493
CUAAUAUGUAG
|
MIMAT0004658
UAACA
AGCAUUAA
GAG
|
|
hsa-miR-15a
1494
UAGCAGCACAUAAUGGU
1495
UAGCAGCACAUA
1496
AUUAUGUGCUG
|
MIMAT0000068
UUGUG
AUGGUUUG
CUA
|
|
hsa-miR-15a*
1497
CAGGCCAUAUUGUGCUG
1498
CAGGCCAUAUUG
1499
CACAAUAUGGC
|
MIMAT0004488
CCUCA
UGCUGCCU
CUG
|
|
hsa-miR-15b
1500
UAGCAGCACAUCAUGGU
1501
UAGCAGCACAUC
1502
AUGAUGUGCUG
|
MIMAT0000417
UUACA
AUGGUUUA
CUA
|
|
hsa-miR-15b*
1503
CGAAUCAUUAUUUGCUG
1504
CGAAUCAUUAUU
1505
CAAAUAAUGAU
|
MIMAT0004586
CUCUA
UGCUGCUC
UCG
|
|
hsa-miR-16
1506
UAGCAGCACGUAAAUAU
1507
UAGCAGCACGUA
1508
UUUACGUGCUG
|
MIMAT0000069
UGGCG
AAUAUUGG
CUA
|
|
hsa-miR-16-1*
1509
CCAGUAUUAACUGUGCU
1510
CCAGUAUUAACU
1511
ACAGUUAAUAC
|
MIMAT0004489
GCUGA
GUGCUGCU
UGG
|
|
hsa-miR-16-2*
1512
CCAAUAUUACUGUGCUG
1513
CCAAUAUUACUG
1514
CACAGUAAUAU
|
MIMAT0004518
CUUUA
UGCUGCUU
UGG
|
|
hsa-miR-17
1515
CAAAGUGCUUACAGUGC
1516
CAAAGUGCUUAC
1517
CUGUAAGCACU
|
MIMAT0000070
AGGUAG
AGUGCAGG
UUG
|
|
hsa-miR-17*
1518
ACUGCAGUGAAGGCACU
1519
ACUGCAGUGAAG
1520
GCCUUCACUGC
|
MIMAT0000071
UGUAG
GCACUUGU
AGU
|
|
hsa-miR-181a
1521
AACAUUCAACGCUGUCG
1522
AACAUUCAACGC
1523
CAGCGUUGAAU
|
MIMAT0000256
GUGAGU
UGUCGGUG
GUU
|
|
hsa-miR-181a*
1524
ACCAUCGACCGUUGAUU
1525
ACCAUCGACCGU
1526
CAACGGUCGAU
|
MIMAT0000270
GUACC
UGAUUGUA
GGU
|
|
hsa-miR-181a-
1527
ACCACUGACCGUUGACU
1528
ACCACUGACCGU
1529
CAACGGUCAGU
|
2*
GUACC
UGACUGUA
GGU
|
MIMAT0004558
|
|
hsa-miR-181b
1530
AACAUUCAUUGCUGUCG
1531
AACAUUCAUUGC
1532
CAGCAAUGAAU
|
MIMAT0000257
GUGGGU
UGUCGGUG
GUU
|
|
hsa-miR-181c
1533
AACAUUCAACCUGUCGG
1534
AACAUUCAACCU
1535
ACAGGUUGAAU
|
MIMAT0000258
UGAGU
GUCGGUGA
GUU
|
|
hsa-miR-181c*
1536
AACCAUCGACCGUUGAG
1537
AACCAUCGACCG
1538
AACGGUCGAUG
|
MIMAT0004559
UGGAC
UUGAGUGG
GUU
|
|
hsa-miR-181d
1539
AACAUUCAUUGUUGUCG
1540
AACAUUCAUUGU
1541
CAACAAUGAAU
|
MIMAT0002821
GUGGGU
UGUCGGUG
GUU
|
|
hsa-miR-182
1542
UUUGGCAAUGGUAGAAC
1543
UUUGGCAAUGGU
1544
CUACCAUUGCC
|
MIMAT0000259
UCACACU
AGAACUCA
AAA
|
|
hsa-miR-182*
1545
UGGUUCUAGACUUGCCA
1546
UGGUUCUAGACU
1547
CAAGUCUAGAA
|
MIMAT0000260
ACUA
UGCCAACU
CCA
|
|
hsa-miR-1825
1548
UCCAGUGCCCUCCUCUC
1549
UCCAGUGCCCUC
1550
AGGAGGGCACU
|
MIMAT0006765
C
CUCUCC
GGA
|
|
hsa-miR-1827
1551
UGAGGCAGUAGAUUGAA
1552
UGAGGCAGUAGA
1553
AAUCUACUGCC
|
MIMAT0006767
U
UUGAAU
UCA
|
|
hsa-miR-183
1554
UAUGGCACUGGUAGAAU
1555
UAUGGCACUGGU
1556
CUACCAGUGCC
|
MIMAT0000261
UCACU
AGAAUUCA
AUA
|
|
hsa-miR-183*
1557
GUGAAUUACCGAAGGGC
1558
GUGAAUUACCGA
1559
CUUCGGUAAUU
|
MIMAT0004560
CAUAA
AGGGCCAU
CAC
|
|
hsa-miR-184
1560
UGGACGGAGAACUGAUA
1561
UGGACGGAGAAC
1562
CAGUUCUCCGU
|
MIMAT0000454
AGGGU
UGAUAAGG
CCA
|
|
hsa-miR-185
1563
UGGAGAGAAAGGCAGUU
1564
UGGAGAGAAAGG
1565
UGCCUUUCUCU
|
MIMAT0000455
CCUGA
CAGUUCCU
CCA
|
|
hsa-miR-185*
1566
AGGGGCUGGCUUUCCUC
1567
AGGGGCUGGCUU
1568
GAAAGCCAGCC
|
MIMAT0004611
UGGUC
UCCUCUGG
CCU
|
|
hsa-miR-186
1569
CAAAGAAUUCUCCUUUU
1570
CAAAGAAUUCUC
1571
AGGAGAAUUCU
|
MIMAT0000456
GGGCU
CUUUUGGG
UUG
|
|
hsa-miR-186*
1572
GCCCAAAGGUGAAUUUU
1573
GCCCAAAGGUGA
1574
AUUCACCUUUG
|
MIMAT0004612
UUGGG
AUUUUUUG
GGC
|
|
hsa-miR-187
1575
UCGUGUCUUGUGUUGCA
1576
UCGUGUCUUGUG
1577
AACACAAGACA
|
MIMAT0000262
GCCGG
UUGCAGCC
CGA
|
|
hsa-miR-187*
1578
GGCUACAACACAGGACC
1579
GGCUACAACACA
1580
CCUGUGUUGUA
|
MIMAT0004561
CGGGC
GGACCCGG
GCC
|
|
hsa-miR-188-3p
1581
CUCCCACAUGCAGGGUU
1582
CUCCCACAUGCA
1583
CCUGCAUGUGG
|
MIMAT0004613
UGCA
GGGUUUGC
GAG
|
|
hsa-miR-188-5p
1584
CAUCCCUUGCAUGGUGG
1585
CAUCCCUUGCAU
1586
CCAUGCAAGGG
|
MIMAT0000457
AGGG
GGUGGAGG
AUG
|
|
hsa-miR-18a
1587
UAAGGUGCAUCUAGUGC
1588
UAAGGUGCAUCU
1589
CUAGAUGCACC
|
MIMAT0000072
AGAUAG
AGUGCAGA
UUA
|
|
hsa-miR-18a*
1590
ACUGCCCUAAGUGCUCC
1591
ACUGCCCUAAGU
1592
GCACUUAGGGC
|
MIMAT0002891
UUCUGG
GCUCCUUC
AGU
|
|
hsa-miR-18b
1593
UAAGGUGCAUCUAGUGC
1594
UAAGGUGCAUCU
1595
CUAGAUGCACC
|
MIMAT0001412
AGUUAG
AGUGCAGU
UUA
|
|
hsa-miR-18b*
1596
UGCCCUAAAUGCCCCUU
1597
UGCCCUAAAUGC
1598
GGGCAUUUAGG
|
MIMAT0004751
CUGGC
CCCUUCUG
GCA
|
|
hsa-miR-190
1599
UGAUAUGUUUGAUAUAU
1600
UGAUAUGUUUGA
1601
UAUCAAACAUA
|
MIMAT0000458
UAGGU
UAUAUUAG
UCA
|
|
hsa-miR-1908
1602
CGGCGGGGACGGCGAUU
1603
CGGCGGGGACGG
1604
CGCCGUCCCCG
|
MIMAT0007881
GGUC
CGAUUGGU
CCG
|
|
hsa-miR-1909
1605
CGCAGGGGCCGGGUGCU
1606
CGCAGGGGCCGG
1607
ACCCGGCCCCU
|
MIMAT0007883
CACCG
GUGCUCAC
GCG
|
|
hsa-miR-1909*
1608
UGAGUGCCGGUGCCUGC
1609
UGAGUGCCGGUG
1610
GGCACCGGCAC
|
MIMAT0007882
CCUG
CCUGCCCU
UCA
|
|
hsa-miR-190b
1611
UGAUAUGUUUGAUAUUG
1612
UGAUAUGUUUGA
1613
UAUCAAACAUA
|
MIMAT0004929
GGUU
UAUUGGGU
UCA
|
|
hsa-miR-191
1614
CAACGGAAUCCCAAAAG
1615
CAACGGAAUCCC
1616
UUGGGAUUCCG
|
MIMAT0000440
CAGCUG
AAAAGCAG
UUG
|
|
hsa-miR-191*
1617
GCUGCGCUUGGAUUUCG
1618
GCUGCGCUUGGA
1619
AAUCCAAGCGC
|
MIMAT0001618
UCCCC
UUUCGUCC
AGC
|
|
hsa-miR-1910
1620
CCAGUCCUGUGCCUGCC
1621
CCAGUCCUGUGC
1622
AGGCACAGGAC
|
MIMAT0007884
GCCU
CUGCCGCC
UGG
|
|
hsa-miR-1911
1623
UGAGUACCGCCAUGUCU
1624
UGAGUACCGCCA
1625
CAUGGCGGUAC
|
MIMAT0007885
GUUGGG
UGUCUGUU
UCA
|
|
hsa-miR-1911*
1626
CACCAGGCAUUGUGGUC
1627
CACCAGGCAUUG
1628
CACAAUGCCUG
|
MIMAT0007886
UCC
UGGUCUCC
GUG
|
|
hsa-miR-1912
1629
UACCCAGAGCAUGCAGU
1630
UACCCAGAGCAU
1631
GCAUGCUCUGG
|
MIMAT0007887
GUGAA
GCAGUGUG
GUA
|
|
hsa-miR-1913
1632
UCUGCCCCCUCCGCUGC
1633
UCUGCCCCCUCC
1634
GCGGAGGGGGC
|
MIMAT0007888
UGCCA
GCUGCUGC
AGA
|
|
hsa-miR-1914
1635
CCCUGUGCCCGGCCCAC
1636
CCCUGUGCCCGG
1637
GGCCGGGCACA
|
MIMAT0007889
UUCUG
CCCACUUC
GGG
|
|
hsa-miR-1914*
1638
GGAGGGGUCCCGCACUG
1639
GGAGGGGUCCCG
1640
UGCGGGACCCC
|
MIMAT0007890
GGAGG
CACUGGGA
UCC
|
|
hsa-miR-1915
1641
CCCCAGGGCGACGCGGC
1642
CCCCAGGGCGAC
1643
GCGUCGCCCUG
|
MIMAT0007892
GGG
GCGGCGGG
GGG
|
|
hsa-miR-1915*
1644
ACCUUGCCUUGCUGCCC
1645
ACCUUGCCUUGC
1646
CAGCAAGGCAA
|
MIMAT0007891
GGGCC
UGCCCGGG
GGU
|
|
hsa-miR-192
1647
CUGACCUAUGAAUUGAC
1648
CUGACCUAUGAA
1649
AAUUCAUAGGU
|
MIMAT0000222
AGCC
UUGACAGC
CAG
|
|
hsa-miR-192*
1650
CUGCCAAUUCCAUAGGU
1651
CUGCCAAUUCCA
1652
UAUGGAAUUGG
|
MIMAT0004543
CACAG
UAGGUCAC
CAG
|
|
hsa-miR-193a-
1653
AACUGGCCUACAAAGUC
1654
AACUGGCCUACA
1655
UUUGUAGGCCA
|
3p
CCAGU
AAGUCCCA
GUU
|
MIMAT0000459
|
|
hsa-miR-193a-
1656
UGGGUCUUUGCGGGCGA
1657
UGGGUCUUUGCG
1658
CCCGCAAAGAC
|
5p
GAUGA
GGCGAGAU
CCA
|
MIMAT0004614
|
|
hsa-miR-193b
1659
AACUGGCCCUCAAAGUC
1660
AACUGGCCCUCA
1661
UUUGAGGGCCA
|
MIMAT0002819
CCGCU
AAGUCCCG
GUU
|
|
hsa-miR-193b*
1662
CGGGGUUUUGAGGGCGA
1663
CGGGGUUUUGAG
1664
CCCUCAAAACC
|
MIMAT0004767
GAUGA
GGCGAGAU
CCG
|
|
hsa-miR-194
1665
UGUAACAGCAACUCCAU
1666
UGUAACAGCAAC
1667
GAGUUGCUGUU
|
MIMAT0000460
GUGGA
UCCAUGUG
ACA
|
|
hsa-miR-194*
1668
CCAGUGGGGCUGCUGUU
1669
CCAGUGGGGCUG
1670
AGCAGCCCCAC
|
MIMAT0004671
AUCUG
CUGUUAUC
UGG
|
|
hsa-miR-195
1671
UAGCAGCACAGAAAUAU
1672
UAGCAGCACAGA
1673
UUUCUGUGCUG
|
MIMAT0000461
UGGC
AAUAUUGG
CUA
|
|
hsa-miR-195*
1674
CCAAUAUUGGCUGUGCU
1675
CCAAUAUUGGCU
1676
ACAGCCAAUAU
|
MIMAT0004615
GCUCC
GUGCUGCU
UGG
|
|
hsa-miR-196a
1677
UAGGUAGUUUCAUGUUG
1678
UAGGUAGUUUCA
1679
CAUGAAACUAC
|
MIMAT0000226
UUGGG
UGUUGUUG
CUA
|
|
hsa-miR-196a*
1680
CGGCAACAAGAAACUGC
1681
CGGCAACAAGAA
1682
GUUUCUUGUUG
|
MIMAT0004562
CUGAG
ACUGCCUG
CCG
|
|
hsa-miR-196b
1683
UAGGUAGUUUCCUGUUG
1684
UAGGUAGUUUCC
1685
CAGGAAACUAC
|
MIMAT0001080
UUGGG
UGUUGUUG
CUA
|
|
hsa-miR-196b*
1686
UCGACAGCACGACACUG
1687
UCGACAGCACGA
1688
UGUCGUGCUGU
|
MIMAT0009201
CCUUC
CACUGCCU
CGA
|
|
hsa-miR-197
1689
UUCACCACCUUCUCCAC
1690
UUCACCACCUUC
1691
GAGAAGGUGGU
|
MIMAT0000227
CCAGC
UCCACCCA
GAA
|
|
hsa-miR-1972
1692
UCAGGCCAGGCACAGUG
1693
UCAGGCCAGGCA
1694
UGUGCCUGGCC
|
MIMAT0009447
GCUCA
CAGUGGCU
UGA
|
|
hsa-miR-1973
1695
ACCGUGCAAAGGUAGCA
1696
ACCGUGCAAAGG
1697
UACCUUUGCAC
|
MIMAT0009448
UA
UAGCAUA
GGU
|
|
hsa-miR-1976
1698
CCUCCUGCCCUCCUUGC
1699
CCUCCUGCCCUC
1700
AGGAGGGCAGG
|
MIMAT0009451
UGU
CUUGCUGU
AGG
|
|
hsa-miR-198
1701
GGUCCAGAGGGGAGAUA
1702
GGUCCAGAGGGG
1703
CUCCCCUCUGG
|
MIMAT0000228
GGUUC
AGAUAGGU
ACC
|
|
hsa-miR-199a-
1704
ACAGUAGUCUGCACAUU
1705
ACAGUAGUCUGC
1706
GUGCAGACUAC
|
3p
GGUUA
ACAUUGGU
UGU
|
MIMAT0000232
|
|
hsa-miR-199a-
1707
CCCAGUGUUCAGACUAC
1708
CCCAGUGUUCAG
1709
GUCUGAACACU
|
5p
CUGUUC
ACUACCUG
GGG
|
MIMAT0000231
|
|
hsa-miR-199b-
1710
ACAGUAGUCUGCACAUU
1711
ACAGUAGUCUGC
1712
GUGCAGACUAC
|
3p
GGUUA
ACAUUGGU
UGU
|
MIMAT0004563
|
|
hsa-miR-199b-
1713
CCCAGUGUUUAGACUAU
1714
CCCAGUGUUUAG
1715
GUCUAAACACU
|
5p
CUGUUC
ACUAUCUG
GGG
|
MIMAT0000263
|
|
hsa-miR-19a
1716
UGUGCAAAUCUAUGCAA
1717
UGUGCAAAUCUA
1718
CAUAGAUUUGC
|
MIMAT0000073
AACUGA
UGCAAAAC
ACA
|
|
hsa-miR-19a*
1719
AGUUUUGCAUAGUUGCA
1720
AGUUUUGCAUAG
1721
AACUAUGCAAA
|
MIMAT0004490
CUACA
UUGCACUA
ACU
|
|
hsa-miR-19b
1722
UGUGCAAAUCCAUGCAA
1723
UGUGCAAAUCCA
1724
CAUGGAUUUGC
|
MIMAT0000074
AACUGA
UGCAAAAC
ACA
|
|
hsa-miR-19b-1*
1725
AGUUUUGCAGGUUUGCA
1726
AGUUUUGCAGGU
1727
AAACCUGCAAA
|
MIMAT0004491
UCCAGC
UUGCAUCC
ACU
|
|
hsa-miR-19b-2*
1728
AGUUUUGCAGGUUUGCA
1729
AGUUUUGCAGGU
1730
AAACCUGCAAA
|
MIMAT0004492
UUUCA
UUGCAUUU
ACU
|
|
hsa-miR-200a
1731
UAACACUGUCUGGUAAC
1732
UAACACUGUCUG
1733
ACCAGACAGUG
|
MIMAT0000682
GAUGU
GUAACGAU
UUA
|
|
hsa-miR-200a*
1734
CAUCUUACCGGACAGUG
1735
CAUCUUACCGGA
1736
UGUCCGGUAAG
|
MIMAT0001620
CUGGA
CAGUGCUG
AUG
|
|
hsa-miR-200b
1737
UAAUACUGCCUGGUAAU
1738
UAAUACUGCCUG
1739
ACCAGGCAGUA
|
MIMAT0000318
GAUGA
GUAAUGAU
UUA
|
|
hsa-miR-200b*
1740
CAUCUUACUGGGCAGCA
1741
CAUCUUACUGGG
1742
UGCCCAGUAAG
|
MIMAT0004571
UUGGA
CAGCAUUG
AUG
|
|
hsa-miR-200c
1743
UAAUACUGCCGGGUAAU
1744
UAAUACUGCCGG
1745
ACCCGGCAGUA
|
MIMAT0000617
GAUGGA
GUAAUGAU
UUA
|
|
hsa-miR-200c*
1746
CGUCUUACCCAGCAGUG
1747
CGUCUUACCCAG
1748
UGCUGGGUAAG
|
MIMAT0004657
UUUGG
CAGUGUUU
ACG
|
|
hsa-miR-202
1749
AGAGGUAUAGGGCAUGG
1750
AGAGGUAUAGGG
1751
UGCCCUAUACC
|
MIMAT0002811
GAA
CAUGGGAA
UCU
|
|
hsa-miR-202*
1752
UUCCUAUGCAUAUACUU
1753
UUCCUAUGCAUA
1754
UAUAUGCAUAG
|
MIMAT0002810
CUUUG
UACUUCUU
GAA
|
|
hsa-miR-203
1755
GUGAAAUGUUUAGGACC
1756
GUGAAAUGUUUA
1757
CCUAAACAUUU
|
MIMAT0000264
ACUAG
GGACCACU
CAC
|
|
hsa-miR-204
1758
UUCCCUUUGUCAUCCUA
1759
UUCCCUUUGUCA
1760
GAUGACAAAGG
|
MIMAT0000265
UGCCU
UCCUAUGC
GAA
|
|
hsa-miR-205
1761
UCCUUCAUUCCACCGGA
1762
UCCUUCAUUCCA
1763
GGUGGAAUGAA
|
MIMAT0000266
GUCUG
CCGGAGUC
GGA
|
|
hsa-miR-205*
1764
GAUUUCAGUGGAGUGAA
1765
GAUUUCAGUGGA
1766
ACUCCACUGAA
|
MIMAT0009197
GUUC
GUGAAGUU
AUC
|
|
hsa-miR-2052
1767
UGUUUUGAUAACAGUAA
1768
UGUUUUGAUAAC
1769
CUGUUAUCAAA
|
MIMAT0009977
UGU
AGUAAUGU
ACA
|
|
hsa-miR-2053
1770
GUGUUAAUUAAACCUCU
1771
GUGUUAAUUAAA
1772
GGUUUAAUUAA
|
MIMAT0009978
AUUUAC
CCUCUAUU
CAC
|
|
hsa-miR-2054
1773
CUGUAAUAUAAAUUUAA
1774
CUGUAAUAUAAA
1775
AAUUUAUAUUA
|
MIMAT0009979
UUUAUU
UUUAAUUU
CAG
|
|
hsa-miR-206
1776
UGGAAUGUAAGGAAGUG
1777
UGGAAUGUAAGG
1778
UUCCUUACAUU
|
MIMAT0000462
UGUGG
AAGUGUGU
CCA
|
|
hsa-miR-208a
1779
AUAAGACGAGCAAAAAG
1780
AUAAGACGAGCA
1781
UUUGCUCGUCU
|
MIMAT0000241
CUUGU
AAAAGCUU
UAU
|
|
hsa-miR-208b
1782
AUAAGACGAACAAAAGG
1783
AUAAGACGAACA
1784
UUUGUUCGUCU
|
MIMAT0004960
UUUGU
AAAGGUUU
UAU
|
|
hsa-miR-20a
1785
UAAAGUGCUUAUAGUGC
1786
UAAAGUGCUUAU
1787
CUAUAAGCACU
|
MIMAT0000075
AGGUAG
AGUGCAGG
UUA
|
|
hsa-miR-20a*
1788
ACUGCAUUAUGAGCACU
1789
ACUGCAUUAUGA
1790
GCUCAUAAUGC
|
MIMAT0004493
UAAAG
GCACUUAA
AGU
|
|
hsa-miR-20b
1791
CAAAGUGCUCAUAGUGC
1792
CAAAGUGCUCAU
1793
CUAUGAGCACU
|
MIMAT0001413
AGGUAG
AGUGCAGG
UUG
|
|
hsa-miR-20b*
1794
ACUGUAGUAUGGGCACU
1795
ACUGUAGUAUGG
1796
GCCCAUACUAC
|
MIMAT0004752
UCCAG
GCACUUCC
AGU
|
|
hsa-miR-21
1797
UAGCUUAUCAGACUGAU
1798
UAGCUUAUCAGA
1799
AGUCUGAUAAG
|
MIMAT0000076
GUUGA
CUGAUGUU
CUA
|
|
hsa-miR-21*
1800
CAACACCAGUCGAUGGG
1801
CAACACCAGUCG
1802
AUCGACUGGUG
|
MIMAT0004494
CUGU
AUGGGCUG
UUG
|
|
hsa-miR-210
1803
CUGUGCGUGUGACAGCG
1804
CUGUGCGUGUGA
1805
UGUCACACGCA
|
MIMAT0000267
GCUGA
CAGCGGCU
CAG
|
|
hsa-miR-211
1806
UUCCCUUUGUCAUCCUU
1807
UUCCCUUUGUCA
1808
GAUGACAAAGG
|
MIMAT0000268
CGCCU
UCCUUCGC
GAA
|
|
hsa-miR-2110
1809
UUGGGGAAACGGCCGCU
1810
UUGGGGAAACGG
1811
GGCCGUUUCCC
|
MIMAT0010133
GAGUG
CCGCUGAG
CAA
|
|
hsa-miR-2113
1812
AUUUGUGCUUGGCUCUG
1813
AUUUGUGCUUGG
1814
AGCCAAGCACA
|
MIMAT0009206
UCAC
CUCUGUCA
AAU
|
|
hsa-miR-2114
1815
UAGUCCCUUCCUUGAAG
1816
UAGUCCCUUCCU
1817
CAAGGAAGGGA
|
MIMAT0011156
CGGUC
UGAAGCGG
CUA
|
|
hsa-miR-2114*
1818
CGAGCCUCAAGCAAGGG
1819
CGAGCCUCAAGC
1820
UUGCUUGAGGC
|
MIMAT0011157
ACUU
AAGGGACU
UCG
|
|
hsa-miR-2115
1821
AGCUUCCAUGACUCCUG
1822
AGCUUCCAUGAC
1823
GAGUCAUGGAA
|
MIMAT0011158
AUGGA
UCCUGAUG
GCU
|
|
hsa-miR-2115*
1824
CAUCAGAAUUCAUGGAG
1825
CAUCAGAAUUCA
1826
CAUGAAUUCUG
|
MIMAT0011159
GCUAG
UGGAGGCU
AUG
|
|
hsa-miR-2116
1827
GGUUCUUAGCAUAGGAG
1828
GGUUCUUAGCAU
1829
CUAUGCUAAGA
|
MIMAT0011160
GUCU
AGGAGGUC
ACC
|
|
hsa-miR-2116*
1830
CCUCCCAUGCCAAGAAC
1831
CCUCCCAUGCCA
1832
CUUGGCAUGGG
|
MIMAT0011161
UCCC
AGAACUCC
AGG
|
|
hsa-miR-2117
1833
UGUUCUCUUUGCCAAGG
1834
UGUUCUCUUUGC
1835
UGGCAAAGAGA
|
MIMAT0011162
ACAG
CAAGGACA
ACA
|
|
hsa-miR-212
1836
UAACAGUCUCCAGUCAC
1837
UAACAGUCUCCA
1838
ACUGGAGACUG
|
MIMAT0000269
GGCC
GUCACGGC
UUA
|
|
hsa-miR-214
1839
ACAGCAGGCACAGACAG
1840
ACAGCAGGCACA
1841
UCUGUGCCUGC
|
MIMAT0000271
GCAGU
GACAGGCA
UGU
|
|
hsa-miR-214*
1842
UGCCUGUCUACACUUGC
1843
UGCCUGUCUACA
1844
AGUGUAGACAG
|
MIMAT0004564
UGUGC
CUUGCUGU
GCA
|
|
hsa-miR-215
1845
AUGACCUAUGAAUUGAC
1846
AUGACCUAUGAA
1847
AAUUCAUAGGU
|
MIMAT0000272
AGAC
UUGACAGA
CAU
|
|
hsa-miR-216a
1848
UAAUCUCAGCUGGCAAC
1849
UAAUCUCAGCUG
1850
GCCAGCUGAGA
|
MIMAT0000273
UGUGA
GCAACUGU
UUA
|
|
hsa-miR-216b
1851
AAAUCUCUGCAGGCAAA
1852
AAAUCUCUGCAG
1853
GCCUGCAGAGA
|
MIMAT0004959
UGUGA
GCAAAUGU
UUU
|
|
hsa-miR-217
1854
UACUGCAUCAGGAACUG
1855
UACUGCAUCAGG
1856
UUCCUGAUGCA
|
MIMAT0000274
AUUGGA
AACUGAUU
GUA
|
|
hsa-miR-218
1857
UUGUGCUUGAUCUAACC
1858
UUGUGCUUGAUC
1859
UAGAUCAAGCA
|
MIMAT0000275
AUGU
UAACCAUG
CAA
|
|
hsa-miR-218-1*
1860
AUGGUUCCGUCAAGCAC
1861
AUGGUUCCGUCA
1862
CUUGACGGAAC
|
MIMAT0004565
CAUGG
AGCACCAU
CAU
|
|
hsa-miR-218-2*
1863
CAUGGUUCUGUCAAGCA
1864
CAUGGUUCUGUC
1865
UUGACAGAACC
|
MIMAT0004566
CCGCG
AAGCACCG
AUG
|
|
hsa-miR-219-1-
1866
AGAGUUGAGUCUGGACG
1867
AGAGUUGAGUCU
1868
CCAGACUCAAC
|
3p
UCCCG
GGACGUCC
UCU
|
MIMAT0004567
|
|
hsa-miR-219-2-
1869
AGAAUUGUGGCUGGACA
1870
AGAAUUGUGGCU
1871
CCAGCCACAAU
|
3p
UCUGU
GGACAUCU
UCU
|
MIMAT0004675
|
|
hsa-miR-219-5p
1872
UGAUUGUCCAAACGCAA
1873
UGAUUGUCCAAA
1874
CGUUUGGACAA
|
MIMAT0000276
UUCU
CGCAAUUC
UCA
|
|
hsa-miR-22
1875
AAGCUGCCAGUUGAAGA
1876
AAGCUGCCAGUU
1877
UCAACUGGCAG
|
MIMAT0000077
ACUGU
GAAGAACU
CUU
|
|
hsa-miR-22*
1878
AGUUCUUCAGUGGCAAG
1879
AGUUCUUCAGUG
1880
GCCACUGAAGA
|
MIMAT0004495
CUUUA
GCAAGCUU
ACU
|
|
hsa-miR-221
1881
AGCUACAUUGUCUGCUG
1882
AGCUACAUUGUC
1883
CAGACAAUGUA
|
MIMAT0000278
GGUUUC
UGCUGGGU
GCU
|
|
hsa-miR-221*
1884
ACCUGGCAUACAAUGUA
1885
ACCUGGCAUACA
1886
AUUGUAUGCCA
|
MIMAT0004568
GAUUU
AUGUAGAU
GGU
|
|
hsa-miR-222
1887
AGCUACAUCUGGCUACU
1888
AGCUACAUCUGG
1889
AGCCAGAUGUA
|
MIMAT0000279
GGGU
CUACUGGG
GCU
|
|
hsa-miR-222*
1890
CUCAGUAGCCAGUGUAG
1891
CUCAGUAGCCAG
1892
CACUGGCUACU
|
MIMAT0004569
AUCCU
UGUAGAUC
GAG
|
|
hsa-miR-223
1893
UGUCAGUUUGUCAAAUA
1894
UGUCAGUUUGUC
1895
UUGACAAACUG
|
MIMAT0000280
CCCCA
AAAUACCC
ACA
|
|
hsa-miR-223*
1896
CGUGUAUUUGACAAGCU
1897
CGUGUAUUUGAC
1898
UUGUCAAAUAC
|
MIMAT0004570
GAGUU
AAGCUGAG
ACG
|
|
hsa-miR-224
1899
CAAGUCACUAGUGGUUC
1900
CAAGUCACUAGU
1901
CCACUAGUGAC
|
MIMAT0000281
CGUU
GGUUCCGU
UUG
|
|
hsa-miR-224*
1902
AAAAUGGUGCCCUAGUG
1903
AAAAUGGUGCCC
1904
UAGGGCACCAU
|
MIMAT0009198
ACUACA
UAGUGACU
UUU
|
|
hsa-miR-2276
1905
UCUGCAAGUGUCAGAGG
1906
UCUGCAAGUGUC
1907
CUGACACUUGC
|
MIMAT0011775
CGAGG
AGAGGCGA
AGA
|
|
hsa-miR-2277-
1908
UGACAGCGCCCUGCCUG
1909
UGACAGCGCCCU
1910
GCAGGGCGCUG
|
3p
GCUC
GCCUGGCU
UCA
|
MIMAT0011777
|
|
hsa-miR-2277-
1911
AGCGCGGGCUGAGCGCU
1912
AGCGCGGGCUGA
1913
GCUCAGCCCGC
|
5p
GCCAGUC
GCGCUGCC
GCU
|
MIMAT0017352
|
|
hsa-miR-2278
1914
GAGAGCAGUGUGUGUUG
1915
GAGAGCAGUGUG
1916
CACACACUGCU
|
MIMAT0011778
CCUGG
UGUUGCCU
CUC
|
|
hsa-miR-2355-
1917
AUUGUCCUUGCUGUUUG
1918
AUUGUCCUUGCU
1919
ACAGCAAGGAC
|
3p
GAGAU
GUUUGGAG
AAU
|
MIMAT0017950
|
|
hsa-miR-2355-
1920
AUCCCCAGAUACAAUGG
1921
AUCCCCAGAUAC
1922
UUGUAUCUGGG
|
5p
ACAA
AAUGGACA
GAU
|
MIMAT0016895
|
|
hsa-miR-23a
1923
AUCACAUUGCCAGGGAU
1924
AUCACAUUGCCA
1925
CCUGGCAAUGU
|
MIMAT0000078
UUCC
GGGAUUUC
GAU
|
|
hsa-miR-23a*
1926
GGGGUUCCUGGGGAUGG
1927
GGGGUUCCUGGG
1928
UCCCCAGGAAC
|
MIMAT0004496
GAUUU
GAUGGGAU
CCC
|
|
hsa-miR-23b
1929
AUCACAUUGCCAGGGAU
1930
AUCACAUUGCCA
1931
CCUGGCAAUGU
|
MIMAT0000418
UACC
GGGAUUAC
GAU
|
|
hsa-miR-23b*
1932
UGGGUUCCUGGCAUGCU
1933
UGGGUUCCUGGC
1934
AUGCCAGGAAC
|
MIMAT0004587
GAUUU
AUGCUGAU
CCA
|
|
hsa-miR-23c
1935
AUCACAUUGCCAGUGAU
1936
AUCACAUUGCCA
1937
ACUGGCAAUGU
|
MIMAT0018000
UACCC
GUGAUUAC
GAU
|
|
hsa-miR-24
1938
UGGCUCAGUUCAGCAGG
1939
UGGCUCAGUUCA
1940
GCUGAACUGAG
|
MIMAT0000080
AACAG
GCAGGAAC
CCA
|
|
hsa-miR-24-1*
1941
UGCCUACUGAGCUGAUA
1942
UGCCUACUGAGC
1943
CAGCUCAGUAG
|
MIMAT0000079
UCAGU
UGAUAUCA
GCA
|
|
hsa-miR-24-2*
1944
UGCCUACUGAGCUGAAA
1945
UGCCUACUGAGC
1946
CAGCUCAGUAG
|
MIMAT0004497
CACAG
UGAAACAC
GCA
|
|
hsa-miR-25
1947
CAUUGCACUUGUCUCGG
1948
CAUUGCACUUGU
1949
AGACAAGUGCA
|
MIMAT0000081
UCUGA
CUCGGUCU
AUG
|
|
hsa-miR-25*
1950
AGGCGGAGACUUGGGCA
1951
AGGCGGAGACUU
1952
CCAAGUCUCCG
|
MIMAT0004498
AUUG
GGGCAAUU
CCU
|
|
hsa-miR-26a
1953
UUCAAGUAAUCCAGGAU
1954
UUCAAGUAAUCC
1955
CUGGAUUACUU
|
MIMAT0000082
AGGCU
AGGAUAGG
GAA
|
|
hsa-miR-26a-1*
1956
CCUAUUCUUGGUUACUU
1957
CCUAUUCUUGGU
1958
UAACCAAGAAU
|
MIMAT0004499
GCACG
UACUUGCA
AGG
|
|
hsa-miR-26a-2*
1959
CCUAUUCUUGAUUACUU
1960
CCUAUUCUUGAU
1961
UAAUCAAGAAU
|
MIMAT0004681
GUUUC
UACUUGUU
AGG
|
|
hsa-miR-26b
1962
UUCAAGUAAUUCAGGAU
1963
UUCAAGUAAUUC
1964
CUGAAUUACUU
|
MIMAT0000083
AGGU
AGGAUAGG
GAA
|
|
hsa-miR-26b*
1965
CCUGUUCUCCAUUACUU
1966
CCUGUUCUCCAU
1967
UAAUGGAGAAC
|
MIMAT0004500
GGCUC
UACUUGGC
AGG
|
|
hsa-miR-27a
1968
UUCACAGUGGCUAAGUU
1969
UUCACAGUGGCU
1970
UUAGCCACUGU
|
MIMAT0000084
CCGC
AAGUUCCG
GAA
|
|
hsa-miR-27a*
1971
AGGGCUUAGCUGCUUGU
1972
AGGGCUUAGCUG
1973
AGCAGCUAAGC
|
MIMAT0004501
GAGCA
CUUGUGAG
CCU
|
|
hsa-miR-27b
1974
UUCACAGUGGCUAAGUU
1975
UUCACAGUGGCU
1976
UUAGCCACUGU
|
MIMAT0000419
CUGC
AAGUUCUG
GAA
|
|
hsa-miR-27b*
1977
AGAGCUUAGCUGAUUGG
1978
AGAGCUUAGCUG
1979
AUCAGCUAAGC
|
MIMAT0004588
UGAAC
AUUGGUGA
UCU
|
|
hsa-miR-28-3p
1980
CACUAGAUUGUGAGCUC
1981
CACUAGAUUGUG
1982
CUCACAAUCUA
|
MIMAT0004502
CUGGA
AGCUCCUG
GUG
|
|
hsa-miR-28-5p
1983
AAGGAGCUCACAGUCUA
1984
AAGGAGCUCACA
1985
ACUGUGAGCUC
|
MIMAT0000085
UUGAG
GUCUAUUG
CUU
|
|
hsa-miR-2861
1986
GGGGCCUGGCGGUGGGC
1987
GGGGCCUGGCGG
1988
CACCGCCAGGC
|
MIMAT0013802
GG
UGGGCGG
CCC
|
|
hsa-miR-2909
1989
GUUAGGGCCAACAUCUC
1990
GUUAGGGCCAAC
1991
AUGUUGGCCCU
|
MIMAT0013863
UUGG
AUCUCUUG
AAC
|
|
hsa-miR-296-3p
1992
GAGGGUUGGGUGGAGGC
1993
GAGGGUUGGGUG
1994
UCCACCCAACC
|
MIMAT0004679
UCUCC
GAGGCUCU
CUC
|
|
hsa-miR-296-5p
1995
AGGGCCCCCCCUCAAUC
1996
AGGGCCCCCCCU
1997
UGAGGGGGGGC
|
MIMAT0000690
CUGU
CAAUCCUG
CCU
|
|
hsa-miR-297
1998
AUGUAUGUGUGCAUGUG
1999
AUGUAUGUGUGC
2000
AUGCACACAUA
|
MIMAT0004450
CAUG
AUGUGCAU
CAU
|
|
hsa-miR-298
2001
AGCAGAAGCAGGGAGGU
2002
AGCAGAAGCAGG
2003
UCCCUGCUUCU
|
MIMAT0004901
UCUCCCA
GAGGUUCU
GCU
|
|
hsa-miR-299-3p
2004
UAUGUGGGAUGGUAAAC
2005
UAUGUGGGAUGG
2006
UACCAUCCCAC
|
MIMAT0000687
CGCUU
UAAACCGC
AUA
|
|
hsa-miR-299-5p
2007
UGGUUUACCGUCCCACA
2008
UGGUUUACCGUC
2009
GGGACGGUAAA
|
MIMAT0002890
UACAU
CCACAUAC
CCA
|
|
hsa-miR-29a
2010
UAGCACCAUCUGAAAUC
2011
UAGCACCAUCUG
2012
UUCAGAUGGUG
|
MIMAT0000086
GGUUA
AAAUCGGU
CUA
|
|
hsa-miR-29a*
2013
ACUGAUUUCUUUUGGUG
2014
ACUGAUUUCUUU
2015
CAAAAGAAAUC
|
MIMAT0004503
UUCAG
UGGUGUUC
AGU
|
|
hsa-miR-29b
2016
UAGCACCAUUUGAAAUC
2017
UAGCACCAUUUG
2018
UUCAAAUGGUG
|
MIMAT0000100
AGUGUU
AAAUCAGU
CUA
|
|
hsa-miR-29b-1*
2019
GCUGGUUUCAUAUGGUG
2020
GCUGGUUUCAUA
2021
CAUAUGAAACC
|
MIMAT0004514
GUUUAGA
UGGUGGUU
AGC
|
|
hsa-miR-29b-2*
2022
CUGGUUUCACAUGGUGG
2023
CUGGUUUCACAU
2024
CCAUGUGAAAC
|
MIMAT0004515
CUUAG
GGUGGCUU
CAG
|
|
hsa-miR-29c
2025
UAGCACCAUUUGAAAUC
2026
UAGCACCAUUUG
2027
UUCAAAUGGUG
|
MIMAT0000681
GGUUA
AAAUCGGU
CUA
|
|
hsa-miR-29c*
2028
UGACCGAUUUCUCCUGG
2029
UGACCGAUUUCU
2030
GGAGAAAUCGG
|
MIMAT0004673
UGUUC
CCUGGUGU
UCA
|
|
hsa-miR-300
2031
UAUACAAGGGCAGACUC
2032
UAUACAAGGGCA
2033
UCUGCCCUUGU
|
MIMAT0004903
UCUCU
GACUCUCU
AUA
|
|
hsa-miR-301a
2034
CAGUGCAAUAGUAUUGU
2035
CAGUGCAAUAGU
2036
AUACUAUUGCA
|
MIMAT0000688
CAAAGC
AUUGUCAA
CUG
|
|
hsa-miR-301b
2037
CAGUGCAAUGAUAUUGU
2038
CAGUGCAAUGAU
2039
AUAUCAUUGCA
|
MIMAT0004958
CAAAGC
AUUGUCAA
CUG
|
|
hsa-miR-302a
2040
UAAGUGCUUCCAUGUUU
2041
UAAGUGCUUCCA
2042
CAUGGAAGCAC
|
MIMAT0000684
UGGUGA
UGUUUUGG
UUA
|
|
hsa-miR-302a*
2043
ACUUAAACGUGGAUGUA
2044
ACUUAAACGUGG
2045
AUCCACGUUUA
|
MIMAT0000683
CUUGCU
AUGUACUU
AGU
|
|
hsa-miR-302b
2046
UAAGUGCUUCCAUGUUU
2047
UAAGUGCUUCCA
2048
CAUGGAAGCAC
|
MIMAT0000715
UAGUAG
UGUUUUAG
UUA
|
|
hsa-miR-302b*
2049
ACUUUAACAUGGAAGUG
2050
ACUUUAACAUGG
2051
UUCCAUGUUAA
|
MIMAT0000714
CUUUC
AAGUGCUU
AGU
|
|
hsa-miR-302c
2052
UAAGUGCUUCCAUGUUU
2053
UAAGUGCUUCCA
2054
CAUGGAAGCAC
|
MIMAT0000717
CAGUGG
UGUUUCAG
UUA
|
|
hsa-miR-302c*
2055
UUUAACAUGGGGGUACC
2056
UUUAACAUGGGG
2057
ACCCCCAUGUU
|
MIMAT0000716
UGCUG
GUACCUGC
AAA
|
|
hsa-miR-302d
2058
UAAGUGCUUCCAUGUUU
2059
UAAGUGCUUCCA
2060
CAUGGAAGCAC
|
MIMAT0000718
GAGUGU
UGUUUGAG
UUA
|
|
hsa-miR-302d*
2061
ACUUUAACAUGGAGGCA
2062
ACUUUAACAUGG
2063
CUCCAUGUUAA
|
MIMAT0004685
CUUGC
AGGCACUU
AGU
|
|
hsa-miR-302e
2064
UAAGUGCUUCCAUGCUU
2065
UAAGUGCUUCCA
2066
CAUGGAAGCAC
|
MIMAT0005931
UGCUU
UUA
|
|
hsa-miR-302f
2067
UAAUUGCUUCCAUGUUU
2068
UAAUUGCUUCCA
2069
CAUGGAAGCAA
|
MIMAT0005932
UGUUU
UUA
|
|
hsa-miR-3065-
2070
UCAGCACCAGGAUAUUG
2071
UCAGCACCAGGA
2072
UAUCCUGGUGC
|
3p
UUGGAG
UAUUGUUG
UGA
|
MIMAT0015378
|
|
hsa-miR-3065-
2073
UCAACAAAAUCACUGAU
2074
UCAACAAAAUCA
2075
AGUGAUUUUGU
|
5p
GCUGGA
CUGAUGCU
UGA
|
MIMAT0015066
|
|
hsa-miR-3074
2076
GAUAUCAGCUCAGUAGG
2077
GAUAUCAGCUCA
2078
ACUGAGCUGAU
|
MIMAT0015027
CACCG
GUAGGCAC
AUC
|
|
hsa-miR-30a
2079
UGUAAACAUCCUCGACU
2080
UGUAAACAUCCU
2081
CGAGGAUGUUU
|
MIMAT0000087
GGAAG
CGACUGGA
ACA
|
|
hsa-miR-30a*
2082
CUUUCAGUCGGAUGUUU
2083
CUUUCAGUCGGA
2084
CAUCCGACUGA
|
MIMAT0000088
GCAGC
UGUUUGCA
AAG
|
|
hsa-miR-30b
2085
UGUAAACAUCCUACACU
2086
UGUAAACAUCCU
2087
GUAGGAUGUUU
|
MIMAT0000420
CAGCU
ACACUCAG
ACA
|
|
hsa-miR-30b*
2088
CUGGGAGGUGGAUGUUU
2089
CUGGGAGGUGGA
2090
CAUCCACCUCC
|
MIMAT0004589
ACUUC
UGUUUACU
CAG
|
|
hsa-miR-30c
2091
UGUAAACAUCCUACACU
2092
UGUAAACAUCCU
2093
GUAGGAUGUUU
|
MIMAT0000244
CUCAGC
ACACUCUC
ACA
|
|
hsa-miR-30c-1*
2094
CUGGGAGAGGGUUGUUU
2095
CUGGGAGAGGGU
2096
CAACCCUCUCC
|
MIMAT0004674
ACUCC
UGUUUACU
CAG
|
|
hsa-miR-30c-2*
2097
CUGGGAGAAGGCUGUUU
2098
CUGGGAGAAGGC
2099
CAGCCUUCUCC
|
MIMAT0004550
ACUCU
UGUUUACU
CAG
|
|
hsa-miR-30d
2100
UGUAAACAUCCCCGACU
2101
UGUAAACAUCCC
2102
CGGGGAUGUUU
|
MIMAT0000245
GGAAG
CGACUGGA
ACA
|
|
hsa-miR-30d*
2103
CUUUCAGUCAGAUGUUU
2104
CUUUCAGUCAGA
2105
CAUCUGACUGA
|
MIMAT0004551
GCUGC
UGUUUGCU
AAG
|
|
hsa-miR-30e
2106
UGUAAACAUCCUUGACU
2107
UGUAAACAUCCU
2108
CAAGGAUGUUU
|
MIMAT0000692
GGAAG
UGACUGGA
ACA
|
|
hsa-miR-30e*
2109
CUUUCAGUCGGAUGUUU
2110
CUUUCAGUCGGA
2111
CAUCCGACUGA
|
MIMAT0000693
ACAGC
UGUUUACA
AAG
|
|
hsa-miR-31
2112
AGGCAAGAUGCUGGCAU
2113
AGGCAAGAUGCU
2114
CCAGCAUCUUG
|
MIMAT0000089
AGCU
GGCAUAGC
CCU
|
|
hsa-miR-31*
2115
UGCUAUGCCAACAUAUU
2116
UGCUAUGCCAAC
2117
AUGUUGGCAUA
|
MIMAT0004504
GCCAU
AUAUUGCC
GCA
|
|
hsa-miR-3115
2118
AUAUGGGUUUACUAGUU
2119
AUAUGGGUUUAC
2120
UAGUAAACCCA
|
MIMAT0014977
GGU
UAGUUGGU
UAU
|
|
hsa-miR-3116
2121
UGCCUGGAACAUAGUAG
2122
UGCCUGGAACAU
2123
CUAUGUUCCAG
|
MIMAT0014978
GGACU
AGUAGGGA
GCA
|
|
hsa-miR-3117
2124
AUAGGACUCAUAUAGUG
2125
AUAGGACUCAUA
2126
UAUAUGAGUCC
|
MIMAT0014979
CCAG
UAGUGCCA
UAU
|
|
hsa-miR-3118
2127
UGUGACUGCAUUAUGAA
2128
UGUGACUGCAUU
2129
AUAAUGCAGUC
|
MIMAT0014980
AAUUCU
AUGAAAAU
ACA
|
|
hsa-miR-3119
2130
UGGCUUUUAACUUUGAU
2131
UGGCUUUUAACU
2132
AAAGUUAAAAG
|
MIMAT0014981
GGC
UUGAUGGC
CCA
|
|
hsa-miR-3120
2133
CACAGCAAGUGUAGACA
2134
CACAGCAAGUGU
2135
CUACACUUGCU
|
MIMAT0014982
GGCA
AGACAGGC
GUG
|
|
hsa-miR-3121
2136
UAAAUAGAGUAGGCAAA
2137
UAAAUAGAGUAG
2138
GCCUACUCUAU
|
MIMAT0014983
GGACA
GCAAAGGA
UUA
|
|
hsa-miR-3122
2139
GUUGGGACAAGAGGACG
2140
GUUGGGACAAGA
2141
CCUCUUGUCCC
|
MIMAT0014984
GUCUU
GGACGGUC
AAC
|
|
hsa-miR-3123
2142
CAGAGAAUUGUUUAAUC
2143
CAGAGAAUUGUU
2144
UAAACAAUUCU
|
MIMAT0014985
UAAUC
CUG
|
|
hsa-miR-3124
2145
UUCGCGGGCGAAGGCAA
2146
UUCGCGGGCGAA
2147
CCUUCGCCCGC
|
MIMAT0014986
AGUC
GGCAAAGU
GAA
|
|
hsa-miR-3125
2148
UAGAGGAAGCUGUGGAG
2149
UAGAGGAAGCUG
2150
CACAGCUUCCU
|
MIMAT0014988
AGA
UGGAGAGA
CUA
|
|
hsa-miR-3126-
2151
CAUCUGGCAUCCGUCAC
2152
CAUCUGGCAUCC
2153
ACGGAUGCCAG
|
3p
ACAGA
GUCACACA
AUG
|
MIMAT0015377
|
|
hsa-miR-3126-
2154
UGAGGGACAGAUGCCAG
2155
UGAGGGACAGAU
2156
GCAUCUGUCCC
|
5p
AAGCA
GCCAGAAG
UCA
|
MIMAT0014989
|
|
hsa-miR-3127
2157
AUCAGGGCUUGUGGAAU
2158
AUCAGGGCUUGU
2159
CCACAAGCCCU
|
MIMAT0014990
GGGAAG
GGAAUGGG
GAU
|
|
hsa-miR-3128
2160
UCUGGCAAGUAAAAAAC
2161
UCUGGCAAGUAA
2162
UUUUACUUGCC
|
MIMAT0014991
UCUCAU
AAAACUCU
AGA
|
|
hsa-miR-3129
2163
GCAGUAGUGUAGAGAUU
2164
GCAGUAGUGUAG
2165
CUCUACACUAC
|
MIMAT0014992
GGUUU
AGAUUGGU
UGC
|
|
hsa-miR-3130-
2166
GCUGCACCGGAGACUGG
2167
GCUGCACCGGAG
2168
GUCUCCGGUGC
|
3p
GUAA
ACUGGGUA
AGC
|
MIMAT0014994
|
|
hsa-miR-3130-
2169
UACCCAGUCUCCGGUGC
2170
UACCCAGUCUCC
2171
CCGGAGACUGG
|
5p
AGCC
GGUGCAGC
GUA
|
MIMAT0014995
|
|
hsa-miR-3131
2172
UCGAGGACUGGUGGAAG
2173
UCGAGGACUGGU
2174
CCACCAGUCCU
|
MIMAT0014996
GGCCUU
GGAAGGGC
CGA
|
|
hsa-miR-3132
2175
UGGGUAGAGAAGGAGCU
2176
UGGGUAGAGAAG
2177
UCCUUCUCUAC
|
MIMAT0014997
CAGAGGA
GAGCUCAG
CCA
|
|
hsa-miR-3133
2178
UAAAGAACUCUUAAAAC
2179
UAAAGAACUCUU
2180
UUAAGAGUUCU
|
MIMAT0014998
CCAAU
AAAACCCA
UUA
|
|
hsa-miR-3134
2181
UGAUGGAUAAAAGACUA
2182
UGAUGGAUAAAA
2183
UCUUUUAUCCA
|
MIMAT0015000
CAUAUU
GACUACAU
UCA
|
|
hsa-miR-3135
2184
UGCCUAGGCUGAGACUG
2185
UGCCUAGGCUGA
2186
UCUCAGCCUAG
|
MIMAT0015001
CAGUG
GACUGCAG
GCA
|
|
hsa-miR-3136
2187
CUGACUGAAUAGGUAGG
2188
CUGACUGAAUAG
2189
ACCUAUUCAGU
|
MIMAT0015003
GUCAUU
GUAGGGUC
CAG
|
|
hsa-miR-3137
2190
UCUGUAGCCUGGGAGCA
2191
UCUGUAGCCUGG
2192
UCCCAGGCUAC
|
MIMAT0015005
AUGGGGU
GAGCAAUG
AGA
|
|
hsa-miR-3138
2193
UGUGGACAGUGAGGUAG
2194
UGUGGACAGUGA
2195
CCUCACUGUCC
|
MIMAT0015006
AGGGAGU
GGUAGAGG
ACA
|
|
hsa-miR-3139
2196
UAGGAGCUCAACAGAUG
2197
UAGGAGCUCAAC
2198
CUGUUGAGCUC
|
MIMAT0015007
CCUGUU
AGAUGCCU
CUA
|
|
hsa-miR-3140
2199
AGCUUUUGGGAAUUCAG
2200
AGCUUUUGGGAA
2201
AAUUCCCAAAA
|
MIMAT0015008
GUAGU
UUCAGGUA
GCU
|
|
hsa-miR-3141
2202
GAGGGCGGGUGGAGGAG
2203
GAGGGCGGGUGG
2204
CUCCACCCGCC
|
MIMAT0015010
GA
AGGAGGA
CUC
|
|
hsa-miR-3142
2205
AAGGCCUUUCUGAACCU
2206
AAGGCCUUUCUG
2207
UUCAGAAAGGC
|
MIMAT0015011
UCAGA
AACCUUCA
CUU
|
|
hsa-miR-3143
2208
AUAACAUUGUAAAGCGC
2209
AUAACAUUGUAA
2210
CUUUACAAUGU
|
MIMAT0015012
UUCUUUCG
AGCGCUUC
UAU
|
|
hsa-miR-3144-
2211
AUAUACCUGUUCGGUCU
2212
AUAUACCUGUUC
2213
CCGAACAGGUA
|
3p
CUUUA
GGUCUCUU
UAU
|
MIMAT0015015
|
|
hsa-miR-3144-
2214
AGGGGACCAAAGAGAUA
2215
AGGGGACCAAAG
2216
CUCUUUGGUCC
|
5p
UAUAG
AGAUAUAU
CCU
|
MIMAT0015014
|
|
hsa-miR-3145
2217
AGAUAUUUUGAGUGUUU
2218
AGAUAUUUUGAG
2219
CACUCAAAAUA
|
MIMAT0015016
GGAAUUG
UGUUUGGA
UCU
|
|
hsa-miR-3146
2220
CAUGCUAGGAUAGAAAG
2221
CAUGCUAGGAUA
2222
UCUAUCCUAGC
|
MIMAT0015018
AAUGG
GAAAGAAU
AUG
|
|
hsa-miR-3147
2223
GGUUGGGCAGUGAGGAG
2224
GGUUGGGCAGUG
2225
CUCACUGCCCA
|
MIMAT0015019
GGUGUGA
AGGAGGGU
ACC
|
|
hsa-miR-3148
2226
UGGAAAAAACUGGUGUG
2227
UGGAAAAAACUG
2228
ACCAGUUUUUU
|
MIMAT0015021
UGCUU
GUGUGUGC
CCA
|
|
hsa-miR-3149
2229
UUUGUAUGGAUAUGUGU
2230
UUUGUAUGGAUA
2231
CAUAUCCAUAC
|
MIMAT0015022
GUGUAU
UGUGUGUG
AAA
|
|
hsa-miR-3150
2232
CUGGGGAGAUCCUCGAG
2233
CUGGGGAGAUCC
2234
GAGGAUCUCCC
|
MIMAT0015023
GUUGG
UCGAGGUU
CAG
|
|
hsa-miR-3150b
2235
UGAGGAGAUCGUCGAGG
2236
UGAGGAGAUCGU
2237
CGACGAUCUCC
|
MIMAT0018194
UUGG
CGAGGUUG
UCA
|
|
hsa-miR-3151
2238
GGUGGGGCAAUGGGAUC
2239
GGUGGGGCAAUG
2240
CCCAUUGCCCC
|
MIMAT0015024
AGGU
GGAUCAGG
ACC
|
|
hsa-miR-3152
2241
UGUGUUAGAAUAGGGGC
2242
UGUGUUAGAAUA
2243
CCUAUUCUAAC
|
MIMAT0015025
AAUAA
GGGGCAAU
ACA
|
|
hsa-miR-3153
2244
GGGGAAAGCGAGUAGGG
2245
GGGGAAAGCGAG
2246
UACUCGCUUUC
|
MIMAT0015026
ACAUUU
UAGGGACA
CCC
|
|
hsa-miR-3154
2247
CAGAAGGGGAGUUGGGA
2248
CAGAAGGGGAGU
2249
CAACUCCCCUU
|
MIMAT0015028
GCAGA
UGGGAGCA
CUG
|
|
hsa-miR-3155
2250
CCAGGCUCUGCAGUGGG
2251
CCAGGCUCUGCA
2252
ACUGCAGAGCC
|
MIMAT0015029
AACU
GUGGGAAC
UGG
|
|
hsa-miR-3156
2253
AAAGAUCUGGAAGUGGG
2254
AAAGAUCUGGAA
2255
ACUUCCAGAUC
|
MIMAT0015030
AGACA
GUGGGAGA
UUU
|
|
hsa-miR-3157
2256
UUCAGCCAGGCUAGUGC
2257
UUCAGCCAGGCU
2258
CUAGCCUGGCU
|
MIMAT0015031
AGUCU
AGUGCAGU
GAA
|
|
hsa-miR-3158
2259
AAGGGCUUCCUCUCUGC
2260
AAGGGCUUCCUC
2261
GAGAGGAAGCC
|
MIMAT0015032
AGGAC
UCUGCAGG
CUU
|
|
hsa-miR-3159
2262
UAGGAUUACAAGUGUCG
2263
UAGGAUUACAAG
2264
CACUUGUAAUC
|
MIMAT0015033
GCCAC
UGUCGGCC
CUA
|
|
hsa-miR-3160
2265
AGAGCUGAGACUAGAAA
2266
AGAGCUGAGACU
2267
CUAGUCUCAGC
|
MIMAT0015034
GCCCA
AGAAAGCC
UCU
|
|
hsa-miR-3161
2268
CUGAUAAGAACAGAGGC
2269
CUGAUAAGAACA
2270
UCUGUUCUUAU
|
MIMAT0015035
CCAGAU
GAGGCCCA
CAG
|
|
hsa-miR-3162
2271
UUAGGGAGUAGAAGGGU
2272
UUAGGGAGUAGA
2273
CUUCUACUCCC
|
MIMAT0015036
GGGGAG
AGGGUGGG
UAA
|
|
hsa-miR-3163
2274
UAUAAAAUGAGGGCAGU
2275
UAUAAAAUGAGG
2276
GCCCUCAUUUU
|
MIMAT0015037
AAGAC
GCAGUAAG
AUA
|
|
hsa-miR-3164
2277
UGUGACUUUAAGGGAAA
2278
UGUGACUUUAAG
2279
CCCUUAAAGUC
|
MIMAT0015038
UGGCG
GGAAAUGG
ACA
|
|
hsa-miR-3165
2280
AGGUGGAUGCAAUGUGA
2281
AGGUGGAUGCAA
2282
CAUUGCAUCCA
|
MIMAT0015039
CCUCA
UGUGACCU
CCU
|
|
hsa-miR-3166
2283
CGCAGACAAUGCCUACU
2284
CGCAGACAAUGC
2285
AGGCAUUGUCU
|
MIMAT0015040
GGCCUA
CUACUGGC
GCG
|
|
hsa-miR-3167
2286
AGGAUUUCAGAAAUACU
2287
AGGAUUUCAGAA
2288
AUUUCUGAAAU
|
MIMAT0015042
GGUGU
AUACUGGU
CCU
|
|
hsa-miR-3168
2289
GAGUUCUACAGUCAGAC
2290
GAGUUCUACAGU
2291
UGACUGUAGAA
|
MIMAT0015043
CAGAC
CUC
|
|
hsa-miR-3169
2292
UAGGACUGUGCUUGGCA
2293
UAGGACUGUGCU
2294
CAAGCACAGUC
|
MIMAT0015044
CAUAG
UGGCACAU
CUA
|
|
hsa-miR-3170
2295
CUGGGGUUCUGAGACAG
2296
CUGGGGUUCUGA
2297
UCUCAGAACCC
|
MIMAT0015045
ACAGU
GACAGACA
CAG
|
|
hsa-miR-3171
2298
AGAUGUAUGGAAUCUGU
2299
AGAUGUAUGGAA
2300
GAUUCCAUACA
|
MIMAT0015046
AUAUAUC
UCUGUAUA
UCU
|
|
hsa-miR-3173
2301
AAAGGAGGAAAUAGGCA
2302
AAAGGAGGAAAU
2303
CUAUUUCCUCC
|
MIMAT0015048
GGCCA
AGGCAGGC
UUU
|
|
hsa-miR-3174
2304
UAGUGAGUUAGAGAUGC
2305
UAGUGAGUUAGA
2306
UCUCUAACUCA
|
MIMAT0015051
AGAGCC
GAUGCAGA
CUA
|
|
hsa-miR-3175
2307
CGGGGAGAGAACGCAGU
2308
CGGGGAGAGAAC
2309
GCGUUCUCUCC
|
MIMAT0015052
GACGU
GCAGUGAC
CCG
|
|
hsa-miR-3176
2310
ACUGGCCUGGGACUACC
2311
ACUGGCCUGGGA
2312
AGUCCCAGGCC
|
MIMAT0015053
GG
CUACCGG
AGU
|
|
hsa-miR-3177
2313
UGCACGGCACUGGGGAC
2314
UGCACGGCACUG
2315
CCCAGUGCCGU
|
MIMAT0015054
ACGU
GGGACACG
GCA
|
|
hsa-miR-3178
2316
GGGGCGCGGCCGGAUCG
2317
GGGGCGCGGCCG
2318
UCCGGCCGCGC
|
MIMAT0015055
GAUCG
CCC
|
|
hsa-miR-3179
2319
AGAAGGGGUGAAAUUUA
2320
AGAAGGGGUGAA
2321
AUUUCACCCCU
|
MIMAT0015056
AACGU
AUUUAAAC
UCU
|
|
hsa-miR-3180
2322
UGGGGCGGAGCUUCCGG
2323
UGGGGCGGAGCU
2324
GAAGCUCCGCC
|
MIMAT0018178
AG
UCCGGAG
CCA
|
|
hsa-miR-3180-
2325
UGGGGCGGAGCUUCCGG
2326
UGGGGCGGAGCU
2327
GAAGCUCCGCC
|
3p
AGGCC
UCCGGAGG
CCA
|
MIMAT0015058
|
|
hsa-miR-3180-
2328
CUUCCAGACGCUCCGCC
2329
CUUCCAGACGCU
2330
GGAGCGUCUGG
|
5p
CCACGUCG
CCGCCCCA
AAG
|
MIMAT0015057
|
|
hsa-miR-3181
2331
AUCGGGCCCUCGGCGCC
2332
AUCGGGCCCUCG
2333
GCCGAGGGCCC
|
MIMAT0015061
GG
GCGCCGG
GAU
|
|
hsa-miR-3182
2334
GCUUCUGUAGUGUAGUC
2335
GCUUCUGUAGUG
2336
UACACUACAGA
|
MIMAT0015062
UAGUC
AGC
|
|
hsa-miR-3183
2337
GCCUCUCUCGGAGUCGC
2338
GCCUCUCUCGGA
2339
ACUCCGAGAGA
|
MIMAT0015063
UCGGA
GUCGCUCG
GGC
|
|
hsa-miR-3184
2340
UGAGGGGCCUCAGACCG
2341
UGAGGGGCCUCA
2342
UCUGAGGCCCC
|
MIMAT0015064
AGCUUUU
GACCGAGC
UCA
|
|
hsa-miR-3185
2343
AGAAGAAGGCGGUCGGU
2344
AGAAGAAGGCGG
2345
GACCGCCUUCU
|
MIMAT0015065
CUGCGG
UCGGUCUG
UCU
|
|
hsa-miR-3186-
2346
UCACGCGGAGAGAUGGC
2347
UCACGCGGAGAG
2348
AUCUCUCCGCG
|
3p
UUUG
AUGGCUUU
UGA
|
MIMAT0015068
|
|
hsa-miR-3186-
2349
CAGGCGUCUGUCUACGU
2350
CAGGCGUCUGUC
2351
UAGACAGACGC
|
5p
GGCUU
UACGUGGC
CUG
|
MIMAT0015067
|
|
hsa-miR-3187
2352
UUGGCCAUGGGGCUGCG
2353
UUGGCCAUGGGG
2354
AGCCCCAUGGC
|
MIMAT0015069
CGG
CUGCGCGG
CAA
|
|
hsa-miR-3188
2355
AGAGGCUUUGUGCGGAU
2356
AGAGGCUUUGUG
2357
CGCACAAAGCC
|
MIMAT0015070
ACGGGG
CGGAUACG
UCU
|
|
hsa-miR-3189
2358
CCCUUGGGUCUGAUGGG
2359
CCCUUGGGUCUG
2360
AUCAGACCCAA
|
MIMAT0015071
GUAG
AUGGGGUA
GGG
|
|
hsa-miR-3190
2361
UGUGGAAGGUAGACGGC
2362
UGUGGAAGGUAG
2363
GUCUACCUUCC
|
MIMAT0015073
CAGAGA
ACGGCCAG
ACA
|
|
hsa-miR-3191
2364
UGGGGACGUAGCUGGCC
2365
UGGGGACGUAGC
2366
CAGCUACGUCC
|
MIMAT0015075
AGACAG
UGGCCAGA
CCA
|
|
hsa-miR-3192
2367
UCUGGGAGGUUGUAGCA
2368
UCUGGGAGGUUG
2369
UACAACCUCCC
|
MIMAT0015076
GUGGAA
UAGCAGUG
AGA
|
|
hsa-miR-3193
2370
UCCUGCGUAGGAUCUGA
2371
UCCUGCGUAGGA
2372
GAUCCUACGCA
|
MIMAT0015077
GGAGU
UCUGAGGA
GGA
|
|
hsa-miR-3194
2373
GGCCAGCCACCAGGAGG
2374
GGCCAGCCACCA
2375
CCUGGUGGCUG
|
MIMAT0015078
GCUG
GGAGGGCU
GCC
|
|
hsa-miR-3195
2376
CGCGCCGGGCCCGGGUU
2377
CGCGCCGGGCCC
2378
CCGGGCCCGGC
|
MIMAT0015079
GGGUU
GCG
|
|
hsa-miR-3196
2379
CGGGGCGGCAGGGGCCU
2380
CGGGGCGGCAGG
2381
CCCCUGCCGCC
|
MIMAT0015080
C
GGCCUC
CCG
|
|
hsa-miR-3197
2382
GGAGGCGCAGGCUCGGA
2383
GGAGGCGCAGGC
2384
GAGCCUGCGCC
|
MIMAT0015082
AAGGCG
UCGGAAAG
UCC
|
|
hsa-miR-3198
2385
GUGGAGUCCUGGGGAAU
2386
GUGGAGUCCUGG
2387
CCCCAGGACUC
|
MIMAT0015083
GGAGA
GGAAUGGA
CAC
|
|
hsa-miR-3199
2388
AGGGACUGCCUUAGGAG
2389
AGGGACUGCCUU
2390
CUAAGGCAGUC
|
MIMAT0015084
AAAGUU
AGGAGAAA
CCU
|
|
hsa-miR-32
2391
UAUUGCACAUUACUAAG
2392
UAUUGCACAUUA
2393
AGUAAUGUGCA
|
MIMAT0000090
UUGCA
CUAAGUUG
AUA
|
|
hsa-miR-32*
2394
CAAUUUAGUGUGUGUGA
2395
CAAUUUAGUGUG
2396
CACACACUAAA
|
MIMAT0004505
UAUUU
UGUGAUAU
UUG
|
|
hsa-miR-3200-
2397
CACCUUGCGCUACUCAG
2398
CACCUUGCGCUA
2399
AGUAGCGCAAG
|
3p
GUCUG
CUCAGGUC
GUG
|
MIMAT0015085
|
|
hsa-miR-3200-
2400
AAUCUGAGAAGGCGCAC
2401
AAUCUGAGAAGG
2402
CGCCUUCUCAG
|
5p
AAGGU
CGCACAAG
AUU
|
MIMAT0017392
|
|
hsa-miR-3201
2403
GGGAUAUGAAGAAAAAU
2404
GGGAUAUGAAGA
2405
UUUCUUCAUAU
|
MIMAT0015086
AAAAU
CCC
|
|
hsa-miR-3202
2406
UGGAAGGGAGAAGAGCU
2407
UGGAAGGGAGAA
2408
UCUUCUCCCUU
|
MIMAT0015089
UUAAU
GAGCUUUA
CCA
|
|
hsa-miR-320a
2409
AAAAGCUGGGUUGAGAG
2410
AAAAGCUGGGUU
2411
UCAACCCAGCU
|
MIMAT0000510
GGCGA
GAGAGGGC
UUU
|
|
hsa-miR-320b
2412
AAAAGCUGGGUUGAGAG
2413
AAAAGCUGGGUU
2414
UCAACCCAGCU
|
MIMAT0005792
GGCAA
GAGAGGGC
UUU
|
|
hsa-miR-320c
2415
AAAAGCUGGGUUGAGAG
2416
AAAAGCUGGGUU
2417
UCAACCCAGCU
|
MIMAT0005793
GGU
GAGAGGGU
UUU
|
|
hsa-miR-320d
2418
AAAAGCUGGGUUGAGAG
2419
AAAAGCUGGGUU
2420
UCAACCCAGCU
|
MIMAT0006764
GA
GAGAGGA
UUU
|
|
hsa-miR-320e
2421
AAAGCUGGGUUGAGAAG
2422
AAAGCUGGGUUG
2423
CUCAACCCAGC
|
MIMAT0015072
G
AGAAGG
UUU
|
|
hsa-miR-323-3p
2424
CACAUUACACGGUCGAC
2425
CACAUUACACGG
2426
GACCGUGUAAU
|
MIMAT0000755
CUCU
UCGACCUC
GUG
|
|
hsa-miR-323-5p
2427
AGGUGGUCCGUGGCGCG
2428
AGGUGGUCCGUG
2429
GCCACGGACCA
|
MIMAT0004696
UUCGC
GCGCGUUC
CCU
|
|
hsa-miR-323b-
2430
CCCAAUACACGGUCGAC
2431
CCCAAUACACGG
2432
GACCGUGUAUU
|
3p
CUCUU
UCGACCUC
GGG
|
MIMAT0015050
|
|
hsa-miR-323b-
2433
AGGUUGUCCGUGGUGAG
2434
AGGUUGUCCGUG
2435
ACCACGGACAA
|
5p
UUCGCA
GUGAGUUC
CCU
|
MIMAT0001630
|
|
hsa-miR-324-3p
2436
ACUGCCCCAGGUGCUGC
2437
ACUGCCCCAGGU
2438
GCACCUGGGGC
|
MIMAT0000762
UGG
GCUGCUGG
AGU
|
|
hsa-miR-324-5p
2439
CGCAUCCCCUAGGGCAU
2440
CGCAUCCCCUAG
2441
CCCUAGGGGAU
|
MIMAT0000761
UGGUGU
GGCAUUGG
GCG
|
|
hsa-miR-325
2442
CCUAGUAGGUGUCCAGU
2443
CCUAGUAGGUGU
2444
GGACACCUACU
|
MIMAT0000771
AAGUGU
CCAGUAAG
AGG
|
|
hsa-miR-326
2445
CCUCUGGGCCCUUCCUC
2446
CCUCUGGGCCCU
2447
GAAGGGCCCAG
|
MIMAT0000756
CAG
UCCUCCAG
AGG
|
|
hsa-miR-328
2448
CUGGCCCUCUCUGCCCU
2449
CUGGCCCUCUCU
2450
GCAGAGAGGGC
|
MIMAT0000752
UCCGU
GCCCUUCC
CAG
|
|
hsa-miR-329
2451
AACACACCUGGUUAACC
2452
AACACACCUGGU
2453
UAACCAGGUGU
|
MIMAT0001629
UCUUU
UAACCUCU
GUU
|
|
hsa-miR-330-3p
2454
GCAAAGCACACGGCCUG
2455
GCAAAGCACACG
2456
GCCGUGUGCUU
|
MIMAT0000751
CAGAGA
GCCUGCAG
UGC
|
|
hsa-miR-330-5p
2457
UCUCUGGGCCUGUGUCU
2458
UCUCUGGGCCUG
2459
CACAGGCCCAG
|
MIMAT0004693
UAGGC
UGUCUUAG
AGA
|
|
hsa-miR-331-3p
2460
GCCCCUGGGCCUAUCCU
2461
GCCCCUGGGCCU
2462
AUAGGCCCAGG
|
MIMAT0000760
AGAA
AUCCUAGA
GGC
|
|
hsa-miR-331-5p
2463
CUAGGUAUGGUCCCAGG
2464
CUAGGUAUGGUC
2465
GGGACCAUACC
|
MIMAT0004700
GAUCC
CCAGGGAU
UAG
|
|
hsa-miR-335
2466
UCAAGAGCAAUAACGAA
2467
UCAAGAGCAAUA
2468
GUUAUUGCUCU
|
MIMAT0000765
AAAUGU
ACGAAAAA
UGA
|
|
hsa-miR-335*
2469
UUUUUCAUUAUUGCUCC
2470
UUUUUCAUUAUU
2471
GCAAUAAUGAA
|
MIMAT0004703
UGACC
GCUCCUGA
AAA
|
|
hsa-miR-337-3p
2472
CUCCUAUAUGAUGCCUU
2473
CUCCUAUAUGAU
2474
GCAUCAUAUAG
|
MIMAT0000754
UCUUC
GCCUUUCU
GAG
|
|
hsa-miR-337-5p
2475
GAACGGCUUCAUACAGG
2476
GAACGGCUUCAU
2477
GUAUGAAGCCG
|
MIMAT0004695
AGUU
ACAGGAGU
UUC
|
|
hsa-miR-338-3p
2478
UCCAGCAUCAGUGAUUU
2479
UCCAGCAUCAGU
2480
UCACUGAUGCU
|
MIMAT0000763
UGUUG
GAUUUUGU
GGA
|
|
hsa-miR-338-5p
2481
AACAAUAUCCUGGUGCU
2482
AACAAUAUCCUG
2483
ACCAGGAUAUU
|
MIMAT0004701
GAGUG
GUGCUGAG
GUU
|
|
hsa-miR-339-3p
2484
UGAGCGCCUCGACGACA
2485
UGAGCGCCUCGA
2486
CGUCGAGGCGC
|
MIMAT0004702
GAGCCG
CGACAGAG
UCA
|
|
hsa-miR-339-5p
2487
UCCCUGUCCUCCAGGAG
2488
UCCCUGUCCUCC
2489
CUGGAGGACAG
|
MIMAT0000764
CUCACG
AGGAGCUC
GGA
|
|
hsa-miR-33a
2490
GUGCAUUGUAGUUGCAU
2491
GUGCAUUGUAGU
2492
CAACUACAAUG
|
MIMAT0000091
UGCA
UGCAUUGC
CAC
|
|
hsa-miR-33a*
2493
CAAUGUUUCCACAGUGC
2494
CAAUGUUUCCAC
2495
CUGUGGAAACA
|
MIMAT0004506
AUCAC
AGUGCAUC
UUG
|
|
hsa-miR-33b
2496
GUGCAUUGCUGUUGCAU
2497
GUGCAUUGCUGU
2498
CAACAGCAAUG
|
MIMAT0003301
UGC
UGCAUUGC
CAC
|
|
hsa-miR-33b*
2499
CAGUGCCUCGGCAGUGC
2500
CAGUGCCUCGGC
2501
CUGCCGAGGCA
|
MIMAT0004811
AGCCC
AGUGCAGC
CUG
|
|
hsa-miR-340
2502
UUAUAAAGCAAUGAGAC
2503
UUAUAAAGCAAU
2504
UCAUUGCUUUA
|
MIMAT0004692
UGAUU
GAGACUGA
UAA
|
|
hsa-miR-340*
2505
UCCGUCUCAGUUACUUU
2506
UCCGUCUCAGUU
2507
GUAACUGAGAC
|
MIMAT0000750
AUAGC
ACUUUAUA
GGA
|
|
hsa-miR-342-3p
2508
UCUCACACAGAAAUCGC
2509
UCUCACACAGAA
2510
AUUUCUGUGUG
|
MIMAT0000753
ACCCGU
AUCGCACC
AGA
|
|
hsa-miR-342-5p
2511
AGGGGUGCUAUCUGUGA
2512
AGGGGUGCUAUC
2513
CAGAUAGCACC
|
MIMAT0004694
UUGA
UGUGAUUG
CCU
|
|
hsa-miR-345
2514
GCUGACUCCUAGUCCAG
2515
GCUGACUCCUAG
2516
GACUAGGAGUC
|
MIMAT0000772
GGCUC
UCCAGGGC
AGC
|
|
hsa-miR-346
2517
UGUCUGCCCGCAUGCCU
2518
UGUCUGCCCGCA
2519
CAUGCGGGCAG
|
MIMAT0000773
GCCUCU
UGCCUGCC
ACA
|
|
hsa-miR-34a
2520
UGGCAGUGUCUUAGCUG
2521
UGGCAGUGUCUU
2522
CUAAGACACUG
|
MIMAT0000255
GUUGU
AGCUGGUU
CCA
|
|
hsa-miR-34a*
2523
CAAUCAGCAAGUAUACU
2524
CAAUCAGCAAGU
2525
AUACUUGCUGA
|
MIMAT0004557
GCCCU
AUACUGCC
UUG
|
|
hsa-miR-34b
2526
CAAUCACUAACUCCACU
2527
CAAUCACUAACU
2528
GGAGUUAGUGA
|
MIMAT0004676
GCCAU
CCACUGCC
UUG
|
|
hsa-miR-34b*
2529
UAGGCAGUGUCAUUAGC
2530
UAGGCAGUGUCA
2531
AAUGACACUGC
|
MIMAT0000685
UGAUUG
UUAGCUGA
CUA
|
|
hsa-miR-34c-3p
2532
AAUCACUAACCACACGG
2533
AAUCACUAACCA
2534
UGUGGUUAGUG
|
MIMAT0004677
CCAGG
CACGGCCA
AUU
|
|
hsa-miR-34c-5p
2535
AGGCAGUGUAGUUAGCU
2536
AGGCAGUGUAGU
2537
UAACUACACUG
|
MIMAT0000686
GAUUGC
UAGCUGAU
CCU
|
|
hsa-miR-3605-
2538
CCUCCGUGUUACCUGUC
2539
CCUCCGUGUUAC
2540
AGGUAACACGG
|
3p
CUCUAG
CUGUCCUC
AGG
|
MIMAT0017982
|
|
hsa-miR-3605-
2541
UGAGGAUGGAUAGCAAG
2542
UGAGGAUGGAUA
2543
GCUAUCCAUCC
|
5p
GAAGCC
GCAAGGAA
UCA
|
MIMAT0017981
|
|
hsa-miR-3606
2544
UUAGUGAAGGCUAUUUU
2545
UUAGUGAAGGCU
2546
AUAGCCUUCAC
|
MIMAT0017983
AAUU
AUUUUAAU
UAA
|
|
hsa-miR-3607-
2547
ACUGUAAACGCUUUCUG
2548
ACUGUAAACGCU
2549
AAAGCGUUUAC
|
3p
AUG
UUCUGAUG
AGU
|
MIMAT0017985
|
|
hsa-miR-3607-
2550
GCAUGUGAUGAAGCAAA
2551
GCAUGUGAUGAA
2552
GCUUCAUCACA
|
5p
UCAGU
GCAAAUCA
UGC
|
MIMAT0017984
|
|
hsa-miR-3609
2553
CAAAGUGAUGAGUAAUA
2554
CAAAGUGAUGAG
2555
UACUCAUCACU
|
MIMAT0017986
CUGGCUG
UAAUACUG
UUG
|
|
hsa-miR-3610
2556
GAAUCGGAAAGGAGGCG
2557
GAAUCGGAAAGG
2558
CUCCUUUCCGA
|
MIMAT0017987
CCG
AGGCGCCG
UUC
|
|
hsa-miR-3611
2559
UUGUGAAGAAAGAAAUU
2560
UUGUGAAGAAAG
2561
UUCUUUCUUCA
|
MIMAT0017988
CUUA
AAAUUCUU
CAA
|
|
hsa-miR-3612
2562
AGGAGGCAUCUUGAGAA
2563
AGGAGGCAUCUU
2564
UCAAGAUGCCU
|
MIMAT0017989
AUGGA
GAGAAAUG
CCU
|
|
hsa-miR-3613-
2565
ACAAAAAAAAAAGCCCA
2566
ACAAAAAAAAAA
2567
GCUUUUUUUUU
|
MIMAT0017991
ACCCUUC
GCCCAACC
UGU
|
|
hsa-miR-3613-
2568
UGUUGUACUUUUUUUUU
2569
UGUUGUACUUUU
2570
AAAAAAGUACA
|
5p
UGUUC
UUUUUUGU
ACA
|
MIMAT0017990
|
|
hsa-miR-361-3p
2571
UCCCCCAGGUGUGAUUC
2572
UCCCCCAGGUGU
2573
UCACACCUGGG
|
MIMAT0004682
UGAUUU
GAUUCUGA
GGA
|
|
hsa-miR-3614-
2574
UAGCCUUCAGAUCUUGG
2575
UAGCCUUCAGAU
2576
AGAUCUGAAGG
|
3p
UGUUUU
CUUGGUGU
CUA
|
MIMAT0017993
|
|
hsa-miR-3614-
2577
CCACUUGGAUCUGAAGG
2578
CCACUUGGAUCU
2579
UCAGAUCCAAG
|
5p
CUGCCC
GAAGGCUG
UGG
|
MIMAT0017992
|
|
hsa-miR-3615
2580
UCUCUCGGCUCCUCGCG
2581
UCUCUCGGCUCC
2582
GAGGAGCCGAG
|
MIMAT0017994
GCUC
UCGCGGCU
AGA
|
|
hsa-miR-361-5p
2583
UUAUCAGAAUCUCCAGG
2584
UUAUCAGAAUCU
2585
GGAGAUUCUGA
|
MIMAT0000703
GGUAC
CCAGGGGU
UAA
|
|
hsa-miR-3616-
2586
CGAGGGCAUUUCAUGAU
2587
CGAGGGCAUUUC
2588
AUGAAAUGCCC
|
3p
GCAGGC
AUGAUGCA
UCG
|
MIMAT0017996
|
|
hsa-miR-3616-
2589
AUGAAGUGCACUCAUGA
2590
AUGAAGUGCACU
2591
UGAGUGCACUU
|
5p
UAUGU
CAUGAUAU
CAU
|
MIMAT0017995
|
|
hsa-miR-3617
2592
AAAGACAUAGUUGCAAG
2593
AAAGACAUAGUU
2594
GCAACUAUGUC
|
MIMAT0017997
AUGGG
GCAAGAUG
UUU
|
|
hsa-miR-3618
2595
UGUCUACAUUAAUGAAA
2596
UGUCUACAUUAA
2597
CAUUAAUGUAG
|
MIMAT0017998
AGAGC
UGAAAAGA
ACA
|
|
hsa-miR-3619
2598
UCAGCAGGCAGGCUGGU
2599
UCAGCAGGCAGG
2600
AGCCUGCCUGC
|
MIMAT0017999
GCAGC
CUGGUGCA
UGA
|
|
hsa-miR-3620
2601
UCACCCUGCAUCCCGCA
2602
UCACCCUGCAUC
2603
GGGAUGCAGGG
|
MIMAT0018001
CCCAG
CCGCACCC
UGA
|
|
hsa-miR-3621
2604
CGCGGGUCGGGGUCUGC
2605
CGCGGGUCGGGG
2606
GACCCCGACCC
|
MIMAT0018002
AGG
UCUGCAGG
GCG
|
|
hsa-miR-3622a-
2607
UCACCUGACCUCCCAUG
2608
UCACCUGACCUC
2609
GGGAGGUCAGG
|
3p
CCUGU
CCAUGCCU
UGA
|
MIMAT0018004
|
|
hsa-miR-3622a-
2610
CAGGCACGGGAGCUCAG
2611
CAGGCACGGGAG
2612
AGCUCCCGUGC
|
5p
GUGAG
CUCAGGUG
CUG
|
MIMAT0018003
|
|
hsa-miR-3622b-
2613
UCACCUGAGCUCCCGUG
2614
UCACCUGAGCUC
2615
GGGAGCUCAGG
|
3p
CCUG
CCGUGCCU
UGA
|
MIMAT0018006
|
|
hsa-miR-3622b-
2616
AGGCAUGGGAGGUCAGG
2617
AGGCAUGGGAGG
2618
GACCUCCCAUG
|
5p
UGA
UCAGGUGA
CCU
|
MIMAT0018005
|
|
hsa-miR-362-3p
2619
AACACACCUAUUCAAGG
2620
AACACACCUAUU
2621
UGAAUAGGUGU
|
MIMAT0004683
AUUCA
CAAGGAUU
GUU
|
|
hsa-miR-362-5p
2622
AAUCCUUGGAACCUAGG
2623
AAUCCUUGGAAC
2624
AGGUUCCAAGG
|
MIMAT0000705
UGUGAGU
CUAGGUGU
AUU
|
|
hsa-miR-363
2625
AAUUGCACGGUAUCCAU
2626
AAUUGCACGGUA
2627
GAUACCGUGCA
|
MIMAT0000707
CUGUA
UCCAUCUG
AUU
|
|
hsa-miR-363*
2628
CGGGUGGAUCACGAUGC
2629
CGGGUGGAUCAC
2630
UCGUGAUCCAC
|
MIMAT0003385
AAUUU
GAUGCAAU
CCG
|
|
hsa-miR-3646
2631
AAAAUGAAAUGAGCCCA
2632
AAAAUGAAAUGA
2633
GCUCAUUUCAU
|
MIMAT0018065
GCCCA
GCCCAGCC
UUU
|
|
hsa-miR-3647-
2634
AGAAAAUUUUUGUGUGU
2635
AGAAAAUUUUUG
2636
CACAAAAAUUU
|
3p
CUGAUC
UGUGUCUG
UCU
|
MIMAT0018067
|
|
hsa-miR-3647-
2637
CUGAAGUGAUGAUUCAC
2638
CUGAAGUGAUGA
2639
AAUCAUCACUU
|
5p
AUUCAU
UUCACAUU
CAG
|
MIMAT0018066
|
|
hsa-miR-3648
2640
AGCCGCGGGGAUCGCCG
2641
AGCCGCGGGGAU
2642
CGAUCCCCGCG
|
MIMAT0018068
AGGG
CGCCGAGG
GCU
|
|
hsa-miR-3649
2643
AGGGACCUGAGUGUCUA
2644
AGGGACCUGAGU
2645
ACACUCAGGUC
|
MIMAT0018069
AG
GUCUAAG
CCU
|
|
hsa-miR-365
2646
UAAUGCCCCUAAAAAUC
2647
UAAUGCCCCUAA
2648
UUUUAGGGGCA
|
MIMAT0000710
CUUAU
AAAUCCUU
UUA
|
|
hsa-miR-365*
2649
AGGGACUUUCAGGGGCA
2650
AGGGACUUUCAG
2651
CCCUGAAAGUC
|
MIMAT0009199
GCUGU
GGGCAGCU
CCU
|
|
hsa-miR-3650
2652
AGGUGUGUCUGUAGAGU
2653
AGGUGUGUCUGU
2654
CUACAGACACA
|
MIMAT0018070
CC
AGAGUCC
CCU
|
|
hsa-miR-3651
2655
CAUAGCCCGGUCGCUGG
2656
CAUAGCCCGGUC
2657
GCGACCGGGCU
|
MIMAT0018071
UACAUGA
GCUGGUAC
AUG
|
|
hsa-miR-3652
2658
CGGCUGGAGGUGUGAGG
2659
CGGCUGGAGGUG
2660
CACACCUCCAG
|
MIMAT0018072
A
UGAGGA
CCG
|
|
hsa-miR-3653
2661
CUAAGAAGUUGACUGAA
2662
CUAAGAAGUUGA
2663
AGUCAACUUCU
|
MIMAT0018073
G
CUGAAG
UAG
|
|
hsa-miR-3654
2664
GACUGGACAAGCUGAGG
2665
GACUGGACAAGC
2666
CAGCUUGUCCA
|
MIMAT0018074
AA
UGAGGAA
GUC
|
|
hsa-miR-3655
2667
GCUUGUCGCUGCGGUGU
2668
GCUUGUCGCUGC
2669
CCGCAGCGACA
|
MIMAT0018075
UGCU
GGUGUUGC
AGC
|
|
hsa-miR-3656
2670
GGCGGGUGCGGGGGUGG
2671
GGCGGGUGCGGG
2672
CCCCCGCACCC
|
MIMAT0018076
GGUGG
GCC
|
|
hsa-miR-3657
2673
UGUGUCCCAUUAUUGGU
2674
UGUGUCCCAUUA
2675
AAUAAUGGGAC
|
MIMAT0018077
GAUU
UUGGUGAU
ACA
|
|
hsa-miR-3658
2676
UUUAAGAAAACACCAUG
2677
UUUAAGAAAACA
2678
GGUGUUUUCUU
|
MIMAT0018078
GAGAU
CCAUGGAG
AAA
|
|
hsa-miR-3659
2679
UGAGUGUUGUCUACGAG
2680
UGAGUGUUGUCU
2681
GUAGACAACAC
|
MIMAT0018080
GGCA
ACGAGGGC
UCA
|
|
hsa-miR-3660
2682
ACUGACAGGAGAGCAUU
2683
ACUGACAGGAGA
2684
GCUCUCCUGUC
|
MIMAT0018081
UUGA
GCAUUUUG
AGU
|
|
hsa-miR-3661
2685
UGACCUGGGACUCGGAC
2686
UGACCUGGGACU
2687
CGAGUCCCAGG
|
MIMAT0018082
AGCUG
CGGACAGC
UCA
|
|
hsa-miR-3662
2688
GAAAAUGAUGAGUAGUG
2689
GAAAAUGAUGAG
2690
UACUCAUCAUU
|
MIMAT0018083
ACUGAUG
UAGUGACU
UUC
|
|
hsa-miR-3663-
2691
UGAGCACCACACAGGCC
2692
UGAGCACCACAC
2693
CUGUGUGGUGC
|
3p
GGGCGC
AGGCCGGG
UCA
|
MIMAT0018085
|
|
hsa-miR-3663-
2694
GCUGGUCUGCGUGGUGC
2695
GCUGGUCUGCGU
2696
CCACGCAGACC
|
5p
UCGG
GGUGCUCG
AGC
|
MTMAT0018084
|
|
hsa-miR-3664
2697
AACUCUGUCUUCACUCA
2698
AACUCUGUCUUC
2699
GUGAAGACAGA
|
MIMAT0018086
UGAGU
ACUCAUGA
GUU
|
|
hsa-miR-3665
2700
AGCAGGUGCGGGGCGGC
2701
AGCAGGUGCGGG
2702
GCCCCGCACCU
|
MIMAT0018087
G
GCGGCG
GCU
|
|
hsa-miR-3666
2703
CAGUGCAAGUGUAGAUG
2704
CAGUGCAAGUGU
2705
CUACACUUGCA
|
MIMAT0018088
CCGA
AGAUGCCG
CUG
|
|
hsa-miR-3667-
2706
ACCUUCCUCUCCAUGGG
2707
ACCUUCCUCUCC
2708
AUGGAGAGGAA
|
3p
UCUUU
AUGGGUCU
GGU
|
MIMAT0018090
|
|
hsa-miR-3667-
2709
AAAGACCCAUUGAGGAG
2710
AAAGACCCAUUG
2711
CUCAAUGGGUC
|
5p
AAGGU
AGGAGAAG
UUU
|
MIMAT0018089
|
|
hsa-miR-3668
2712
AAUGUAGAGAUUGAUCA
2713
AAUGUAGAGAUU
2714
UCAAUCUCUAC
|
MIMAT0018091
AAAU
GAUCAAAA
AUU
|
|
hsa-miR-3669
2715
ACGGAAUAUGUAUACGG
2716
ACGGAAUAUGUA
2717
UAUACAUAUUC
|
MIMAT0018092
AAUAUA
UACGGAAU
CGU
|
|
hsa-miR-367
2718
AAUUGCACUUUAGCAAU
2719
AAUUGCACUUUA
2720
GCUAAAGUGCA
|
MIMAT0000719
GGUGA
GCAAUGGU
AUU
|
|
hsa-miR-367*
2721
ACUGUUGCUAAUAUGCA
2722
ACUGUUGCUAAU
2723
AUAUUAGCAAC
|
MIMAT0004686
ACUCU
AUGCAACU
AGU
|
|
hsa-miR-3670
2724
AGAGCUCACAGCUGUCC
2725
AGAGCUCACAGC
2726
CAGCUGUGAGC
|
MIMAT0018093
UUCUCUA
UGUCCUUC
UCU
|
|
hsa-miR-3671
2727
AUCAAAUAAGGACUAGU
2728
AUCAAAUAAGGA
2729
AGUCCUUAUUU
|
MIMAT0018094
CUGCA
CUAGUCUG
GAU
|
|
hsa-miR-3672
2730
AUGAGACUCAUGUAAAA
2731
AUGAGACUCAUG
2732
UACAUGAGUCU
|
MIMAT0018095
CAUCUU
UAAAACAU
CAU
|
|
hsa-miR-3673
2733
AUGGAAUGUAUAUACGG
2734
AUGGAAUGUAUA
2735
UAUAUACAUUC
|
MIMAT0018096
AAUA
UACGGAAU
CAU
|
|
hsa-miR-3674
2736
AUUGUAGAACCUAAGAU
2737
AUUGUAGAACCU
2738
UUAGGUUCUAC
|
MIMAT0018097
UGGCC
AAGAUUGG
AAU
|
|
hsa-miR-3675-
2739
CAUCUCUAAGGAACUCC
2740
CAUCUCUAAGGA
2741
GUUCCUUAGAG
|
3p
CCCAA
ACUCCCCC
AUG
|
MIMAT0018099
|
|
hsa-miR-3675-
2742
UAUGGGGCUUCUGUAGA
2743
UAUGGGGCUUCU
2744
ACAGAAGCCCC
|
5p
GAUUUC
GUAGAGAU
AUA
|
MIMAT0018098
|
|
hsa-miR-3676
2745
CCGUGUUUCCCCCACGC
2746
CCGUGUUUCCCC
2747
UGGGGGAAACA
|
MIMAT0018100
UUU
CACGCUUU
CGG
|
|
hsa-miR-3677
2748
CUCGUGGGCUCUGGCCA
2749
CUCGUGGGCUCU
2750
CCAGAGCCCAC
|
MIMAT0018101
CGGCC
GGCCACGG
GAG
|
|
hsa-miR-3678-
2751
CUGCAGAGUUUGUACGG
2752
CUGCAGAGUUUG
2753
UACAAACUCUG
|
3p
ACCGG
UACGGACC
CAG
|
MIMAT0018103
|
|
hsa-miR-3678-
2754
UCCGUACAAACUCUGCU
2755
UCCGUACAAACU
2756
AGAGUUUGUAC
|
5p
GUG
CUGCUGUG
GGA
|
MIMAT0018102
|
|
hsa-miR-3679-
2757
CUUCCCCCCAGUAAUCU
2758
CUUCCCCCCAGU
2759
UUACUGGGGGG
|
3p
UCAUC
AAUCUUCA
AAG
|
MIMAT0018105
|
|
hsa-miR-3679-
2760
UGAGGAUAUGGCAGGGA
2761
UGAGGAUAUGGC
2762
CUGCCAUAUCC
|
5p
AGGGGA
AGGGAAGG
UCA
|
MIMAT0018104
|
|
hsa-miR-3680
2763
GACUCACUCACAGGAUU
2764
GACUCACUCACA
2765
CCUGUGAGUGA
|
MIMAT0018106
GUGCA
GGAUUGUG
GUC
|
|
hsa-miR-3680*
2766
UUUUGCAUGACCCUGGG
2767
UUUUGCAUGACC
2768
AGGGUCAUGCA
|
MIMAT0018107
AGUAGG
CUGGGAGU
AAA
|
|
hsa-miR-3681
2769
UAGUGGAUGAUGCACUC
2770
UAGUGGAUGAUG
2771
UGCAUCAUCCA
|
MIMAT0018108
UGUGC
CACUCUGU
CUA
|
|
hsa-miR-3681*
2772
ACACAGUGCUUCAUCCA
2773
ACACAGUGCUUC
2774
AUGAAGCACUG
|
MIMAT0018109
CUACU
AUCCACUA
UGU
|
|
hsa-miR-3682
2775
UGAUGAUACAGGUGGAG
2776
UGAUGAUACAGG
2777
CACCUGUAUCA
|
MIMAT0018110
GUAG
UGGAGGUA
UCA
|
|
hsa-miR-3683
2778
UGCGACAUUGGAAGUAG
2779
UGCGACAUUGGA
2780
CUUCCAAUGUC
|
MIMAT0018111
UAUCA
AGUAGUAU
GCA
|
|
hsa-miR-3684
2781
UUAGACCUAGUACACGU
2782
UUAGACCUAGUA
2783
UGUACUAGGUC
|
MIMAT0018112
CCUU
CACGUCCU
UAA
|
|
hsa-miR-3685
2784
UUUCCUACCCUACCUGA
2785
UUUCCUACCCUA
2786
GGUAGGGUAGG
|
MIMAT0018113
AGACU
CCUGAAGA
AAA
|
|
hsa-miR-3686
2787
AUCUGUAAGAGAAAGUA
2788
AUCUGUAAGAGA
2789
UUUCUCUUACA
|
MIMAT0018114
AAUGA
AAGUAAAU
GAU
|
|
hsa-miR-3687
2790
CCCGGACAGGCGUUCGU
2791
CCCGGACAGGCG
2792
AACGCCUGUCC
|
MIMAT0018115
GCGACGU
UUCGUGCG
GGG
|
|
hsa-miR-3688
2793
UAUGGAAAGACUUUGCC
2794
UAUGGAAAGACU
2795
AAAGUCUUUCC
|
MIMAT0018116
ACUCU
UUGCCACU
AUA
|
|
hsa-miR-3689a-
2796
CUGGGAGGUGUGAUAUC
2797
CUGGGAGGUGUG
2798
AUCACACCUCC
|
3p
GUGGU
AUAUCGUG
CAG
|
MIMAT0018118
|
|
hsa-miR-3689a-
2799
UGUGAUAUCAUGGUUCC
2800
UGUGAUAUCAUG
2801
ACCAUGAUAUC
|
5p
UGGGA
GUUCCUGG
ACA
|
MIMAT0018117
|
|
hsa-miR-3689b
2802
UGUGAUAUCAUGGUUCC
2803
UGUGAUAUCAUG
2804
ACCAUGAUAUC
|
MIMAT0018180
UGGGA
GUUCCUGG
ACA
|
|
hsa-miR-3689b*
2805
CUGGGAGGUGUGAUAUU
2806
CUGGGAGGUGUG
2807
AUCACACCUCC
|
MIMAT0018181
GUGGU
AUAUUGUG
CAG
|
|
hsa-miR-3690
2808
ACCUGGACCCAGCGUAG
2809
ACCUGGACCCAG
2810
CGCUGGGUCCA
|
MIMAT0018119
ACAAAG
CGUAGACA
GGU
|
|
hsa-miR-3691
2811
AGUGGAUGAUGGAGACU
2812
AGUGGAUGAUGG
2813
CUCCAUCAUCC
|
MIMAT0018120
CGGUAC
AGACUCGG
ACU
|
|
hsa-miR-3692
2814
GUUCCACACUGACACUG
2815
GUUCCACACUGA
2816
UGUCAGUGUGG
|
MIMAT0018122
CAGAAGU
CACUGCAG
AAC
|
|
hsa-miR-3692*
2817
CCUGCUGGUCAGGAGUG
2818
CCUGCUGGUCAG
2819
UCCUGACCAGC
|
MIMAT0018121
GAUACUG
GAGUGGAU
AGG
|
|
hsa-miR-369-3p
2820
AAUAAUACAUGGUUGAU
2821
AAUAAUACAUGG
2822
AACCAUGUAUU
|
MIMAT0000721
CUUU
UUGAUCUU
AUU
|
|
hsa-miR-369-5p
2823
AGAUCGACCGUGUUAUA
2824
AGAUCGACCGUG
2825
AACACGGUCGA
|
MIMAT0001621
UUCGC
UUAUAUUC
UCU
|
|
hsa-miR-370
2826
GCCUGCUGGGGUGGAAC
2827
GCCUGCUGGGGU
2828
CCACCCCAGCA
|
MIMAT0000722
CUGGU
GGAACCUG
GGC
|
|
hsa-miR-3713
2829
GGUAUCCGUUUGGGGAU
2830
GGUAUCCGUUUG
2831
CCCAAACGGAU
|
MIMAT0018164
GGU
GGGAUGGU
ACC
|
|
hsa-miR-371-3p
2832
AAGUGCCGCCAUCUUUU
2833
AAGUGCCGCCAU
2834
AGAUGGCGGCA
|
MIMAT0000723
GAGUGU
CUUUUGAG
CUU
|
|
hsa-miR-3714
2835
GAAGGCAGCAGUGCUCC
2836
GAAGGCAGCAGU
2837
GCACUGCUGCC
|
MIMAT0018165
CCUGU
GCUCCCCU
UUC
|
|
hsa-miR-371-5p
2838
ACUCAAACUGUGGGGGC
2839
ACUCAAACUGUG
2840
CCCACAGUUUG
|
MIMAT0004687
ACU
GGGGCACU
AGU
|
|
hsa-miR-372
2841
AAAGUGCUGCGACAUUU
2842
AAAGUGCUGCGA
2843
UGUCGCAGCAC
|
MIMAT0000724
GAGCGU
CAUUUGAG
UUU
|
|
hsa-miR-373
2844
GAAGUGCUUCGAUUUUG
2845
GAAGUGCUUCGA
2846
AAUCGAAGCAC
|
MIMAT0000726
GGGUGU
UUUUGGGG
UUC
|
|
hsa-miR-373*
2847
ACUCAAAAUGGGGGCGC
2848
ACUCAAAAUGGG
2849
CCCCCAUUUUG
|
MIMAT0000725
UUUCC
GGCGCUUU
AGU
|
|
hsa-miR-374a
2850
UUAUAAUACAACCUGAU
2851
UUAUAAUACAAC
2852
AGGUUGUAUUA
|
MIMAT0000727
AAGUG
CUGAUAAG
UAA
|
|
hsa-miR-374a*
2853
CUUAUCAGAUUGUAUUG
2854
CUUAUCAGAUUG
2855
UACAAUCUGAU
|
MIMAT0004688
UAAUU
UAUUGUAA
AAG
|
|
hsa-miR-374b
2856
AUAUAAUACAACCUGCU
2857
AUAUAAUACAAC
2858
AGGUUGUAUUA
|
MIMAT0004955
AAGUG
CUGCUAAG
UAU
|
|
hsa-miR-374b*
2859
CUUAGCAGGUUGUAUUA
2860
CUUAGCAGGUUG
2861
UACAACCUGCU
|
MIMAT0004956
UCAUU
UAUUAUCA
AAG
|
|
hsa-miR-374c
2862
AUAAUACAACCUGCUAA
2863
AUAAUACAACCU
2864
GCAGGUUGUAU
|
MIMAT0018443
GUGCU
GCUAAGUG
UAU
|
|
hsa-miR-375
2865
UUUGUUCGUUCGGCUCG
2866
UUUGUUCGUUCG
2867
GCCGAACGAAC
|
MIMAT0000728
CGUGA
GCUCGCGU
AAA
|
|
hsa-miR-376a
2868
AUCAUAGAGGAAAAUCC
2869
AUCAUAGAGGAA
2870
UUUUCCUCUAU
|
MIMAT0000729
ACGU
AAUCCACG
GAU
|
|
hsa-miR-376a*
2871
GUAGAUUCUCCUUCUAU
2872
GUAGAUUCUCCU
2873
GAAGGAGAAUC
|
MIMAT0003386
GAGUA
UCUAUGAG
UAC
|
|
hsa-miR-376b
2874
AUCAUAGAGGAAAAUCC
2875
AUCAUAGAGGAA
2876
UUUUCCUCUAU
|
MIMAT0002172
AUGUU
AAUCCAUG
GAU
|
|
hsa-miR-376c
2877
AACAUAGAGGAAAUUCC
2878
AACAUAGAGGAA
2879
AUUUCCUCUAU
|
MIMAT0000720
ACGU
AUUCCACG
GUU
|
|
hsa-miR-377
2880
AUCACACAAAGGCAACU
2881
AUCACACAAAGG
2882
UGCCUUUGUGU
|
MIMAT0000730
UUUGU
CAACUUUU
GAU
|
|
hsa-miR-377*
2883
AGAGGUUGCCCUUGGUG
2884
AGAGGUUGCCCU
2885
CAAGGGCAACC
|
MIMAT0004689
AAUUC
UGGUGAAU
UCU
|
|
hsa-miR-378
2886
ACUGGACUUGGAGUCAG
2887
ACUGGACUUGGA
2888
ACUCCAAGUCC
|
MIMAT0000732
AAGG
GUCAGAAG
AGU
|
|
hsa-miR-378*
2889
CUCCUGACUCCAGGUCC
2890
CUCCUGACUCCA
2891
CCUGGAGUCAG
|
MIMAT0000731
UGUGU
GGUCCUGU
GAG
|
|
hsa-miR-378b
2892
ACUGGACUUGGAGGCAG
2893
ACUGGACUUGGA
2894
CCUCCAAGUCC
|
MIMAT0014999
AA
GGCAGAA
AGU
|
|
hsa-miR-378c
2895
ACUGGACUUGGAGUCAG
2896
ACUGGACUUGGA
2897
ACUCCAAGUCC
|
MIMAT0016847
AAGAGUGG
GUCAGAAG
AGU
|
|
hsa-miR-379
2898
UGGUAGACUAUGGAACG
2899
UGGUAGACUAUG
2900
UCCAUAGUCUA
|
MIMAT0000733
UAGG
GAACGUAG
CCA
|
|
hsa-miR-379*
2901
UAUGUAACAUGGUCCAC
2902
UAUGUAACAUGG
2903
GACCAUGUUAC
|
MIMAT0004690
UAACU
UCCACUAA
AUA
|
|
hsa-miR-380
2904
UAUGUAAUAUGGUCCAC
2905
UAUGUAAUAUGG
2906
GACCAUAUUAC
|
MIMAT0000735
AUCUU
UCCACAUC
AUA
|
|
hsa-miR-380*
2907
UGGUUGACCAUAGAACA
2908
UGGUUGACCAUA
2909
UCUAUGGUCAA
|
MIMAT0000734
UGCGC
GAACAUGC
CCA
|
|
hsa-miR-381
2910
UAUACAAGGGCAAGCUC
2911
UAUACAAGGGCA
2912
CUUGCCCUUGU
|
MIMAT0000736
UCUGU
AGCUCUCU
AUA
|
|
hsa-miR-382
2913
GAAGUUGUUCGUGGUGG
2914
GAAGUUGUUCGU
2915
CCACGAACAAC
|
MIMAT0000737
AUUCG
GGUGGAUU
UUC
|
|
hsa-miR-383
2916
AGAUCAGAAGGUGAUUG
2917
AGAUCAGAAGGU
2918
UCACCUUCUGA
|
MIMAT0000738
UGGCU
GAUUGUGG
UCU
|
|
hsa-miR-384
2919
AUUCCUAGAAAUUGUUC
2920
AUUCCUAGAAAU
2921
CAAUUUCUAGG
|
MIMAT0001075
AUA
UGUUCAUA
AAU
|
|
hsa-miR-3907
2922
AGGUGCUCCAGGCUGGC
2923
AGGUGCUCCAGG
2924
AGCCUGGAGCA
|
MIMAT0018179
UCACA
CUGGCUCA
CCU
|
|
hsa-miR-3908
2925
GAGCAAUGUAGGUAGAC
2926
GAGCAAUGUAGG
2927
UACCUACAUUG
|
MIMAT0018182
UGUUU
UAGACUGU
CUC
|
|
hsa-miR-3909
2928
UGUCCUCUAGGGCCUGC
2929
UGUCCUCUAGGG
2930
GGCCCUAGAGG
|
MIMAT0018183
AGUCU
CCUGCAGU
ACA
|
|
hsa-miR-3910
2931
AAAGGCAUAAAACCAAG
2932
AAAGGCAUAAAA
2933
GGUUUUAUGCC
|
MIMAT0018184
ACA
CCAAGACA
UUU
|
|
hsa-miR-3911
2934
UGUGUGGAUCCUGGAGG
2935
UGUGUGGAUCCU
2936
CCAGGAUCCAC
|
MIMAT0018185
AGGCA
GGAGGAGG
ACA
|
|
hsa-miR-3912
2937
UAACGCAUAAUAUGGAC
2938
UAACGCAUAAUA
2939
CAUAUUAUGCG
|
MIMAT0018186
AUGU
UGGACAUG
UUA
|
|
hsa-miR-3913
2940
UUUGGGACUGAUCUUGA
2941
UUUGGGACUGAU
2942
AGAUCAGUCCC
|
MIMAT0018187
UGUCU
CUUGAUGU
AAA
|
|
hsa-miR-3914
2943
AAGGAACCAGAAAAUGA
2944
AAGGAACCAGAA
2945
UUUUCUGGUUC
|
MIMAT0018188
GAAGU
AAUGAGAA
CUU
|
|
hsa-miR-3915
2946
UUGAGGAAAAGAUGGUC
2947
UUGAGGAAAAGA
2948
CAUCUUUUCCU
|
MIMAT0018189
UUAUU
UGGUCUUA
CAA
|
|
hsa-miR-3916
2949
AAGAGGAAGAAAUGGCU
2950
AAGAGGAAGAAA
2951
CAUUUCUUCCU
|
MIMAT0018190
GGUUCUCAG
UGGCUGGU
CUU
|
|
hsa-miR-3917
2952
GCUCGGACUGAGCAGGU
2953
GCUCGGACUGAG
2954
UGCUCAGUCCG
|
MIMAT0018191
GGG
CAGGUGGG
AGC
|
|
hsa-miR-3918
2955
ACAGGGCCGCAGAUGGA
2956
ACAGGGCCGCAG
2957
AUCUGCGGCCC
|
MIMAT0018192
GACU
AUGGAGAC
UGU
|
|
hsa-miR-3919
2958
GCAGAGAACAAAGGACU
2959
GCAGAGAACAAA
2960
CCUUUGUUCUC
|
MIMAT0018193
CAGU
GGACUCAG
UGC
|
|
hsa-miR-3920
2961
ACUGAUUAUCUUAACUC
2962
ACUGAUUAUCUU
2963
UUAAGAUAAUC
|
MIMAT0018195
UCUGA
AACUCUCU
AGU
|
|
hsa-miR-3921
2964
UCUCUGAGUACCAUAUG
2965
UCUCUGAGUACC
2966
AUGGUACUCAG
|
MIMAT0018196
CCUUGU
AUAUGCCU
AGA
|
|
hsa-miR-3922
2967
UCUGGCCUUGACUUGAC
2968
UCUGGCCUUGAC
2969
AAGUCAAGGCC
|
MIMAT0018197
UCUUU
UUGACUCU
AGA
|
|
hsa-miR-3923
2970
AACUAGUAAUGUUGGAU
2971
AACUAGUAAUGU
2972
CAACAUUACUA
|
MIMAT0018198
UAGGG
UGGAUUAG
GUU
|
|
hsa-miR-3924
2973
AUAUGUAUAUGUGACUG
2974
AUAUGUAUAUGU
2975
UCACAUAUACA
|
MIMAT0018199
CUACU
GACUGCUA
UAU
|
|
hsa-miR-3925
2976
AAGAGAACUGAAAGUGG
2977
AAGAGAACUGAA
2978
CUUUCAGUUCU
|
MIMAT0018200
AGCCU
AGUGGAGC
CUU
|
|
hsa-miR-3926
2979
UGGCCAAAAAGCAGGCA
2980
UGGCCAAAAAGC
2981
CUGCUUUUUGG
|
MIMAT0018201
GAGA
AGGCAGAG
CCA
|
|
hsa-miR-3927
2982
CAGGUAGAUAUUUGAUA
2983
CAGGUAGAUAUU
2984
CAAAUAUCUAC
|
MIMAT0018202
GGCAU
UGAUAGGC
CUG
|
|
hsa-miR-3928
2985
GGAGGAACCUUGGAGCU
2986
GGAGGAACCUUG
2987
UCCAAGGUUCC
|
MIMAT0018205
UCGGC
GAGCUUCG
UCC
|
|
hsa-miR-3929
2988
GAGGCUGAUGUGAGUAG
2989
GAGGCUGAUGUG
2990
CUCACAUCAGC
|
MIMAT0018206
ACCACU
AGUAGACC
CUC
|
|
hsa-miR-3934
2991
UCAGGUGUGGAAACUGA
2992
UCAGGUGUGGAA
2993
GUUUCCACACC
|
MIMAT0018349
GGCAG
ACUGAGGC
UGA
|
|
hsa-miR-3935
2994
UGUAGAUACGAGCACCA
2995
UGUAGAUACGAG
2996
UGCUCGUAUCU
|
MIMAT0018350
GCCAC
CACCAGCC
ACA
|
|
hsa-miR-3936
2997
UAAGGGGUGUAUGGCAG
2998
UAAGGGGUGUAU
2999
CCAUACACCCC
|
MIMAT0018351
AUGCA
GGCAGAUG
UUA
|
|
hsa-miR-3937
3000
ACAGGCGGCUGUAGCAA
3001
ACAGGCGGCUGU
3002
CUACAGCCGCC
|
MIMAT0018352
UGGGGG
AGCAAUGG
UGU
|
|
hsa-miR-3938
3003
AAUUCCCUUGUAGAUAA
3004
AAUUCCCUUGUA
3005
UCUACAAGGGA
|
MIMAT0018353
CCCGG
GAUAACCC
AUU
|
|
hsa-miR-3939
3006
UACGCGCAGACCACAGG
3007
UACGCGCAGACC
3008
GUGGUCUGCGC
|
MIMAT0018355
AUGUC
ACAGGAUG
GUA
|
|
hsa-miR-3940
3009
CAGCCCGGAUCCCAGCC
3010
CAGCCCGGAUCC
3011
UGGGAUCCGGG
|
MIMAT0018356
CACUU
CAGCCCAC
CUG
|
|
hsa-miR-3941
3012
UUACACACAACUGAGGA
3013
UUACACACAACU
3014
UCAGUUGUGUG
|
MIMAT0018357
UCAUA
GAGGAUCA
UAA
|
|
hsa-miR-3942
3015
AAGCAAUACUGUUACCU
3016
AAGCAAUACUGU
3017
UAACAGUAUUG
|
MIMAT0018358
GAAAU
UACCUGAA
CUU
|
|
hsa-miR-3943
3018
UAGCCCCCAGGCUUCAC
3019
UAGCCCCCAGGC
3020
AAGCCUGGGGG
|
MIMAT0018359
UUGGCG
UUCACUUG
CUA
|
|
hsa-miR-3944
3021
UUCGGGCUGGCCUGCUG
3022
UUCGGGCUGGCC
3023
CAGGCCAGCCC
|
MIMAT0018360
CUCCGG
UGCUGCUC
GAA
|
|
hsa-miR-3945
3024
AGGGCAUAGGAGAGGGU
3025
AGGGCAUAGGAG
3026
CUCUCCUAUGC
|
MIMAT0018361
UGAUAU
AGGGUUGA
CCU
|
|
hsa-miR-409-3p
3027
GAAUGUUGCUCGGUGAA
3028
GAAUGUUGCUCG
3029
ACCGAGCAACA
|
MIMAT0001639
CCCCU
GUGAACCC
UUC
|
|
hsa-miR-409-5p
3030
AGGUUACCCGAGCAACU
3031
AGGUUACCCGAG
3032
UGCUCGGGUAA
|
MIMAT0001638
UUGCAU
CAACUUUG
CCU
|
|
hsa-miR-410
3033
AAUAUAACACAGAUGGC
3034
AAUAUAACACAG
3035
AUCUGUGUUAU
|
MIMAT0002171
CUGU
AUGGCCUG
AUU
|
|
hsa-miR-411
3036
UAGUAGACCGUAUAGCG
3037
UAGUAGACCGUA
3038
UAUACGGUCUA
|
MIMAT0003329
UACG
UAGCGUAC
CUA
|
|
hsa-miR-411*
3039
UAUGUAACACGGUCCAC
3040
UAUGUAACACGG
3041
GACCGUGUUAC
|
MIMAT0004813
UAACC
UCCACUAA
AUA
|
|
hsa-miR-412
3042
ACUUCACCUGGUCCACU
3043
ACUUCACCUGGU
3044
GGACCAGGUGA
|
MIMAT0002170
AGCCGU
CCACUAGC
AGU
|
|
hsa-miR-421
3045
AUCAACAGACAUUAAUU
3046
AUCAACAGACAU
3047
UAAUGUCUGUU
|
MIMAT0003339
GGGCGC
UAAUUGGG
GAU
|
|
hsa-miR-422a
3048
ACUGGACUUAGGGUCAG
3049
ACUGGACUUAGG
3050
ACCCUAAGUCC
|
MIMAT0001339
AAGGC
GUCAGAAG
AGU
|
|
hsa-miR-423-3p
3051
AGCUCGGUCUGAGGCCC
3052
AGCUCGGUCUGA
3053
CCUCAGACCGA
|
MIMAT0001340
CUCAGU
GGCCCCUC
GCU
|
|
hsa-miR-423-5p
3054
UGAGGGGCAGAGAGCGA
3055
UGAGGGGCAGAG
3056
CUCUCUGCCCC
|
MIMAT0004748
GACUUU
AGCGAGAC
UCA
|
|
hsa-miR-424
3057
CAGCAGCAAUUCAUGUU
3058
CAGCAGCAAUUC
3059
AUGAAUUGCUG
|
MIMAT0001341
UUGAA
AUGUUUUG
CUG
|
|
hsa-miR-424*
3060
CAAAACGUGAGGCGCUG
3061
CAAAACGUGAGG
3062
CGCCUCACGUU
|
MIMAT0004749
CUAU
CGCUGCUA
UUG
|
|
hsa-miR-425
3063
AAUGACACGAUCACUCC
3064
AAUGACACGAUC
3065
GUGAUCGUGUC
|
MIMAT0003393
CGUUGA
ACUCCCGU
AUU
|
|
hsa-miR-425*
3066
AUCGGGAAUGUCGUGUC
3067
AUCGGGAAUGUC
3068
ACGACAUUCCC
|
MIMAT0001343
CGCCC
GUGUCCGC
GAU
|
|
hsa-miR-4251
3069
CCUGAGAAAAGGGCCAA
3070
CCUGAGAAAAGG
3071
GCCCUUUUCUC
|
MIMAT0016883
GCCAA
AGG
|
|
hsa-miR-4252
3072
GGCCACUGAGUCAGCAC
3073
GGCCACUGAGUC
3074
CUGACUCAGUG
|
MIMAT0016886
CA
AGCACCA
GCC
|
|
hsa-miR-4253
3075
AGGGCAUGUCCAGGGGG
3076
AGGGCAUGUCCA
3077
CCUGGACAUGC
|
MIMAT0016882
U
GGGGGU
CCU
|
|
hsa-miR-4254
3078
GCCUGGAGCUACUCCAC
3079
GCCUGGAGCUAC
3080
GAGUAGCUCCA
|
MIMAT0016884
CAUCUC
UCCACCAU
GGC
|
|
hsa-miR-4255
3081
CAGUGUUCAGAGAUGGA
3082
CAGUGUUCAGAG
3083
AUCUCUGAACA
|
MIMAT0016885
AUGGA
CUG
|
|
hsa-miR-4256
3084
AUCUGACCUGAUGAAGG
3085
AUCUGACCUGAU
3086
UCAUCAGGUCA
|
MIMAT0016877
U
GAAGGU
GAU
|
|
hsa-miR-4257
3087
CCAGAGGUGGGGACUGA
3088
CCAGAGGUGGGG
3089
GUCCCCACCUC
|
MIMAT0016878
G
ACUGAG
UGG
|
|
hsa-miR-4258
3090
CCCCGCCACCGCCUUGG
3091
CCCCGCCACCGC
3092
AGGCGGUGGCG
|
MIMAT0016879
CUUGG
GGG
|
|
hsa-miR-4259
3093
CAGUUGGGUCUAGGGGU
3094
CAGUUGGGUCUA
3095
CCUAGACCCAA
|
MIMAT0016880
CAGGA
GGGGUCAG
CUG
|
|
hsa-miR-4260
3096
CUUGGGGCAUGGAGUCC
3097
CUUGGGGCAUGG
3098
CUCCAUGCCCC
|
MIMAT0016881
CA
AGUCCCA
AAG
|
|
hsa-miR-4261
3099
AGGAAACAGGGACCCA
3100
AGGAAACAGGGA
3101
GGUCCCUGUUU
|
MIMAT0016890
CCCA
CCU
|
|
hsa-miR-4262
3102
GACAUUCAGACUACCUG
3103
GACAUUCAGACU
3104
GUAGUCUGAAU
|
MIMAT0016894
ACCUG
GUC
|
|
hsa-miR-4263
3105
AUUCUAAGUGCCUUGGC
3106
AUUCUAAGUGCC
3107
AAGGCACUUAG
|
MIMAT0016898
C
UUGGCC
AAU
|
|
hsa-miR-4264
3108
ACUCAGUCAUGGUCAUU
3109
ACUCAGUCAUGG
3110
GACCAUGACUG
|
MIMAT0016899
UCAUU
AGU
|
|
hsa-miR-4265
3111
CUGUGGGCUCAGCUCUG
3112
CUGUGGGCUCAG
3113
AGCUGAGCCCA
|
MIMAT0016891
GG
CUCUGGG
CAG
|
|
hsa-miR-4266
3114
CUAGGAGGCCUUGGCC
3115
CUAGGAGGCCUU
3116
CCAAGGCCUCC
|
MIMAT0016892
GGCC
UAG
|
|
hsa-miR-4267
3117
UCCAGCUCGGUGGCAC
3118
UCCAGCUCGGUG
3119
GCCACCGAGCU
|
MIMAT0016893
GCAC
GGA
|
|
hsa-miR-4268
3120
GGCUCCUCCUCUCAGGA
3121
GGCUCCUCCUCU
3122
UGAGAGGAGGA
|
MIMAT0016896
UGUG
CAGGAUGU
GCC
|
|
hsa-miR-4269
3123
GCAGGCACAGACAGCCC
3124
GCAGGCACAGAC
3125
CUGUCUGUGCC
|
MIMAT0016897
UGGC
AGCCCUGG
UGC
|
|
hsa-miR-4270
3126
UCAGGGAGUCAGGGGAG
3127
UCAGGGAGUCAG
3128
CCCUGACUCCC
|
MIMAT0016900
GGC
GGGAGGGC
UGA
|
|
hsa-miR-4271
3129
GGGGGAAGAAAAGGUGG
3130
GGGGGAAGAAAA
3131
CCUUUUCUUCC
|
MIMAT0016901
GG
GGUGGGG
CCC
|
|
hsa-miR-4272
3132
CAUUCAACUAGUGAUUG
3133
CAUUCAACUAGU
3134
UCACUAGUUGA
|
MIMAT0016902
U
GAUUGU
AUG
|
|
hsa-miR-4273
3135
GUGUUCUCUGAUGGACA
3136
GUGUUCUCUGAU
3137
CCAUCAGAGAA
|
MIMAT0016903
G
GGACAG
CAC
|
|
hsa-miR-4274
3138
CAGCAGUCCCUCCCCCU
3139
CAGCAGUCCCUC
3140
GGGAGGGACUG
|
MIMAT0016906
G
CCCCUG
CUG
|
|
hsa-miR-4275
3141
CCAAUUACCACUUCUUU
3142
CCAAUUACCACU
3143
GAAGUGGUAAU
|
MIMAT0016905
UCUUU
UGG
|
|
hsa-miR-4276
3144
CUCAGUGACUCAUGUGC
3145
CUCAGUGACUCA
3146
CAUGAGUCACU
|
MIMAT0016904
UGUGC
GAG
|
|
hsa-miR-4277
3147
GCAGUUCUGAGCACAGU
3148
GCAGUUCUGAGC
3149
GUGCUCAGAAC
|
MIMAT0016908
ACAC
ACAGUACA
UGC
|
|
hsa-miR-4278
3150
CUAGGGGGUUUGCCCUU
3151
CUAGGGGGUUUG
3152
GGCAAACCCCC
|
MIMAT0016910
G
CCCUUG
UAG
|
|
hsa-miR-4279
3153
CUCUCCUCCCGGCUUC
3154
CUCUCCUCCCGG
3155
AGCCGGGAGGA
|
MIMAT0016909
CUUC
GAG
|
|
hsa-miR-4280
3156
GAGUGUAGUUCUGAGCA
3157
GAGUGUAGUUCU
3158
UCAGAACUACA
|
MIMAT0016911
GAGC
GAGCAGAG
CUC
|
|
hsa-miR-4281
3159
GGGUCCCGGGGAGGGGG
3160
GGGUCCCGGGGA
3161
CCUCCCCGGGA
|
MIMAT0016907
G
GGGGGG
CCC
|
|
hsa-miR-4282
3162
UAAAAUUUGCAUCCAGG
3163
UAAAAUUUGCAU
3164
GGAUGCAAAUU
|
MIMAT0016912
A
CCAGGA
UUA
|
|
hsa-miR-4283
3165
UGGGGCUCAGCGAGUUU
3166
UGGGGCUCAGCG
3167
CUCGCUGAGCC
|
MIMAT0016914
AGUUU
CCA
|
|
hsa-miR-4284
3168
GGGCUCACAUCACCCCA
3169
GGGCUCACAUCA
3170
GGUGAUGUGAG
|
MIMAT0016915
U
CCCCAU
CCC
|
|
hsa-miR-4285
3171
GCGGCGAGUCCGACUCA
3172
GCGGCGAGUCCG
3173
GUCGGACUCGC
|
MIMAT0016913
U
ACUCAU
CGC
|
|
hsa-miR-4286
3174
ACCCCACUCCUGGUACC
3175
ACCCCACUCCUG
3176
ACCAGGAGUGG
|
MIMAT0016916
GUACC
GGU
|
|
hsa-miR-4287
3177
UCUCCCUUGAGGGCACU
3178
UCUCCCUUGAGG
3179
GCCCUCAAGGG
|
MIMAT0016917
UU
GCACUUU
AGA
|
|
hsa-miR-4288
3180
UUGUCUGCUGAGUUUCC
3181
UUGUCUGCUGAG
3182
AACUCAGCAGA
|
MIMAT0016918
UUUCC
CAA
|
|
hsa-miR-4289
3183
GCAUUGUGCAGGGCUAU
3184
GCAUUGUGCAGG
3185
GCCCUGCACAA
|
MIMAT0016920
CA
GCUAUCA
UGC
|
|
hsa-miR-429
3186
UAAUACUGUCUGGUAAA
3187
UAAUACUGUCUG
3188
ACCAGACAGUA
|
MIMAT0001536
ACCGU
GUAAAACC
UUA
|
|
hsa-miR-4290
3189
UGCCCUCCUUUCUUCCC
3190
UGCCCUCCUUUC
3191
AAGAAAGGAGG
|
MIMAT0016921
UC
UUCCCUC
GCA
|
|
hsa-miR-4291
3192
UUCAGCAGGAACAGCU
3193
UUCAGCAGGAAC
3194
CUGUUCCUGCU
|
MIMAT0016922
AGCU
GAA
|
|
hsa-miR-4292
3195
CCCCUGGGCCGGCCUUG
3196
CCCCUGGGCCGG
3197
GGCCGGCCCAG
|
MIMAT0016919
G
CCUUGG
GGG
|
|
hsa-miR-4293
3198
CAGCCUGACAGGAACAG
3199
CAGCCUGACAGG
3200
UUCCUGUCAGG
|
MIMAT0016848
AACAG
CUG
|
|
hsa-miR-4294
3201
GGGAGUCUACAGCAGGG
3202
GGGAGUCUACAG
3203
UGCUGUAGACU
|
MIMAT0016849
CAGGG
CCC
|
|
hsa-miR-4295
3204
CAGUGCAAUGUUUUCCU
3205
CAGUGCAAUGUU
3206
AAAACAUUGCA
|
MIMAT0016844
U
UUCCUU
CUG
|
|
hsa-miR-4296
3207
AUGUGGGCUCAGGCUCA
3208
AUGUGGGCUCAG
3209
GCCUGAGCCCA
|
MIMAT0016845
GCUCA
CAU
|
|
hsa-miR-4297
3210
UGCCUUCCUGUCUGUG
3211
UGCCUUCCUGUC
3212
CAGACAGGAAG
|
MIMAT0016846
UGUG
GCA
|
|
hsa-miR-4298
3213
CUGGGACAGGAGGAGGA
3214
CUGGGACAGGAG
3215
UCCUCCUGUCC
|
MIMAT0016852
GGCAG
GAGGAGGC
CAG
|
|
hsa-miR-4299
3216
GCUGGUGACAUGAGAGG
3217
GCUGGUGACAUG
3218
CUCAUGUCACC
|
MIMAT0016851
C
AGAGGC
AGC
|
|
hsa-miR-4300
3219
UGGGAGCUGGACUACUU
3220
UGGGAGCUGGAC
3221
UAGUCCAGCUC
|
MIMAT0016853
C
UACUUC
CCA
|
|
hsa-miR-4301
3222
UCCCACUACUUCACUUG
3223
UCCCACUACUUC
3224
GUGAAGUAGUG
|
MIMAT0016850
UGA
ACUUGUGA
GGA
|
|
hsa-miR-4302
3225
CCAGUGUGGCUCAGCGA
3226
CCAGUGUGGCUC
3227
CUGAGCCACAC
|
MIMAT0016855
G
AGCGAG
UGG
|
|
hsa-miR-4303
3228
UUCUGAGCUGAGGACAG
3229
UUCUGAGCUGAG
3230
UCCUCAGCUCA
|
MIMAT0016856
GACAG
GAA
|
|
hsa-miR-4304
3231
CCGGCAUGUCCAGGGCA
3232
CCGGCAUGUCCA
3233
CCUGGACAUGC
|
MIMAT0016854
GGGCA
CGG
|
|
hsa-miR-4305
3234
CCUAGACACCUCCAGUU
3235
CCUAGACACCUC
3236
UGGAGGUGUCU
|
MIMAT0016857
C
CAGUUC
AGG
|
|
hsa-miR-4306
3237
UGGAGAGAAAGGCAGUA
3238
UGGAGAGAAAGG
3239
UGCCUUUCUCU
|
MIMAT0016858
CAGUA
CCA
|
|
hsa-miR-4307
3240
AAUGUUUUUUCCUGUUU
3241
AAUGUUUUUUCC
3242
CAGGAAAAAAC
|
MIMAT0016860
CC
UGUUUCC
AUU
|
|
hsa-miR-4308
3243
UCCCUGGAGUUUCUUCU
3244
UCCCUGGAGUUU
3245
AGAAACUCCAG
|
MIMAT0016861
U
CUUCUU
GGA
|
|
hsa-miR-4309
3246
CUGGAGUCUAGGAUUCC
3247
CUGGAGUCUAGG
3248
AUCCUAGACUC
|
MIMAT0016859
A
AUUCCA
CAG
|
|
hsa-miR-431
3249
UGUCUUGCAGGCCGUCA
3250
UGUCUUGCAGGC
3251
CGGCCUGCAAG
|
MIMAT0001625
UGCA
CGUCAUGC
ACA
|
|
hsa-miR-431*
3252
CAGGUCGUCUUGCAGGG
3253
CAGGUCGUCUUG
3254
UGCAAGACGAC
|
MIMAT0004757
CUUCU
CAGGGCUU
CUG
|
|
hsa-miR-4310
3255
GCAGCAUUCAUGUCCC
3256
GCAGCAUUCAUG
3257
GACAUGAAUGC
|
MIMAT0016862
UCCC
UGC
|
|
hsa-miR-4311
3258
GAAAGAGAGCUGAGUGU
3259
GAAAGAGAGCUG
3260
CUCAGCUCUCU
|
MIMAT0016863
G
AGUGUG
UUC
|
|
hsa-miR-4312
3261
GGCCUUGUUCCUGUCCC
3262
GGCCUUGUUCCU
3263
ACAGGAACAAG
|
MIMAT0016864
CA
GUCCCCA
GCC
|
|
hsa-miR-4313
3264
AGCCCCCUGGCCCCAAA
3265
AGCCCCCUGGCC
3266
GGGGCCAGGGG
|
MIMAT0016865
CCC
CCAAACCC
GCU
|
|
hsa-miR-4314
3267
CUCUGGGAAAUGGGACA
3268
CUCUGGGAAAUG
3269
CCCAUUUCCCA
|
MIMAT0016868
G
GGACAG
GAG
|
|
hsa-miR-4315
3270
CCGCUUUCUGAGCUGGA
3271
CCGCUUUCUGAG
3272
AGCUCAGAAAG
|
MIMAT0016866
C
CUGGAC
CGG
|
|
hsa-miR-4316
3273
GGUGAGGCUAGCUGGUG
3274
GGUGAGGCUAGC
3275
CAGCUAGCCUC
|
MIMAT0016867
UGGUG
ACC
|
|
hsa-miR-4317
3276
ACAUUGCCAGGGAGUUU
3277
ACAUUGCCAGGG
3278
CUCCCUGGCAA
|
MIMAT0016872
AGUUU
UGU
|
|
hsa-miR-4318
3279
CACUGUGGGUACAUGCU
3280
CACUGUGGGUAC
3281
AUGUACCCACA
|
MIMAT0016869
AUGCU
GUG
|
|
hsa-miR-4319
3282
UCCCUGAGCAAAGCCAC
3283
UCCCUGAGCAAA
3284
GCUUUGCUCAG
|
MIMAT0016870
GCCAC
GGA
|
|
hsa-miR-432
3285
UCUUGGAGUAGGUCAUU
3286
UCUUGGAGUAGG
3287
GACCUACUCCA
|
MIMAT0002814
GGGUGG
UCAUUGGG
AGA
|
|
hsa-miR-432*
3288
CUGGAUGGCUCCUCCAU
3289
CUGGAUGGCUCC
3290
GAGGAGCCAUC
|
MIMAT0002815
GUCU
UCCAUGUC
CAG
|
|
hsa-miR-4320
3291
GGGAUUCUGUAGCUUCC
3292
GGGAUUCUGUAG
3293
AGCUACAGAAU
|
MIMAT0016871
U
CUUCCU
CCC
|
|
hsa-miR-4321
3294
UUAGCGGUGGACCGCCC
3295
UUAGCGGUGGAC
3296
CGGUCCACCGC
|
MIMAT0016874
UGCG
CGCCCUGC
UAA
|
|
hsa-miR-4322
3297
CUGUGGGCUCAGCGCGU
3298
CUGUGGGCUCAG
3299
CGCUGAGCCCA
|
MIMAT0016873
GGGG
CGCGUGGG
CAG
|
|
hsa-miR-4323
3300
CAGCCCCACAGCCUCAG
3301
CAGCCCCACAGC
3302
AGGCUGUGGGG
|
MIMAT0016875
A
CUCAGA
CUG
|
|
hsa-miR-4324
3303
CCCUGAGACCCUAACCU
3304
CCCUGAGACCCU
3305
UUAGGGUCUCA
|
MIMAT0016876
UAA
AACCUUAA
GGG
|
|
hsa-miR-4325
3306
UUGCACUUGUCUCAGUG
3307
UUGCACUUGUCU
3308
UGAGACAAGUG
|
MIMAT0016887
A
CAGUGA
CAA
|
|
hsa-miR-4326
3309
UGUUCCUCUGUCUCCCA
3310
UGUUCCUCUGUC
3311
GAGACAGAGGA
|
MIMAT0016888
GAC
UCCCAGAC
ACA
|
|
hsa-miR-4327
3312
GGCUUGCAUGGGGGACU
3313
GGCUUGCAUGGG
3314
CCCCCAUGCAA
|
MIMAT0016889
GG
GGACUGG
GCC
|
|
hsa-miR-4328
3315
CCAGUUUUCCCAGGAUU
3316
CCAGUUUUCCCA
3317
CCUGGGAAAAC
|
MIMAT0016926
GGAUU
UGG
|
|
hsa-miR-4329
3318
CCUGAGACCCUAGUUCC
3319
CCUGAGACCCUA
3320
ACUAGGGUCUC
|
MIMAT0016923
AC
GUUCCAC
AGG
|
|
hsa-miR-433
3321
AUCAUGAUGGGCUCCUC
3322
AUCAUGAUGGGC
3323
GAGCCCAUCAU
|
MIMAT0001627
GGUGU
UCCUCGGU
GAU
|
|
hsa-miR-4330
3324
CCUCAGAUCAGAGCCUU
3325
CCUCAGAUCAGA
3326
GCUCUGAUCUG
|
MIMAT0016924
GC
GCCUUGC
AGG
|
|
hsa-miR-448
3327
UUGCAUAUGUAGGAUGU
3328
UUGCAUAUGUAG
3329
UCCUACAUAUG
|
MIMAT0001532
CCCAU
GAUGUCCC
CAA
|
|
hsa-miR-449a
3330
UGGCAGUGUAUUGUUAG
3331
UGGCAGUGUAUU
3332
ACAAUACACUG
|
MIMAT0001541
CUGGU
GUUAGCUG
CCA
|
|
hsa-miR-449b
3333
AGGCAGUGUAUUGUUAG
3334
AGGCAGUGUAUU
3335
ACAAUACACUG
|
MIMAT0003327
CUGGC
GUUAGCUG
CCU
|
|
hsa-miR-449b*
3336
CAGCCACAACUACCCUG
3337
CAGCCACAACUA
3338
GGUAGUUGUGG
|
MIMAT0009203
CCACU
CCCUGCCA
CUG
|
|
hsa-miR-449c
3339
UAGGCAGUGUAUUGCUA
3340
UAGGCAGUGUAU
3341
CAAUACACUGC
|
MIMAT0010251
GCGGCUGU
UGCUAGCG
CUA
|
|
hsa-miR-449c*
3342
UUGCUAGUUGCACUCCU
3343
UUGCUAGUUGCA
3344
AGUGCAACUAG
|
MIMAT0013771
CUCUGU
CUCCUCUC
CAA
|
|
hsa-miR-450a
3345
UUUUGCGAUGUGUUCCU
3346
UUUUGCGAUGUG
3347
AACACAUCGCA
|
MIMAT0001545
AAUAU
UUCCUAAU
AAA
|
|
hsa-miR-450b-
3348
UUGGGAUCAUUUUGCAU
3349
UUGGGAUCAUUU
3350
CAAAAUGAUCC
|
3p
CCAUA
UGCAUCCA
CAA
|
MIMAT0004910
|
|
hsa-miR-450b-
3351
UUUUGCAAUAUGUUCCU
3352
UUUUGCAAUAUG
3353
AACAUAUUGCA
|
5p
GAAUA
UUCCUGAA
AAA
|
MIMAT0004909
|
|
hsa-miR-451
3354
AAACCGUUACCAUUACU
3355
AAACCGUUACCA
3356
AAUGGUAACGG
|
MIMAT0001631
GAGUU
UUACUGAG
UUU
|
|
hsa-miR-452
3357
AACUGUUUGCAGAGGAA
3358
AACUGUUUGCAG
3359
CUCUGCAAACA
|
MIMAT0001635
ACUGA
AGGAAACU
GUU
|
|
hsa-miR-452*
3360
CUCAUCUGCAAAGAAGU
3361
CUCAUCUGCAAA
3362
UCUUUGCAGAU
|
MIMAT0001636
AAGUG
GAAGUAAG
GAG
|
|
hsa-miR-454
3363
UAGUGCAAUAUUGCUUA
3364
UAGUGCAAUAUU
3365
GCAAUAUUGCA
|
MIMAT0003885
UAGGGU
GCUUAUAG
CUA
|
|
hsa-miR-454*
3366
ACCCUAUCAAUAUUGUC
3367
ACCCUAUCAAUA
3368
AAUAUUGAUAG
|
MIMAT0003884
UCUGC
UUGUCUCU
GGU
|
|
hsa-miR-455-3p
3369
GCAGUCCAUGGGCAUAU
3370
GCAGUCCAUGGG
3371
UGCCCAUGGAC
|
MIMAT0004784
ACAC
CAUAUACA
UGC
|
|
hsa-miR-455-5p
3372
UAUGUGCCUUUGGACUA
3373
UAUGUGCCUUUG
3374
UCCAAAGGCAC
|
MIMAT0003150
CAUCG
GACUACAU
AUA
|
|
hsa-miR-466
3375
AUACACAUACACGCAAC
3376
AUACACAUACAC
3377
GCGUGUAUGUG
|
MIMAT0015002
ACACAU
GCAACACA
UAU
|
|
hsa-miR-483-3p
3378
UCACUCCUCUCCUCCCG
3379
UCACUCCUCUCC
3380
GAGGAGAGGAG
|
MIMAT0002173
UCUU
UCCCGUCU
UGA
|
|
hsa-miR-483-5p
3381
AAGACGGGAGGAAAGAA
3382
AAGACGGGAGGA
3383
UUUCCUCCCGU
|
MIMAT0004761
GGGAG
AAGAAGGG
CUU
|
|
hsa-miR-484
3384
UCAGGCUCAGUCCCCUC
3385
UCAGGCUCAGUC
3386
GGGACUGAGCC
|
MIMAT0002174
CCGAU
CCCUCCCG
UGA
|
|
hsa-miR-485-3p
3387
GUCAUACACGGCUCUCC
3388
GUCAUACACGGC
3389
GAGCCGUGUAU
|
MIMAT0002176
UCUCU
UCUCCUCU
GAC
|
|
hsa-miR-485-5p
3390
AGAGGCUGGCCGUGAUG
3391
AGAGGCUGGCCG
3392
CACGGCCAGCC
|
MIMAT0002175
AAUUC
UGAUGAAU
UCU
|
|
hsa-miR-486-3p
3393
CGGGGCAGCUCAGUACA
3394
CGGGGCAGCUCA
3395
ACUGAGCUGCC
|
MIMAT0004762
GGAU
GUACAGGA
CCG
|
|
hsa-miR-486-5p
3396
UCCUGUACUGAGCUGCC
3397
UCCUGUACUGAG
3398
AGCUCAGUACA
|
MIMAT0002177
CCGAG
CUGCCCCG
GGA
|
|
hsa-miR-487a
3399
AAUCAUACAGGGACAUC
3400
AAUCAUACAGGG
3401
GUCCCUGUAUG
|
MIMAT0002178
CAGUU
ACAUCCAG
AUU
|
|
hsa-miR-487b
3402
AAUCGUACAGGGUCAUC
3403
AAUCGUACAGGG
3404
GACCCUGUACG
|
MIMAT0003180
CACUU
UCAUCCAC
AUU
|
|
hsa-miR-488
3405
UUGAAAGGCUAUUUCUU
3406
UUGAAAGGCUAU
3407
AAAUAGCCUUU
|
MIMAT0004763
GGUC
UUCUUGGU
CAA
|
|
hsa-miR-488*
3408
CCCAGAUAAUGGCACUC
3409
CCCAGAUAAUGG
3410
UGCCAUUAUCU
|
MIMAT0002804
UCAA
CACUCUCA
GGG
|
|
hsa-miR-489
3411
GUGACAUCACAUAUACG
3412
GUGACAUCACAU
3413
AUAUGUGAUGU
|
MIMAT0002805
GCAGC
AUACGGCA
CAC
|
|
hsa-miR-490-3p
3414
CAACCUGGAGGACUCCA
3415
CAACCUGGAGGA
3416
AGUCCUCCAGG
|
MIMAT0002806
UGCUG
CUCCAUGC
UUG
|
|
hsa-miR-490-5p
3417
CCAUGGAUCUCCAGGUG
3418
CCAUGGAUCUCC
3419
CUGGAGAUCCA
|
MIMAT0004764
GGU
AGGUGGGU
UGG
|
|
hsa-miR-491-3p
3420
CUUAUGCAAGAUUCCCU
3421
CUUAUGCAAGAU
3422
GAAUCUUGCAU
|
MIMAT0004765
UCUAC
UCCCUUCU
AAG
|
|
hsa-miR-491-5p
3423
AGUGGGGAACCCUUCCA
3424
AGUGGGGAACCC
3425
AAGGGUUCCCC
|
MIMAT0002807
UGAGG
UUCCAUGA
ACU
|
|
hsa-miR-492
3426
AGGACCUGCGGGACAAG
3427
AGGACCUGCGGG
3428
GUCCCGCAGGU
|
MIMAT0002812
AUUCUU
ACAAGAUU
CCU
|
|
hsa-miR-493
3429
UGAAGGUCUACUGUGUG
3430
UGAAGGUCUACU
3431
ACAGUAGACCU
|
MIMAT0003161
CCAGG
GUGUGCCA
UCA
|
|
hsa-miR-493*
3432
UUGUACAUGGUAGGCUU
3433
UUGUACAUGGUA
3434
CCUACCAUGUA
|
MIMAT0002813
UCAUU
GGCUUUCA
CAA
|
|
hsa-miR-494
3435
UGAAACAUACACGGGAA
3436
UGAAACAUACAC
3437
CCGUGUAUGUU
|
MIMAT0002816
ACCUC
GGGAAACC
UCA
|
|
hsa-miR-495
3438
AAACAAACAUGGUGCAC
3439
AAACAAACAUGG
3440
CACCAUGUUUG
|
MIMAT0002817
UUCUU
UGCACUUC
UUU
|
|
hsa-miR-496
3441
UGAGUAUUACAUGGCCA
3442
UGAGUAUUACAU
3443
CCAUGUAAUAC
|
MIMAT0002818
AUCUC
GGCCAAUC
UCA
|
|
hsa-miR-497
3444
CAGCAGCACACUGUGGU
3445
CAGCAGCACACU
3446
ACAGUGUGCUG
|
MIMAT0002820
UUGU
GUGGUUUG
CUG
|
|
hsa-miR-497*
3447
CAAACCACACUGUGGUG
3448
CAAACCACACUG
3449
CACAGUGUGGU
|
MIMAT0004768
UUAGA
UGGUGUUA
UUG
|
|
hsa-miR-498
3450
UUUCAAGCCAGGGGGCG
3451
UUUCAAGCCAGG
3452
CCCCUGGCUUG
|
MIMAT0002824
UUUUUC
GGGCGUUU
AAA
|
|
hsa-miR-499-3p
3453
AACAUCACAGCAAGUCU
3454
AACAUCACAGCA
3455
CUUGCUGUGAU
|
MIMAT0004772
GUGCU
AGUCUGUG
GUU
|
|
hsa-miR-499-5p
3456
UUAAGACUUGCAGUGAU
3457
UUAAGACUUGCA
3458
ACUGCAAGUCU
|
MIMAT0002870
GUUU
GUGAUGUU
UAA
|
|
hsa-miR-500a
3459
UAAUCCUUGCUACCUGG
3460
UAAUCCUUGCUA
3461
GGUAGCAAGGA
|
MIMAT0004773
GUGAGA
CCUGGGUG
UUA
|
|
hsa-miR-500a*
3462
AUGCACCUGGGCAAGGA
3463
AUGCACCUGGGC
3464
UUGCCCAGGUG
|
MIMAT0002871
UUCUG
AAGGAUUC
CAU
|
|
hsa-miR-500b
3465
AAUCCUUGCUACCUGGG
3466
AAUCCUUGCUAC
3467
AGGUAGCAAGG
|
MIMAT0016925
U
CUGGGU
AUU
|
|
hsa-miR-501-3p
3468
AAUGCACCCGGGCAAGG
3469
AAUGCACCCGGG
3470
UGCCCGGGUGC
|
MIMAT0004774
AUUCU
CAAGGAUU
AUU
|
|
hsa-miR-501-5p
3471
AAUCCUUUGUCCCUGGG
3472
AAUCCUUUGUCC
3473
AGGGACAAAGG
|
MIMAT0002872
UGAGA
CUGGGUGA
AUU
|
|
hsa-miR-502-3p
3474
AAUGCACCUGGGCAAGG
3475
AAUGCACCUGGG
3476
UGCCCAGGUGC
|
MIMAT0004775
AUUCA
CAAGGAUU
AUU
|
|
hsa-miR-502-5p
3477
AUCCUUGCUAUCUGGGU
3478
AUCCUUGCUAUC
3479
CAGAUAGCAAG
|
MIMAT0002873
GCUA
UGGGUGCU
GAU
|
|
hsa-miR-503
3480
UAGCAGCGGGAACAGUU
3481
UAGCAGCGGGAA
3482
UGUUCCCGCUG
|
MIMAT0002874
CUGCAG
CAGUUCUG
CUA
|
|
hsa-miR-504
3483
AGACCCUGGUCUGCACU
3484
AGACCCUGGUCU
3485
GCAGACCAGGG
|
MIMAT0002875
CUAUC
GCACUCUA
UCU
|
|
hsa-miR-505
3486
CGUCAACACUUGCUGGU
3487
CGUCAACACUUG
3488
AGCAAGUGUUG
|
MIMAT0002876
UUCCU
CUGGUUUC
ACG
|
|
hsa-miR-505*
3489
GGGAGCCAGGAAGUAUU
3490
GGGAGCCAGGAA
3491
ACUUCCUGGCU
|
MIMAT0004776
GAUGU
GUAUUGAU
CCC
|
|
hsa-miR-506
3492
UAAGGCACCCUUCUGAG
3493
UAAGGCACCCUU
3494
AGAAGGGUGCC
|
MIMAT0002878
UAGA
CUGAGUAG
UUA
|
|
hsa-miR-507
3495
UUUUGCACCUUUUGGAG
3496
UUUUGCACCUUU
3497
CAAAAGGUGCA
|
MIMAT0002879
UGAA
UGGAGUGA
AAA
|
|
hsa-miR-508-3p
3498
UGAUUGUAGCCUUUUGG
3499
UGAUUGUAGCCU
3500
AAAGGCUACAA
|
MIMAT0002880
AGUAGA
UUUGGAGU
UCA
|
|
hsa-miR-508-5p
3501
UACUCCAGAGGGCGUCA
3502
UACUCCAGAGGG
3503
CGCCCUCUGGA
|
MIMAT0004778
CUCAUG
CGUCACUC
GUA
|
|
hsa-miR-509-3-
3504
UACUGCAGACGUGGCAA
3505
UACUGCAGACGU
3506
CCACGUCUGCA
|
5p
UCAUG
GGCAAUCA
GUA
|
MIMAT0004975
|
|
hsa-miR-509-3p
3507
UGAUUGGUACGUCUGUG
3508
UGAUUGGUACGU
3509
AGACGUACCAA
|
MIMAT0002881
GGUAG
CUGUGGGU
UCA
|
|
hsa-miR-509-5p
3510
UACUGCAGACAGUGGCA
3511
UACUGCAGACAG
3512
CACUGUCUGCA
|
MIMAT0004779
AUCA
UGGCAAUC
GUA
|
|
hsa-miR-510
3513
UACUCAGGAGAGUGGCA
3514
UACUCAGGAGAG
3515
CACUCUCCUGA
|
MIMAT0002882
AUCAC
UGGCAAUC
GUA
|
|
hsa-miR-511
3516
GUGUCUUUUGCUCUGCA
3517
GUGUCUUUUGCU
3518
AGAGCAAAAGA
|
MIMAT0002808
GUCA
CUGCAGUC
CAC
|
|
hsa-miR-512-3p
3519
AAGUGCUGUCAUAGCUG
3520
AAGUGCUGUCAU
3521
CUAUGACAGCA
|
MIMAT0002823
AGGUC
AGCUGAGG
CUU
|
|
hsa-miR-512-5p
3522
CACUCAGCCUUGAGGGC
3523
CACUCAGCCUUG
3524
CUCAAGGCUGA
|
MIMAT0002822
ACUUUC
AGGGCACU
GUG
|
|
hsa-miR-513a-
3525
UAAAUUUCACCUUUCUG
3526
UAAAUUUCACCU
3527
AAAGGUGAAAU
|
3p
AGAAGG
UUCUGAGA
UUA
|
MIMAT0004777
|
|
hsa-miR-513a-
3528
UUCACAGGGAGGUGUCA
3529
UUCACAGGGAGG
3530
CACCUCCCUGU
|
5p
U
UGUCAU
GAA
|
MIMAT0002877
|
|
hsa-miR-513b
3531
UUCACAAGGAGGUGUCA
3532
UUCACAAGGAGG
3533
CACCUCCUUGU
|
MIMAT0005788
UUUAU
UGUCAUUU
GAA
|
|
hsa-miR-513c
3534
UUCUCAAGGAGGUGUCG
3535
UUCUCAAGGAGG
3536
CACCUCCUUGA
|
MIMAT0005789
UUUAU
UGUCGUUU
GAA
|
|
hsa-miR-514
3537
AUUGACACUUCUGUGAG
3538
AUUGACACUUCU
3539
ACAGAAGUGUC
|
MIMAT0002883
UAGA
GUGAGUAG
AAU
|
|
hsa-miR-514b-
3540
AUUGACACCUCUGUGAG
3541
AUUGACACCUCU
3542
ACAGAGGUGUC
|
3p
UGGA
GUGAGUGG
AAU
|
MIMAT0015088
|
|
hsa-miR-514b-
3543
UUCUCAAGAGGGAGGCA
3544
UUCUCAAGAGGG
3545
CUCCCUCUUGA
|
5p
AUCAU
AGGCAAUC
GAA
|
MIMAT0015087
|
|
hsa-miR-515-3p
3546
GAGUGCCUUCUUUUGGA
3547
GAGUGCCUUCUU
3548
AAAAGAAGGCA
|
MIMAT0002827
GCGUU
UUGGAGCG
CUC
|
|
hsa-miR-515-5p
3549
UUCUCCAAAAGAAAGCA
3550
UUCUCCAAAAGA
3551
UUUCUUUUGGA
|
MIMAT0002826
CUUUCUG
AAGCACUU
GAA
|
|
hsa-miR-516a-
3552
UGCUUCCUUUCAGAGGG
3553
UGCUUCCUUUCA
3554
UCUGAAAGGAA
|
3p
U
GAGGGU
GCA
|
MIMAT0006778
|
|
hsa-miR-516a-
3555
UUCUCGAGGAAAGAAGC
3556
UUCUCGAGGAAA
3557
UCUUUCCUCGA
|
5p
ACUUUC
GAAGCACU
GAA
|
MIMAT0004770
|
|
hsa-miR-516b
3558
AUCUGGAGGUAAGAAGC
3559
AUCUGGAGGUAA
3560
UCUUACCUCCA
|
MIMAT0002859
ACUUU
GAAGCACU
GAU
|
|
hsa-miR-516b*
3561
UGCUUCCUUUCAGAGGG
3562
UGCUUCCUUUCA
3563
UCUGAAAGGAA
|
MIMAT0002860
U
GAGGGU
GCA
|
|
hsa-miR-517*
3564
CCUCUAGAUGGAAGCAC
3565
CCUCUAGAUGGA
3566
CUUCCAUCUAG
|
MIMAT0002851
UGUCU
AGCACUGU
AGG
|
|
hsa-miR-517a
3567
AUCGUGCAUCCCUUUAG
3568
AUCGUGCAUCCC
3569
AAGGGAUGCAC
|
MIMAT0002852
AGUGU
UUUAGAGU
GAU
|
|
hsa-miR-517b
3570
UCGUGCAUCCCUUUAGA
3571
UCGUGCAUCCCU
3572
AAAGGGAUGCA
|
MIMAT0002857
GUGUU
UUAGAGUG
CGA
|
|
hsa-miR-517c
3573
AUCGUGCAUCCUUUUAG
3574
AUCGUGCAUCCU
3575
AAAGGAUGCAC
|
MIMAT0002866
AGUGU
UUUAGAGU
GAU
|
|
hsa-miR-518a-
3576
GAAAGCGCUUCCCUUUG
3577
GAAAGCGCUUCC
3578
AGGGAAGCGCU
|
3p
CUGGA
CUUUGCUG
UUC
|
MIMAT0002863
|
|
hsa-miR-518a-
3579
CUGCAAAGGGAAGCCCU
3580
CUGCAAAGGGAA
3581
GCUUCCCUUUG
|
5p
UUC
GCCCUUUC
CAG
|
MIMAT0005457
|
|
hsa-miR-518b
3582
CAAAGCGCUCCCCUUUA
3583
CAAAGCGCUCCC
3584
AGGGGAGCGCU
|
MIMAT0002844
GAGGU
CUUUAGAG
UUG
|
|
hsa-miR-518c
3585
CAAAGCGCUUCUCUUUA
3586
CAAAGCGCUUCU
3587
AGAGAAGCGCU
|
MIMAT0002848
GAGUGU
CUUUAGAG
UUG
|
|
hsa-miR-518c*
3588
UCUCUGGAGGGAAGCAC
3589
UCUCUGGAGGGA
3590
CUUCCCUCCAG
|
MIMAT0002847
UUUCUG
AGCACUUU
AGA
|
|
hsa-miR-518d-
3591
CAAAGCGCUUCCCUUUG
3592
CAAAGCGCUUCC
3593
AGGGAAGCGCU
|
3p
GAGC
CUUUGGAG
UUG
|
MIMAT0002864
|
|
hsa-miR-518d-
3594
CUCUAGAGGGAAGCACU
3595
CUCUAGAGGGAA
3596
GCUUCCCUCUA
|
5p
UUCUG
GCACUUUC
GAG
|
MIMAT0005456
|
|
hsa-miR-518e
3597
AAAGCGCUUCCCUUCAG
3598
AAAGCGCUUCCC
3599
AAGGGAAGCGC
|
MIMAT0002861
AGUG
UUCAGAGU
UUU
|
|
hsa-miR-518e*
3600
CUCUAGAGGGAAGCGCU
3601
CUCUAGAGGGAA
3602
GCUUCCCUCUA
|
MIMAT0005450
UUCUG
GCGCUUUC
GAG
|
|
hsa-miR-518f
3603
GAAAGCGCUUCUCUUUA
3604
GAAAGCGCUUCU
3605
AGAGAAGCGCU
|
MIMAT0002842
GAGG
CUUUAGAG
UUC
|
|
hsa-miR-518f*
3606
CUCUAGAGGGAAGCACU
3607
CUCUAGAGGGAA
3608
GCUUCCCUCUA
|
MIMAT0002841
UUCUC
GCACUUUC
GAG
|
|
hsa-miR-519a
3609
AAAGUGCAUCCUUUUAG
3610
AAAGUGCAUCCU
3611
AAAGGAUGCAC
|
MIMAT0002869
AGUGU
UUUAGAGU
UUU
|
|
hsa-miR-519a*
3612
CUCUAGAGGGAAGCGCU
3613
CUCUAGAGGGAA
3614
GCUUCCCUCUA
|
MIMAT0005452
UUCUG
GCGCUUUC
GAG
|
|
hsa-miR-519b-
3615
AAAGUGCAUCCUUUUAG
3616
AAAGUGCAUCCU
3617
AAAGGAUGCAC
|
3p
AGGUU
UUUAGAGG
UUU
|
MIMAT0002837
|
|
hsa-miR-519b-
3618
CUCUAGAGGGAAGCGCU
3619
CUCUAGAGGGAA
3620
GCUUCCCUCUA
|
5p
UUCUG
GCGCUUUC
GAG
|
MIMAT0005454
|
|
hsa-miR-519c-
3621
AAAGUGCAUCUUUUUAG
3622
AAAGUGCAUCUU
3623
AAAAGAUGCAC
|
3p
AGGAU
UUUAGAGG
UUU
|
MIMAT0002832
|
|
hsa-miR-519c-
3624
CUCUAGAGGGAAGCGCU
3625
CUCUAGAGGGAA
3626
GCUUCCCUCUA
|
5p
UUCUG
GCGCUUUC
GAG
|
MIMAT0002831
|
|
hsa-miR-519d
3627
CAAAGUGCCUCCCUUUA
3628
CAAAGUGCCUCC
3629
AGGGAGGCACU
|
MIMAT0002853
GAGUG
CUUUAGAG
UUG
|
|
hsa-miR-519e
3630
AAGUGCCUCCUUUUAGA
3631
AAGUGCCUCCUU
3632
AAAAGGAGGCA
|
MIMAT0002829
GUGUU
UUAGAGUG
CUU
|
|
hsa-miR-519e*
3633
UUCUCCAAAAGGGAGCA
3634
UUCUCCAAAAGG
3635
UCCCUUUUGGA
|
MIMAT0002828
CUUUC
GAGCACUU
GAA
|
|
hsa-miR-520a-
3636
AAAGUGCUUCCCUUUGG
3637
AAAGUGCUUCCC
3638
AAGGGAAGCAC
|
3p
ACUGU
UUUGGACU
UUU
|
MIMAT0002834
|
|
hsa-miR-520a-
3639
CUCCAGAGGGAAGUACU
3640
CUCCAGAGGGAA
3641
ACUUCCCUCUG
|
5p
UUCU
GUACUUUC
GAG
|
MIMAT0002833
|
|
hsa-miR-520b
3642
AAAGUGCUUCCUUUUAG
3643
AAAGUGCUUCCU
3644
AAAGGAAGCAC
|
MIMAT0002843
AGGG
UUUAGAGG
UUU
|
|
hsa-miR-520c-
3645
AAAGUGCUUCCUUUUAG
3646
AAAGUGCUUCCU
3647
AAAGGAAGCAC
|
3p
AGGGU
UUUAGAGG
UUU
|
MIMAT0002846
|
|
hsa-miR-520c-
3648
CUCUAGAGGGAAGCACU
3649
CUCUAGAGGGAA
3650
GCUUCCCUCUA
|
5p
UUCUG
GCACUUUC
GAG
|
MIMAT0005455
|
|
hsa-miR-520d-
3651
AAAGUGCUUCUCUUUGG
3652
AAAGUGCUUCUC
3653
AAGAGAAGCAC
|
3p
UGGGU
UUUGGUGG
UUU
|
MIMAT0002856
|
|
hsa-miR-520d-
3654
CUACAAAGGGAAGCCCU
3655
CUACAAAGGGAA
3656
GCUUCCCUUUG
|
5p
UUC
GCCCUUUC
UAG
|
MIMAT0002855
|
|
hsa-miR-520e
3657
AAAGUGCUUCCUUUUUG
3658
AAAGUGCUUCCU
3659
AAAGGAAGCAC
|
MIMAT0002825
AGGG
UUUUGAGG
UUU
|
|
hsa-miR-520f
3660
AAGUGCUUCCUUUUAGA
3661
AAGUGCUUCCUU
3662
AAAAGGAAGCA
|
MIMAT0002830
GGGUU
UUAGAGGG
CUU
|
|
hsa-miR-520g
3663
ACAAAGUGCUUCCCUUU
3664
ACAAAGUGCUUC
3665
GGGAAGCACUU
|
MIMAT0002858
AGAGUGU
CCUUUAGA
UGU
|
|
hsa-miR-520h
3666
ACAAAGUGCUUCCCUUU
3667
ACAAAGUGCUUC
3668
GGGAAGCACUU
|
MIMAT0002867
AGAGU
CCUUUAGA
UGU
|
|
hsa-miR-521
3669
AACGCACUUCCCUUUAG
3670
AACGCACUUCCC
3671
AAGGGAAGUGC
|
MIMAT0002854
AGUGU
UUUAGAGU
GUU
|
|
hsa-miR-522
3672
AAAAUGGUUCCCUUUAG
3673
AAAAUGGUUCCC
3674
AAGGGAACCAU
|
MIMAT0002868
AGUGU
UUUAGAGU
UUU
|
|
hsa-miR-522*
3675
CUCUAGAGGGAAGCGCU
3676
CUCUAGAGGGAA
3677
GCUUCCCUCUA
|
MIMAT0005451
UUCUG
GCGCUUUC
GAG
|
|
hsa-miR-523
3678
GAACGCGCUUCCCUAUA
3679
GAACGCGCUUCC
3680
AGGGAAGCGCG
|
MIMAT0002840
GAGGGU
CUAUAGAG
UUC
|
|
hsa-miR-523*
3681
CUCUAGAGGGAAGCGCU
3682
CUCUAGAGGGAA
3683
GCUUCCCUCUA
|
MIMAT0005449
UUCUG
GCGCUUUC
GAG
|
|
hsa-miR-524-3p
3684
GAAGGCGCUUCCCUUUG
3685
GAAGGCGCUUCC
3686
AGGGAAGCGCC
|
MIMAT0002850
GAGU
CUUUGGAG
UUC
|
|
hsa-miR-524-5p
3687
CUACAAAGGGAAGCACU
3688
CUACAAAGGGAA
3689
GCUUCCCUUUG
|
MIMAT0002849
UUCUC
GCACUUUC
UAG
|
|
hsa-miR-525-3p
3690
GAAGGCGCUUCCCUUUA
3691
GAAGGCGCUUCC
3692
AGGGAAGCGCC
|
MIMAT0002839
GAGCG
CUUUAGAG
UUC
|
|
hsa-miR-525-5p
3693
CUCCAGAGGGAUGCACU
3694
CUCCAGAGGGAU
3695
GCAUCCCUCUG
|
MIMAT0002838
UUCU
GCACUUUC
GAG
|
|
hsa-miR-526a
3696
CUCUAGAGGGAAGCACU
3697
CUCUAGAGGGAA
3698
GCUUCCCUCUA
|
MIMAT0002845
UUCUG
GCACUUUC
GAG
|
|
hsa-miR-526b
3699
CUCUUGAGGGAAGCACU
3700
CUCUUGAGGGAA
3701
GCUUCCCUCAA
|
MIMAT0002835
UUCUGU
GCACUUUC
GAG
|
|
hsa-miR-526b*
3702
GAAAGUGCUUCCUUUUA
3703
GAAAGUGCUUCC
3704
AAGGAAGCACU
|
MIMAT0002836
GAGGC
UUUUAGAG
UUC
|
|
hsa-miR-527
3705
CUGCAAAGGGAAGCCCU
3706
CUGCAAAGGGAA
3707
GCUUCCCUUUG
|
MIMAT0002862
UUC
GCCCUUUC
CAG
|
|
hsa-miR-532-3p
3708
CCUCCCACACCCAAGGC
3709
CCUCCCACACCC
3710
UUGGGUGUGGG
|
MIMAT0004780
UUGCA
AAGGCUUG
AGG
|
|
hsa-miR-532-5p
3711
CAUGCCUUGAGUGUAGG
3712
CAUGCCUUGAGU
3713
ACACUCAAGGC
|
MIMAT0002888
ACCGU
GUAGGACC
AUG
|
|
hsa-miR-539
3714
GGAGAAAUUAUCCUUGG
3715
GGAGAAAUUAUC
3716
AGGAUAAUUUC
|
MIMAT0003163
UGUGU
CUUGGUGU
UCC
|
|
hsa-miR-541
3717
UGGUGGGCACAGAAUCU
3718
UGGUGGGCACAG
3719
UUCUGUGCCCA
|
MIMAT0004920
GGACU
AAUCUGGA
CCA
|
|
hsa-miR-541*
3720
AAAGGAUUCUGCUGUCG
3721
AAAGGAUUCUGC
3722
CAGCAGAAUCC
|
MIMAT0004919
GUCCCACU
UGUCGGUC
UUU
|
|
hsa-miR-542-3p
3723
UGUGACAGAUUGAUAAC
3724
UGUGACAGAUUG
3725
AUCAAUCUGUC
|
MIMAT0003389
UGAAA
AUAACUGA
ACA
|
|
hsa-miR-542-5p
3726
UCGGGGAUCAUCAUGUC
3727
UCGGGGAUCAUC
3728
AUGAUGAUCCC
|
MIMAT0003340
ACGAGA
AUGUCACG
CGA
|
|
hsa-miR-543
3729
AAACAUUCGCGGUGCAC
3730
AAACAUUCGCGG
3731
CACCGCGAAUG
|
MIMAT0004954
UUCUU
UGCACUUC
UUU
|
|
hsa-miR-544
3732
AUUCUGCAUUUUUAGCA
3733
AUUCUGCAUUUU
3734
UAAAAAUGCAG
|
MIMAT0003164
AGUUC
UAGCAAGU
AAU
|
|
hsa-miR-544b
3735
ACCUGAGGUUGUGCAUU
3736
ACCUGAGGUUGU
3737
GCACAACCUCA
|
MIMAT0015004
UCUAA
GCAUUUCU
GGU
|
|
hsa-miR-545
3738
UCAGCAAACAUUUAUUG
3739
UCAGCAAACAUU
3740
UAAAUGUUUGC
|
MIMAT0003165
UGUGC
UAUUGUGU
UGA
|
|
hsa-miR-545*
3741
UCAGUAAAUGUUUAUUA
3742
UCAGUAAAUGUU
3743
UAAACAUUUAC
|
MIMAT0004785
GAUGA
UAUUAGAU
UGA
|
|
hsa-miR-548a-
3744
CAAAACUGGCAAUUACU
3745
CAAAACUGGCAA
3746
AAUUGCCAGUU
|
3p
UUUGC
UUACUUUU
UUG
|
MIMAT0003251
|
|
hsa-miR-548a-
3747
AAAAGUAAUUGCGAGUU
3748
AAAAGUAAUUGC
3749
UCGCAAUUACU
|
5p
UUACC
GAGUUUUA
UUU
|
MIMAT0004803
|
|
hsa-miR-548aa
3750
AAAAACCACAAUUACUU
3751
AAAAACCACAAU
3752
UAAUUGUGGUU
|
MIMAT0018447
UUGCACCA
UACUUUUG
UUU
|
|
hsa-miR-548b-
3753
CAAGAACCUCAGUUGCU
3754
CAAGAACCUCAG
3755
AACUGAGGUUC
|
3p
UUUGU
UUGCUUUU
UUG
|
MIMAT0003254
|
|
hsa-miR-548b-
3756
AAAAGUAAUUGUGGUUU
3757
AAAAGUAAUUGU
3758
CCACAAUUACU
|
5p
UGGCC
GGUUUUGG
UUU
|
MIMAT0004798
|
|
hsa-miR-548c-
3759
CAAAAAUCUCAAUUACU
3760
CAAAAAUCUCAA
3761
AAUUGAGAUUU
|
3p
UUUGC
UUACUUUU
UUG
|
MIMAT0003285
|
|
hsa-miR-548c-
3762
AAAAGUAAUUGCGGUUU
3763
AAAAGUAAUUGC
3764
CCGCAAUUACU
|
5p
UUGCC
GGUUUUUG
UUU
|
MIMAT0004806
|
|
hsa-miR-548d-
3765
CAAAAACCACAGUUUCU
3766
CAAAAACCACAG
3767
AACUGUGGUUU
|
3p
UUUGC
UUUCUUUU
UUG
|
MIMAT0003323
|
|
hsa-miR-548d-
3768
AAAAGUAAUUGUGGUUU
3769
AAAAGUAAUUGU
3770
CCACAAUUACU
|
5p
UUGCC
GGUUUUUG
UUU
|
MIMAT0004812
|
|
hsa-miR-548e
3771
AAAAACUGAGACUACUU
3772
AAAAACUGAGAC
3773
UAGUCUCAGUU
|
MIMAT0005874
UUGCA
UACUUUUG
UUU
|
|
hsa-miR-548f
3774
AAAAACUGUAAUUACUU
3775
AAAAACUGUAAU
3776
UAAUUACAGUU
|
MIMAT0005895
UU
UACUUUU
UUU
|
|
hsa-miR-548g
3777
AAAACUGUAAUUACUUU
3778
AAAACUGUAAUU
3779
GUAAUUACAGU
|
MIMAT0005912
UGUAC
ACUUUUGU
UUU
|
|
hsa-miR-548h
3780
AAAAGUAAUCGCGGUUU
3781
AAAAGUAAUCGC
3782
CCGCGAUUACU
|
MIMAT0005928
UUGUC
GGUUUUUG
UUU
|
|
hsa-miR-548i
3783
AAAAGUAAUUGCGGAUU
3784
AAAAGUAAUUGC
3785
CCGCAAUUACU
|
MIMAT0005935
UUGCC
GGAUUUUG
UUU
|
|
hsa-miR-548j
3786
AAAAGUAAUUGCGGUCU
3787
AAAAGUAAUUGC
3788
CCGCAAUUACU
|
MIMAT0005875
UUGGU
GGUCUUUG
UUU
|
|
hsa-miR-548k
3789
AAAAGUACUUGCGGAUU
3790
AAAAGUACUUGC
3791
CCGCAAGUACU
|
MIMAT0005882
UUGCU
GGAUUUUG
UUU
|
|
hsa-miR-548l
3792
AAAAGUAUUUGCGGGUU
3793
AAAAGUAUUUGC
3794
CCGCAAAUACU
|
MIMAT0005889
UUGUC
GGGUUUUG
UUU
|
|
hsa-miR-548m
3795
CAAAGGUAUUUGUGGUU
3796
CAAAGGUAUUUG
3797
CACAAAUACCU
|
MIMAT0005917
UUUG
UGGUUUUU
UUG
|
|
hsa-miR-548n
3798
CAAAAGUAAUUGUGGAU
3799
CAAAAGUAAUUG
3800
CACAAUUACUU
|
MIMAT0005916
UUUGU
UGGAUUUU
UUG
|
|
hsa-miR-548o
3801
CCAAAACUGCAGUUACU
3802
CCAAAACUGCAG
3803
AACUGCAGUUU
|
MIMAT0005919
UUUGC
UUACUUUU
UGG
|
|
hsa-miR-548p
3804
UAGCAAAAACUGCAGUU
3805
UAGCAAAAACUG
3806
UGCAGUUUUUG
|
MIMAT0005934
ACUUU
CAGUUACU
CUA
|
|
hsa-miR-548q
3807
GCUGGUGCAAAAGUAAU
3808
GCUGGUGCAAAA
3809
ACUUUUGCACC
|
MIMAT0011163
GGCGG
GUAAUGGC
AGC
|
|
hsa-miR-548s
3810
AUGGCCAAAACUGCAGU
3811
AUGGCCAAAACU
3812
GCAGUUUUGGC
|
MIMAT0014987
UAUUUU
GCAGUUAU
CAU
|
|
hsa-miR-548t
3813
CAAAAGUGAUCGUGGUU
3814
CAAAAGUGAUCG
3815
CACGAUCACUU
|
MIMAT0015009
UUUG
UGGUUUUU
UUG
|
|
hsa-miR-548u
3816
CAAAGACUGCAAUUACU
3817
CAAAGACUGCAA
3818
AAUUGCAGUCU
|
MIMAT0015013
UUUGCG
UUACUUUU
UUG
|
|
hsa-miR-548v
3819
AGCUACAGUUACUUUUG
3820
AGCUACAGUUAC
3821
AAGUAACUGUA
|
MIMAT0015020
CACCA
UUUUGCAC
GCU
|
|
hsa-miR-548w
3822
AAAAGUAACUGCGGUUU
3823
AAAAGUAACUGC
3824
CCGCAGUUACU
|
MIMAT0015060
UUGCCU
GGUUUUUG
UUU
|
|
hsa-miR-548x
3825
UAAAAACUGCAAUUACU
3826
UAAAAACUGCAA
3827
AAUUGCAGUUU
|
MIMAT0015081
UUCA
UUACUUUC
UUA
|
|
hsa-miR-548y
3828
AAAAGUAAUCACUGUUU
3829
AAAAGUAAUCAC
3830
CAGUGAUUACU
|
MIMAT0018354
UUGCC
UGUUUUUG
UUU
|
|
hsa-miR-548z
3831
CAAAAACCGCAAUUACU
3832
CAAAAACCGCAA
3833
AAUUGCGGUUU
|
MIMAT0018446
UUUGCA
UUACUUUU
UUG
|
|
hsa-miR-549
3834
UGACAACUAUGGAUGAG
3835
UGACAACUAUGG
3836
AUCCAUAGUUG
|
MIMAT0003333
CUCU
AUGAGCUC
UCA
|
|
hsa-miR-550a
3837
AGUGCCUGAGGGAGUAA
3838
AGUGCCUGAGGG
3839
CUCCCUCAGGC
|
MIMAT0004800
GAGCCC
AGUAAGAG
ACU
|
|
hsa-miR-550a*
3840
UGUCUUACUCCCUCAGG
3841
UGUCUUACUCCC
3842
GAGGGAGUAAG
|
MIMAT0003257
CACAU
UCAGGCAC
ACA
|
|
hsa-miR-550b
3843
UCUUACUCCCUCAGGCA
3844
UCUUACUCCCUC
3845
CUGAGGGAGUA
|
MIMAT0018445
CUG
AGGCACUG
AGA
|
|
hsa-miR-551a
3846
GCGACCCACUCUUGGUU
3847
GCGACCCACUCU
3848
CAAGAGUGGGU
|
MIMAT0003214
UCCA
UGGUUUCC
CGC
|
|
hsa-miR-551b
3849
GCGACCCAUACUUGGUU
3850
GCGACCCAUACU
3851
CAAGUAUGGGU
|
MIMAT0003233
UCAG
UGGUUUCA
CGC
|
|
hsa-miR-551b*
3852
GAAAUCAAGCGUGGGUG
3853
GAAAUCAAGCGU
3854
CCACGCUUGAU
|
MIMAT0004794
AGACC
GGGUGAGA
UUC
|
|
hsa-miR-552
3855
AACAGGUGACUGGUUAG
3856
AACAGGUGACUG
3857
ACCAGUCACCU
|
MIMAT0003215
ACAA
GUUAGACA
GUU
|
|
hsa-miR-553
3858
AAAACGGUGAGAUUUUG
3859
AAAACGGUGAGA
3860
AAUCUCACCGU
|
MIMAT0003216
UUUU
UUUUGUUU
UUU
|
|
hsa-miR-554
3861
GCUAGUCCUGACUCAGC
3862
GCUAGUCCUGAC
3863
GAGUCAGGACU
|
MIMAT0003217
CAGU
UCAGCCAG
AGC
|
|
hsa-miR-555
3864
AGGGUAAGCUGAACCUC
3865
AGGGUAAGCUGA
3866
GUUCAGCUUAC
|
MIMAT0003219
UGAU
ACCUCUGA
CCU
|
|
hsa-miR-556-3p
3867
AUAUUACCAUUAGCUCA
3868
AUAUUACCAUUA
3869
GCUAAUGGUAA
|
MIMAT0004793
UCUUU
GCUCAUCU
UAU
|
|
hsa-miR-556-5p
3870
GAUGAGCUCAUUGUAAU
3871
GAUGAGCUCAUU
3872
ACAAUGAGCUC
|
MIMAT0003220
AUGAG
GUAAUAUG
AUC
|
|
hsa-miR-557
3873
GUUUGCACGGGUGGGCC
3874
GUUUGCACGGGU
3875
CCACCCGUGCA
|
MIMAT0003221
UUGUCU
GGGCCUUG
AAC
|
|
hsa-miR-558
3876
UGAGCUGCUGUACCAAA
3877
UGAGCUGCUGUA
3878
GGUACAGCAGC
|
MIMAT0003222
AU
CCAAAAU
UCA
|
|
hsa-miR-559
3879
UAAAGUAAAUAUGCACC
3880
UAAAGUAAAUAU
3881
GCAUAUUUACU
|
MIMAT0003223
AAAA
GCACCAAA
UUA
|
|
hsa-miR-561
3882
CAAAGUUUAAGAUCCUU
3883
CAAAGUUUAAGA
3884
GAUCUUAAACU
|
MIMAT0003225
GAAGU
UCCUUGAA
UUG
|
|
hsa-miR-562
3885
AAAGUAGCUGUACCAUU
3886
AAAGUAGCUGUA
3887
GGUACAGCUAC
|
MIMAT0003226
UGC
CCAUUUGC
UUU
|
|
hsa-miR-563
3888
AGGUUGACAUACGUUUC
3889
AGGUUGACAUAC
3890
ACGUAUGUCAA
|
MIMAT0003227
CC
GUUUCCC
CCU
|
|
hsa-miR-564
3891
AGGCACGGUGUCAGCAG
3892
AGGCACGGUGUC
3893
CUGACACCGUG
|
MIMAT0003228
GC
AGCAGGC
CCU
|
|
hsa-miR-566
3894
GGGCGCCUGUGAUCCCA
3895
GGGCGCCUGUGA
3896
GAUCACAGGCG
|
MIMAT0003230
AC
UCCCAAC
CCC
|
|
hsa-miR-567
3897
AGUAUGUUCUUCCAGGA
3898
AGUAUGUUCUUC
3899
UGGAAGAACAU
|
MIMAT0003231
CAGAAC
CAGGACAG
ACU
|
|
hsa-miR-568
3900
AUGUAUAAAUGUAUACA
3901
AUGUAUAAAUGU
3902
AUACAUUUAUA
|
MIMAT0003232
CAC
AUACACAC
CAU
|
|
hsa-miR-569
3903
AGUUAAUGAAUCCUGGA
3904
AGUUAAUGAAUC
3905
AGGAUUCAUUA
|
MIMAT0003234
AAGU
CUGGAAAG
ACU
|
|
hsa-miR-570
3906
CGAAAACAGCAAUUACC
3907
CGAAAACAGCAA
3908
AAUUGCUGUUU
|
MIMAT0003235
UUUGC
UUACCUUU
UCG
|
|
hsa-miR-571
3909
UGAGUUGGCCAUCUGAG
3910
UGAGUUGGCCAU
3911
AGAUGGCCAAC
|
MIMAT0003236
UGAG
CUGAGUGA
UCA
|
|
hsa-miR-572
3912
GUCCGCUCGGCGGUGGC
3913
GUCCGCUCGGCG
3914
ACCGCCGAGCG
|
MIMAT0003237
CCA
GUGGCCCA
GAC
|
|
hsa-miR-573
3915
CUGAAGUGAUGUGUAAC
3916
CUGAAGUGAUGU
3917
ACACAUCACUU
|
MIMAT0003238
UGAUCAG
GUAACUGA
CAG
|
|
hsa-miR-574-3p
3918
CACGCUCAUGCACACAC
3919
CACGCUCAUGCA
3920
UGUGCAUGAGC
|
MIMAT0003239
CCACA
CACACCCA
GUG
|
|
hsa-miR-574-5p
3921
UGAGUGUGUGUGUGUGA
3922
UGAGUGUGUGUG
3923
CACACACACAC
|
MIMAT0004795
GUGUGU
UGUGAGUG
UCA
|
|
hsa-miR-575
3924
GAGCCAGUUGGACAGGA
3925
GAGCCAGUUGGA
3926
UGUCCAACUGG
|
MIMAT0003240
GC
CAGGAGC
CUC
|
|
hsa-miR-576-3p
3927
AAGAUGUGGAAAAAUUG
3928
AAGAUGUGGAAA
3929
UUUUUCCACAU
|
MIMAT0004796
GAAUC
AAUUGGAA
CUU
|
|
hsa-miR-576-5p
3930
AUUCUAAUUUCUCCACG
3931
AUUCUAAUUUCU
3932
GGAGAAAUUAG
|
MIMAT0003241
UCUUU
CCACGUCU
AAU
|
|
hsa-miR-577
3933
UAGAUAAAAUAUUGGUA
3934
UAGAUAAAAUAU
3935
CAAUAUUUUAU
|
MIMAT0003242
CCUG
UGGUACCU
CUA
|
|
hsa-miR-578
3936
CUUCUUGUGCUCUAGGA
3937
CUUCUUGUGCUC
3938
UAGAGCACAAG
|
MIMAT0003243
UUGU
UAGGAUUG
AAG
|
|
hsa-miR-579
3939
UUCAUUUGGUAUAAACC
3940
UUCAUUUGGUAU
3941
UUAUACCAAAU
|
MIMAT0003244
GCGAUU
AAACCGCG
GAA
|
|
hsa-miR-580
3942
UUGAGAAUGAUGAAUCA
3943
UUGAGAAUGAUG
3944
UUCAUCAUUCU
|
MIMAT0003245
UUAGG
AAUCAUUA
CAA
|
|
hsa-miR-581
3945
UCUUGUGUUCUCUAGAU
3946
UCUUGUGUUCUC
3947
UAGAGAACACA
|
MIMAT0003246
CAGU
UAGAUCAG
AGA
|
|
hsa-miR-582-3p
3948
UAACUGGUUGAACAACU
3949
UAACUGGUUGAA
3950
UGUUCAACCAG
|
MIMAT0004797
GAACC
CAACUGAA
UUA
|
|
hsa-miR-582-5p
3951
UUACAGUUGUUCAACCA
3952
UUACAGUUGUUC
3953
UUGAACAACUG
|
MIMAT0003247
GUUACU
AACCAGUU
UAA
|
|
hsa-miR-583
3954
CAAAGAGGAAGGUCCCA
3955
CAAAGAGGAAGG
3956
GACCUUCCUCU
|
MIMAT0003248
UUAC
UCCCAUUA
UUG
|
|
hsa-miR-584
3957
UUAUGGUUUGCCUGGGA
3958
UUAUGGUUUGCC
3959
CAGGCAAACCA
|
MIMAT0003249
CUGAG
UGGGACUG
UAA
|
|
hsa-miR-585
3960
UGGGCGUAUCUGUAUGC
3961
UGGGCGUAUCUG
3962
UACAGAUACGC
|
MIMAT0003250
UA
UAUGCUA
CCA
|
|
hsa-miR-586
3963
UAUGCAUUGUAUUUUUA
3964
UAUGCAUUGUAU
3965
AAAUACAAUGC
|
MIMAT0003252
GGUCC
UUUUAGGU
AUA
|
|
hsa-miR-587
3966
UUUCCAUAGGUGAUGAG
3967
UUUCCAUAGGUG
3968
AUCACCUAUGG
|
MIMAT0003253
UCAC
AUGAGUCA
AAA
|
|
hsa-miR-588
3969
UUGGCCACAAUGGGUUA
3970
UUGGCCACAAUG
3971
CCCAUUGUGGC
|
MIMAT0003255
GAAC
GGUUAGAA
CAA
|
|
hsa-miR-589
3972
UGAGAACCACGUCUGCU
3973
UGAGAACCACGU
3974
AGACGUGGUUC
|
MIMAT0004799
CUGAG
CUGCUCUG
UCA
|
|
hsa-miR-589*
3975
UCAGAACAAAUGCCGGU
3976
UCAGAACAAAUG
3977
GGCAUUUGUUC
|
MIMAT0003256
UCCCAGA
CCGGUUCC
UGA
|
|
hsa-miR-590-3p
3978
UAAUUUUAUGUAUAAGC
3979
UAAUUUUAUGUA
3980
UAUACAUAAAA
|
MIMAT0004801
UAGU
UAAGCUAG
UUA
|
|
hsa-miR-590-5p
3981
GAGCUUAUUCAUAAAAG
3982
GAGCUUAUUCAU
3983
UUAUGAAUAAG
|
MIMAT0003258
UGCAG
AAAAGUGC
CUC
|
|
hsa-miR-591
3984
AGACCAUGGGUUCUCAU
3985
AGACCAUGGGUU
3986
AGAACCCAUGG
|
MIMAT0003259
UGU
CUCAUUGU
UCU
|
|
hsa-miR-592
3987
UUGUGUCAAUAUGCGAU
3988
UUGUGUCAAUAU
3989
GCAUAUUGACA
|
MIMAT0003260
GAUGU
GCGAUGAU
CAA
|
|
hsa-miR-593
3990
UGUCUCUGCUGGGGUUU
3991
UGUCUCUGCUGG
3992
CCCCAGCAGAG
|
MIMAT0004802
CU
GGUUUCU
ACA
|
|
hsa-miR-593*
3993
AGGCACCAGCCAGGCAU
3994
AGGCACCAGCCA
3995
CCUGGCUGGUG
|
MIMAT0003261
UGCUCAGC
GGCAUUGC
CCU
|
|
hsa-miR-595
3996
GAAGUGUGCCGUGGUGU
3997
GAAGUGUGCCGU
3998
CCACGGCACAC
|
MIMAT0003263
GUCU
GGUGUGUC
UUC
|
|
hsa-miR-596
3999
AAGCCUGCCCGGCUCCU
4000
AAGCCUGCCCGG
4001
AGCCGGGCAGG
|
MIMAT0003264
CGGG
CUCCUCGG
CUU
|
|
hsa-miR-597
4002
UGUGUCACUCGAUGACC
4003
UGUGUCACUCGA
4004
CAUCGAGUGAC
|
MIMAT0003265
ACUGU
UGACCACU
ACA
|
|
hsa-miR-598
4005
UACGUCAUCGUUGUCAU
4006
UACGUCAUCGUU
4007
ACAACGAUGAC
|
MIMAT0003266
CGUCA
GUCAUCGU
GUA
|
|
hsa-miR-599
4008
GUUGUGUCAGUUUAUCA
4009
GUUGUGUCAGUU
4010
UAAACUGACAC
|
MIMAT0003267
AAC
UAUCAAAC
AAC
|
|
hsa-miR-600
4011
ACUUACAGACAAGAGCC
4012
ACUUACAGACAA
4013
UCUUGUCUGUA
|
MIMAT0003268
UUGCUC
GAGCCUUG
AGU
|
|
hsa-miR-601
4014
UGGUCUAGGAUUGUUGG
4015
UGGUCUAGGAUU
4016
ACAAUCCUAGA
|
MIMAT0003269
AGGAG
GUUGGAGG
CCA
|
|
hsa-miR-602
4017
GACACGGGCGACAGCUG
4018
GACACGGGCGAC
4019
CUGUCGCCCGU
|
MIMAT0003270
CGGCCC
AGCUGCGG
GUC
|
|
hsa-miR-603
4020
CACACACUGCAAUUACU
4021
CACACACUGCAA
4022
AAUUGCAGUGU
|
MIMAT0003271
UUUGC
UUACUUUU
GUG
|
|
hsa-miR-604
4023
AGGCUGCGGAAUUCAGG
4024
AGGCUGCGGAAU
4025
GAAUUCCGCAG
|
MIMAT0003272
AC
UCAGGAC
CCU
|
|
hsa-miR-605
4026
UAAAUCCCAUGGUGCCU
4027
UAAAUCCCAUGG
4028
CACCAUGGGAU
|
MIMAT0003273
UCUCCU
UGCCUUCU
UUA
|
|
hsa-miR-606
4029
AAACUACUGAAAAUCAA
4030
AAACUACUGAAA
4031
AUUUUCAGUAG
|
MIMAT0003274
AGAU
AUCAAAGA
UUU
|
|
hsa-miR-607
4032
GUUCAAAUCCAGAUCUA
4033
GUUCAAAUCCAG
4034
AUCUGGAUUUG
|
MIMAT0003275
UAAC
AUCUAUAA
AAC
|
|
hsa-miR-608
4035
AGGGGUGGUGUUGGGAC
4036
AGGGGUGGUGUU
4037
CCAACACCACC
|
MIMAT0003276
AGCUCCGU
GGGACAGC
CCU
|
|
hsa-miR-609
4038
AGGGUGUUUCUCUCAUC
4039
AGGGUGUUUCUC
4040
GAGAGAAACAC
|
MIMAT0003277
UCU
UCAUCUCU
CCU
|
|
hsa-miR-610
4041
UGAGCUAAAUGUGUGCU
4042
UGAGCUAAAUGU
4043
ACACAUUUAGC
|
MIMAT0003278
GGGA
GUGCUGGG
UCA
|
|
hsa-miR-611
4044
GCGAGGACCCCUCGGGG
4045
GCGAGGACCCCU
4046
CGAGGGGUCCU
|
MIMAT0003279
UCUGAC
CGGGGUCU
CGC
|
|
hsa-miR-612
4047
GCUGGGCAGGGCUUCUG
4048
GCUGGGCAGGGC
4049
AAGCCCUGCCC
|
MIMAT0003280
AGCUCCUU
UUCUGAGC
AGC
|
|
hsa-miR-613
4050
AGGAAUGUUCCUUCUUU
4051
AGGAAUGUUCCU
4052
GAAGGAACAUU
|
MIMAT0003281
GCC
UCUUUGCC
CCU
|
|
hsa-miR-614
4053
GAACGCCUGUUCUUGCC
4054
GAACGCCUGUUC
4055
AAGAACAGGCG
|
MIMAT0003282
AGGUGG
UUGCCAGG
UUC
|
|
hsa-miR-615-3p
4056
UCCGAGCCUGGGUCUCC
4057
UCCGAGCCUGGG
4058
GACCCAGGCUC
|
MIMAT0003283
CUCUU
UCUCCCUC
GGA
|
|
hsa-miR-615-5p
4059
GGGGGUCCCCGGUGCUC
4060
GGGGGUCCCCGG
4061
CACCGGGGACC
|
MIMAT0004804
GGAUC
UGCUCGGA
CCC
|
|
hsa-miR-616
4062
AGUCAUUGGAGGGUUUG
4063
AGUCAUUGGAGG
4064
ACCCUCCAAUG
|
MIMAT0004805
AGCAG
GUUUGAGC
ACU
|
|
hsa-miR-616*
4065
ACUCAAAACCCUUCAGU
4066
ACUCAAAACCCU
4067
GAAGGGUUUUG
|
MIMAT0003284
GACUU
UCAGUGAC
AGU
|
|
hsa-miR-617
4068
AGACUUCCCAUUUGAAG
4069
AGACUUCCCAUU
4070
CAAAUGGGAAG
|
MIMAT0003286
GUGGC
UGAAGGUG
UCU
|
|
hsa-miR-618
4071
AAACUCUACUUGUCCUU
4072
AAACUCUACUUG
4073
GACAAGUAGAG
|
MIMAT0003287
CUGAGU
UCCUUCUG
UUU
|
|
hsa-miR-619
4074
GACCUGGACAUGUUUGU
4075
GACCUGGACAUG
4076
AACAUGUCCAG
|
MIMAT0003288
GCCCAGU
UUUGUGCC
GUC
|
|
hsa-miR-620
4077
AUGGAGAUAGAUAUAGA
4078
AUGGAGAUAGAU
4079
AUAUCUAUCUC
|
MIMAT0003289
AAU
AUAGAAAU
CAU
|
|
hsa-miR-621
4080
GGCUAGCAACAGCGCUU
4081
GGCUAGCAACAG
4082
CGCUGUUGCUA
|
MIMAT0003290
ACCU
CGCUUACC
GCC
|
|
hsa-miR-622
4083
ACAGUCUGCUGAGGUUG
4084
ACAGUCUGCUGA
4085
CCUCAGCAGAC
|
MIMAT0003291
GAGC
GGUUGGAG
UGU
|
|
hsa-miR-623
4086
AUCCCUUGCAGGGGCUG
4087
AUCCCUUGCAGG
4088
CCCCUGCAAGG
|
MIMAT0003292
UUGGGU
GGCUGUUG
GAU
|
|
hsa-miR-624
4089
CACAAGGUAUUGGUAUU
4090
CACAAGGUAUUG
4091
ACCAAUACCUU
|
MIMAT0004807
ACCU
GUAUUACC
GUG
|
|
hsa-miR-624*
4092
UAGUACCAGUACCUUGU
4093
UAGUACCAGUAC
4094
AGGUACUGGUA
|
MIMAT0003293
GUUCA
CUUGUGUU
CUA
|
|
hsa-miR-625
4095
AGGGGGAAAGUUCUAUA
4096
AGGGGGAAAGUU
4097
AGAACUUUCCC
|
MIMAT0003294
GUCC
CUAUAGUC
CCU
|
|
hsa-miR-625*
4098
GACUAUAGAACUUUCCC
4099
GACUAUAGAACU
4100
AAAGUUCUAUA
|
MIMAT0004808
CCUCA
UUCCCCCU
GUC
|
|
hsa-miR-626
4101
AGCUGUCUGAAAAUGUC
4102
AGCUGUCUGAAA
4103
AUUUUCAGACA
|
MIMAT0003295
UU
AUGUCUU
GCU
|
|
hsa-miR-627
4104
GUGAGUCUCUAAGAAAA
4105
GUGAGUCUCUAA
4106
UCUUAGAGACU
|
MIMAT0003296
GAGGA
GAAAAGAG
CAC
|
|
hsa-miR-628-3p
4107
UCUAGUAAGAGUGGCAG
4108
UCUAGUAAGAGU
4109
CCACUCUUACU
|
MIMAT0003297
UCGA
GGCAGUCG
AGA
|
|
hsa-miR-628-5p
4110
AUGCUGACAUAUUUACU
4111
AUGCUGACAUAU
4112
AAAUAUGUCAG
|
MIMAT0004809
AGAGG
UUACUAGA
CAU
|
|
hsa-miR-629
4113
UGGGUUUACGUUGGGAG
4114
UGGGUUUACGUU
4115
CCAACGUAAAC
|
MIMAT0004810
AACU
GGGAGAAC
CCA
|
|
hsa-miR-629*
4116
GUUCUCCCAACGUAAGC
4117
GUUCUCCCAACG
4118
UACGUUGGGAG
|
MIMAT0003298
CCAGC
UAAGCCCA
AAC
|
|
hsa-miR-630
4119
AGUAUUCUGUACCAGGG
4120
AGUAUUCUGUAC
4121
UGGUACAGAAU
|
MIMAT0003299
AAGGU
CAGGGAAG
ACU
|
|
hsa-miR-631
4122
AGACCUGGCCCAGACCU
4123
AGACCUGGCCCA
4124
UCUGGGCCAGG
|
MIMAT0003300
CAGC
GACCUCAG
UCU
|
|
hsa-miR-632
4125
GUGUCUGCUUCCUGUGG
4126
GUGUCUGCUUCC
4127
CAGGAAGCAGA
|
MIMAT0003302
GA
UGUGGGA
CAC
|
|
hsa-miR-633
4128
CUAAUAGUAUCUACCAC
4129
CUAAUAGUAUCU
4130
GUAGAUACUAU
|
MIMAT0003303
AAUAAA
ACCACAAU
UAG
|
|
hsa-miR-634
4131
AACCAGCACCCCAACUU
4132
AACCAGCACCCC
4133
UUGGGGUGCUG
|
MIMAT0003304
UGGAC
AACUUUGG
GUU
|
|
hsa-miR-635
4134
ACUUGGGCACUGAAACA
4135
ACUUGGGCACUG
4136
UUCAGUGCCCA
|
MIMAT0003305
AUGUCC
AAACAAUG
AGU
|
|
hsa-miR-636
4137
UGUGCUUGCUCGUCCCG
4138
UGUGCUUGCUCG
4139
GACGAGCAAGC
|
MIMAT0003306
CCCGCA
UCCCGCCC
ACA
|
|
hsa-miR-637
4140
ACUGGGGGCUUUCGGGC
4141
ACUGGGGGCUUU
4142
CGAAAGCCCCC
|
MIMAT0003307
UCUGCGU
CGGGCUCU
AGU
|
|
hsa-miR-638
4143
AGGGAUCGCGGGCGGGU
4144
AGGGAUCGCGGG
4145
CGCCCGCGAUC
|
MIMAT0003308
GGCGGCCU
CGGGUGGC
CCU
|
|
hsa-miR-639
4146
AUCGCUGCGGUUGCGAG
4147
AUCGCUGCGGUU
4148
GCAACCGCAGC
|
MIMAT0003309
CGCUGU
GCGAGCGC
GAU
|
|
hsa-miR-640
4149
AUGAUCCAGGAACCUGC
4150
AUGAUCCAGGAA
4151
GGUUCCUGGAU
|
MIMAT0003310
CUCU
CCUGCCUC
CAU
|
|
hsa-miR-641
4152
AAAGACAUAGGAUAGAG
4153
AAAGACAUAGGA
4154
UAUCCUAUGUC
|
MIMAT0003311
UCACCUC
UAGAGUCA
UUU
|
|
hsa-miR-642a
4155
GUCCCUCUCCAAAUGUG
4156
GUCCCUCUCCAA
4157
AUUUGGAGAGG
|
MIMAT0003312
UCUUG
AUGUGUCU
GAC
|
|
hsa-miR-642b
4158
AGACACAUUUGGAGAGG
4159
AGACACAUUUGG
4160
CUCCAAAUGUG
|
MIMAT0018444
GACCC
AGAGGGAC
UCU
|
|
hsa-miR-643
4161
ACUUGUAUGCUAGCUCA
4162
ACUUGUAUGCUA
4163
GCUAGCAUACA
|
MIMAT0003313
GGUAG
GCUCAGGU
AGU
|
|
hsa-miR-644
4164
AGUGUGGCUUUCUUAGA
4165
AGUGUGGCUUUC
4166
AAGAAAGCCAC
|
MIMAT0003314
GC
UUAGAGC
ACU
|
|
hsa-miR-645
4167
UCUAGGCUGGUACUGCU
4168
UCUAGGCUGGUA
4169
AGUACCAGCCU
|
MIMAT0003315
GA
CUGCUGA
AGA
|
|
hsa-miR-646
4170
AAGCAGCUGCCUCUGAG
4171
AAGCAGCUGCCU
4172
AGAGGCAGCUG
|
MIMAT0003316
GC
CUGAGGC
CUU
|
|
hsa-miR-647
4173
GUGGCUGCACUCACUUC
4174
GUGGCUGCACUC
4175
GUGAGUGCAGC
|
MIMAT0003317
CUUC
ACUUCCUU
CAC
|
|
hsa-miR-648
4176
AAGUGUGCAGGGCACUG
4177
AAGUGUGCAGGG
4178
UGCCCUGCACA
|
MIMAT0003318
GU
CACUGGU
CUU
|
|
hsa-miR-649
4179
AAACCUGUGUUGUUCAA
4180
AAACCUGUGUUG
4181
AACAACACAGG
|
MIMAT0003319
GAGUC
UUCAAGAG
UUU
|
|
hsa-miR-650
4182
AGGAGGCAGCGCUCUCA
4183
AGGAGGCAGCGC
4184
GAGCGCUGCCU
|
MIMAT0003320
GGAC
UCUCAGGA
CCU
|
|
hsa-miR-651
4185
UUUAGGAUAAGCUUGAC
4186
UUUAGGAUAAGC
4187
AAGCUUAUCCU
|
MIMAT0003321
UUUUG
UUGACUUU
AAA
|
|
hsa-miR-652
4188
AAUGGCGCCACUAGGGU
4189
AAUGGCGCCACU
4190
CUAGUGGCGCC
|
MIMAT0003322
UGUG
AGGGUUGU
AUU
|
|
hsa-miR-653
4191
GUGUUGAAACAAUCUCU
4192
GUGUUGAAACAA
4193
GAUUGUUUCAA
|
MIMAT0003328
ACUG
UCUCUACU
CAC
|
|
hsa-miR-654-3p
4194
UAUGUCUGCUGACCAUC
4195
UAUGUCUGCUGA
4196
GGUCAGCAGAC
|
MIMAT0004814
ACCUU
CCAUCACC
AUA
|
|
hsa-miR-654-5p
4197
UGGUGGGCCGCAGAACA
4198
UGGUGGGCCGCA
4199
UCUGCGGCCCA
|
MIMAT0003330
UGUGC
GAACAUGU
CCA
|
|
hsa-miR-655
4200
AUAAUACAUGGUUAACC
4201
AUAAUACAUGGU
4202
UAACCAUGUAU
|
MIMAT0003331
UCUUU
UAACCUCU
UAU
|
|
hsa-miR-656
4203
AAUAUUAUACAGUCAAC
4204
AAUAUUAUACAG
4205
GACUGUAUAAU
|
MIMAT0003332
CUCU
UCAACCUC
AUU
|
|
hsa-miR-657
4206
GGCAGGUUCUCACCCUC
4207
GGCAGGUUCUCA
4208
GGUGAGAACCU
|
MIMAT0003335
UCUAGG
CCCUCUCU
GCC
|
|
hsa-miR-658
4209
GGCGGAGGGAAGUAGGU
4210
GGCGGAGGGAAG
4211
UACUUCCCUCC
|
MIMAT0003336
CCGUUGGU
UAGGUCCG
GCC
|
|
hsa-miR-659
4212
CUUGGUUCAGGGAGGGU
4213
CUUGGUUCAGGG
4214
CUCCCUGAACC
|
MIMAT0003337
CCCCA
AGGGUCCC
AAG
|
|
hsa-miR-660
4215
UACCCAUUGCAUAUCGG
4216
UACCCAUUGCAU
4217
AUAUGCAAUGG
|
MIMAT0003338
AGUUG
AUCGGAGU
GUA
|
|
hsa-miR-661
4218
UGCCUGGGUCUCUGGCC
4219
UGCCUGGGUCUC
4220
CAGAGACCCAG
|
MIMAT0003324
UGCGCGU
UGGCCUGC
GCA
|
|
hsa-miR-662
4221
UCCCACGUUGUGGCCCA
4222
UCCCACGUUGUG
4223
GCCACAACGUG
|
MIMAT0003325
GCAG
GCCCAGCA
GGA
|
|
hsa-miR-663
4224
AGGCGGGGCGCCGCGGG
4225
AGGCGGGGCGCC
4226
GCGGCGCCCCG
|
MIMAT0003326
ACCGC
GCGGGACC
CCU
|
|
hsa-miR-663b
4227
GGUGGCCCGGCCGUGCC
4228
GGUGGCCCGGCC
4229
ACGGCCGGGCC
|
MIMAT0005867
UGAGG
GUGCCUGA
ACC
|
|
hsa-miR-664
4230
UAUUCAUUUAUCCCCAG
4231
UAUUCAUUUAUC
4232
GGGAUAAAUGA
|
MIMAT0005949
CCUACA
CCCAGCCU
AUA
|
|
hsa-miR-664*
4233
ACUGGCUAGGGAAAAUG
4234
ACUGGCUAGGGA
4235
UUUCCCUAGCC
|
MIMAT0005948
AUUGGAU
AAAUGAUU
AGU
|
|
hsa-miR-665
4236
ACCAGGAGGCUGAGGCC
4237
ACCAGGAGGCUG
4238
CUCAGCCUCCU
|
MIMAT0004952
CCU
AGGCCCCU
GGU
|
|
hsa-miR-668
4239
UGUCACUCGGCUCGGCC
4240
UGUCACUCGGCU
4241
CGAGCCGAGUG
|
MIMAT0003881
CACUAC
CGGCCCAC
ACA
|
|
hsa-miR-670
4242
GUCCCUGAGUGUAUGUG
4243
GUCCCUGAGUGU
4244
AUACACUCAGG
|
MIMAT0010357
GUG
AUGUGGUG
GAC
|
|
hsa-miR-671-3p
4245
UCCGGUUCUCAGGGCUC
4246
UCCGGUUCUCAG
4247
CCCUGAGAACC
|
MIMAT0004819
CACC
GGCUCCAC
GGA
|
|
hsa-miR-671-5p
4248
AGGAAGCCCUGGAGGGG
4249
AGGAAGCCCUGG
4250
CUCCAGGGCUU
|
MIMAT0003880
CUGGAG
AGGGGCUG
CCU
|
|
hsa-miR-675
4251
UGGUGCGGAGAGGGCCC
4252
UGGUGCGGAGAG
4253
CCCUCUCCGCA
|
MIMAT0004284
ACAGUG
GGCCCACA
CCA
|
|
hsa-miR-675*
4254
CUGUAUGCCCUCACCGC
4255
CUGUAUGCCCUC
4256
GUGAGGGCAUA
|
MIMAT0006790
UCA
ACCGCUCA
CAG
|
|
hsa-miR-676
4257
CUGUCCUAAGGUUGUUG
4258
CUGUCCUAAGGU
4259
CAACCUUAGGA
|
MIMAT0018204
AGUU
UGUUGAGU
CAG
|
|
hsa-miR-676*
4260
UCUUCAACCUCAGGACU
4261
UCUUCAACCUCA
4262
CCUGAGGUUGA
|
MIMAT0018203
UGCA
GGACUUGC
AGA
|
|
hsa-miR-7
4263
UGGAAGACUAGUGAUUU
4264
UGGAAGACUAGU
4265
UCACUAGUCUU
|
MIMAT0000252
UGUUGU
GAUUUUGU
CCA
|
|
hsa-miR-708
4266
AAGGAGCUUACAAUCUA
4267
AAGGAGCUUACA
4268
AUUGUAAGCUC
|
MIMAT0004926
GCUGGG
AUCUAGCU
CUU
|
|
hsa-miR-708*
4269
CAACUAGACUGUGAGCU
4270
CAACUAGACUGU
4271
UCACAGUCUAG
|
MIMAT0004927
UCUAG
GAGCUUCU
UUG
|
|
hsa-miR-7-1*
4272
CAACAAAUCACAGUCUG
4273
CAACAAAUCACA
4274
ACUGUGAUUUG
|
MIMAT0004553
CCAUA
GUCUGCCA
UUG
|
|
hsa-miR-711
4275
GGGACCCAGGGAGAGAC
4276
GGGACCCAGGGA
4277
UCUCCCUGGGU
|
MIMAT0012734
GUAAG
GAGACGUA
CCC
|
|
hsa-miR-718
4278
CUUCCGCCCCGCCGGGC
4279
CUUCCGCCCCGC
4280
CGGCGGGGCGG
|
MIMAT0012735
GUCG
CGGGCGUC
AAG
|
|
hsa-miR-7-2*
4281
CAACAAAUCCCAGUCUA
4282
CAACAAAUCCCA
4283
ACUGGGAUUUG
|
MIMAT0004554
CCUAA
GUCUACCU
UUG
|
|
hsa-miR-720
4284
UCUCGCUGGGGCCUCCA
4285
UCUCGCUGGGGC
4286
AGGCCCCAGCG
|
MIMAT0005954
CUCCA
AGA
|
|
hsa-miR-744
4287
UGCGGGGCUAGGGCUAA
4288
UGCGGGGCUAGG
4289
GCCCUAGCCCC
|
MIMAT0004945
CAGCA
GCUAACAG
GCA
|
|
hsa-miR-744*
4290
CUGUUGCCACUAACCUC
4291
CUGUUGCCACUA
4292
GUUAGUGGCAA
|
MIMAT0004946
AACCU
ACCUCAAC
CAG
|
|
hsa-miR-758
4293
UUUGUGACCUGGUCCAC
4294
UUUGUGACCUGG
4295
GACCAGGUCAC
|
MIMAT0003879
UAACC
UCCACUAA
AAA
|
|
hsa-miR-759
4296
GCAGAGUGCAAACAAUU
4297
GCAGAGUGCAAA
4298
UGUUUGCACUC
|
MIMAT0010497
UUGAC
CAAUUUUG
UGC
|
|
hsa-miR-760
4299
CGGCUCUGGGUCUGUGG
4300
CGGCUCUGGGUC
4301
CAGACCCAGAG
|
MIMAT0004957
GGA
UGUGGGGA
CCG
|
|
hsa-miR-761
4302
GCAGCAGGGUGAAACUG
4303
GCAGCAGGGUGA
4304
UUUCACCCUGC
|
MIMAT0010364
ACACA
AACUGACA
UGC
|
|
hsa-miR-762
4305
GGGGCUGGGGCCGGGGC
4306
GGGGCUGGGGCC
4307
CCGGCCCCAGC
|
MIMAT0010313
CGAGC
GGGGCCGA
CCC
|
|
hsa-miR-764
4308
GCAGGUGCUCACUUGUC
4309
GCAGGUGCUCAC
4310
AAGUGAGCACC
|
MIMAT0010367
CUCCU
UUGUCCUC
UGC
|
|
hsa-miR-765
4311
UGGAGGAGAAGGAAGGU
4312
UGGAGGAGAAGG
4313
UUCCUUCUCCU
|
MIMAT0003945
GAUG
AAGGUGAU
CCA
|
|
hsa-miR-766
4314
ACUCCAGCCCCACAGCC
4315
ACUCCAGCCCCA
4316
UGUGGGGCUGG
|
MIMAT0003888
UCAGC
CAGCCUCA
AGU
|
|
hsa-miR-767-3p
4317
UCUGCUCAUACCCCAUG
4318
UCUGCUCAUACC
4319
GGGGUAUGAGC
|
MIMAT0003883
GUUUCU
CCAUGGUU
AGA
|
|
hsa-miR-767-5p
4320
UGCACCAUGGUUGUCUG
4321
UGCACCAUGGUU
4322
ACAACCAUGGU
|
MIMAT0003882
AGCAUG
GUCUGAGC
GCA
|
|
hsa-miR-769-3p
4323
CUGGGAUCUCCGGGGUC
4324
CUGGGAUCUCCG
4325
CCCGGAGAUCC
|
MIMAT0003887
UUGGUU
GGGUCUUG
CAG
|
|
hsa-miR-769-5p
4326
UGAGACCUCUGGGUUCU
4327
UGAGACCUCUGG
4328
ACCCAGAGGUC
|
MIMAT0003886
GAGCU
GUUCUGAG
UCA
|
|
hsa-miR-770-5p
4329
UCCAGUACCACGUGUCA
4330
UCCAGUACCACG
4331
CACGUGGUACU
|
MIMAT0003948
GGGCCA
UGUCAGGG
GGA
|
|
hsa-miR-802
4332
CAGUAACAAAGAUUCAU
4333
CAGUAACAAAGA
4334
AAUCUUUGUUA
|
MIMAT0004185
CCUUGU
UUCAUCCU
CUG
|
|
hsa-miR-873
4335
GCAGGAACUUGUGAGUC
4336
GCAGGAACUUGU
4337
UCACAAGUUCC
|
MIMAT0004953
UCCU
GAGUCUCC
UGC
|
|
hsa-miR-874
4338
CUGCCCUGGCCCGAGGG
4339
CUGCCCUGGCCC
4340
UCGGGCCAGGG
|
MIMAT0004911
ACCGA
GAGGGACC
CAG
|
|
hsa-miR-875-3p
4341
CCUGGAAACACUGAGGU
4342
CCUGGAAACACU
4343
UCAGUGUUUCC
|
MIMAT0004923
UGUG
GAGGUUGU
AGG
|
|
hsa-miR-875-5p
4344
UAUACCUCAGUUUUAUC
4345
UAUACCUCAGUU
4346
AAAACUGAGGU
|
MIMAT0004922
AGGUG
UUAUCAGG
AUA
|
|
hsa-miR-876-3p
4347
UGGUGGUUUACAAAGUA
4348
UGGUGGUUUACA
4349
UUUGUAAACCA
|
MIMAT0004925
AUUCA
AAGUAAUU
CCA
|
|
hsa-miR-876-5p
4350
UGGAUUUCUUUGUGAAU
4351
UGGAUUUCUUUG
4352
CACAAAGAAAU
|
MIMAT0004924
CACCA
UGAAUCAC
CCA
|
|
hsa-miR-877
4353
GUAGAGGAGAUGGCGCA
4354
GUAGAGGAGAUG
4355
GCCAUCUCCUC
|
MIMAT0004949
GGG
GCGCAGGG
UAC
|
|
hsa-miR-877*
4356
UCCUCUUCUCCCUCCUC
4357
UCCUCUUCUCCC
4358
GAGGGAGAAGA
|
MIMAT0004950
CCAG
UCCUCCCA
GGA
|
|
hsa-miR-885-3p
4359
AGGCAGCGGGGUGUAGU
4360
AGGCAGCGGGGU
4361
ACACCCCGCUG
|
MIMAT0004948
GGAUA
GUAGUGGA
CCU
|
|
hsa-miR-885-5p
4362
UCCAUUACACUACCCUG
4363
UCCAUUACACUA
4364
GGUAGUGUAAU
|
MIMAT0004947
CCUCU
CCCUGCCU
GGA
|
|
hsa-miR-887
4365
GUGAACGGGCGCCAUCC
4366
GUGAACGGGCGC
4367
UGGCGCCCGUU
|
MIMAT0004951
CGAGG
CAUCCCGA
CAC
|
|
hsa-miR-888
4368
UACUCAAAAAGCUGUCA
4369
UACUCAAAAAGC
4370
CAGCUUUUUGA
|
MIMAT0004916
GUCA
UGUCAGUC
GUA
|
|
hsa-miR-888*
4371
GACUGACACCUCUUUGG
4372
GACUGACACCUC
4373
AAGAGGUGUCA
|
MIMAT0004917
GUGAA
UUUGGGUG
GUC
|
|
hsa-miR-889
4374
UUAAUAUCGGACAACCA
4375
UUAAUAUCGGAC
4376
UUGUCCGAUAU
|
MIMAT0004921
UUGU
AACCAUUG
UAA
|
|
hsa-miR-890
4377
UACUUGGAAAGGCAUCA
4378
UACUUGGAAAGG
4379
UGCCUUUCCAA
|
MIMAT0004912
GUUG
CAUCAGUU
GUA
|
|
hsa-miR-891a
4380
UGCAACGAACCUGAGCC
4381
UGCAACGAACCU
4382
UCAGGUUCGUU
|
MIMAT0004902
ACUGA
GAGCCACU
GCA
|
|
hsa-miR-891b
4383
UGCAACUUACCUGAGUC
4384
UGCAACUUACCU
4385
UCAGGUAAGUU
|
MIMAT0004913
AUUGA
GAGUCAUU
GCA
|
|
hsa-miR-892a
4386
CACUGUGUCCUUUCUGC
4387
CACUGUGUCCUU
4388
GAAAGGACACA
|
MIMAT0004907
GUAG
UCUGCGUA
GUG
|
|
hsa-miR-892b
4389
CACUGGCUCCUUUCUGG
4390
CACUGGCUCCUU
4391
GAAAGGAGCCA
|
MIMAT0004918
GUAGA
UCUGGGUA
GUG
|
|
hsa-miR-9
4392
UCUUUGGUUAUCUAGCU
4393
UCUUUGGUUAUC
4394
UAGAUAACCAA
|
MIMAT0000441
GUAUGA
UAGCUGUA
AGA
|
|
hsa-miR-9*
4395
AUAAAGCUAGAUAACCG
4396
AUAAAGCUAGAU
4397
UUAUCUAGCUU
|
MIMAT0000442
AAAGU
AACCGAAA
UAU
|
|
hsa-miR-920
4398
GGGGAGCUGUGGAAGCA
4399
GGGGAGCUGUGG
4400
UUCCACAGCUC
|
MIMAT0004970
GUA
AAGCAGUA
CCC
|
|
hsa-miR-921
4401
CUAGUGAGGGACAGAAC
4402
CUAGUGAGGGAC
4403
CUGUCCCUCAC
|
MIMAT0004971
CAGGAUUC
AGAACCAG
UAG
|
|
hsa-miR-922
4404
GCAGCAGAGAAUAGGAC
4405
GCAGCAGAGAAU
4406
CUAUUCUCUGC
|
MIMAT0004972
UACGUC
AGGACUAC
UGC
|
|
hsa-miR-924
4407
AGAGUCUUGUGAUGUCU
4408
AGAGUCUUGUGA
4409
CAUCACAAGAC
|
MIMAT0004974
UGC
UGUCUUGC
UCU
|
|
hsa-miR-92a
4410
UAUUGCACUUGUCCCGG
4411
UAUUGCACUUGU
4412
GGACAAGUGCA
|
MIMAT0000092
CCUGU
CCCGGCCU
AUA
|
|
hsa-miR-92a-1*
4413
AGGUUGGGAUCGGUUGC
4414
AGGUUGGGAUCG
4415
ACCGAUCCCAA
|
MIMAT0004507
AAUGCU
GUUGCAAU
CCU
|
|
hsa-miR-92a-2*
4416
GGGUGGGGAUUUGUUGC
4417
GGGUGGGGAUUU
4418
ACAAAUCCCCA
|
MIMAT0004508
AUUAC
GUUGCAUU
CCC
|
|
hsa-miR-92b
4419
UAUUGCACUCGUCCCGG
4420
UAUUGCACUCGU
4421
GGACGAGUGCA
|
MIMAT0003218
CCUCC
CCCGGCCU
AUA
|
|
hsa-miR-92b*
4422
AGGGACGGGACGCGGUG
4423
AGGGACGGGACG
4424
CGCGUCCCGUC
|
MIMAT0004792
CAGUG
CGGUGCAG
CCU
|
|
hsa-miR-93
4425
CAAAGUGCUGUUCGUGC
4426
CAAAGUGCUGUU
4427
CGAACAGCACU
|
MIMAT0000093
AGGUAG
CGUGCAGG
UUG
|
|
hsa-miR-93*
4428
ACUGCUGAGCUAGCACU
4429
ACUGCUGAGCUA
4430
GCUAGCUCAGC
|
MIMAT0004509
UCCCG
GCACUUCC
AGU
|
|
hsa-miR-933
4431
UGUGCGCAGGGAGACCU
4432
UGUGCGCAGGGA
4433
UCUCCCUGCGC
|
MIMAT0004976
CUCCC
GACCUCUC
ACA
|
|
hsa-miR-934
4434
UGUCUACUACUGGAGAC
4435
UGUCUACUACUG
4436
UCCAGUAGUAG
|
MIMAT0004977
ACUGG
GAGACACU
ACA
|
|
hsa-miR-935
4437
CCAGUUACCGCUUCCGC
4438
CCAGUUACCGCU
4439
GAAGCGGUAAC
|
MIMAT0004978
UACCGC
UCCGCUAC
UGG
|
|
hsa-miR-936
4440
ACAGUAGAGGGAGGAAU
4441
ACAGUAGAGGGA
4442
CCUCCCUCUAC
|
MIMAT0004979
CGCAG
GGAAUCGC
UGU
|
|
hsa-miR-937
4443
AUCCGCGCUCUGACUCU
4444
AUCCGCGCUCUG
4445
GUCAGAGCGCG
|
MIMAT0004980
CUGCC
ACUCUCUG
GAU
|
|
hsa-miR-938
4446
UGCCCUUAAAGGUGAAC
4447
UGCCCUUAAAGG
4448
CACCUUUAAGG
|
MIMAT0004981
CCAGU
UGAACCCA
GCA
|
|
hsa-miR-939
4449
UGGGGAGCUGAGGCUCU
4450
UGGGGAGCUGAG
4451
GCCUCAGCUCC
|
MIMAT0004982
GGGGGUG
GCUCUGGG
CCA
|
|
hsa-miR-940
4452
AAGGCAGGGCCCCCGCU
4453
AAGGCAGGGCCC
4454
GGGGGCCCUGC
|
MIMAT0004983
CCCC
CCGCUCCC
CUU
|
|
hsa-miR-941
4455
CACCCGGCUGUGUGCAC
4456
CACCCGGCUGUG
4457
CACACAGCCGG
|
MIMAT0004984
AUGUGC
UGCACAUG
GUG
|
|
hsa-miR-942
4458
UCUUCUCUGUUUUGGCC
4459
UCUUCUCUGUUU
4460
CAAAACAGAGA
|
MIMAT0004985
AUGUG
UGGCCAUG
AGA
|
|
hsa-miR-943
4461
CUGACUGUUGCCGUCCU
4462
CUGACUGUUGCC
4463
ACGGCAACAGU
|
MIMAT0004986
CCAG
GUCCUCCA
CAG
|
|
hsa-miR-944
4464
AAAUUAUUGUACAUCGG
4465
AAAUUAUUGUAC
4466
AUGUACAAUAA
|
MIMAT0004987
AUGAG
AUCGGAUG
UUU
|
|
hsa-miR-95
4467
UUCAACGGGUAUUUAUU
4468
UUCAACGGGUAU
4469
AAAUACCCGUU
|
MIMAT0000094
GAGCA
UUAUUGAG
GAA
|
|
hsa-miR-96
4470
UUUGGCACUAGCACAUU
4471
UUUGGCACUAGC
4472
GUGCUAGUGCC
|
MIMAT0000095
UUUGCU
ACAUUUUU
AAA
|
|
hsa-miR-96*
4473
AAUCAUGUGCAGUGCCA
4474
AAUCAUGUGCAG
4475
CACUGCACAUG
|
MIMAT0004510
AUAUG
UGCCAAUA
AUU
|
|
hsa-miR-98
4476
UGAGGUAGUAAGUUGUA
4477
UGAGGUAGUAAG
4478
AACUUACUACC
|
MIMAT0000096
UUGUU
UUGUAUUG
UCA
|
|
hsa-miR-99a
4479
AACCCGUAGAUCCGAUC
4480
AACCCGUAGAUC
4481
CGGAUCUACGG
|
MIMAT0000097
UUGUG
CGAUCUUG
GUU
|
|
hsa-miR-99a*
4482
CAAGCUCGCUUCUAUGG
4483
CAAGCUCGCUUC
4484
UAGAAGCGAGC
|
MIMAT0004511
GUCUG
UAUGGGUC
UUG
|
|
hsa-miR-99b
4485
CACCCGUAGAACCGACC
4486
CACCCGUAGAAC
4487
CGGUUCUACGG
|
MIMAT0000689
UUGCG
CGACCUUG
GUG
|
|
hsa-miR-99b*
4488
CAAGCUCGUGUCUGUGG
4489
CAAGCUCGUGUC
4490
CAGACACGAGC
|
MIMAT0004678
GUCCG
UGUGGGUC
UUG
|
|
TABLE 5
|
|
Examples of chemical modification patterns
|
miRNA Name
Example of modified AS strand
Example of modified sense strand
|
|
hsa-let-7a
5′Pm0005f0f05f05f00f05f005f05f05m0*5m0*
m0m00m00m0m000m00m0*m0*m0TEGChol
|
MIMAT0000062
0*5m0*f0*5m0*0
|
hsa-let-7a*
5′Pm0005f0f05f005f05f05f0005f00*5m0*0*5
m0m0m0m00m00m00m00m0*m0*m0TEGChol
|
MIMAT0004481
m0*5m0*0*0
|
hsa-let-7a-2*
5′Pm05f05f05f05f005f05f05f00005f00*5m0*
m0m0m0m0m0m000m0m000*0*m0TEGChol
|
MIMAT0010195
5m0*0***
|
hsa-let-7b
5′Pm0000f0000f005f05f05f05m0*0*5m0*0*f
m0m000m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0000063
0*5m0*0
|
hsa-let-7b*
5′Pm0005f0f0000f05f0005f00*0*5m0*5m0*f
m0m0m0m00m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0004482
0*0*0
|
hsa-let-7c
5′Pm005f05f0f05f000f005f05f05f05m0*5m0*
m0m000m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0000064
5m0*5m0*5m0*5m0*0
|
hsa-let-7c*
5′Pm0005f05f05f05f005f0005f05f00*0*0*5m
m0m00m0m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0004483
0***
|
hsa-let-7d
5′Pm005f05f0f05f05f05f0f0000f05m0*0*5m0
m0m0m0m0m0m0000m000*m0*m0TEGChol
|
MIMAT0000065
*5m0*5m0*5m0*
|
hsa-let-7d*
5′Pm005f00f00005f05f000f05m0*0*5m0*5m
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0004484
0*5m0*0*0
|
hsa-let-7e
5′Pm0005f0f005f05f05f005f00f00*0*5m0*0*
m0m0m00m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0000066
f0*5m0*0
|
hsa-let-7e*
5′Pm05f000f0000f00005f05m0*0*5m0*5m0
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004485
***
|
hsa-let-7f
5′Pm05f000f05f05f05f05f05f000f00*0*0*0*f
m0m0m0m00m0000m0m0m0*0*m0TEGChol
|
MIMAT0000067
0*0*0
|
hsa-let-7f-1*
5′Pm00005f005f05f0f005f005f05m0*5m0*0*
m0m0m00m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004486
5m0*5m0*5m0*0
|
hsa-let-7f-2*
5′Pm0005f0f05f005f05f05f0005f00*5m0*5m
m0m0m0m00m00m00m00m0*m0*m0TEGChol
|
MIMAT0004487
0*0*f0*0*0
|
hsa-let-7g
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000414
0*0*0*f0*0*0
|
hsa-let-7g*
5′Pm0000f05f05f005f005f05f05f00*0*5m0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0004584
*5m0*0*0
|
hsa-let-7i
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000415
m0*5m0*5m0*0
|
hsa-let-7i*
5′Pm05f000f005f05f05f05f000f00*5m0*0*0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0004585
f0*5m0*0
|
hsa-miR-1
5′Pm00005f05f05f05f05f05f05f005f00*0*0*5
m0m0m000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0000416
m0*5m0*0*0
|
hsa-miR-100
5′Pm005f05f05f005f05f0f0005f05f00*0*0*0*
m0m00m0m0m000m0m000*m0*m0TEGChol
|
MIMAT0000098
5m0*0*0
|
hsa-miR-100*
5′Pm005f05f0f05f005f05f05f005f05f05m0*5
m0m00m00m00m00m000*m0*m0TEGChol
|
MIMAT0004512
m0*0*0*5m0*5m0*0
|
hsa-miR-101
5′Pm0000f005f05f05f05f05f005f00*5m0*0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000099
m0*5m0*5m0*0
|
hsa-miR-101*
5′Pm05f000f005f00f05f0005f05m0*5m0*0*5
m0m0m0m00m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0004513
m0*f0*5m0*0
|
hsa-miR-103
5′Pm005f05f0f05f000f0005f05f00*5m0*5m0
m0m00m0m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0000101
*0*f0*0*0
|
hsa-miR-103-2*
5′Pm05f05f05f0f005f05f05f05f05f05f05f00*0
m0m0000m000m0m000*0*m0TEGChol
|
MIMAT0009196
*0*0*f0*5m0*0
|
hsa-miR-103-as
5′Pm0005f05f05f05f05f0f0000f05m0*0*5m0
m0m0m0m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0007402
*5m0*f0*5m0*0
|
hsa-miR-105
5′Pm0000f05f05f05f0f0005f0f05m0*5m0*5m
m0m00m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0000102
0*0*f0*0*
|
hsa-miR-105*
5′Pm0005f0f05f05f05f05f05f000f00*0*5m0*
m0m0m0m00m0000m00m0*m0*m0TEGChol
|
MIMAT0004516
5m0*5m0*5m0*0
|
hsa-miR-106a
5′Pm05f000f05f0005f05f005f0f00*5m0*0*0*
m0m00m00m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0000103
5m0*0*0
|
hsa-miR-106a*
5′Pm0005f0f005f005f005f05f0f05m0*5m0*0
m0m000m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004517
*0*5m0*5m0*0
|
hsa-miR-106b
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0000680
*5m0*0*f0*0*0
|
hsa-miR-106b*
5′Pm0000f05f05f05f05f05f000f00*0*5m0*0*
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004672
f0*5m0*0
|
hsa-miR-107
5′Pm0005f0f05f005f05f05f005f0f00*0*0*5m
m0m00m00m00m00m00m0*m0*m0TEGChol
|
MIMAT0000104
0*5m0*5m0*
|
hsa-miR-10a
5′Pm0005f0f00005f05f05f05f0f00*0*0*0*5m
m0m0000m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0000253
0*0*0
|
hsa-miR-10a*
5′Pm0005f0f0000f05f05f05f0f00*0*5m0*0*f
m0m0000m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0004555
0*5m0*0
|
hsa-miR-10b
5′Pm0005f0f05f005f0f00005f05m0*5m0*0*5
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol
|
MIMAT0000254
m0*f0*5m0*0
|
hsa-miR-10b*
5′Pm05f05f005f005f05f05f00005f05m0*5m0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0004556
*5m0*0*5m0*5m0*0
|
hsa-miR-1178
5′Pm00005f05f05f05f05f005f005f05m0*0*5
m0m0m00m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0005823
m0*5m0*5m0*5m0*0
|
hsa-miR-1179
5′Pm005f05f0f00005f05f000f05m0*5m0*0*5
m0m0m0m00m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0005824
m0*f0*0*0
|
hsa-miR-1180
5′Pm05f000f05f000f005f05f05f05m0*5m0*0
m0m000m0m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0005825
*0*f0*0*0
|
hsa-miR-1181
5′Pm05f000f005f05f05f0000f00*0*5m0*5m0
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0005826
*5m0*5m0*0
|
hsa-miR-1182
5′Pm0000f005f00f05f0005f05m0*0*5m0*5m
m0m0m0m00m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0005827
0*5m0*5m0*0
|
hsa-miR-1183
5′Pm0005f05f005f00f05f05f005f05m0*5m0*
m0m0m000m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0005828
5m0*0*5m0*5m0*0
|
hsa-miR-1184
5′Pm05f05f00f005f00f05f05f05f0f00*0*0*5m
m0m0000m0m00m0m0m00*0*m0TEGChol
|
MIMAT0005829
0*f0*0*0
|
hsa-miR-1185
5′Pm005f00f05f05f05f0f005f05f0f05m0*5m0
m0m000m0m0000m0m00*m0*m0TEGChol
|
MIMAT0005798
*0*0*5m0*0*0
|
hsa-miR-1193
5′Pm00005f05f0005f05f005f05f05m0*0*0*0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0015049
*5m0*0*0
|
hsa-miR-1197
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005955
m0*5m0*5m0*0
|
hsa-miR-1200
5′Pm0000f0005f05f05f05f005f00*0*0*0*f0*
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0005863
5m0*0
|
hsa-miR-1202
5′Pm05f05f005f05f05f05f05f0005f05f00*5m0
m0m00m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0005865
*5m0*5m0*f0*5m0*0
|
hsa-miR-1203
5′Pm00005f0005f0f05f005f05f00*5m0*5m0*
m0m00m00m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0005866
0*f0*5m0*0
|
hsa-miR-1204
5′Pm05f0005f05f05f05f0f05f005f05f05m0*0*
m0m00m00m0000m0m0m0*0*m0TEGChol
|
MIMAT0005868
5m0*5m0*f0*5m0*0
|
hsa-miR-1205
5′Pm05f05f005f05f05f05f05f0005f05f00*5m0
m0m00m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0005869
*5m0*5m0*f0*5m0*0
|
hsa-miR-1206
5′Pm0005f05f0000f005f005f00*0*0*0*f0**
m0m0m00m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0005870
|
hsa-miR-1207-3p
5′Pm00005f005f05f0f05f05f005f00*5m0*5m
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0005872
0*5m0*f0*5m0*0
|
hsa-miR-1207-5p
5′Pm0005f0f05f000f0000f00*5m0*5m0*5m0
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0005871
*f0*5m0*0
|
hsa-miR-1208
5′Pm05f05f00f005f00f05f05f05f0f00*0*0*5m
m0m0000m0m00m0m0m00*0*m0TEGChol
|
MIMAT0005873
0*f0*0*0
|
hsa-miR-122
5′Pm05f05f05f0f05f05f05f0f005f00f05m0*0*
m0m0m00m0m0000m000*0*m0TEGChol
|
MIMAT0000421
0*5m0*5m0*5m0*0
|
hsa-miR-122*
5′Pm05f05f05f0f05f05f05f0f05f05f05f0f05m0
m0m0000m0000m000*0*m0TEGChol
|
MIMAT0004590
*5m0*5m0*5m0*f0*5m0*0
|
hsa-miR-1224-3p
5′Pm0000f05f000f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0005459
m0*0*0
|
hsa-miR-1224-5p
5′Pm00005f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0005458
*0*0*f0*0*0
|
hsa-miR-1225-3p
5′Pm05f05f005f05f05f05f05f05f005f05f00*5
m0m00m00m0000m0m00*0*m0TEGChol
|
MIMAT0005573
m0*5m0*5m0*f0*0*0
|
hsa-miR-1225-5p
5′Pm05f000f00005f05f0005f05m0*0*0*0*f0
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0005572
**
|
hsa-miR-1226
5′Pm05f05f00f05f005f0f00005f00*5m0*0*0*
m0m0m0m0m0m00m00m0m00*0*m0TEGChol
|
MIMAT0005577
f0*5m0*0
|
hsa-miR-1226*
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005576
m0*5m0*5m0*0
|
hsa-miR-1227
5′Pm005f005f00005f005f005f00*5m0*0*5m
m0m0m00m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0005580
0*f0*5m0*0
|
hsa-miR-1228
5′Pm0005f0f05f05f005f005f005f00*5m0*5m
m0m0m00m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0005583
0*0*5m0*5m0*0
|
hsa-miR-1228*
5′Pm05f05f00f05f000f0005f0f00*5m0*0*0*5
m0m00m0m0m0m0m00m0m00*0*m0TEGChol
|
MIMAT0005582
m0*5m0*0
|
hsa-miR-1229
5′Pm05f000f05f005f0f005f05f05f00*0*5m0*
m0m000m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0005584
0*f0*0*0
|
hsa-miR-1231
5′Pm005f05f0f0005f0f0005f05f00*0*0*0*f0*
m0m00m0m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0005586
0*
|
hsa-miR-1233
5′Pm005f05f0f0005f0f05f05f005f00*0*5m0*
m0m0m000m00m0m0m000*m0*m0TEGChol
|
MIMAT0005588
5m0*5m0*5m0*0
|
hsa-miR-1234
5′Pm005f05f05f0000f05f005f0f05m0*0*0*5
m0m00m00m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0005589
m0*f0*5m0*0
|
hsa-miR-1236
5′Pm05f005f0f05f0005f05f05f05f05f05m0*0*
m0m0000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0005591
0*5m0*5m0*5m0*0
|
hsa-miR-1237
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0005592
m0*f0*0*0
|
hsa-miR-1238
5′Pm05f005f0f005f005f00005f00*5m0*5m0*
m0m0m0m0m0m0m00m0m00m0*0*m0TEGChol
|
MIMAT0005593
5m0*5m0*5m0*0
|
hsa-miR-124
5′Pm05f000f005f00f05f005f0f05m0*0*0*5m
m0m00m00m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000422
0*5m0*0*0
|
hsa-miR-124*
5′Pm0000f0000f0005f0f00*0*5m0*0*f0*0*0
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004591
|
hsa-miR-1243
5′Pm005f05f05f05f05f05f05f005f00f00*5m0*
m0m0m00m0m0000m000*m0*m0TEGChol
|
MIMAT0005894
0*0*5m0*5m0*0
|
hsa-miR-1244
5′Pm005f005f005f00f005f05f0f05m0*0*0*0*
m0m000m0m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0005896
f0*5m0*0
|
hsa-miR-1245
5′Pm00005f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0005897
*0*0*f0*0*0
|
hsa-miR-1246
5′Pm05f05f05f0f05f05f005f05f005f0f00*5m0
m0m00m00m0m000m000*0*m0TEGChol
|
MIMAT0005898
*0*5m0*5m0*0*0
|
hsa-miR-1247
5′Pm05f005f05f0005f05f05f05f005f00*5m0*
m0m0m000m00m0m0m00m0*0*m0TEGChol
|
MIMAT0005899
5m0*5m0*5m0*5m0*0
|
hsa-miR-1248
5′Pm05f000f0005f0f05f005f0f00*0*5m0*5m
m0m00m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0005900
0*5m0*0*0
|
hsa-miR-1249
5′Pm0000f05f005f05f0005f0f00*5m0*0*5m0
m0m00m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0005901
*f0*0*0
|
hsa-miR-1250
5′Pm005f00f005f005f0000f00*5m0*0*0***
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0005902
|
hsa-miR-1251
5′Pm05f005f0f05f05f005f05f05f05f05f05m0*
m0m0000m0m000m00m0*0*m0TEGChol
|
MIMAT0005903
5m0*5m0*5m0***
|
hsa-miR-1252
5′Pm05f000f0000f005f00f05m0*0*5m0*0*f0
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0005944
*0*0
|
hsa-miR-1253
5′Pm05f05f005f05f000f05f05f00f05m0*0*5m
m0m0m000m0m0m00m0m00*0*m0TEGChol
|
MIMAT0005904
0*5m0*5m0*5m0*0
|
hsa-miR-1254
5′Pm0005f05f05f000f05f05f05f05f00*0*5m0
m0m0000m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0005905
*5m0*5m0*0*0
|
hsa-miR-1255a
5′Pm05f05f05f05f05f05f05f05f05f05f05f05f0
m0m0000m0000m000*0*m0TEGChol
|
MIMAT0005906
5m0*5m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-1255b
5′Pm0005f0f005f00f0005f0f05m0*0*0*5m0*
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0005945
f0*0*0
|
hsa-miR-1256
5′Pm05f05f005f05f05f05f05f05f05f05f0f05m
m0m0000m0000m0m00*0*m0TEGChol
|
MIMAT0005907
0*5m0*0*5m0*5m0*0*0
|
hsa-miR-1257
5′Pm005f005f05f05f005f005f005f00*5m0*0*
m0m0m00m0m0m000m0m00*m0*m0TEGChol
|
MIMAT0005908
5m0*5m0*5m0*0
|
hsa-miR-1258
5′Pm05f005f05f0005f05f005f005f05m0*5m0
m0m0m00m0m00m0m0m00m0*0*m0TEGChol
|
MIMAT0005909
*5m0*5m0*5m0*5m0*0
|
hsa-miR-125a-3p
5′Pm05f005f0f05f005f0f005f05f0f00*0*0*0*
m0m000m0m00m00m00m0*0*m0TEGChol
|
MIMAT0004602
5m0*5m0*0
|
hsa-miR-125a-5p
5′Pm05f005f0f005f00f005f05f0f00*5m0*5m0
m0m000m0m0m00m0m00m0*0*m0TEGChol
|
MIMAT0000443
*5m0*5m0*5m0*0
|
hsa-miR-125b
5′Pm0000f005f05f0f0005f05f05m0*5m0*0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000423
m0*f0*0*0
|
hsa-miR-125b-1*
5′Pm0005f0f0005f05f0000f00*5m0*0*5m0*f
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0004592
0*0*0
|
hsa-miR-125b-2*
5′Pm0005f0f005f005f05f005f05f00*5m0*5m
m0m00m00m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004603
0*5m0*f0*0*0
|
hsa-miR-126
5′Pm005f005f05f05f05f0f05f05f005f05m0*0*
m0m0m000m0000m0m00*m0*m0TEGChol
|
MIMAT0000445
0*5m0*f0*0*0
|
hsa-miR-126*
5′Pm05f05f05f05f0000f05f05f05f05f05m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000444
m0*0*0*5m0*5m0*0
|
hsa-miR-1260
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0005911
m0*0*0
|
hsa-miR-1260b
5′Pm005f005f05f005f05f05f05f05f05f05m0*5
m0m0000m00m00m0m00*m0*m0TEGChol
|
MIMAT0015041
m0*5m0*5m0*5m0*0*0
|
hsa-miR-1261
5′Pm0005f05f05f05f05f0f0005f05f05m0*5m0
m0m00m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0005913
*0*5m0*5m0*5m0*0
|
hsa-miR-1262
5′Pm05f05f00f0000f005f005f05m0*0*5m0*0
m0m0m00m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0005914
*f0*0*0
|
hsa-miR-1263
5′Pm05f05f005f0005f0f005f05f0f00*0*5m0*
m0m000m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0005915
5m0*5m0*5m0*0
|
hsa-miR-1264
5′Pm05f05f05f0f05f005f05f05f0005f05m0*5
m0m0m0m00m00m00m000*0*m0TEGChol
|
MIMAT0005791
m0*0*5m0*5m0*5m0*0
|
hsa-miR-1265
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005918
m0*5m0*5m0*0
|
hsa-miR-1266
5′Pm0000f0000f0005f0f05m0*0*0*5m0*f0*
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0005920
0*0
|
hsa-miR-1267
5′Pm00005f005f05f0f05f05f05f0f05m0*0*0*
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0005921
0*f0*0*0
|
hsa-miR-1268
5′Pm00005f005f005f005f005f00*5m0*0*0*f
m0m0m00m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0005922
0*5m0*0
|
hsa-miR-1269
5′Pm05f05f00f05f000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m00m0m00*0*m0TEGChol
|
MIMAT0005923
m0*5m0*5m0*0
|
hsa-miR-1270
5′Pm05f005f05f0005f0f05f005f05f05m0*0*5
m0m00m00m00m0m0m00m0*0*m0TEGChol
|
MIMAT0005924
m0*5m0*f0*0*0
|
hsa-miR-1271
5′Pm00005f05f05f00f05f05f005f05m0*5m0*
m0m0m000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0005796
0*5m0*f0*0*0
|
hsa-miR-1272
5′Pm00005f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0005925
*0*0*f0*0*0
|
hsa-miR-1273
5′Pm00005f05f05f005f005f05f0f00*0*0*0*f0
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0005926
*0*0
|
hsa-miR-1273c
5′Pm05f05f05f05f05f05f05f0f005f005f00*0*
m0m0m00m0m0000m000*0*m0TEGChol
|
MIMAT0015017
0*5m0*5m0*5m0*0
|
hsa-miR-1273d
5′Pm05f05f00f005f05f0f005f05f05f00*5m0*5
m0m000m0m000m0m0m00*0*m0TEGChol
|
MIMAT0015090
m0*0*5m0*5m0*0
|
hsa-miR-1273e
5′Pm0000f0005f05f05f05f005f00*5m0*5m0*
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0018079
0*f0*0*0
|
hsa-miR-127-3p
5′Pm05f05f05f0f00005f0005f0f05m0*0*0*5
m0m00m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000446
m0*f0*0*0
|
hsa-miR-1274a
5′Pm05f05f05f05f0000f05f05f05f05f00*0*5m
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005927
0*5m0*5m0*0*0
|
hsa-miR-1274b
5′Pm05f05f05f05f0000f05f05f05f0f00*5m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005938
m0*5m0*5m0*5m0*0
|
hsa-miR-1275
5′Pm05f05f005f05f005f0f05f05f005f05m0*5
m0m0m000m00m00m0m00*0*m0TEGChol
|
MIMAT0005929
m0*5m0*0*5m0*5m0*0
|
hsa-miR-127-5p
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0004604
m0*5m0*5m0*0
|
hsa-miR-1276
5′Pm05f05f05f0f05f0005f005f005f05m0*5m0
m0m0m00m0m0m0m00m000*0*m0TEGChol
|
MIMAT0005930
*5m0*5m0*f0*0*0
|
hsa-miR-1277
5′Pm05f000f005f05f0f05f05f05f05f00*5m0*0
m0m0000m000m0m0m0m0*0*m0TEGChol
|
MIMAT0005933
*5m0*5m0*5m0*0
|
hsa-miR-1278
5′Pm0005f05f05f000f005f05f05f00*0*0*5m0
m0m000m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0005936
*f0*0*0
|
hsa-miR-1279
5′Pm05f005f0f05f05f05f0f05f05f05f05f00*5
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0005937
m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-128
5′Pm00005f005f00f0000f00*0*0*5m0*5m0*
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0000424
0*0
|
hsa-miR-1280
5′Pm05f000f05f05f00f005f05f05f05m0*5m0*
m0m000m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0005946
0*0*f0*0*0
|
hsa-miR-1281
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0005939
m0*5m0*5m0*5m0*0
|
hsa-miR-1282
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0005940
m0*5m0*5m0*5m0*0
|
hsa-miR-1283
5′Pm005f005f05f05f05f0f05f005f05f00*0*0*
m0m00m00m0000m0m00*m0*m0TEGChol
|
MIMAT0005799
0*f0*0*0
|
hsa-miR-1284
5′Pm05f05f05f05f005f05f05f05f005f05f00*5
m0m00m00m000m0m000*0*m0TEGChol
|
MIMAT0005941
m0*5m0*5m0*f0*0*0
|
hsa-miR-1285
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0005876
*5m0*0*f0*0*0
|
hsa-miR-1286
5′Pm0005f05f0005f05f00005f00*0*0*0*f0*5
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0005877
m0*
|
hsa-miR-1287
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0005878
0*5m0*5m0*0
|
hsa-miR-1288
5′Pm05f05f005f0005f0f005f05f0f00*0*5m0*
m0m000m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0005942
5m0*5m0*5m0*0
|
hsa-miR-1289
5′Pm05f05f05f05f0005f05f05f05f05f05f05m0
m0m0000m00m0m0m000*0*m0TEGChol
|
MIMAT0005879
*0*5m0*0*5m0*5m0*0
|
hsa-miR-129*
5′Pm05f005f0f0005f05f00005f05m0*5m0*5
m0m0m0m0m0m00m0m0m00m0*0*m0TEGChol
|
MIMAT0004548
m0*5m0*f0*0*0
|
hsa-miR-1290
5′Pm05f05f00f05f05f05f0f00005f05m0*0*5m
m0m0m0m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0005880
0*5m0*f0*0*
|
hsa-miR-1291
5′Pm005f005f0005f0f05f05f00f00*0*0*5m0*
m0m0m000m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0005881
f0*5m0*0
|
hsa-miR-1292
5′Pm0005f0f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0005943
0*0*0*f0*5m0*0
|
hsa-miR-1293
5′Pm05f05f05f05f05f000f0000f00*0*5m0*0*
m0m0m0m0m0m0m0m00m000*0*m0TEGChol
|
MIMAT0005883
5m0*5m0*0
|
hsa-miR-129-3p
5′Pm05f005f0f05f05f005f00005f00*0*5m0*0
m0m0m0m0m0m0m000m00m0*0*m0TEGChol
|
MIMAT0004605
*f0*5m0*0
|
hsa-miR-1294
5′Pm05f05f05f0f05f0005f005f005f05m0*5m0
m0m0m00m0m0m0m00m000*0*m0TEGChol
|
MIMAT0005884
*5m0*5m0*f0*0*0
|
hsa-miR-1295
5′Pm0005f05f005f05f05f00005f00*0*5m0*5
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0005885
m0*5m0*5m0*0
|
hsa-miR-129-5p
5′Pm005f05f0f05f05f005f05f05f05f05f00*0*
m0m0000m0m000m000*m0*m0TEGChol
|
MIMAT0000242
5m0*0*5m0*0*0
|
hsa-miR-1296
5′Pm00005f005f00f05f05f00f00*5m0*5m0*0
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0005794
***
|
hsa-miR-1297
5′Pm0000f00005f0000f05m0*5m0*5m0*0*f
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0005886
0*0*0
Chol
|
hsa-miR-1298
5′Pm05f05f05f0f05f05f005f05f005f05f00*5m
m0m00m00m0m000m000*0*m0TEGChol
|
MIMAT0005800
0*5m0*5m0***
|
hsa-miR-1299
5′Pm005f05f05f05f005f0f0005f05f05m0*0*0
m0m00m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0005887
*5m0*5m0*5m0*0
|
hsa-miR-1301
5′Pm05f0005f05f05f005f00005f05m0*0*0*5
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0005797
m0*f0*0*0
|
hsa-miR-1302
5′Pm0000f05f0005f00005f00*0*5m0*0*f0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0005890
m0*0
|
hsa-miR-1303
5′Pm00005f0000f05f005f05f00*0*5m0*0*5
m0m00m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0005891
m0*5m0*0
|
hsa-miR-1304
5′Pm00005f005f05f0f05f005f0f00*0*5m0*5
m0m00m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0005892
m0*f0*0*0
|
hsa-miR-1305
5′Pm05f05f05f05f005f05f05f05f05f005f05m0
m0m0m000m000m0m000*0*m0TEGChol
|
MIMAT0005893
*0*5m0*5m0*f0**
|
hsa-miR-1306
5′Pm0000f005f05f0f0005f05f05m0*5m0*0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0005950
m0*f0*0*0
|
hsa-miR-1307
5′Pm00005f05f05f00f05f05f00f05m0*5m0*0
m0m0m000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0005951
*0*5m0*0*0
|
hsa-miR-130a
5′Pm005f005f0005f0f05f000f05m0*0*0*5m0
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0000425
*5m0*5m0*0
|
hsa-miR-130a*
5′Pm05f005f0f05f000f0005f0f05m0*5m0*5m
m0m00m0m0m0m0m00m00m0*0*m0TEGChol
|
MIMAT0004593
0*5m0*5m0*0*0
|
hsa-miR-130b
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000691
0*0*0*f0*5m0*0
|
hsa-miR-130b*
5′Pm05f005f0f05f0005f05f05f05f05f05m0*0*
m0m0000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0004680
0*5m0*5m0*5m0*0
|
hsa-miR-132
5′Pm05f05f00f05f05f05f0f05f005f0f00*5m0*
m0m00m00m0000m0m00*0*m0TEGChol
|
MIMAT0000426
0*5m0*5m0*5m0*0
|
hsa-miR-132*
5′Pm05f005f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0004594
m0*5m0*5m0*5m0***
|
hsa-miR-1321
5′Pm005f005f005f00f0000f00*5m0*5m0*5m
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0005952
0*5m0*5m0*0
|
hsa-miR-1322
5′Pm0000f05f000f005f05f05f05m0*5m0*0*0
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0005953
*f0*0*
|
hsa-miR-1323
5′Pm0005f05f05f0005f05f05f00f00*5m0*5m
m0m0m000m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0005795
0*5m0*5m0*0*0
|
hsa-miR-1324
5′Pm0005f0f0005f05f005f005f00*0*5m0*0*
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0005956
5m0*0*0
|
hsa-miR-133a
5′Pm05f005f0f05f05f005f00005f00*5m0*5m
m0m0m0m0m0m0m000m00m0*0*m0TEGChol
|
MIMAT0000427
0*5m0*f0*5m0*0
|
hsa-miR-133b
5′Pm005f00f05f005f05f005f005f00*0*0*0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0000770
m0*5m0*0
|
hsa-miR-134
5′Pm005f05f05f05f005f05f05f05f05f0f05m0*
m0m0000m00m00m000*m0*m0TEGChol
|
MIMAT0000447
5m0*5m0*0*5m0*0*0
|
hsa-miR-135a
5′Pm05f005f05f05f005f05f05f05f05f05f05m0
m0m0000m00m00m00m0*0*m0TEGChol
|
MIMAT0000428
*5m0*5m0*0*5m0*5m0*0
|
hsa-miR-135a*
5′Pm05f005f05f05f005f05f05f05f05f05f00*5
m0m0000m00m00m00m0*0*m0TEGChol
|
MIMAT0004595
m0*0*0*f0*0*
|
hsa-miR-135b
5′Pm05f05f005f0000f0000f00*5m0*0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0000758
5m0*5m0*0
|
hsa-miR-135b*
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0004698
m0*5m0*5m0*0
|
hsa-miR-136
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0000448
m0*5m0*5m0*5m0*0
|
hsa-miR-136*
5′Pm05f05f005f005f00f005f05f05f05m0*0*0
m0m000m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0004606
*5m0*5m0*5m0*0
|
hsa-miR-137
5′Pm0000f05f000f005f05f05f05m0*5m0*0*0
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000429
*f0*0*0
|
hsa-miR-138
5′Pm05f05f05f05f00005f005f05f05f05m0*0*
m0m000m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000430
5m0*5m0*5m0*5m0*0
|
hsa-miR-138-1*
5′Pm05f05f05f05f05f05f005f05f05f005f00*5
m0m0m000m0m000m000*0*m0TEGChol
|
MIMAT0004607
m0*0*5m0*5m0*5m0*0
|
hsa-miR-138-2*
5′Pm05f05f05f0f05f005f0f05f000f00*5m0*5
m0m0m0m00m00m00m000*0*m0TEGChol
|
MIMAT0004596
m0*0*f0*0*0
|
hsa-miR-139-3p
5′Pm005f005f0005f0f05f0005f05m0*5m0*0*
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0004552
5m0*5m0*0*0
|
hsa-miR-139-5p
5′Pm005f05f0f0005f05f005f00f00*5m0*5m0
m0m0m00m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0000250
*5m0*5m0*5m0*0
|
hsa-miR-140-3p
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004597
0*0*0*f0*0*0
|
hsa-miR-140-5p
5′Pm05f005f05f0005f05f05f05f005f00*0*0*5
m0m0m000m00m0m0m00m0*0*m0TEGChol
|
MIMAT0000431
m0*5m0*0*0
|
hsa-miR-141
5′Pm0000f005f05f05f005f00f05m0*5m0*5m
m0m0m00m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000432
0*0*5m0*5m0*0
|
hsa-miR-141*
5′Pm05f005f0f05f000f0005f0f05m0*5m0*5m
m0m00m0m0m0m0m00m00m0*0*m0TEGChol
|
MIMAT0004598
0*5m0*5m0*0*0
|
hsa-miR-142-3p
5′Pm05f0005f005f005f05f005f0f00*0*0*5m0
m0m00m00m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000434
*5m0*5m0*0
|
hsa-miR-142-5p
5′Pm05f000f05f000f05f005f05f00*5m0*5m0
m0m00m00m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0000433
*5m0*5m0*0*0
|
hsa-miR-143
5′Pm05f0005f0005f0f05f05f05f0f05m0*5m0*
m0m0000m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000435
0*5m0*f0*0*0
|
hsa-miR-143*
5′Pm005f00f005f005f0000f05m0*0*0*5m0*f
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0004599
0**
|
hsa-miR-144
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000436
0*0*0*f0*0*0
|
hsa-miR-144*
5′Pm00005f05f05f00f05f0005f00*0*0*5m0*f
m0m0m0m00m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0004600
0*0*
|
hsa-miR-145
5′Pm005f05f05f05f005f0f0005f05f05m0*0*0
m0m00m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0000437
*0*5m0*5m0*0
|
hsa-miR-145*
5′Pm0005f0f05f000f05f005f0f00*0*5m0*0*5
m0m00m00m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0004601
m0*5m0*0
|
hsa-miR-1468
5′Pm00005f05f05f005f005f05f05f00*0*0*0*f
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0006789
0*0*0
|
hsa-miR-1469
5′Pm0005f05f005f05f0f05f05f005f05m0*0*5
m0m0m000m000m0m00m0*m0*m0TEGChol
|
MIMAT0007347
m0*5m0*f0*0*0
|
hsa-miR-146a
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000449
m0*5m0*5m0*0
|
hsa-miR-146a*
5′Pm005f05f0f005f05f05f005f00f00*0*5m0*
m0m0m00m0m000m0m000*m0*m0TEGChol
|
MIMAT0004608
5m0*5m0*5m0*0
|
hsa-miR-146b-3p
5′Pm00005f05f05f05f05f005f00f00*5m0*0*0
m0m0m00m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004766
*f0*0*0
|
hsa-miR-146b-5p
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0002809
0*0*0*5m0*0*0
|
hsa-miR-147
5′Pm005f05f0f05f05f05f0f05f000f00*0*0*0*f
m0m0m0m00m0000m000*m0*m0TEGChol
|
MIMAT0000251
0*5m0*0
|
hsa-miR-1470
5′Pm005f05f05f05f005f0f00005f05m0*0*0*0
m0m0m0m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0007348
*5m0*5m0*0
|
hsa-miR-1471
5′Pm05f05f00f005f05f05f05f05f00f05m0*0*5
m0m0m000m000m0m0m00*0*m0TEGChol
|
MIMAT0007349
m0*5m0*f0*0*
|
hsa-miR-147b
5′Pm05f05f005f05f05f005f0000f00*0*0*5m0
m0m0m0m0m0m0m000m0m00*0*m0TEGChol
|
MIMAT0004928
*f0*0*0
|
hsa-miR-148a
5′Pm05f05f05f05f05f005f0f005f005f00*0*5m
m0m0m00m0m00m00m000*0*m0TEGChol
|
MIMAT0000243
0*5m0***
|
hsa-miR-148a*
5′Pm0005f0f05f0005f005f05f0f05m0*5m0*5
m0m000m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0004549
m0*0*5m0*0*0
|
hsa-miR-148b
5′Pm05f05f05f05f05f05f05f05f0000f05m0*5
m0m0m0m0m0m0000m000*0*m0TEGChol
|
MIMAT0000759
m0*0*5m0*5m0*5m0*0
|
hsa-miR-148b*
5′Pm00005f05f05f05f0f00005f00*5m0*5m0*
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004699
5m0*5m0*0*0
|
hsa-miR-149
5′Pm05f05f00f005f00f05f000f00*5m0*0*0*f
m0m0m0m00m0m00m0m0m00*0*m0TEGChol
|
MIMAT0000450
0*0*0
|
hsa-miR-149*
5′Pm005f05f05f0005f05f005f005f00*5m0*0*
m0m0m00m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0004609
5m0*f0*5m0*0
|
hsa-miR-150
5′Pm05f000f05f05f05f0f005f05f05f05m0*0*0
m0m000m0m0000m0m0m0*0*m0TEGChol
|
MIMAT0000451
*0*f0*0*0
|
hsa-miR-150*
5′Pm05f05f05f05f05f05f05f05f05f05f05f0f05
m0m0000m0000m000*0*m0TEGChol
|
MIMAT0004610
m0*0*0*0*5m0*5m0*0
|
hsa-miR-151-3p
5′Pm05f05f05f05f005f05f05f0005f05f05m0*0
m0m00m0m0m000m0m000*0*m0TEGChol
|
MIMAT0000757
*5m0*5m0*f0*0*0
|
hsa-miR-151-5p
5′Pm05f05f05f05f005f05f0f005f005f05m0*0*
m0m0m00m0m000m0m000*0*m0TEGChol
|
MIMAT0004697
5m0*5m0*5m0*5m0*0
|
hsa-miR-152
5′Pm05f05f00f05f000f05f005f05f00*0*5m0*
m0m00m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0000438
5m0*f0*0*0
|
hsa-miR-153
5′Pm0000f0005f05f05f05f00f00*5m0*5m0*0
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0000439
*f0*0*0
|
hsa-miR-1537
5′Pm0000f0000f05f0005f05m0*0*0*5m0*5
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0007399
m0*5m0*0
|
hsa-miR-1538
5′Pm05f005f0f05f000f0000f05m0*0*0*5m0*
m0m0m0m0m0m0m0m00m00m0*0*m0TEGChol
|
MIMAT0007400
5m0*5m0*0
|
hsa-miR-1539
5′Pm05f05f05f05f005f05f0f05f05f005f05m0*
m0m0m000m000m0m000*0*m0TEGChol
|
MIMAT0007401
0*5m0*5m0*f0*5m0*
|
hsa-miR-154
5′Pm05f05f00f0005f05f0005f0f05m0*5m0*5
m0m00m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0000452
m0*5m0*5m0*5m0*0
|
hsa-miR-154*
5′Pm00005f005f05f05f005f05f05f00*5m0*0*
m0m000m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000453
5m0*f0*0*0
|
hsa-miR-155
5′Pm0000f05f05f00f005f00f00*0*0*5m0*5m
m0m0m00m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0000646
0*5m0*0
|
hsa-miR-155*
5′Pm005f00f0005f05f0000f05m0*0*0*0*5m
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0004658
0*5m0*0
|
hsa-miR-15a
5′Pm05f0005f05f05f005f00005f00*5m0*0*5
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0000068
m0*f0*5m0*0
|
hsa-miR-15a*
5′Pm0000f05f05f05f0f05f05f00f00*0*0*0*f0
m0m0m000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004488
*0*0
|
hsa-miR-15b
5′Pm005f005f0000f005f05f0f00*5m0*5m0*0
m0m000m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0000417
*f0*0*0
|
hsa-miR-15b*
5′Pm00005f05f05f05f05f05f05f05f05f00*0*5
m0m0000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004586
m0*5m0*5m0*5m0*0
|
hsa-miR-16
5′Pm05f005f0f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0000069
m0*5m0*5m0*0
|
hsa-miR-16-1*
5′Pm05f005f0f05f005f0f05f005f0f05m0*0*5
m0m00m00m00m00m00m0*0*m0TEGChol
|
MIMAT0004489
m0*0*5m0*0*0
|
hsa-miR-16-2*
5′Pm005f00f00005f0000f00*0*0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0004518
5m0*0
|
hsa-miR-17
5′Pm05f05f00f005f05f05f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0000070
*0*f0*0*0
|
hsa-miR-17*
5′Pm005f005f005f05f05f05f05f00f00*5m0*5
m0m0m000m000m0m0m00*m0*m0TEGChol
|
MIMAT0000071
m0*0*5m0*0*0
|
hsa-miR-181a
5′Pm005f005f0000f05f0005f00*0*0*5m0*5
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0000256
m0*0*0
|
hsa-miR-181a*
5′Pm05f0005f005f005f05f005f0f00*0*0*5m0
m0m00m00m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000270
*5m0*5m0*0
|
hsa-miR-181a-2*
5′Pm0005f05f05f05f005f05f005f0f05m0*0*5
m0m00m00m0m000m00m0*m0*m0TEGChol
|
MIMAT0004558
m0*5m0*5m0*0*0
|
hsa-miR-181b
5′Pm05f05f00f05f05f05f05f005f005f05m0*5
m0m0m00m0m0000m0m00*0*m0TEGChol
|
MIMAT0000257
m0*5m0*5m0*f0*5m0*0
|
hsa-miR-181c
5′Pm0000f0000f05f000f00*0*5m0*5m0*f0*
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0000258
5m0*0
|
hsa-miR-181c*
5′Pm005f05f0f005f05f05f05f05f00f00*0*5m0
m0m0m000m000m0m000*m0*m0TEGChol
|
MIMAT0004559
*5m0*5m0*5m0*0
|
hsa-miR-181d
5′Pm05f05f05f05f05f0005f05f05f05f05f00*5
m0m0000m0m0m00m000*0*m0TEGChol
|
MIMAT0002821
m0*0*5m0*5m0*0*0
|
hsa-miR-182
5′Pm005f05f05f0005f05f05f000f00*5m0*5m
m0m0m0m00m00m0m0m000*m0*m0TEGChol
|
MIMAT0000259
0*5m0*5m0*5m0*0
|
hsa-miR-182*
5′Pm0005f05f05f005f05f005f05f05f05m0*0*
m0m000m0m00m00m00m0*m0*m0TEGChol
|
MIMAT0000260
5m0*0*5m0*0*0
|
hsa-miR-1825
5′Pm05f000f05f000f0005f0f00*0*5m0*0*5m
m0m00m0m0m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0006765
0*0*0
|
hsa-miR-1827
5′Pm005f05f0f005f005f05f05f05f0f00*5m0*5
m0m0000m0m00m0m000*m0*m0TEGChol
|
MIMAT0006767
m0*5m0*5m0*0*0
|
hsa-miR-183
5′Pm0000f0005f0f0000f00*5m0*0*0*f0*0*0
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0000261
|
hsa-miR-183*
5′Pm0005f0f005f00f05f05f05f0f05m0*0*5m0
m0m0000m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004560
*5m0*5m0*5m0*0
|
hsa-miR-184
5′Pm05f005f0f05f005f05f05f05f05f0f05m0*5
m0m0000m00m00m00m0*0*m0TEGChol
|
MIMAT0000454
m0*0*5m0*5m0*5m0*0
|
hsa-miR-185
5′Pm005f05f0f05f005f0f05f0005f00*5m0*5m
m0m0m0m00m00m00m000*m0*m0TEGChol
|
MIMAT0000455
0*0*f0*5m0*0
|
hsa-miR-185*
5′Pm05f0005f05f005f0f00005f05m0*0*5m0*
m0m0m0m0m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0004611
0*5m0*0*0
|
hsa-miR-186
5′Pm0000f05f05f05f05f005f005f00*0*0*5m0
m0m0m00m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0000456
*f0*5m0*0
|
hsa-miR-186*
5′Pm05f005f0f05f005f0f05f005f0f05m0*0*0*
m0m00m00m00m00m00m0*0*m0TEGChol
|
MIMAT0004612
5m0*f0*5m0*0
|
hsa-miR-187
5′Pm005f05f0f0005f05f0005f0f00*5m0*5m0
m0m00m0m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0000262
*5m0*f0*0*0
|
hsa-miR-187*
5′Pm0000f05f005f0f00005f00*5m0*5m0*0*
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004561
5m0*5m0*0
|
hsa-miR-188-3p
5′Pm0000f05f05f05f05f0000f00*5m0*0*0*f0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004613
*0*0
|
hsa-miR-188-5p
5′Pm00005f05f005f05f05f05f00f05m0*5m0*
m0m0m000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0000457
5m0*0*f0*0*0
|
hsa-miR-18a
5′Pm005f00f05f005f0f005f05f0f05m0*5m0*5
m0m000m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0000072
m0*5m0*5m0*0*0
|
hsa-miR-18a*
5′Pm05f0005f005f00f005f05f05f00*0*0*0*f0
m0m000m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0002891
*0*0
|
hsa-miR-18b
5′Pm05f05f00f00005f005f05f0f05m0*0*5m0
m0m000m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0001412
*5m0*5m0*0*0
|
hsa-miR-18b*
5′Pm005f00f05f0005f0005f05f05m0*5m0*0*
m0m00m0m0m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0004751
5m0*f0*5m0*0
|
hsa-miR-190
5′Pm05f000f005f005f005f005f00*5m0*0*0*f
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000458
0*0*0
|
hsa-miR-1908
5′Pm05f005f05f05f05f00f0005f05f00*5m0*5
m0m00m0m0m0m000m00m0*0*m0TEGChol
|
MIMAT0007881
m0*0*f0*0*0
|
hsa-miR-1909
5′Pm05f05f05f05f05f005f0f05f05f05f05f00*0
m0m0000m00m00m000*0*m0TEGChol
|
MIMAT0007883
*0*0*5m0*5m0*0
|
hsa-miR-1909*
5′Pm05f05f00f0000f0000f05m0*5m0*0*0***
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0007882
|
hsa-miR-190b
5′Pm005f05f0f05f005f05f05f05f00f05m0*0*0
m0m0m000m00m00m000*m0*m0TEGChol
|
MIMAT0004929
*5m0*f0*0*0
|
hsa-miR-191
5′Pm005f05f0f05f05f00f005f05f0f00*5m0*0*
m0m000m0m0m000m000*m0*m0TEGChol
|
MIMAT0000440
5m0*5m0*0*
|
hsa-miR-191*
5′Pm05f0005f0000f05f05f005f05m0*0*5m0*
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0001618
5m0*f0*5m0*0
|
hsa-miR-1910
5′Pm0000f05f05f05f0f0000f05m0*5m0*5m0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0007884
*0*5m0*0*0
|
hsa-miR-1911
5′Pm05f05f005f05f005f05f0005f0f05m0*0*5
m0m00m0m0m00m00m0m00*0*m0TEGChol
|
MIMAT0007885
m0*0*f0*5m0*0
|
hsa-miR-1911*
5′Pm00005f05f05f005f0005f05f00*5m0*5m0
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0007886
*5m0*5m0*5m0*0
|
hsa-miR-1912
5′Pm05f05f00f005f00f00005f05m0*0*0*5m0
m0m0m0m0m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0007887
*5m0*5m0*0
|
hsa-miR-1913
5′Pm0000f05f05f005f005f05f05f05m0*0*0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0007888
*f0*0*0
|
hsa-miR-1914
5′Pm0005f05f05f05f05f0f05f05f05f05f00*0*
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0007889
0*0*f0*0*0
|
hsa-miR-1914*
5′Pm05f005f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0007890
m0*5m0*5m0*0*5m0*5m0*0
|
hsa-miR-1915
5′Pm05f000f005f05f05f005f005f00*0*0*0*5
m0m0m00m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0007892
m0*0*0
|
hsa-miR-1915*
5′Pm05f005f05f05f005f05f005f05f05f05m0*5
m0m000m0m00m00m00m0*0*m0TEGChol
|
MIMAT0007891
m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-192
5′Pm05f05f05f05f00005f05f05f00f05m0*0*0
m0m0m000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000222
*0*f0*5m0*0
|
hsa-miR-192*
5′Pm05f000f05f05f00f0005f05f05m0*5m0*5
m0m00m0m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0004543
m0*5m0*f0*0*0
|
hsa-miR-193a-3p
5′Pm005f00f0000f05f000f05m0*0*0*5m0*5
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0000459
m0*0*0
|
hsa-miR-193a-5p
5′Pm0000f005f005f0005f05f00*0*5m0*5m0
m0m00m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0004614
*f0*0*0
|
hsa-miR-193b
5′Pm0005f0f005f005f0000f00*5m0*0*5m0*
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0002819
5m0*0*0
|
hsa-miR-193b*
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004767
0*5m0*0*f0*0*0
|
hsa-miR-194
5′Pm00005f005f005f05f05f00f00*0*0*0*5m
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0000460
0**
|
hsa-miR-194*
5′Pm05f05f05f0f00005f05f005f05f05m0*5m0
m0m00m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0004671
*0*5m0*5m0*0*0
|
hsa-miR-195
5′Pm05f05f05f0f0005f0f05f05f00f00*0*5m0*
m0m0m000m00m0m0m000*0*m0TEGChol
|
MIMAT0000461
0*f0*5m0*0
|
hsa-miR-195*
5′Pm0005f0f05f05f005f05f05f00f00*0*5m0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0004615
5m0*f0*0*0
|
hsa-miR-196a
5′Pm05f000f005f005f005f005f00*5m0*0*0*f
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000226
0*0*0
|
hsa-miR-196a*
5′Pm05f05f05f05f0005f05f05f05f00f00*0*5m
m0m0m000m00m0m0m000*0*m0TEGChol
|
MIMAT0004562
0*5m0*5m0*0*0
|
hsa-miR-196b
5′Pm05f05f00f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m0m00*0*m0TEGChol
|
MIMAT0001080
*5m0*0*5m0*5m0*0
|
hsa-miR-196b*
5′Pm00005f0000f0000f00*0*0*0*f0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0009201
Chol
|
hsa-miR-197
5′Pm0000f05f0005f0005f05f05m0*0*5m0*0
m0m00m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000227
*5m0*0*0
|
hsa-miR-1972
5′Pm05f000f05f05f05f0f005f05f05f05m0*5m
m0m000m0m0000m0m0m0*0*m0TEGChol
|
MIMAT0009447
0*5m0*5m0*5m0*5m0*0
|
hsa-miR-1973
5′Pm05f05f005f005f005f0005f05f05m0*5m0
m0m00m0m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0009448
*5m0*5m0*5m0*5m0*0
|
hsa-miR-1976
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0009451
m0*0*0
|
hsa-miR-198
5′Pm005f005f05f05f005f05f05f005f05m0*5m
m0m0m000m0m000m0m00*m0*m0TEGChol
|
MIMAT0000228
0*5m0*0*5m0*5m0*0
|
hsa-miR-199a-3p
5′Pm0005f0f05f05f005f05f05f00f00*0*5m0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0000232
5m0*f0*0*0
|
hsa-miR-199a-5p
5′Pm05f05f00f05f05f05f05f005f005f00*0*5m
m0m0m00m0m0000m0m00*0*m0TEGChol
|
MIMAT0000231
0*0*f0*5m0*0
|
hsa-miR-199b-3p
5′Pm05f0005f05f05f05f0f05f005f0f00*5m0*0
m0m00m00m0000m0m0m0*0*m0TEGChol
|
MIMAT0004563
*0*5m0*5m0*0
|
hsa-miR-199b-5p
5′Pm0005f0f05f05f005f05f05f00f00*0*5m0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0000263
5m0*f0*0*0
|
hsa-miR-19a
5′Pm05f05f005f0000f05f05f05f0f00*0*0*5m
m0m0000m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0000073
0*5m0*0*0
|
hsa-miR-19a*
5′Pm05f0005f005f05f0f005f05f0f05m0*0*5m
m0m000m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0004490
0*5m0*f0*5m0*0
|
hsa-miR-19b
5′Pm005f05f05f05f05f00f0000f05m0*5m0*5
m0m0m0m0m0m0m000m000*m0*m0TEGChol
|
MIMAT0000074
m0*5m0*5m0*5m0*0
|
hsa-miR-19b-1*
5′Pm00005f0005f05f05f05f005f00*5m0*5m0
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004491
*0*5m0*5m0*0
|
hsa-miR-19b-2*
5′Pm0005f0f005f00f0000f05m0*5m0*0*5m0
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004492
*5m0*5m0*0
|
hsa-miR-200a
5′Pm0005f05f0005f05f05f05f05f05f05m0*5m
m0m0000m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0000682
0*0*0*5m0*0*0
|
hsa-miR-200a*
5′Pm005f005f0000f005f00f00*5m0*5m0*5m
m0m0m00m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0001620
0*5m0*5m0*0
|
hsa-miR-200b
5′Pm0005f0f05f0005f0005f0f05m0*5m0*0*5
m0m00m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0000318
m0*5m0*0*0
|
hsa-miR-200b*
5′Pm0005f0f05f0005f0005f0f05m0*5m0*0*5
m0m00m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0004571
m0*5m0*0*0
|
hsa-miR-200c
5′Pm005f00f0005f05f05f05f05f0f05m0*0*0*
m0m0000m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0000617
0*f0*0*0
|
hsa-miR-200c*
5′Pm05f000f00005f05f05f005f00*0*5m0*5m
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004657
0*5m0*0*0
|
hsa-miR-202
5′Pm0000f0005f05f0005f0f00*5m0*5m0*5m
m0m00m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0002811
0*5m0*0*0
|
hsa-miR-202*
5′Pm05f0005f005f005f0005f0f00*0*0*5m0*
m0m00m0m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0002810
5m0*5m0*0
|
hsa-miR-203
5′Pm0005f0f05f05f05f0f0000f05m0*0*0*0***
m0m0m0m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0000264
|
hsa-miR-204
5′Pm05f005f0f05f000f05f05f005f05m0*0*5m
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0000265
0*5m0*5m0*5m0*0
|
hsa-miR-205
5′Pm0000f05f0005f0005f05f05m0*0*5m0*0
m0m00m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000266
*5m0*5m0*0
|
hsa-miR-205*
5′Pm05f005f0f05f05f05f05f05f05f05f05f00*5
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0009197
m0*0*5m0*5m0*5m0*0
|
hsa-miR-2052
5′Pm05f05f00f0000f05f05f005f00*0*5m0*0*
m0m0m000m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0009977
f0*5m0*0
|
hsa-miR-2053
5′Pm05f05f05f0f05f005f0f00005f05m0*5m0*
m0m0m0m0m0m00m00m000*0*m0TEGChol
|
MIMAT0009978
0*0*f0*0*0
|
hsa-miR-2054
5′Pm05f05f05f0f005f05f05f0005f0f00*0*0*0
m0m00m0m0m000m0m000*0*m0TEGChol
|
MIMAT0009979
*5m0**
|
hsa-miR-206
5′Pm005f05f05f0000f0005f05f00*5m0*5m0*
m0m00m0m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0000462
0*f0*5m0*0
|
hsa-miR-208a
5′Pm05f05f00f00005f05f05f05f05f00*0*0*5
m0m0000m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0000241
m0*5m0*5m0*0
|
hsa-miR-208b
5′Pm0000f05f05f005f00005f00*0*0*5m0*f0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0004960
*0*0
|
hsa-miR-20a
5′Pm05f000f0005f0f0000f05m0*5m0*0*0*f0
m0m0m0m0m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000075
**
|
hsa-miR-20a*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004493
m0*5m0*5m0*0*0
|
hsa-miR-20b
5′Pm05f05f05f0f05f05f005f05f005f05f05m0*
m0m00m00m0m000m000*0*m0TEGChol
|
MIMAT0001413
5m0*0*0***
|
hsa-miR-20b*
5′Pm05f05f005f00005f05f05f05f0f00*5m0*5
m0m0000m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0004752
m0*0*5m0*0*0
|
hsa-miR-21
5′Pm005f05f0f005f05f0f05f05f00f00*0*0*0*f
m0m0m000m000m0m000*m0*m0TEGChol
|
MIMAT0000076
0*5m0*0
|
hsa-miR-21*
5′Pm05f005f0f00005f05f05f005f00*5m0*0*0
m0m0m000m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0004494
*f0*5m0*0
|
hsa-miR-210
5′Pm05f05f005f005f00f005f05f05f05m0*0*5
m0m000m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0000267
m0*5m0*f0*5m0*0
|
hsa-miR-211
5′Pm05f005f0f05f000f05f05f005f05m0*0*5m
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0000268
0*5m0*5m0*5m0*0
|
hsa-miR-2110
5′Pm05f05f005f05f005f0f005f05f0f05m0*0*0
m0m000m0m00m00m0m00*0*m0TEGChol
|
MIMAT0010133
*0*5m0*0*0
|
hsa-miR-2113
5′Pm00005f05f05f05f05f00005f05m0*0*0*0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0009206
*f0*0*
|
hsa-miR-2114
5′Pm0005f0f05f05f05f05f05f05f05f0f05m0*5
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0011156
m0*0*0*5m0*5m0*0
|
hsa-miR-2114*
5′Pm0005f05f00005f05f05f00f00*0*0*5m0*
m0m0m000m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0011157
5m0*0*0
|
hsa-miR-2115
5′Pm0005f05f05f05f00f05f05f00f00*0*0*5m
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0011158
0*5m0*0*0
|
hsa-miR-2115*
5′Pm05f05f05f05f05f05f05f05f0005f0f00*5m
m0m00m0m0m0000m000*0*m0TEGChol
|
MIMAT0011159
0*5m0*5m0*5m0*5m0*0
|
hsa-miR-2116
5′Pm00005f0005f05f05f05f05f05f00*5m0*5
m0m0000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0011160
m0*0*5m0*5m0*0
|
hsa-miR-2116*
5′Pm0000f005f00f005f05f05f05m0*0*0*5m0
m0m000m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0011161
*f0*0*0
|
hsa-miR-2117
5′Pm05f05f05f05f0005f05f05f005f0f05m0*0*
m0m00m00m00m0m0m000*0*m0TEGChol
|
MIMAT0011162
0*0*5m0*0*0
|
hsa-miR-212
5′Pm05f05f05f0f0005f0f05f000f05m0*0*5m0
m0m0m0m00m00m0m0m000*0*m0TEGChol
|
MIMAT0000269
*0*5m0*5m0*0
|
hsa-miR-214
5′Pm0005f0f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0000271
0*0*0*f0*0*0
|
hsa-miR-214*
5′Pm00005f0005f05f05f000f00*0*5m0*5m0
m0m0m0m00m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004564
*5m0*0*0
|
hsa-miR-215
5′Pm005f005f05f000f05f05f05f0f00*0*5m0*
m0m0000m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0000272
5m0***
|
hsa-miR-216a
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000273
m0*5m0*5m0*0*0
|
hsa-miR-216b
5′Pm05f05f05f05f0005f0f05f000f00*0*5m0*
m0m0m0m00m00m0m0m000*0*m0TEGChol
|
MIMAT0004959
0*5m0*5m0*0
|
hsa-miR-217
5′Pm05f05f00f0005f0f05f000f00*5m0*5m0*
m0m0m0m00m00m0m0m0m00*0*m0TEGChol
|
MIMAT0000274
5m0*5m0*0*
|
hsa-miR-218
5′Pm05f005f0f05f0005f05f005f0f00*0*0*0*5
m0m00m00m0m0m00m00m0*0*m0TEGChol
|
MIMAT0000275
m0*0*0
|
hsa-miR-218-1*
5′Pm05f0005f0005f0f05f0005f00*5m0*5m0*
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004565
0*5m0*5m0*0
|
hsa-miR-218-2*
5′Pm05f05f005f05f005f05f05f05f05f05f05m0
m0m0000m00m00m0m00*0*m0TEGChol
|
MIMAT0004566
*5m0*0*5m0*5m0*5m0*0
|
hsa-miR-219-1-3p
5′Pm0000f005f00f00005f05m0*5m0*0****
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0004567
|
hsa-miR-219-2-3p
5′Pm005f005f05f05f00f005f05f0f05m0*5m0*
m0m000m0m0m000m0m00*m0*m0TEGChol
|
MIMAT0004675
5m0*0***
|
hsa-miR-219-5p
5′Pm0000f005f005f0005f0f00*0*0*0*f0*0*0
m0m00m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0000276
|
hsa-miR-22
5′Pm0000f05f0005f0000f00*5m0*5m0*5m0
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000077
*5m0**
|
hsa-miR-22*
5′Pm00005f05f005f05f05f0005f05m0*0*5m0
m0m0m0m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004495
*0*f0*5m0*0
|
hsa-miR-221
5′Pm0005f05f05f000f05f05f005f05m0*0*5m
m0m0m000m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0000278
0*5m0*f0*5m0*0
|
hsa-miR-221*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004568
m0*5m0*5m0*0*0
|
hsa-miR-222
5′Pm05f000f05f05f00f005f005f00*0*5m0*0*
m0m0m00m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0000279
f0*5m0*0
|
hsa-miR-222*
5′Pm005f05f05f005f05f05f005f00f00*0*5m0
m0m0m00m0m000m0m000*m0*m0TEGChol
|
MIMAT0004569
*5m0*f0*5m0*0
|
hsa-miR-223
5′Pm05f05f005f005f00f00005f00*0*5m0*0*
m0m0m0m0m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0000280
5m0*0*
|
hsa-miR-223*
5′Pm0000f05f005f0f0005f05f05m0*0*0*0*f0
m0m00m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004570
*0*0
|
hsa-miR-224
5′Pm05f05f05f05f00005f005f05f05f05m0*0*
m0m000m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000281
0*5m0*5m0**
|
hsa-miR-224*
5′Pm05f05f05f0f05f005f0f005f05f05f05m0*0
m0m000m0m00m00m000*0*m0TEGChol
|
MIMAT0009198
*0*0*f0*0*0
|
hsa-miR-2276
5′Pm05f000f005f05f05f05f000f00*0*0*5m0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0011775
f0*0*0
|
hsa-miR-2277-3p
5′Pm05f05f00f05f005f0f0000f05m0*0*5m0*
m0m0m0m0m0m00m00m0m00*0*m0TEGChol
|
MIMAT0011777
5m0*5m0*0*0
|
hsa-miR-2277-5p
5′Pm0000f05f05f00f05f05f005f00*0*5m0*0*
m0m0m000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0017352
f0*0*0
|
hsa-miR-2278
5′Pm05f05f005f05f05f00f05f005f0f00*0*5m0
m0m00m00m0m000m0m00*0*m0TEGChol
|
MIMAT0011778
*5m0*f0*5m0*0
|
hsa-miR-2355-3p
5′Pm05f005f05f005f05f0f05f05f005f05m0*5
m0m0m000m000m0m00m0*0*m0TEGChol
|
MIMAT0017950
m0*0*0*f0*5m0*0
|
hsa-miR-2355-5p
5′Pm05f05f05f05f05f005f05f05f05f05f05f05
m0m0000m00m00m000*0*m0TEGChol
|
MIMAT0016895
m0*5m0*0*5m0*5m0*0*0
|
hsa-miR-23a
5′Pm005f05f05f0000f0000f00*0*5m0*0*f0*
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0000078
0*0
|
hsa-miR-23a*
5′Pm05f05f05f0f005f05f0f05f0005f05m0*0*5
m0m0m0m00m000m0m000*0*m0TEGChol
|
MIMAT0004496
m0*5m0***
|
hsa-miR-23b
5′Pm05f0005f0005f05f05f005f0f05m0*0*5m
m0m00m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000418
0*5m0*f0*0*0
|
hsa-miR-23b*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004587
m0*5m0*f0*0*0
|
hsa-miR-23c
5′Pm05f05f05f0f05f005f0f05f05f05f05f00*0*
m0m0000m00m00m000*0*m0TEGChol
|
MIMAT0018000
0*5m0*f0*5m0*0
|
hsa-miR-24
5′Pm05f05f05f05f0005f0f05f000f00*0*5m0*
m0m0m0m00m00m0m0m000*0*m0TEGChol
|
MIMAT0000080
0*5m0*5m0*0
|
hsa-miR-24-1*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000079
m0*5m0***
|
hsa-miR-24-2*
5′Pm0005f05f005f05f05f05f05f005f00*5m0*
m0m0m000m000m0m00m0*m0*m0TEGChol
|
MIMAT0004497
5m0*5m0***
|
hsa-miR-25
5′Pm0005f05f05f05f05f0f05f05f05f05f00*0*
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0000081
0*0*f0*0*0
|
hsa-miR-25*
5′Pm05f000f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0004498
*5m0*5m0*f0*0*0
|
hsa-miR-26a
5′Pm0000f05f05f005f05f05f05f0f00*0*0*0*f
m0m0000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0000082
0*0*0
|
hsa-miR-26a-1*
5′Pm05f000f05f000f005f05f05f05m0*0*0*5
m0m000m0m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0004499
m0*5m0*5m0*
|
hsa-miR-26a-2*
5′Pm05f000f05f000f05f05f05f0f05m0*0*0*0
m0m0000m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0004681
*f0*0*0
|
hsa-miR-26b
5′Pm005f05f0f05f005f0f05f05f005f05m0*0*0
m0m0m000m00m00m000*m0*m0TEGChol
|
MIMAT0000083
*0*5m0*5m0*0
|
hsa-miR-26b*
5′Pm0000f05f05f05f05f0000f00*0*0*0*5m0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004500
*0*0
|
hsa-miR-27a
5′Pm0005f05f05f0005f005f005f00*5m0*0*0
m0m0m00m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0000084
*5m0*0*0
|
hsa-miR-27a*
5′Pm005f05f05f05f005f0f05f05f005f05m0*5
m0m0m000m00m00m000*m0*m0TEGChol
|
MIMAT0004501
m0*0*0*f0*5m0*0
|
hsa-miR-27b
5′Pm005f05f05f0000f00005f00*5m0*0*5m0
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0000419
*f0*0*0
|
hsa-miR-27b*
5′Pm0005f0f0005f0f005f005f00*5m0*5m0*5
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0004588
m0*5m0*0*0
|
hsa-miR-28-3p
5′Pm05f005f0f0005f05f05f0005f05m0*5m0*
m0m0m0m00m00m0m0m00m0*0*m0TEGChol
|
MIMAT0004502
5m0*0*f0*0*
|
hsa-miR-28-5p
5′Pm0000f05f0005f05f05f00f05m0*0*5m0*0
m0m0m000m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000085
*f0*0*0
|
hsa-miR-2861
5′Pm05f05f05f0f05f005f05f00005f05m0*0*5
m0m0m0m0m0m00m00m000*0*m0TEGChol
|
MIMAT0013802
m0*5m0*5m0*5m0*0
|
hsa-miR-2909
5′Pm05f005f0f005f005f05f05f05f0f05m0*5m
m0m0000m0m00m0m00m0*0*m0TEGChol
|
MIMAT0013863
0*5m0*0*5m0*5m0*0
|
hsa-miR-296-3p
5′Pm05f0005f05f05f00f00005f05m0*5m0*0*
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0004679
5m0*5m0*5m0*0
|
hsa-miR-296-5p
5′Pm05f0005f005f05f05f05f0005f00*5m0*0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0000690
5m0*5m0*0*0
|
hsa-miR-297
5′Pm05f0005f005f05f0f00005f00*5m0*5m0*
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0004450
0*5m0*5m0*0
|
hsa-miR-298
5′Pm005f05f0f005f005f05f05f05f05f05m0*5
m0m0000m0m00m0m000*m0*m0TEGChol
|
MIMAT0004901
m0*0*0*f0*5m0*0
|
hsa-miR-299-3p
5′Pm05f000f0005f0f005f00f00*5m0*5m0*0*
m0m0m00m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000687
5m0*5m0*0
|
hsa-miR-299-5p
5′Pm005f00f0005f05f0005f0f05m0*5m0*0*5
m0m00m0m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0002890
m0*5m0*0*0
|
hsa-miR-29a
5′Pm00005f005f00f0000f00*0*0*5m0***
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0000086
|
hsa-miR-29a*
5′Pm005f05f0f05f000f05f0005f00*0*5m0*0*
m0m0m0m00m0m0m00m000*m0*m0TEGChol
|
MIMAT0004503
f0*0*0
|
hsa-miR-29b
5′Pm0000f0000f0000f00*0*5m0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0000100
5m0*0
Chol
|
hsa-miR-29b-1*
5′Pm00005f05f005f05f05f005f0f05m0*5m0*
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004514
0*5m0*5m0*5m0*0
|
hsa-miR-29b-2*
5′Pm05f05f00f05f005f05f05f000f05m0*5m0*
m0m0m0m00m00m00m0m00*0*m0TEGChol
|
MIMAT0004515
0*5m0*5m0*5m0*0
|
hsa-miR-29c
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0000681
*0
|
hsa-miR-29c*
5′Pm05f000f05f05f005f00005f05m0*5m0*0*
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0004673
0*f0*5m0*0
|
hsa-miR-300
5′Pm0000f05f005f0f00005f00*0*0*0*5m0*5
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004903
m0*0
|
hsa-miR-301a
5′Pm005f05f0f05f005f0f0000f05m0*0*5m0*
m0m0m0m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0000688
5m0*5m0*0*0
|
hsa-miR-301b
5′Pm005f05f0f05f005f0f00005f05m0*0*5m0
m0m0m0m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0004958
*5m0*5m0*0*0
|
hsa-miR-302a
5′Pm05f0005f0000f05f05f005f05m0*0*0*5m
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000684
0*f0*5m0*0
|
hsa-miR-302a*
5′Pm0005f0f005f005f00005f00*0*0*0*f0*5
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0000683
m0*0
|
hsa-miR-302b
5′Pm005f005f05f0005f05f05f00f05m0*0*0*0
m0m0m000m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0000715
*5m0*0*0
|
hsa-miR-302b*
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0000714
*0
|
hsa-miR-302c
5′Pm005f00f005f005f05f05f05f05f00*0*5m0
m0m0000m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0000717
*5m0*f0*0*0
|
hsa-miR-302c*
5′Pm05f000f00005f05f005f05f05m0*5m0*5
m0m00m00m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000716
m0*5m0*f0*0*0
|
hsa-miR-302d
5′Pm05f05f05f05f0005f05f00005f00*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0000718
m0*5m0*f0*5m0*0
|
hsa-miR-302d*
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0004685
*0
|
hsa-miR-302e
5′Pm005f00f005f005f05f05f05f0f05m0*0*5m
m0m0000m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0005931
0*5m0*5m0*0*0
|
hsa-miR-302f
5′Pm005f05f0f05f005f0f05f0005f05m0*0*0*
m0m0m0m00m00m00m000*m0*m0TEGChol
|
MIMAT0005932
5m0*5m0*5m0*0
|
hsa-miR-3065-3p
5′Pm05f05f00f005f00f05f0005f00*5m0*5m0
m0m0m0m00m0m00m0m0m00*0*m0TEGChol
|
MIMAT0015378
*5m0*5m0*5m0*0
|
hsa-miR-3065-5p
5′Pm05f000f00005f05f05f05f0f00*5m0*5m0
m0m0000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0015066
****
|
hsa-miR-3074
5′Pm05f000f00005f00005f00*5m0*5m0*5m
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0015027
0*f0*5m0*0
|
hsa-miR-30a
5′Pm005f00f005f005f05f05f05f0f05m0*0*5m
m0m0000m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0000087
0*5m0*5m0*5m0*0
|
hsa-miR-30a*
5′Pm05f000f0000f0005f05f00*5m0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000088
0*f0*5m0*0
|
hsa-miR-30b
5′Pm05f000f0000f0005f05f00*5m0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000420
0*f0*5m0*0
|
hsa-miR-30b*
5′Pm0000f005f05f05f005f00f05m0*5m0*5m
m0m0m00m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004589
0*0*f0*5m0*0
|
hsa-miR-30c
5′Pm005f00f005f005f05f05f05f05f00*0*5m0
m0m0000m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0000244
*5m0*f0*0*0
|
hsa-miR-30c-1*
5′Pm0005f05f00005f05f005f0f00*0*5m0*5m
m0m00m00m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0004674
0*5m0*5m0*0
|
hsa-miR-30c-2*
5′Pm0005f0f0005f05f005f00f05m0*5m0*5m
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0004550
0*0*5m0*5m0*0
|
hsa-miR-30d
5′Pm05f05f05f05f0005f05f00005f00*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0000245
m0*5m0*f0*5m0*0
|
hsa-miR-30d*
5′Pm005f00f005f005f05f05f05f05f00*0*5m0
m0m0000m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0004551
*5m0*f0*0*0
|
hsa-miR-30e
5′Pm05f05f05f05f0005f05f00005f00*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0000692
m0*5m0*f0*5m0*0
|
hsa-miR-30e*
5′Pm0005f0f00005f005f05f0f00*5m0*0*5m0
m0m000m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0000693
*f0*0*0
|
hsa-miR-31
5′Pm05f000f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000089
*5m0*5m0*f0*0*0
|
hsa-miR-31*
5′Pm005f05f0f05f005f05f0005f0f05m0*0*5m
m0m00m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0004504
0*5m0*f0*5m0*0
|
hsa-miR-3115
5′Pm05f005f0f0005f05f05f005f05f00*0*5m0
m0m00m00m00m0m0m00m0*0*m0TEGChol
|
MIMAT0014977
*5m0*f0*0*0
|
hsa-miR-3116
5′Pm05f05f00f05f05f05f0f005f00f05m0*0*5
m0m0m00m0m0000m0m00*0*m0TEGChol
|
MIMAT0014978
m0****
|
hsa-miR-3117
5′Pm005f00f05f005f05f0000f00*5m0*0*0*5
m0m0m0m0m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0014979
m0*0*0
|
hsa-miR-3118
5′Pm005f05f05f0000f05f005f0f00*5m0*0*0*
m0m00m00m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0014980
f0*0*0
|
hsa-miR-3119
5′Pm05f05f05f05f05f005f0f005f05f05f00*0*
m0m000m0m00m00m000*0*m0TEGChol
|
MIMAT0014981
0*5m0*5m0*5m0*0
|
hsa-miR-3120
5′Pm005f005f005f05f05f05f05f05f05f05m0*5
m0m0000m000m0m0m00*m0*m0TEGChol
|
MIMAT0014982
m0*0*0*f0*0*0
|
hsa-miR-3121
5′Pm00005f05f05f00f0000f00*0*0*5m0*f0*
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0014983
5m0*0
|
hsa-miR-3122
5′Pm05f05f05f05f05f05f05f05f05f000f05m0*
m0m0m0m00m0000m000*0*m0TEGChol
|
MIMAT0014984
0*5m0*0*5m0*5m0*0
|
hsa-miR-3123
5′Pm05f0005f005f05f0f05f005f0f05m0*0*5m
m0m00m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0014985
0*0*f0*5m0*0
|
hsa-miR-3124
5′Pm00005f0005f05f05f05f05f05f05m0*5m0
m0m0000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0014986
*0*0*f0*0*0
|
hsa-miR-3125
5′Pm05f05f05f05f005f05f05f05f005f05f00*0
m0m00m00m000m0m000*0*m0TEGChol
|
MIMAT0014988
*0*5m0*f0*5m0*0
|
hsa-miR-3126-3p
5′Pm05f0005f005f05f0f005f05f0f05m0*0*0*
m0m000m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0015377
5m0*f0*0*0
|
hsa-miR-3126-5p
5′Pm0005f0f0005f05f05f05f00f05m0*5m0*5
m0m0m000m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0014989
m0*0*5m0*5m0*0
|
hsa-miR-3127
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0*
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0014990
|
hsa-miR-3128
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0014991
m0*5m0*5m0*0
|
hsa-miR-3129
5′Pm0005f0f05f005f05f05f05f05f05f05m0*0*
m0m0000m00m00m00m0*m0*m0TEGChol
|
MIMAT0014992
5m0*0*f0*0*0
|
hsa-miR-3130-3p
5′Pm05f000f05f05f05f0f005f005f00*5m0*0*
m0m0m00m0m0000m0m0m0*0*m0TEGChol
|
MIMAT0014994
5m0*5m0*5m0*0
|
hsa-miR-3130-5p
5′Pm05f000f005f05f05f05f0005f05m0*5m0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0014995
5m0*0*5m0*5m0*0
|
hsa-miR-3131
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0014996
m0*5m0*5m0*0
|
hsa-miR-3132
5′Pm05f05f05f05f05f05f05f0f05f05f05f05f00
m0m0000m0000m000*0*m0TEGChol
|
MIMAT0014997
*0*5m0*5m0*f0*5m0*0
|
hsa-miR-3133
5′Pm005f05f05f05f05f05f05f05f05f05f05f00*
m0m0000m0000m000*m0*m0TEGChol
|
MIMAT0014998
0*0*0*5m0*0*0
|
hsa-miR-3134
5′Pm05f0005f005f05f0f0005f0f00*5m0*5m0
m0m00m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0015000
*0*5m0*5m0*0
|
hsa-miR-3135
5′Pm05f000f05f005f0f0005f0f00*5m0*5m0*
m0m00m0m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0015001
5m0*5m0*0*0
|
hsa-miR-3136
5′Pm0005f05f05f000f00005f05m0*5m0*5m0
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0015003
*0*5m0*0*0
|
hsa-miR-3137
5′Pm00005f05f000f05f05f00f00*0*0*0*f0**
m0m0m000m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0015005
|
hsa-miR-3138
5′Pm0005f0f05f005f05f05f000f00*0*0*0*f0*
m0m0m0m00m00m00m00m0*m0*m0TEGChol
|
MIMAT0015006
0*0
|
hsa-miR-3139
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0015007
*5m0*0*f0*0*0
|
hsa-miR-3140
5′Pm005f005f05f005f0f05f0005f05m0*0*0*5
m0m0m0m00m00m00m0m00*m0*m0TEGChol
|
MIMAT0015008
m0*5m0*5m0*0
|
hsa-miR-3141
5′Pm005f05f05f0000f00005f00*5m0*5m0*0
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0015010
*f0*5m0*0
|
hsa-miR-3142
5′Pm05f0005f0005f05f05f005f0f05m0*0*5m
m0m00m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0015011
0*5m0*f0*0*0
|
hsa-miR-3143
5′Pm05f000f00005f05f000f00*0*0*0*f0*0*0
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0015012
|
hsa-miR-3144-3p
5′Pm05f05f00f005f00f05f05f05f0f00*0*5m0*
m0m0000m0m00m0m0m00*0*m0TEGChol
|
MIMAT0015015
0***
|
hsa-miR-3144-5p
5′Pm005f00f05f000f05f05f05f0f00*0*5m0*5
m0m0000m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0015014
m0*f0*5m0*0
|
hsa-miR-3145
5′Pm05f05f05f05f05f005f05f05f05f005f05m0
m0m0m000m00m00m000*0*m0TEGChol
|
MIMAT0015016
*5m0*0*0*f0*0*0
|
hsa-miR-3146
5′Pm05f005f0f0000f0000f05m0*0*5m0*5m0
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0015018
*5m0*5m0*0
|
hsa-miR-3147
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0015019
*5m0*0*f0*0*0
|
hsa-miR-3148
5′Pm05f05f05f0f05f05f00f0005f05f05m0*5m
m0m00m0m0m0m000m000*0*m0TEGChol
|
MIMAT0015021
0*5m0*0***
|
hsa-miR-3149
5′Pm05f05f05f0f05f000f0000f00*0*5m0*0*f
m0m0m0m0m0m0m0m00m000*0*m0TEGChol
|
MIMAT0015022
0*0*0
|
hsa-miR-3150
5′Pm0000f0000f0000f00*5m0*0*0*f0*0*
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0015023
Chol
|
hsa-miR-3150b
5′Pm05f05f05f0f05f005f05f05f05f05f05f00*0
m0m0000m00m00m000*0*m0TEGChol
|
MIMAT0018194
*0*5m0*5m0*0*0
|
hsa-miR-3151
5′Pm05f05f05f0f05f005f0f05f05f00f05m0*5
m0m0m000m00m00m000*0*m0TEGChol
|
MIMAT0015024
m0*5m0*0*f0*0*0
|
hsa-miR-3152
5′Pm05f05f05f0f0000f0005f0f05m0*0*5m0*
m0m00m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0015025
5m0*5m0*5m0*0
|
hsa-miR-3153
5′Pm005f05f05f005f05f0f05f05f00f00*0*0*5
m0m0m000m000m0m000*m0*m0TEGChol
|
MIMAT0015026
m0*f0*5m0*0
|
hsa-miR-3154
5′Pm05f0005f05f005f05f005f05f05f05m0*5m
m0m000m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0015028
0*0*5m0*5m0*0*0
|
hsa-miR-3155
5′Pm05f000f005f05f05f005f005f00*0*5m0*0
m0m0m00m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0015029
*5m0*5m0*0
|
hsa-miR-3156
5′Pm0005f05f0005f05f00005f00*0*5m0*5m
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0015030
0*f0*0*0
|
hsa-miR-3157
5′Pm0005f0f005f05f05f005f00f05m0*0*5m0
m0m0m00m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0015031
*0*5m0*5m0*0
|
hsa-miR-3158
5′Pm05f05f005f05f05f00f05f05f005f05m0*5
m0m0m000m0m000m0m00*0*m0TEGChol
|
MIMAT0015032
m0*0*0*f0*5m0*0
|
hsa-miR-3159
5′Pm05f005f0f005f05f0f05f05f05f0f00*5m0*
m0m0000m000m0m00m0*0*m0TEGChol
|
MIMAT0015033
5m0*0*f0*5m0*0
|
hsa-miR-3160
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0015034
m0*5m0*5m0*0
|
hsa-miR-3161
5′Pm005f005f0005f05f05f05f05f05f05m0*0*
m0m0000m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0015035
0*0*f0*5m0*
|
hsa-miR-3162
5′Pm005f00f05f05f05f0f05f05f05f0f00*0*5m
m0m0000m0000m0m00*m0*m0TEGChol
|
MIMAT0015036
0*5m0*f0*5m0*0
|
hsa-miR-3163
5′Pm005f00f0005f05f0000f05m0*5m0*0*0*
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0015037
5m0*0*0
|
hsa-miR-3164
5′Pm005f05f05f0005f05f0005f0f00*5m0*5m
m0m00m0m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0015038
0*0*5m0**
|
hsa-miR-3165
5′Pm0000f0000f00005f05m0*5m0*5m0*0*5
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0015039
m0*5m0*0
Chol
|
hsa-miR-3166
5′Pm05f005f05f05f05f05f05f0005f0f00*0*5m
m0m00m0m0m0000m00m0*0*m0TEGChol
|
MIMAT0015040
0*0*f0**
|
hsa-miR-3167
5′Pm05f005f0f0005f05f05f05f05f0f00*0*5m0
m0m0000m00m0m0m00m0*0*m0TEGChol
|
MIMAT0015042
*0*f0*0*0
|
hsa-miR-3168
5′Pm005f00f05f05f005f005f05f0f05m0*0*0*
m0m000m0m0m000m0m00*m0*m0TEGChol
|
MIMAT0015043
0*f0*0*0
|
hsa-miR-3169
5′Pm05f05f00f005f00f005f005f05m0*5m0*0
m0m0m00m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0015044
*5m0*f0*5m0*0
|
hsa-miR-3170
5′Pm0005f0f005f05f05f05f05f05f05f05m0*5
m0m0000m000m0m00m0*m0*m0TEGChol
|
MIMAT0015045
m0*5m0*5m0*f0**
|
hsa-miR-3171
5′Pm05f05f05f05f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0015046
m0*5m0*5m0*0
|
hsa-miR-3173
5′Pm05f0005f05f005f05f005f05f0f05m0*5m0
m0m000m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0015048
*5m0*5m0*5m0*5m0*0
|
hsa-miR-3174
5′Pm05f05f00f005f05f0f005f005f05m0*0*5m
m0m0m00m0m000m0m0m00*0*m0TEGChol
|
MIMAT0015051
0*5m0*f0*0*
|
hsa-miR-3175
5′Pm05f0005f0000f0000f00*0*0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0015052
0*0
|
hsa-miR-3176
5′Pm05f05f00f05f005f0f05f0005f05m0*0*0*
m0m0m0m00m00m00m0m00*0*m0TEGChol
|
MIMAT0015053
5m0*5m0*5m0*0
|
hsa-miR-3177
5′Pm05f0005f05f005f05f005f05f05f05m0*5m
m0m000m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0015054
0*5m0*5m0***
|
hsa-miR-3178
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0015055
*5m0*0*f0*0*0
|
hsa-miR-3179
5′Pm05f05f05f0f05f005f05f05f05f00f05m0*5
m0m0m000m00m00m000*0*m0TEGChol
|
MIMAT0015056
m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-3180
5′Pm05f005f0f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0018178
m0*5m0*5m0*0
|
hsa-miR-3180-3p
5′Pm05f05f05f05f05f005f0f05f05f05f0f00*0*
m0m0000m00m00m000*0*m0TEGChol
|
MIMAT0015058
0*5m0*5m0*5m0*0
|
hsa-miR-3180-5p
5′Pm05f05f05f0f00005f05f05f05f0f05m0*0*5
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0015057
m0*0*f0*0*0
|
hsa-miR-3181
5′Pm05f05f05f05f005f005f005f05f0f00*5m0*
m0m000m0m0m00m0m000*0*m0TEGChol
|
MIMAT0015061
0*5m0*5m0*0*0
|
hsa-miR-3182
5′Pm0005f0f005f005f005f00f05m0*0*0*5m0
m0m0m00m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0015062
*5m0*5m0*0
|
hsa-miR-3183
5′Pm00005f05f05f05f0f05f05f05f0f00*0*5m0
m0m0000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0015063
*0*5m0*5m0*0
|
hsa-miR-3184
5′Pm005f005f05f05f05f0f0005f0f05m0*0*0*
m0m00m0m0m0000m0m00*m0*m0TEGChol
|
MIMAT0015064
0*f0*5m0*0
|
hsa-miR-3185
5′Pm005f05f0f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m000*m0*m0TEGChol
|
MIMAT0015065
5m0*0*5m0*f0*5m0*0
|
hsa-miR-3186-3p
5′Pm05f005f0f005f05f05f005f05f05f00*0*0*
m0m000m0m000m0m00m0*0*m0TEGChol
|
MIMAT0015068
0*5m0*5m0*0
|
hsa-miR-3186-5p
5′Pm0005f05f05f05f05f0f005f05f05f05m0*0*
m0m000m0m0000m00m0*m0*m0TEGChol
|
MIMAT0015067
0*5m0*f0*0*0
|
hsa-miR-3187
5′Pm05f05f00f05f0005f05f05f005f00*5m0*0
m0m0m000m0m0m00m0m00*0*m0TEGChol
|
MIMAT0015069
*5m0***
|
hsa-miR-3188
5′Pm005f00f0000f005f05f05f05m0*0*5m0*5
m0m000m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0015070
m0*f0*5m0*0
|
hsa-miR-3189
5′Pm00005f05f005f0f05f05f005f00*5m0*5m
m0m0m000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0015071
0*0*5m0*5m0*0
|
hsa-miR-3190
5′Pm05f005f05f005f05f0f05f05f00f05m0*5m
m0m0m000m000m0m00m0*0*m0TEGChol
|
MIMAT0015073
0*5m0*5m0*f0*0*0
|
hsa-miR-3191
5′Pm00005f005f005f05f05f005f00*5m0*0*5
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0015075
m0*5m0*0*
|
hsa-miR-3192
5′Pm05f05f005f005f00f0005f05f05m0*5m0*
m0m00m0m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0015076
5m0*5m0*5m0*5m0*0
|
hsa-miR-3193
5′Pm0005f05f005f05f05f005f00f05m0*0*0*0
m0m0m00m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0015077
*5m0*5m0*0
|
hsa-miR-3194
5′Pm05f05f005f05f05f05f0f0005f0f05m0*5m
m0m00m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0015078
0*0*5m0*5m0*0*0
|
hsa-miR-3195
5′Pm005f005f05f05f05f05f05f000f00*5m0*0
m0m0m0m00m0000m0m00*m0*m0TEGChol
|
MIMAT0015079
*5m0*5m0*0*0
|
hsa-miR-3196
5′Pm005f05f0f005f05f05f05f05f05f05f05m0*
m0m0000m000m0m000*m0*m0TEGChol
|
MIMAT0015080
5m0*0*0*f0*5m0*0
|
hsa-miR-3197
5′Pm0000f0005f05f005f05f05f05m0*5m0*0*
m0m000m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0015082
0*5m0*0*0
|
hsa-miR-3198
5′Pm05f0005f05f05f05f0f0005f0f05m0*0*0*
m0m00m0m0m0000m0m0m0*0*m0TEGChol
|
MIMAT0015083
5m0*f0*5m0*0
|
hsa-miR-3199
5′Pm05f05f00f05f000f05f005f05f05m0*0*0*
m0m00m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0015084
5m0*f0*0*0
|
hsa-miR-32
5′Pm05f05f00f05f005f05f05f000f05m0*5m0*
m0m0m0m00m00m00m0m00*0*m0TEGChol
|
MIMAT0000090
0*5m0*5m0*5m0*0
|
hsa-miR-32*
5′Pm05f000f00005f005f00f05m0*0*5m0*5m
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004505
0*f0*5m0*0
|
hsa-miR-3200-3p
5′Pm05f005f0f005f05f0f05f05f05f0f00*0*0*0
m0m0000m000m0m00m0*0*m0TEGChol
|
MIMAT0015085
*5m0*0*0
|
hsa-miR-3200-5p
5′Pm005f005f005f05f0f05f005f05f05m0*5m0
m0m00m00m000m0m0m00*m0*m0TEGChol
|
MIMAT0017392
*5m0*0*f0*0*0
|
hsa-miR-3201
5′Pm05f05f05f05f0005f05f005f05f05f00*0*5
m0m000m0m00m0m0m000*0*m0TEGChol
|
MIMAT0015086
m0*5m0*f0*5m0*0
|
hsa-miR-3202
5′Pm00005f05f05f005f05f05f05f05f00*5m0*
m0m0000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0015089
0*0*f0*5m0*0
|
hsa-miR-320a
5′Pm0005f0f0005f0f05f000f00*5m0*5m0*5
m0m0m0m00m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0000510
m0*f0*0*0
|
hsa-miR-320b
5′Pm0000f005f05f05f05f005f05f00*5m0*5m
m0m00m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0005792
0*0*f0*5m0*0
|
hsa-miR-320c
5′Pm005f00f05f000f05f05f00f05m0*0*0*5m
m0m0m000m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0005793
0*5m0*0*0
|
hsa-miR-320d
5′Pm05f000f0005f05f005f05f0f05m0*0*5m0
m0m000m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0006764
*5m0*f0*5m0*0
|
hsa-miR-320e
5′Pm0005f0f05f05f05f0f05f0005f00*5m0*0*
m0m0m0m00m0000m00m0*m0*m0TEGChol
|
MIMAT0015072
5m0*5m0*5m0*0
|
hsa-miR-323-3p
5′Pm05f05f05f05f00005f05f05f05f05f05m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000755
m0*5m0*5m0*5m0*0*0
|
hsa-miR-323-5p
5′Pm005f00f05f005f05f005f00f05m0*5m0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0004696
m0*5m0*5m0*0*0
|
hsa-miR-323b-3p
5′Pm05f0005f05f05f05f05f05f05f05f0f05m0*
m0m0000m0000m0m0m0*0*m0TEGChol
|
MIMAT0015050
5m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-323b-5p
5′Pm005f00f05f000f05f005f0f00*0*5m0*0*f
m0m00m00m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0001630
0*0*0
|
hsa-miR-324-3p
5′Pm0005f0f005f005f005f05f0f05m0*0*0*5
m0m000m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0000762
m0*5m0*5m0*0
|
hsa-miR-324-5p
5′Pm005f005f00005f05f05f005f00*5m0*0*0
m0m0m000m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0000761
*f0*0*0
|
hsa-miR-325
5′Pm005f005f005f05f05f0005f05f00*0*5m0*
m0m00m0m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0000771
5m0*5m0*5m0*0
|
hsa-miR-326
5′Pm05f05f05f05f005f05f0f05f05f005f05m0*
m0m0m000m000m0m000*0*m0TEGChol
|
MIMAT0000756
5m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-328
5′Pm05f05f005f0005f0f005f05f05f00*0*5m0
m0m000m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0000752
*0*f0*5m0*0
|
hsa-miR-329
5′Pm00005f0000f05f000f05m0*0*0*0*f0*0*0
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0001629
|
hsa-miR-330-3p
5′Pm005f00f0000f05f05f05f05f05m0*5m0*5
m0m0000m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0000751
m0*0*5m0*0*0
|
hsa-miR-330-5p
5′Pm00005f05f005f05f005f05f05f00*5m0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004693
m0*0*5m0*5m0*0
|
hsa-miR-331-3p
5′Pm0000f05f005f0f005f05f0f00*0*5m0*0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0000760
m0*5m0*0
|
hsa-miR-331-5p
5′Pm05f000f005f005f005f00f05m0*5m0*5m
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0004700
0*0*5m0*0*0
|
hsa-miR-335
5′Pm05f05f05f05f005f00f005f00f05m0*0*0*
m0m0m00m0m0m00m0m000*0*m0TEGChol
|
MIMAT0000765
0*5m0*5m0*0
|
hsa-miR-335*
5′Pm0000f005f005f05f05f05f05f05m0*0*5m
m0m0000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0004703
0*0*5m0*0*0
|
hsa-miR-337-3p
5′Pm0005f0f005f005f005f00f00*5m0*0*5m0
m0m0m00m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0000754
*5m0*0*0
|
hsa-miR-337-5p
5′Pm05f05f00f0005f0f0000f00*0*5m0*0*f0*
m0m0m0m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0004695
5m0*0
|
hsa-miR-338-3p
5′Pm05f05f05f05f00005f05f05f005f00*5m0*
m0m0m000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000763
5m0*5m0*5m0*0*0
|
hsa-miR-338-5p
5′Pm0000f0005f05f005f05f05f00*0*5m0*5m
m0m000m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004701
0***
|
hsa-miR-339-3p
5′Pm005f00f05f005f05f005f00f05m0*5m0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0004702
m0*5m0*5m0*0*0
|
hsa-miR-339-5p
5′Pm0000f05f005f0f0000f00*0*5m0*0*5m0
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0000764
*0*0
|
hsa-miR-33a
5′Pm05f05f005f00005f0000f00*5m0*0*0*f0
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0000091
*0*0
|
hsa-miR-33a*
5′Pm005f05f05f05f005f0f05f0005f05m0*0*5
m0m0m0m00m00m00m000*m0*m0TEGChol
|
MIMAT0004506
m0*0*5m0*5m0*0
|
hsa-miR-33b
5′Pm05f0005f005f05f0f005f05f0f05m0*0*5m
m0m000m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0003301
0*5m0*f0*5m0*0
|
hsa-miR-33b*
5′Pm05f05f05f05f05f000f05f05f05f0f05m0*5
m0m0000m0m0m00m000*0*m0TEGChol
|
MIMAT0004811
m0*5m0*5m0*f0*0*0
|
hsa-miR-340
5′Pm05f05f05f05f005f005f05f05f05f05f00*0
m0m0000m0m00m0m000*0*m0TEGChol
|
MIMAT0004692
*5m0*0*f0*0*0
|
hsa-miR-340*
5′Pm05f05f05f0f00005f05f005f0f00*0*0*5m
m0m00m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000750
0*f0*0*0
|
hsa-miR-342-3p
5′Pm05f000f00005f005f00f05m0*0*5m0*5m
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000753
0*f0*5m0*0
|
hsa-miR-342-5p
5′Pm05f05f05f0f0005f05f05f0005f00*5m0*0
m0m0m0m00m00m0m0m000*0*m0TEGChol
|
MIMAT0004694
*0*f0*5m0*0
|
hsa-miR-345
5′Pm05f000f005f005f005f05f05f00*5m0*0*5
m0m000m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0000772
m0*5m0*0*0
|
hsa-miR-346
5′Pm05f0005f005f05f0f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*0*m0TEGChol
|
MIMAT0000773
m0*0*5m0*5m0*0
|
hsa-miR-34a
5′Pm05f000f05f005f0f005f05f05f05m0*0*0*
m0m000m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0000255
0*f0*0*0
|
hsa-miR-34a*
5′Pm00005f05f05f005f0000f05m0*0*0*0*f0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0004557
*5m0*0
|
hsa-miR-34b
5′Pm005f005f00005f05f05f005f00*5m0*0*0
m0m0m000m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0004676
*f0*0*0
|
hsa-miR-34b*
5′Pm05f000f00005f05f05f005f05m0*5m0*5
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000685
m0*5m0*f0**
|
hsa-miR-34c-3p
5′Pm0000f0000f05f05f005f00*0*0*0*f0*0*0
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004677
|
hsa-miR-34c-5p
5′Pm0000f005f05f05f005f05f0f05m0*0*5m0
m0m000m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000686
*0*5m0*5m0*0
|
hsa-miR-3605-3p
5′Pm05f005f05f05f000f05f000f05m0*0*0*5
m0m0m0m00m0m0m00m00m0*0*m0TEGChol
|
MIMAT0017982
m0*5m0*0*0
|
hsa-miR-3605-5p
5′Pm05f05f005f0005f05f05f0005f05m0*5m0
m0m0m0m00m00m0m0m0m00*0*m0TEGChol
|
MIMAT0017981
*0*5m0*5m0*0*0
|
hsa-miR-3606
5′Pm05f005f0f05f005f0f005f00f00*5m0*5m0
m0m0m00m0m00m00m00m0*0*m0TEGChol
|
MIMAT0017983
*5m0*5m0*5m0*0
|
hsa-miR-3607-3p
5′Pm005f05f05f05f005f0f0005f05f05m0*0*5
m0m00m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0017985
m0*0*5m0*5m0*0
|
hsa-miR-3607-5p
5′Pm0000f05f005f0f05f005f0f00*0*0*0*f0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0017984
m0*0
|
hsa-miR-3609
5′Pm05f000f005f005f00005f00*0*5m0*5m0
m0m0m0m0m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0017986
*5m0*5m0*0
|
hsa-miR-3610
5′Pm05f000f005f05f0f0005f0f00*5m0*5m0*
m0m00m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0017987
0*f0*0*0
|
hsa-miR-3611
5′Pm0000f005f05f0f05f000f00*0*5m0*0*f0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0017988
5m0*0
|
hsa-miR-3612
5′Pm05f05f05f05f05f05f05f05f05f0005f05m0
m0m0m0m00m0000m000*0*m0TEGChol
|
MIMAT0017989
*5m0*5m0****
|
hsa-miR-3613-3p
5′Pm005f05f05f05f05f00f00005f00*0*0*5m0
m0m0m0m0m0m0m000m000*m0*m0TEGChol
|
MIMAT0017991
*5m0*5m0*0
|
hsa-miR-3613-5p
5′Pm00005f05f05f05f0f05f05f05f05f05m0*5
m0m0000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0017990
m0*5m0*0*5m0*0*0
|
hsa-miR-361-3p
5′Pm005f05f05f05f005f0f0005f05f05m0*0*5
m0m00m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0004682
m0*0*5m0*5m0*0
|
hsa-miR-3614-3p
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0017993
5m0*f0*0*0
|
hsa-miR-3614-5p
5′Pm005f05f05f05f005f05f00005f00*0*5m0*
m0m0m0m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0017992
0*5m0*5m0*0
|
hsa-miR-3615
5′Pm005f05f05f005f00f005f05f05f00*0*0*5
m0m000m0m0m00m0m000*m0*m0TEGChol
|
MIMAT0017994
m0*5m0*5m0*0
|
hsa-miR-361-5p
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0000703
5m0*f0*0*0
|
hsa-miR-3616-3p
5′Pm005f00f005f00f05f000f00*0*5m0*5m0*
m0m0m0m00m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0017996
5m0*0*0
|
hsa-miR-3616-5p
5′Pm05f05f05f05f005f005f05f0005f00*5m0*
m0m0m0m00m0m00m0m000*0*m0TEGChol
|
MIMAT0017995
5m0*0*5m0*0*0
|
hsa-miR-3617
5′Pm0005f0f0005f0f05f0005f00*5m0*0*5m0
m0m0m0m00m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0017997
*5m0*5m0*0
|
hsa-miR-3618
5′Pm005f05f05f0005f0f05f05f05f0f05m0*5m
m0m0000m00m0m0m000*m0*m0TEGChol
|
MIMAT0017998
0*0*5m0*f0*5m0*0
|
hsa-miR-3619
5′Pm05f05f05f0f00005f05f005f0f05m0*0*5m
m0m00m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0017999
0*5m0*5m0*5m0*0
|
hsa-miR-3620
5′Pm05f0005f05f05f00f05f05f005f05m0*5m0
m0m0m000m0m000m0m0m0*0*m0TEGChol
|
MIMAT0018001
*0*5m0*5m0*5m0*0
|
hsa-miR-3621
5′Pm05f0005f00005f005f05f05f00*5m0*5m0
m0m000m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0018002
*0*5m0*0*0
|
hsa-miR-3622a-
5′Pm05f05f05f05f05f05f05f05f05f05f05f0f05
m0m0000m0000m000*0*m0TEGChol
|
3p
m0*5m0*5m0*5m0*5m0*5m0*0
|
MIMAT0018004
|
hsa-miR-3622a-
5′Pm0005f0f005f05f0f05f05f05f05f05m0*0*0
m0m0000m000m0m00m0*m0*m0TEGChol
|
5p
*0*f0*5m0*
|
MIMAT0018003
|
hsa-miR-3622b-
5′Pm05f05f00f00005f0000f05m0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
3p
5m0*f0*5m0*0
|
MIMAT0018006
|
hsa-miR-3622b-
5′Pm05f0005f05f005f0f05f05f05f0f05m0*5m
m0m0000m00m00m0m0m0*0*m0TEGChol
|
5p
0*5m0*5m0*5m0*5m0*0
|
MIMAT0018005
|
hsa-miR-362-3p
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004683
m0*f0*0*0
|
hsa-miR-362-5p
5′Pm005f05f05f05f005f05f00005f00*0*5m0*
m0m0m0m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0000705
0*5m0*5m0*0
|
hsa-miR-363
5′Pm05f000f0005f0f005f00f05m0*0*0*0*f0*
m0m0m00m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0000707
0*0
|
hsa-miR-363*
5′Pm05f0005f00005f005f05f05f00*5m0*5m0
m0m000m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003385
*0*f0*0*0
|
hsa-miR-3646
5′Pm0005f05f05f05f00f005f05f05f00*5m0*0
m0m000m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0018065
*0*f0*0*0
|
hsa-miR-3647-3p
5′Pm05f05f005f05f0005f05f000f00*0*5m0*0
m0m0m0m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0018067
*f0*0*0
|
hsa-miR-3647-5p
5′Pm0000f05f05f00f05f0005f05m0*0*5m0*5
m0m0m0m00m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0018066
m0*5m0*5m0*0
|
hsa-miR-3648
5′Pm00005f005f05f0f05f005f0f00*5m0*5m0
m0m00m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0018068
*0*f0*5m0*0
|
hsa-miR-3649
5′Pm0005f0f005f005f005f05f0f05m0*0*0*5
m0m000m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0018069
m0*5m0*5m0*0
|
hsa-miR-365
5′Pm05f05f05f05f05f005f05f005f05f0f05m0*
m0m000m0m00m00m000*0*m0TEGChol
|
MIMAT0000710
5m0*5m0*5m0*5m0*0*0
|
hsa-miR-365*
5′Pm0005f0f05f0005f05f05f05f0f00*0*5m0*
m0m0000m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0009199
0*f0*0*0
|
hsa-miR-3650
5′Pm05f05f05f05f005f005f0005f0f05m0*5m0
m0m00m0m0m0m00m0m000*0*m0TEGChol
|
MIMAT0018070
*5m0*5m0*5m0*5m0*0
|
hsa-miR-3651
5′Pm0000f0005f0f0005f0f05m0*5m0*0*0*f0
m0m00m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0018071
*0*0
|
hsa-miR-3652
5′Pm05f0005f05f005f0f005f00f00*5m0*5m0
m0m0m00m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0018072
*0*f0*0*0
|
hsa-miR-3653
5′Pm0000f05f0005f05f005f0f00*0*5m0*5m0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018073
*5m0*5m0*0
|
hsa-miR-3654
5′Pm00005f05f005f0f05f05f005f00*0*5m0*0
m0m0m000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0018074
*5m0*5m0*0
|
hsa-miR-3655
5′Pm05f05f00f0005f05f005f00f05m0*0*0*0*
m0m0m00m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0018075
f0*5m0*0
|
hsa-miR-3656
5′Pm0005f0f05f005f0f00005f00*5m0*5m0*0
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol
|
MIMAT0018076
*f0*5m0*
|
hsa-miR-3657
5′Pm05f05f05f05f0005f05f05f05f00f05m0*0*
m0m0m000m00m0m0m000*0*m0TEGChol
|
MIMAT0018077
0*0*f0*0*0
|
hsa-miR-3658
5′Pm0000f05f05f005f0005f05f00*5m0*5m0*
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0018078
5m0*5m0*5m0*0
|
hsa-miR-3659
5′Pm05f05f00f0005f05f05f005f0f00*0*0*5m
m0m00m00m00m0m0m0m00*0*m0TEGChol
|
MIMAT0018080
0*f0*0*0
|
hsa-miR-3660
5′Pm0000f005f05f0f05f005f05f05m0*0*5m0
m0m00m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0018081
*5m0*5m0*5m0*0
|
hsa-miR-3661
5′Pm005f00f05f005f0f05f0005f05m0*0*0*5
m0m0m0m00m00m00m0m00*m0*m0TEGChol
|
MIMAT0018082
m0*5m0*5m0*0
|
hsa-miR-3662
5′Pm05f0005f0000f05f000f00*5m0*5m0*0*f
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0018083
0*5m0*0
|
hsa-miR-3663-3p
5′Pm0005f05f05f05f00f0000f00*0*0*0*f0**
m0m0m0m0m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0018085
|
hsa-miR-3663-5p
5′Pm0005f0f05f05f005f05f000f05m0*0*0*5
m0m0m0m00m0m000m00m0*m0*m0TEGChol
|
MIMAT0018084
m0*f0*0*0
|
hsa-miR-3664
5′Pm00005f0005f0f0005f05f00*0*5m0*0*f0
m0m00m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0018086
*5m0*0
|
hsa-miR-3665
5′Pm05f000f005f00f005f005f05m0*0*0*5m0
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0018087
*5m0*5m0*0
|
hsa-miR-3666
5′Pm0000f005f05f05f05f0005f05m0*0*5m0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0018088
5m0*5m0*5m0*0
|
hsa-miR-3667-3p
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018090
m0*0*0
|
hsa-miR-3667-5p
5′Pm0000f05f05f05f0f05f005f05f05m0*0*0*
m0m00m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0018089
0*f0**
|
hsa-miR-3668
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018091
m0*5m0*0*0
|
hsa-miR-3669
5′Pm05f05f05f0f0005f05f0000f00*0*5m0*0*
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0018092
5m0*5m0*0
|
hsa-miR-367
5′Pm05f05f005f0005f0f0000f05m0*0*5m0*5
m0m0m0m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0000719
m0*5m0*0*0
|
hsa-miR-367*
5′Pm005f005f05f05f00f05f005f05f00*5m0*5
m0m00m00m0m000m0m00*m0*m0TEGChol
|
MIMAT0004686
m0*0*f0*5m0*0
|
hsa-miR-3670
5′Pm0005f05f0005f05f005f005f05m0*0*5m0
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0018093
*0*5m0*5m0*0
|
hsa-miR-3671
5′Pm0000f005f05f05f05f0005f05m0*0*5m0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0018094
5m0*5m0*5m0*0
|
hsa-miR-3672
5′Pm05f05f05f0f05f05f00f0005f0f00*0*0*5m
m0m00m0m0m0m000m000*0*m0TEGChol
|
MIMAT0018095
0*5m0*5m0*0
|
hsa-miR-3673
5′Pm005f005f05f005f0f005f00f00*5m0*5m0
m0m0m00m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0018096
*5m0*f0*5m0*0
|
hsa-miR-3674
5′Pm0005f0f005f05f05f05f005f0f05m0*0*0*
m0m00m00m000m0m00m0*m0*m0TEGChol
|
MIMAT0018097
0*f0*0*0
|
hsa-miR-3675-3p
5′Pm005f005f05f05f005f05f05f00f00*0*0*5
m0m0m000m0m000m0m00*m0*m0TEGChol
|
MIMAT0018099
m0*f0*0*0
|
hsa-miR-3675-5p
5′Pm05f05f00f05f000f05f000f00*0*0*5m0*5
m0m0m0m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0018098
m0*5m0*0
|
hsa-miR-3676
5′Pm0000f05f005f0f05f0005f05m0*5m0*0*5
m0m0m0m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0018100
m0*5m0*5m0*0
|
hsa-miR-3677
5′Pm005f05f05f05f005f05f05f0005f00*0*5m
m0m0m0m00m00m00m000*m0*m0TEGChol
|
MIMAT0018101
0*0*5m0*5m0*0
|
hsa-miR-3678-3p
5′Pm0005f0f05f05f005f05f005f05f05m0*5m0
m0m00m00m0m000m00m0*m0*m0TEGChol
|
MIMAT0018103
*5m0*5m0*f0*0*0
|
hsa-miR-3678-5p
5′Pm0000f05f005f0f00005f00*5m0*0*0*f0*
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0018102
0*0
|
hsa-miR-3679-3p
5′Pm05f05f05f05f05f05f005f05f05f05f0f05m
m0m0000m0m000m000*0*m0TEGChol
|
MIMAT0018105
0*5m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-3679-5p
5′Pm0005f05f05f005f0f05f05f005f05m0*5m0
m0m0m000m00m00m00m0*m0*m0TEGChol
|
MIMAT0018104
*0*0*f0*0*0
|
hsa-miR-3680
5′Pm05f05f05f05f005f005f005f005f00*5m0*
m0m0m00m0m0m00m0m000*0*m0TEGChol
|
MIMAT0018106
5m0*5m0*5m0*5m0*0
|
hsa-miR-3680*
5′Pm05f005f05f0005f05f05f05f00f05m0*0*0
m0m0m000m00m0m0m00m0*0*m0TEGChol
|
MIMAT0018107
*5m0*f0**
|
hsa-miR-3681
5′Pm0005f05f05f05f005f005f005f00*0*0*5m
m0m0m00m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0018108
0*5m0*0*0
|
hsa-miR-3681*
5′Pm05f05f005f05f0005f05f005f05f00*0*5m
m0m00m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0018109
0*5m0*f0*5m0*0
|
hsa-miR-3682
5′Pm0005f05f05f005f05f05f005f0f00*0*0*0*
m0m00m00m00m00m00m0*m0*m0TEGChol
|
MIMAT0018110
5m0*0*0
|
hsa-miR-3683
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018111
m0*5m0*5m0*0
|
hsa-miR-3684
5′Pm0000f05f0005f0005f0f05m0*5m0*5m0*
m0m00m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018112
5m0*5m0*5m0*0
|
hsa-miR-3685
5′Pm00005f05f05f005f005f05f05f00*5m0*0*
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0018113
0*f0*5m0*0
|
hsa-miR-3686
5′Pm0000f005f05f0f05f0005f05m0*5m0*5m
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0018114
0*5m0*5m0*5m0*0
|
hsa-miR-3687
5′Pm0000f05f05f05f0f005f00f00*5m0*5m0*
m0m0m00m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0018115
5m0***
|
hsa-miR-3688
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018116
m0*5m0*5m0*0
|
hsa-miR-3689a-
5′Pm0005f05f005f00f005f05f05f05m0*5m0*
m0m000m0m0m00m0m00m0*m0*m0TEGChol
|
3p
0*5m0*5m0*0*0
|
MIMAT0018118
|
hsa-miR-3689a-
5′Pm05f05f05f0f0005f05f005f00f00*0*0*5m
m0m0m00m0m00m0m0m000*0*m0TEGChol
|
5p
0*f0*5m0*0
|
MIMAT0018117
|
hsa-miR-3689b
5′Pm00005f005f05f0f05f0005f00*5m0*5m0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0018180
5m0*f0*0*0
|
hsa-miR-3689b*
5′Pm05f005f0f05f05f00f05f005f0f05m0*0*0*
m0m00m00m0m000m00m0*0*m0TEGChol
|
MIMAT0018181
5m0*f0*0*0
|
hsa-miR-3690
5′Pm05f0005f0005f0f05f000f00*0*5m0*5m0
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0018119
*f0*0*0
|
hsa-miR-3691
5′Pm0000f005f00f05f005f05f05m0*5m0*5m
m0m00m00m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0018120
0*0*f0*0*0
|
hsa-miR-3692
5′Pm05f05f005f05f0005f05f005f05f00*0*5m
m0m00m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0018122
0*5m0*f0*5m0*0
|
hsa-miR-3692*
5′Pm05f05f00f05f005f05f0005f0f00*5m0*5m
m0m00m0m0m00m00m0m00*0*m0TEGChol
|
MIMAT0018121
0*5m0*5m0*0*0
|
hsa-miR-369-3p
5′Pm0005f05f05f005f0f05f05f005f05m0*5m0
m0m0m000m00m00m00m0*m0*m0TEGChol
|
MIMAT0000721
*5m0*0*5m0**
|
hsa-miR-369-5p
5′Pm005f00f05f005f05f05f05f00f05m0*0*5m
m0m0m000m00m00m0m00*m0*m0TEGChol
|
MIMAT0001621
0*5m0*f0*0*0
|
hsa-miR-370
5′Pm00005f005f05f05f05f0005f00*0*5m0*0
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000722
*f0*0*0
|
hsa-miR-3713
5′Pm05f000f005f005f05f05f00f00*0*5m0*5
m0m0m000m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0018164
m0*f0*5m0*0
|
hsa-miR-371-3p
5′Pm05f05f05f05f05f05f05f0f05f05f005f05m
m0m0m000m0000m000*0*m0TEGChol
|
MIMAT0000723
0*5m0*5m0*0*5m0*0*0
|
hsa-miR-3714
5′Pm005f05f05f05f05f005f05f000f00*5m0*5
m0m0m0m00m0m000m000*m0*m0TEGChol
|
MIMAT0018165
m0*5m0*5m0*5m0*
|
hsa-miR-371-5p
5′Pm05f05f05f05f005f05f05f05f05f05f0f00*0
m0m0000m000m0m000*0*m0TEGChol
|
MIMAT0004687
*0*0*5m0*5m0*0
|
hsa-miR-372
5′Pm05f000f005f05f05f005f00f05m0*0*0*5
m0m0m00m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0000724
m0*f0*5m0*0
|
hsa-miR-373
5′Pm05f005f0f05f05f005f0005f05f00*5m0*0
m0m00m0m0m0m000m00m0*0*m0TEGChol
|
MIMAT0000726
*5m0*5m0*0*0
|
hsa-miR-373*
5′Pm0000f05f05f00f0005f05f00*5m0*5m0*5
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0000725
m0*5m0*5m0*0
|
hsa-miR-374a
5′Pm0005f0f05f05f05f05f05f005f0f00*5m0*0
m0m00m00m0000m00m0*m0*m0TEGChol
|
MIMAT0000727
*5m0*f0*5m0*0
|
hsa-miR-374a*
5′Pm05f05f005f005f05f0f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0004688
*0*f0*5m0*0
|
hsa-miR-374b
5′Pm05f005f0f05f05f005f05f005f05f00*5m0*
m0m00m00m0m000m00m0*0*m0TEGChol
|
MIMAT0004955
0*5m0*5m0*0*0
|
hsa-miR-374b*
5′Pm00005f005f05f05f05f0005f05m0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004956
m0*0*f0*0*0
|
hsa-miR-374c
5′Pm005f05f05f0005f05f05f05f05f0f00*5m0*
m0m0000m00m0m0m000*m0*m0TEGChol
|
MIMAT0018443
0*5m0*f0*0*0
|
hsa-miR-375
5′Pm05f05f005f05f000f005f005f00*0*5m0*5
m0m0m00m0m0m0m00m0m00*0*m0TEGChol
|
MIMAT0000728
m0*5m0*5m0*0
|
hsa-miR-376a
5′Pm05f05f00f0005f0f0005f05f05m0*0*0*5
m0m00m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0000729
m0*5m0*5m0*0
|
hsa-miR-376a*
5′Pm05f05f05f05f05f05f005f05f05f005f05m0
m0m0m000m0m000m000*0*m0TEGChol
|
MIMAT0003386
*5m0*0*5m0*5m0*5m0*0
|
hsa-miR-376b
5′Pm005f00f05f005f05f005f05f0f00*0*0*5m
m0m000m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0002172
0*5m0*0*0
|
hsa-miR-376c
5′Pm00005f05f000f005f05f0f00*0*0*5m0*5
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000720
m0*0*0
|
hsa-miR-377
5′Pm0005f05f05f05f05f0f05f05f005f05m0*5
m0m0m000m0000m00m0*m0*m0TEGChol
|
MIMAT0000730
m0*0*0*f0*5m0*0
|
hsa-miR-377*
5′Pm05f000f0005f05f0005f0f00*0*0*0*f0*0
m0m00m0m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004689
*0
|
hsa-miR-378
5′Pm05f05f05f0f00005f0000f00*5m0*0*5m0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0000732
*5m0*5m0*0
|
hsa-miR-378*
5′Pm05f05f05f0f005f005f0005f0f05m0*5m0*
m0m00m0m0m0m00m0m000*0*m0TEGChol
|
MIMAT0000731
0*0*5m0*5m0*0
|
hsa-miR-378b
5′Pm05f0005f00005f05f05f00f05m0*5m0*5
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0014999
m0*0*5m0**
|
hsa-miR-378c
5′Pm05f005f0f005f005f0005f05f05m0*0*0*5
m0m00m0m0m0m00m0m00m0*0*m0TEGChol
|
MIMAT0016847
m0*f0*0*0
|
hsa-miR-379
5′Pm0000f05f05f005f0005f05f00*5m0*5m0*
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0000733
5m0*5m0*5m0*
|
hsa-miR-379*
5′Pm05f05f05f05f005f05f05f05f05f00f05m0*
m0m0m000m000m0m000*0*m0TEGChol
|
MIMAT0004690
0*5m0*5m0***
|
hsa-miR-380
5′Pm05f05f05f05f05f05f05f0f0000f05m0*0*5
m0m0m0m0m0m0000m000*0*m0TEGChol
|
MIMAT0000735
m0*5m0*5m0*5m0*
|
hsa-miR-380*
5′Pm05f005f05f05f005f05f00005f05m0*5m0
m0m0m0m0m0m00m00m00m0*0*m0TEGChol
|
MIMAT0000734
*5m0*5m0***
|
hsa-miR-381
5′Pm05f005f05f0000f05f0005f05m0*5m0*5
m0m0m0m00m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0000736
m0*5m0*f0*5m0*0
|
hsa-miR-382
5′Pm0005f0f05f05f05f05f0005f0f00*5m0*0*
m0m00m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0000737
5m0*f0*0*0
|
hsa-miR-383
5′Pm005f005f05f05f005f05f0005f05m0*0*5
m0m0m0m00m0m000m0m00*m0*m0TEGChol
|
MIMAT0000738
m0*5m0*f0*5m0*0
|
hsa-miR-384
5′Pm00005f0000f0000f00*0*5m0*5m0*5m0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0001075
*0*0
Chol
|
hsa-miR-3907
5′Pm05f005f0f00005f0005f0f00*0*0*5m0*5
m0m00m0m0m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0018179
m0*0*0
|
hsa-miR-3908
5′Pm0005f0f05f05f00f05f05f00f00*5m0*0*5
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0018182
m0*5m0*0*0
|
hsa-miR-3909
5′Pm05f05f05f05f05f005f05f05f05f005f05m0
m0m0m000m00m00m000*0*m0TEGChol
|
MIMAT0018183
*0*0*0*f0*5m0*0
|
hsa-miR-3910
5′Pm0005f0f0005f05f005f00f00*0*5m0*0*5
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0018184
m0*0*0
|
hsa-miR-3911
5′Pm05f05f005f05f05f05f0f005f05f0f05m0*5
m0m000m0m0000m0m00*0*m0TEGChol
|
MIMAT0018185
m0*5m0*5m0*f0*5m0*0
|
hsa-miR-3912
5′Pm05f005f0f05f05f05f0f0005f0f00*0*0*0*
m0m00m0m0m0000m00m0*0*m0TEGChol
|
MIMAT0018186
5m0*5m0*0
|
hsa-miR-3913
5′Pm05f05f05f0f05f005f0f0000f05m0*5m0*0
m0m0m0m0m0m00m00m000*0*m0TEGChol
|
MIMAT0018187
*5m0*f0*5m0*0
|
hsa-miR-3914
5′Pm05f0005f0000f0005f0f00*0*0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0018188
0*0*0
|
hsa-miR-3915
5′Pm0000f0005f05f0000f05m0*5m0*5m0*5
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0018189
m0*f0*0*0
|
hsa-miR-3916
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018190
m0*5m0*0
|
hsa-miR-3917
5′Pm05f05f005f05f000f05f05f005f00*5m0*5
m0m0m000m0m0m00m0m00*0*m0TEGChol
|
MIMAT0018191
m0*0*5m0*0*0
|
hsa-miR-3918
5′Pm005f05f05f05f05f005f05f005f05f05m0*0
m0m00m00m0m000m000*m0*m0TEGChol
|
MIMAT0018192
*0*0*5m0**
|
hsa-miR-3919
5′Pm05f0005f0000f0005f0f00*0*0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0018193
0*0*0
|
hsa-miR-3920
5′Pm0005f0f05f0005f005f05f0f00*0*0*0*f0*
m0m000m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0018195
0*0
|
hsa-miR-3921
5′Pm005f005f05f05f005f05f005f05f00*5m0*
m0m00m00m0m000m0m00*m0*m0TEGChol
|
MIMAT0018196
5m0*0*f0*5m0*0
|
hsa-miR-3922
5′Pm05f05f005f005f05f0f05f005f05f00*5m0*
m0m00m00m000m0m0m00*0*m0TEGChol
|
MIMAT0018197
5m0*0*5m0*5m0*0
|
hsa-miR-3923
5′Pm05f005f0f005f005f0005f05f05m0*0*5m
m0m00m0m0m0m00m0m00m0*0*m0TEGChol
|
MIMAT0018198
0*5m0*f0*0*0
|
hsa-miR-3924
5′Pm0000f05f005f05f005f05f05f00*5m0*0*0
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0018199
*5m0*5m0*0
|
hsa-miR-3925
5′Pm00005f05f05f05f0f05f0005f00*5m0*5m
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0018200
0*5m0*5m0*0*0
|
hsa-miR-3926
5′Pm05f0005f005f005f0005f05f00*0*5m0*5
m0m00m0m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0018201
m0*5m0*5m0*0
|
hsa-miR-3927
5′Pm005f005f005f05f05f00005f00*0*0*0*f0
m0m0m0m0m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0018202
*5m0*0
|
hsa-miR-3928
5′Pm00005f05f005f0f005f05f0f05m0*5m0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0018205
m0*5m0*5m0*0*0
|
hsa-miR-3929
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0018206
m0*5m0*5m0*0
|
hsa-miR-3934
5′Pm00005f005f005f05f005f0f00*5m0*0*5m
m0m00m00m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0018349
0*f0*5m0*0
|
hsa-miR-3935
5′Pm0005f05f05f005f05f05f0005f05m0*5m0
m0m0m0m00m00m00m00m0*m0*m0TEGChol
|
MIMAT0018350
*5m0*5m0*5m0*0*0
|
hsa-miR-3936
5′Pm005f005f05f005f0f05f0005f05m0*0*0*5
m0m0m0m00m00m00m0m00*m0*m0TEGChol
|
MIMAT0018351
m0*5m0*5m0*0
|
hsa-miR-3937
5′Pm05f005f05f005f005f0000f05m0*5m0*0*
m0m0m0m0m0m0m00m0m00m0*0*m0TEGChol
|
MIMAT0018352
5m0*5m0*0*
|
hsa-miR-3938
5′Pm0005f0f05f0005f0005f0f00*0*0*0*f0*0
m0m00m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0018353
*0
|
hsa-miR-3939
5′Pm05f05f00f05f000f05f05f005f00*5m0*5m
m0m0m000m0m0m00m0m00*0*m0TEGChol
|
MIMAT0018355
0*0*5m0*5m0*0
|
hsa-miR-3940
5′Pm0000f0005f05f05f05f05f0f00*0*0*5m0*
m0m0000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0018356
5m0*5m0*0
|
hsa-miR-3941
5′Pm05f05f00f05f05f05f05f05f0005f05m0*5
m0m0m0m00m0000m0m00*0*m0TEGChol
|
MIMAT0018357
m0*0*0*f0*0*0
|
hsa-miR-3942
5′Pm05f0005f005f00f05f05f05f0f05m0*5m0*
m0m0000m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0018358
0*0*f0*5m0*0
|
hsa-miR-3943
5′Pm005f05f05f05f0005f0000f05m0*0*0*0*f
m0m0m0m0m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0018359
0*5m0*0
|
hsa-miR-3944
5′Pm0005f0f0005f0f0000f00*5m0*5m0*0*5
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0018360
m0*0*0
|
hsa-miR-3945
5′Pm005f05f0f05f005f05f05f005f05f05m0*5
m0m00m00m00m00m000*m0*m0TEGChol
|
MIMAT0018361
m0*0*0*5m0*5m0*0
|
hsa-miR-409-3p
5′Pm005f05f05f00005f05f000f00*5m0*5m0*
m0m0m0m00m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0001639
0*5m0*0*0
|
hsa-miR-409-5p
5′Pm05f05f005f05f05f005f05f05f00f05m0*5
m0m0m000m0m000m0m00*0*m0TEGChol
|
MIMAT0001638
m0*5m0*0*5m0*0*0
|
hsa-miR-410
5′Pm005f05f05f05f05f05f0f05f05f05f05f05m
m0m0000m0000m000*m0*m0TEGChol
|
MIMAT0002171
0*0*0*0*5m0*0*0
|
hsa-miR-411
5′Pm005f005f005f05f05f00005f00*0*0*0*f0
m0m0m0m0m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0003329
*5m0*0
|
hsa-miR-411*
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0004813
0*f0*5m0*0
|
hsa-miR-412
5′Pm0000f05f005f0f05f0005f00*0*0*5m0*f0
m0m0m0m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0002170
*5m0*0
|
hsa-miR-421
5′Pm05f05f005f0000f0000f00*5m0*5m0*5m
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0003339
0*f0*5m0*0
|
hsa-miR-422a
5′Pm05f000f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m0m0m0*0*m0TEGChol
|
MIMAT0001339
5m0*0*5m0*f0*0*0
|
hsa-miR-423-3p
5′Pm005f05f05f005f05f05f005f005f00*5m0*
m0m0m00m0m000m0m000*m0*m0TEGChol
|
MIMAT0001340
5m0*5m0*f0*5m0*0
|
hsa-miR-423-5p
5′Pm0005f05f005f05f0f05f005f0f05m0*5m0*
m0m00m00m000m0m00m0*m0*m0TEGChol
|
MIMAT0004748
0*0*f0*5m0*0
|
hsa-miR-424
5′Pm05f05f005f0000f0000f00*5m0*5m0*5m
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0001341
0*f0*5m0*0
|
hsa-miR-424*
5′Pm05f000f05f005f05f05f005f05f05m0*0*5
m0m00m00m00m00m0m0m0*0*m0TEGChol
|
MIMAT0004749
m0*5m0*5m0*5m0*0
|
hsa-miR-425
5′Pm005f005f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0003393
m0*f0*5m0*0
|
hsa-miR-425*
5′Pm05f05f005f005f00f00005f00*0*5m0*5m
m0m0m0m0m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0001343
0*5m0*5m0*0
|
hsa-miR-4251
5′Pm0000f0000f0000f00*0*0*5m0*f0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0016883
Chol
|
hsa-miR-4252
5′Pm0005f0f005f005f05f05f05f0f00*5m0*5m
m0m0000m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0016886
0*0*f0*5m0*0
|
hsa-miR-4253
5′Pm005f05f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m000*m0*m0TEGChol
|
MIMAT0016882
m0*5m0*5m0*5m0*5m0*5m0*
|
hsa-miR-4254
5′Pm005f05f05f05f0005f0005f0f00*5m0*0*0
m0m00m0m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0016884
*5m0*0*0
|
hsa-miR-4255
5′Pm05f05f05f05f05f005f05f005f05f05f00*0
m0m000m0m00m00m000*0*m0TEGChol
|
MIMAT0016885
*0*5m0*f0*5m0*0
|
hsa-miR-4256
5′Pm05f005f05f0005f05f00005f05m0*5m0*5
m0m0m0m0m0m00m0m0m00m0*0*m0TEGChol
|
MIMAT0016877
m0*5m0*f0*5m0*0
|
hsa-miR-4257
5′Pm05f05f05f05f0005f05f05f05f005f00*0*5
m0m0m000m00m0m0m000*0*m0TEGChol
|
MIMAT0016878
m0*5m0*5m0*5m0*0
|
hsa-miR-4258
5′Pm005f005f05f05f005f0005f0f00*0*5m0*5
m0m00m0m0m0m000m0m00*m0*m0TEGChol
|
MIMAT0016879
m0*5m0*5m0*0
|
hsa-miR-4259
5′Pm05f05f00f05f000f0005f0f00*5m0*5m0*
m0m00m0m0m0m0m00m0m00*0*m0TEGChol
|
MIMAT0016880
***
|
hsa-miR-4260
5′Pm0000f05f0005f05f005f0f00*0*5m0*5m0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0016881
*5m0*5m0*0
|
hsa-miR-4261
5′Pm0005f05f0000f05f05f00f05m0*5m0*0*5
m0m0m000m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0016890
m0*f0*0*0
|
hsa-miR-4262
5′Pm05f0005f05f000f05f000f05m0*0*0*0*f0
m0m0m0m00m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0016894
*5m0*0
|
hsa-miR-4263
5′Pm05f05f05f05f05f05f05f05f05f05f005f05
m0m0m000m0000m000*0*m0TEGChol
|
MIMAT0016898
m0*0*5m0*0*5m0*5m0*0
|
hsa-miR-4264
5′Pm05f005f0f005f005f00005f05m0*5m0*0*
m0m0m0m0m0m0m00m0m00m0*0*m0TEGChol
|
MIMAT0016899
0*5m0*5m0*0
|
hsa-miR-4265
5′Pm0005f05f0005f0f0005f0f05m0*0*5m0*5
m0m00m0m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0016891
m0*f0*5m0*0
|
hsa-miR-4266
5′Pm05f05f05f05f00005f05f0005f05m0*5m0
m0m0m0m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0016892
*5m0*0*f0**
|
hsa-miR-4267
5′Pm05f05f005f0005f05f05f000f00*0*5m0*0
m0m0m0m00m00m0m0m0m00*0*m0TEGChol
|
MIMAT0016893
*f0*5m0*0
|
hsa-miR-4268
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0016896
m0*0*0
|
hsa-miR-4269
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0016897
m0*5m0*5m0*0
|
hsa-miR-4270
5′Pm005f00f005f05f05f05f05f005f05m0*5m0
m0m0m000m000m0m0m00*m0*m0TEGChol
|
MIMAT0016900
*5m0*5m0*5m0*5m0*0
|
hsa-miR-4271
5′Pm005f05f05f005f00f0005f05f00*0*5m0*5
m0m00m0m0m0m00m0m000*m0*m0TEGChol
|
MIMAT0016901
m0*5m0*5m0*0
|
hsa-miR-4272
5′Pm0005f05f005f05f0f005f05f05f05m0*0*5
m0m000m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0016902
m0*5m0*f0*5m0*0
|
hsa-miR-4273
5′Pm0005f0f005f05f05f005f00f05m0*5m0*0
m0m0m00m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0016903
*5m0*f0*0*0
|
hsa-miR-4274
5′Pm05f05f005f0005f05f05f05f05f0f00*5m0*
m0m0000m00m0m0m0m00*0*m0TEGChol
|
MIMAT0016906
5m0*0*5m0*5m0*0
|
hsa-miR-4275
5′Pm0000f00005f00005f00*5m0*0*0*5m0**
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0016905
Chol
|
hsa-miR-4276
5′Pm005f00f005f00f05f000f00*5m0*0*0*f0*
m0m0m0m00m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0016904
0*0
|
hsa-miR-4277
5′Pm0000f005f05f05f0005f0f00*0*5m0*0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0016908
m0*5m0*0
|
hsa-miR-4278
5′Pm0005f05f05f0005f0000f00*5m0*0*0***
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0016910
|
hsa-miR-4279
5′Pm005f00f05f005f05f005f00f05m0*0*0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0016909
m0*5m0*0*0
|
hsa-miR-4280
5′Pm00005f0005f0f05f05f005f05m0*0*0*5m
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0016911
0*5m0*0*0
|
hsa-miR-4281
5′Pm0000f05f005f05f05f005f0f00*0*5m0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0016907
m0*5m0*5m0*0
|
hsa-miR-4282
5′Pm005f05f0f05f05f00f05f05f005f00*5m0*0
m0m0m000m0m000m000*m0*m0TEGChol
|
MIMAT0016912
*0*5m0*5m0*0
|
hsa-miR-4283
5′Pm0000f05f005f05f05f005f0f00*0*5m0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0016914
m0*5m0*5m0*0
|
hsa-miR-4284
5′Pm0000f05f005f0f0000f00*0*5m0*0*5m0
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0016915
*0*0
|
hsa-miR-4285
5′Pm0000f05f05f005f05f05f05f05f00*0*5m0
m0m0000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0016913
*0*f0*0*0
|
hsa-miR-4286
5′Pm05f05f05f05f00005f05f005f05f05m0*5m
m0m00m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0016916
0*0*0*f0*5m0*0
|
hsa-miR-4287
5′Pm005f005f05f05f00f05f05f05f0f05m0*5m
m0m0000m0m000m0m00*m0*m0TEGChol
|
MIMAT0016917
0*0*0*5m0*0*0
|
hsa-miR-4288
5′Pm05f000f005f00f005f00f00*0*0*0*5m0*
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0016918
5m0*0
|
hsa-miR-4289
5′Pm05f05f00f005f05f05f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0016920
*0*f0*0*0
|
hsa-miR-429
5′Pm005f05f05f05f05f00f00005f05m0*5m0*
m0m0m0m0m0m0m000m000*m0*m0TEGChol
|
MIMAT0001536
0*0*f0*5m0*0
|
hsa-miR-4290
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0016921
m0*5m0*5m0*5m0*0
|
hsa-miR-4291
5′Pm0000f005f005f05f05f005f00*0*5m0*5m
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0016922
0*5m0*5m0*0
|
hsa-miR-4292
5′Pm05f000f005f00f005f00f00*0*0*0*5m0*
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0016919
5m0*0
|
hsa-miR-4293
5′Pm0000f005f00f05f05f005f00*0*0*5m0*5
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0016848
m0*5m0*0
|
hsa-miR-4294
5′Pm0005f0f005f00f00005f00*0*5m0*5m0*
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0016849
5m0*5m0*0
|
hsa-miR-4295
5′Pm0005f0f005f005f0005f05f00*0*5m0*5m
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0016844
0*f0*0*0
|
hsa-miR-4296
5′Pm05f05f05f05f0005f05f05f05f00f00*5m0*
m0m0m000m00m0m0m000*0*m0TEGChol
|
MIMAT0016845
5m0*5m0*5m0*0*0
|
hsa-miR-4297
5′Pm05f005f05f0005f05f005f00f05m0*0*0*0
m0m0m00m0m00m0m0m00m0*0*m0TEGChol
|
MIMAT0016846
*f0*0*0
|
hsa-miR-4298
5′Pm0005f0f0000f05f05f05f0f05m0*5m0*0*
m0m0000m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0016852
5m0*f0*5m0*0
|
hsa-miR-4299
5′Pm0000f05f05f05f0f05f0005f00*0*0*0***
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0016851
|
hsa-miR-4300
5′Pm005f005f05f005f05f05f0005f00*0*5m0*
m0m0m0m00m00m00m0m00*m0*m0TEGChol
|
MIMAT0016853
5m0*f0*5m0*0
|
hsa-miR-4301
5′Pm05f05f00f0005f05f0000f05m0*0*5m0*0
m0m0m0m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0016850
*f0*5m0*0
|
hsa-miR-4302
5′Pm05f05f05f05f005f005f05f005f05f05m0*0
m0m00m00m0m00m0m000*0*m0TEGChol
|
MIMAT0016855
*5m0*5m0*5m0*5m0*0
|
hsa-miR-4303
5′Pm0005f0f05f0005f005f05f05f05m0*5m0*
m0m000m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0016856
5m0*5m0*5m0**
|
hsa-miR-4304
5′Pm0000f005f00f005f00f05m0*0*0*0*f0*0
m0m0m00m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0016854
*0
|
hsa-miR-4305
5′Pm005f05f0f05f05f00f05f05f005f05m0*0*0
m0m0m000m0m000m000*m0*m0TEGChol
|
MIMAT0016857
*0*5m0*0*0
|
hsa-miR-4306
5′Pm005f05f05f005f00f005f05f05f00*0*5m0
m0m000m0m0m00m0m000*m0*m0TEGChol
|
MIMAT0016858
*5m0*5m0*5m0*0
|
hsa-miR-4307
5′Pm05f005f0f005f05f05f0005f05f05m0*5m0
m0m00m0m0m000m0m00m0*0*m0TEGChol
|
MIMAT0016860
*5m0*0*5m0*5m0*0
|
hsa-miR-4308
5′Pm005f00f05f005f05f005f05f0f00*5m0*0*
m0m000m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0016861
5m0*5m0*0*
|
hsa-miR-4309
5′Pm0005f05f05f05f00f05f05f05f0f05m0*0*5
m0m0000m0m000m00m0*m0*m0TEGChol
|
MIMAT0016859
m0*5m0*5m0*5m0*0
|
hsa-miR-431
5′Pm0000f05f000f05f000f00*0*0*0*f0*0*
m0m0m0m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0001625
|
hsa-miR-431*
5′Pm00005f05f05f05f05f05f05f00f00*5m0*5
m0m0m000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004757
m0*5m0*5m0*5m0*0
|
hsa-miR-4310
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0016862
m0*f0*0*0
|
hsa-miR-4311
5′Pm005f05f0f05f005f05f05f005f05f05m0*5
m0m00m00m00m00m000*m0*m0TEGChol
|
MIMAT0016863
m0*0*0*5m0*5m0*0
|
hsa-miR-4312
5′Pm05f05f005f0000f05f05f05f0f05m0*5m0*
m0m0000m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0016864
5m0*5m0*f0*0*0
|
hsa-miR-4313
5′Pm005f05f0f0005f05f0005f05f00*5m0*0*0
m0m00m0m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0016865
*f0*0*0
|
hsa-miR-4314
5′Pm05f000f005f05f0f05f0005f05m0*0*5m0
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0016868
*5m0*5m0*5m0*0
|
hsa-miR-4315
5′Pm05f000f005f05f0f0000f00*5m0*0*5m0*
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0016866
5m0*5m0*0
|
hsa-miR-4316
5′Pm005f05f0f005f005f05f05f005f05m0*0*0
m0m0m000m0m00m0m000*m0*m0TEGChol
|
MIMAT0016867
*5m0*5m0*5m0*0
|
hsa-miR-4317
5′Pm05f005f0f0005f05f05f000f05m0*5m0*5
m0m0m0m00m00m0m0m00m0*0*m0TEGChol
|
MIMAT0016872
m0*0***
|
hsa-miR-4318
5′Pm05f05f00f005f05f05f0000f00*5m0*0*0*
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0016869
f0*0*
|
hsa-miR-4319
5′Pm05f05f00f005f05f05f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0016870
*0*f0*0*0
|
hsa-miR-432
5′Pm005f05f05f05f05f05f05f005f05f05f00*5
m0m000m0m0000m000*m0*m0TEGChol
|
MIMAT0002814
m0*0****
|
hsa-miR-432*
5′Pm05f05f005f005f05f0f05f000f05m0*0*5m
m0m0m0m00m000m0m0m00*0*m0TEGChol
|
MIMAT0002815
0*5m0*5m0*0*0
|
hsa-miR-4320
5′Pm05f0005f0000f005f05f0f05m0*5m0*5m
m0m000m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0016871
0*5m0*f0*0*0
|
hsa-miR-4321
5′Pm0000f05f05f00f0000f05m0*0*5m0*5m0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0016874
*f0*0*0
|
hsa-miR-4322
5′Pm0005f0f0005f05f005f00f00*0*5m0*0*5
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0016873
m0*0*0
|
hsa-miR-4323
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0016875
m0*f0*0*0
|
hsa-miR-4324
5′Pm05f05f005f0005f0f05f000f05m0*0*5m0
m0m0m0m00m00m0m0m0m00*0*m0TEGChol
|
MIMAT0016876
*5m0*5m0*5m0*0
|
hsa-miR-4325
5′Pm00005f005f00f05f0005f00*0*0*0*f0**
m0m0m0m00m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0016887
|
hsa-miR-4326
5′Pm0005f05f005f05f0f05f0005f00*5m0*5m
m0m0m0m00m000m0m00m0*m0*m0TEGChol
|
MIMAT0016888
0*0*f0*5m0*0
|
hsa-miR-4327
5′Pm05f000f005f00f0000f00*0*0*0*f0*0*0
m0m0m0m0m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0016889
|
hsa-miR-4328
5′Pm05f000f05f000f005f05f05f05m0*0*5m0
m0m000m0m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0016926
*0*5m0*0*0
|
hsa-miR-4329
5′Pm05f0005f005f05f0f05f000f00*5m0*0*5
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0016923
m0*5m0*5m0*0
|
hsa-miR-433
5′Pm05f05f005f00005f005f05f05f05m0*5m0
m0m000m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0001627
*5m0*0*f0*5m0*0
|
hsa-miR-4330
5′Pm005f005f0005f0f05f0005f05m0*5m0*0*
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0016924
5m0*5m0*0*0
|
hsa-miR-448
5′Pm05f05f00f05f0005f005f00f00*0*0*0*5m
m0m0m00m0m0m0m00m0m00*0*m0TEGChol
|
MIMAT0001532
0**
|
hsa-miR-449a
5′Pm005f005f0005f0f05f0005f05m0*5m0*0*
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0001541
5m0*f0*5m0*0
|
hsa-miR-449b
5′Pm0005f05f0005f05f005f00f00*0*5m0*0*
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0003327
5m0*0*0
|
hsa-miR-449b*
5′Pm05f005f0f05f0005f0000f05m0*0*0*0*5
m0m0m0m0m0m0m0m00m00m0*0*m0TEGChol
|
MIMAT0009203
m0*5m0*0
|
hsa-miR-449c
5′Pm0000f05f005f05f05f05f05f05f05m0*0*0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0010251
*0*5m0*0*0
|
hsa-miR-449c*
5′Pm0005f05f05f005f05f00005f05m0*0*0*5
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol
|
MIMAT0013771
m0*f0*5m0*0
|
hsa-miR-450a
5′Pm0005f0f05f05f00f05f05f00f05m0*0*0*0
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0001545
*5m0*5m0*0
|
hsa-miR-450b-3p
5′Pm05f005f0f05f05f05f0f05f05f05f0f00*5m
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0004910
0*5m0*5m0*5m0*5m0*0
|
hsa-miR-450b-5p
5′Pm05f005f0f05f005f0f05f0005f00*0*5m0*
m0m0m0m00m00m00m00m0*0*m0TEGChol
|
MIMAT0004909
0*f0*5m0*0
|
hsa-miR-451
5′Pm05f05f05f05f05f05f05f0f05f05f005f05m
m0m0m000m0000m000*0*m0TEGChol
|
MIMAT0001631
0*5m0*5m0*5m0*5m0*0*0
|
hsa-miR-452
5′Pm0000f05f0005f00005f00*0*5m0*0*5m0
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0001635
*5m0*0
|
hsa-miR-452*
5′Pm0005f05f0000f0000f00*0*5m0*0*5m0*
m0m0m0m0m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0001636
5m0*0
|
hsa-miR-454
5′Pm005f005f0000f005f00f00*5m0*5m0*5m
m0m0m00m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0003885
0*5m0*5m0*0
|
hsa-miR-454*
5′Pm05f05f00f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m0m00*0*m0TEGChol
|
MIMAT0003884
*5m0*5m0*f0*0*0
|
hsa-miR-455-3p
5′Pm00005f05f005f05f05f005f0f00*5m0*0*0
m0m00m00m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004784
*f0*5m0*0
|
hsa-miR-455-5p
5′Pm05f000f0000f05f0005f05m0*0*5m0*5m
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003150
0*f0*0*0
|
hsa-miR-466
5′Pm0000f005f05f0f0000f00*0*5m0*0*5m0
m0m0m0m0m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0015002
*0*0
|
hsa-miR-483-3p
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0002173
m0*0*0
|
hsa-miR-483-5p
5′Pm05f05f00f05f000f05f005f05f05m0*0*5m
m0m00m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0004761
0*5m0*f0*0*0
|
hsa-miR-484
5′Pm05f05f05f0f05f005f05f05f0005f05m0*5
m0m0m0m00m00m00m000*0*m0TEGChol
|
MIMAT0002174
m0*5m0*0*5m0*5m0*0
|
hsa-miR-485-3p
5′Pm0005f05f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0002176
*0*0*5m0*0*0
|
hsa-miR-485-5p
5′Pm05f05f05f0f05f005f05f05f05f05f05f00*0
m0m0000m00m00m000*0*m0TEGChol
|
MIMAT0002175
*0*0*5m0*0*0
|
hsa-miR-486-3p
5′Pm0005f05f005f00f05f05f05f05f05m0*5m0
m0m0000m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004762
*0*0*f0*0*0
|
hsa-miR-486-5p
5′Pm00005f05f05f05f0f0005f0f00*0*0*0*f0*
m0m00m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0002177
5m0*0
|
hsa-miR-487a
5′Pm005f05f05f05f000f00005f00*5m0*5m0*
m0m0m0m0m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0002178
0*5m0*5m0*0
|
hsa-miR-487b
5′Pm0000f005f05f0f0005f05f00*5m0*5m0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0003180
m0*5m0**
|
hsa-miR-488
5′Pm05f05f05f0f05f05f005f05f05f05f0f05m0
m0m0000m0m000m000*0*m0TEGChol
|
MIMAT0004763
*5m0*5m0*0*5m0*0*0
|
hsa-miR-488*
5′Pm005f05f0f05f000f05f005f0f00*5m0*0*0
m0m00m00m0m0m00m000*m0*m0TEGChol
|
MIMAT0002804
*5m0*5m0*0
|
hsa-miR-489
5′Pm0005f0f05f05f05f05f00005f00*5m0*5m
m0m0m0m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0002805
0*5m0*f0*0*0
|
hsa-miR-490-3p
5′Pm0005f0f0000f05f05f005f00*0*5m0*5m0
m0m0m000m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0002806
*f0*5m0*0
|
hsa-miR-490-5p
5′Pm005f05f05f05f05f005f0005f05f05m0*5m
m0m00m0m0m0m000m000*m0*m0TEGChol
|
MIMAT0004764
0*5m0*0*f0*5m0*0
|
hsa-miR-491-3p
5′Pm05f005f0f0000f0000f00*0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0004765
m0*5m0*0
|
hsa-miR-491-5p
5′Pm05f0005f005f00f05f05f05f0f00*5m0*0*
m0m0000m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0002807
0*f0**
|
hsa-miR-492
5′Pm0005f05f0005f0f05f005f05f05m0*0*5m
m0m00m00m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0002812
0*0*f0*0*0
|
hsa-miR-493
5′Pm0005f05f0000f0005f0f00*5m0*5m0*0*
m0m00m0m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0003161
5m0*0*0
|
hsa-miR-493*
5′Pm05f05f05f0f0005f05f0000f00*5m0*0*0*
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0002813
**
|
hsa-miR-494
5′Pm05f05f00f05f005f0f0000f05m0*0*0*5m
m0m0m0m0m0m00m00m0m00*0*m0TEGChol
|
MIMAT0002816
0*f0*0*0
|
hsa-miR-495
5′Pm005f005f05f005f05f005f05f0f05m0*5m0
m0m000m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0002817
*0*5m0*5m0*0*0
|
hsa-miR-496
5′Pm05f0005f005f005f05f05f00f00*0*5m0*0
m0m0m000m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0002818
***
|
hsa-miR-497
5′Pm05f05f05f05f05f000f0005f05f00*5m0*5
m0m00m0m0m0m0m00m000*0*m0TEGChol
|
MIMAT0002820
m0*5m0*f0*5m0*0
|
hsa-miR-497*
5′Pm0005f0f05f05f05f05f00005f05m0*0*0*5
m0m0m0m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0004768
m0*5m0*5m0*0
|
hsa-miR-498
5′Pm05f05f00f005f005f05f05f05f05f00*0*5m
m0m0000m0m00m0m0m00*0*m0TEGChol
|
MIMAT0002824
0*5m0*5m0**
|
hsa-miR-499-3p
5′Pm0000f0000f00005f00*0*5m0*0***
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0004772
Chol
|
hsa-miR-499-5p
5′Pm0005f0f005f005f00005f00*0*0*5m0*5
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0002870
m0*0*0
|
hsa-miR-500a
5′Pm05f05f00f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m0m00*0*m0TEGChol
|
MIMAT0004773
*5m0*5m0*f0*0*0
|
hsa-miR-500a*
5′Pm0000f005f005f05f05f05f0f00*0*0*0*f0*
m0m0000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0002871
5m0*0
|
hsa-miR-500b
5′Pm0005f0f005f05f0f005f05f05f00*5m0*0*
m0m000m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0016925
5m0*f0*0*0
|
hsa-miR-501-3p
5′Pm005f05f05f05f05f05f0f00005f05m0*5m0
m0m0m0m0m0m0000m000*m0*m0TEGChol
|
MIMAT0004774
*0*5m0*f0*0*0
|
hsa-miR-501-5p
5′Pm005f00f05f005f05f005f005f00*0*0*0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0002872
m0*5m0*0
|
hsa-miR-502-3p
5′Pm0000f05f005f0f00005f05m0*0*0*0*f0*
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004775
5m0*0
|
hsa-miR-502-5p
5′Pm005f05f05f005f005f00005f00*5m0*5m0
m0m0m0m0m0m0m00m0m000*m0*m0TEGChol
|
MIMAT0002873
*5m0*f0*0*0
|
hsa-miR-503
5′Pm05f05f005f05f05f005f005f05f05f05m0*0
m0m000m0m0m000m0m00*0*m0TEGChol
|
MIMAT0002874
*5m0*0*f0*5m0*0
|
hsa-miR-504
5′Pm005f005f05f05f005f05f005f05f00*5m0*
m0m00m00m0m000m0m00*m0*m0TEGChol
|
MIMAT0002875
5m0*0*f0*5m0*0
|
hsa-miR-505
5′Pm005f05f0f00005f05f05f005f00*0*0*0*f0
m0m0m000m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0002876
*5m0*0
|
hsa-miR-505*
5′Pm005f005f05f005f0f005f05f0f05m0*5m0*
m0m000m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0004776
5m0*0*f0*0*0
|
hsa-miR-506
5′Pm005f05f05f05f05f00f05f005f0f00*0*0*0
m0m00m00m0m000m000*m0*m0TEGChol
|
MIMAT0002878
*f0*5m0*0
|
hsa-miR-507
5′Pm05f0005f05f0005f05f05f05f05f00*5m0*
m0m0000m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0002879
5m0*5m0*5m0**
|
hsa-miR-508-3p
5′Pm05f05f05f05f05f005f0f05f05f00f00*0*0*
m0m0m000m00m00m000*0*m0TEGChol
|
MIMAT0002880
5m0*5m0*5m0*0
|
hsa-miR-508-5p
5′Pm005f05f0f05f000f05f0005f00*0*5m0*0*
m0m0m0m00m0m0m00m000*m0*m0TEGChol
|
MIMAT0004778
f0*5m0*0
|
hsa-miR-509-3-5p
5′Pm005f005f05f05f05f05f05f05f05f05f00*5
m0m0000m0000m0m00*m0*m0TEGChol
|
MIMAT0004975
m0*5m0*5m0*5m0*5m0*
|
hsa-miR-509-3p
5′Pm05f000f0000f0000f05m0*5m0*5m0*0*f
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0002881
0*5m0*0
|
hsa-miR-509-5p
5′Pm005f05f05f0000f00005f00*0*5m0*0*f0
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0004779
*5m0*0
|
hsa-miR-510
5′Pm05f05f005f005f05f0f005f05f05f00*5m0*
m0m000m0m000m0m0m00*0*m0TEGChol
|
MIMAT0002882
5m0*0*f0*0*0
|
hsa-miR-511
5′Pm005f05f05f05f05f05f05f005f00f05m0*0*
m0m0m00m0m0000m000*m0*m0TEGChol
|
MIMAT0002808
5m0*5m0*f0*5m0*0
|
hsa-miR-512-3p
5′Pm005f05f0f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m000*m0*m0TEGChol
|
MIMAT0002823
5m0*5m0*5m0*5m0*0*0
|
hsa-miR-512-5p
5′Pm005f05f05f05f05f05f05f05f005f05f00*0
m0m00m00m0000m000*m0*m0TEGChol
|
MIMAT0002822
*0*0*f0*5m0*0
|
hsa-miR-513a-3p
5′Pm005f00f05f05f00f05f05f00f05m0*5m0*0
m0m0m000m0m000m0m00*m0*m0TEGChol
|
MIMAT0004777
*0*f0*0*0
|
hsa-miR-513a-5p
5′Pm05f05f05f0f05f000f05f000f00*0*5m0*5
m0m0m0m00m0m0m00m000*0*m0TEGChol
|
MIMAT0002877
m0*5m0*5m0*0
|
hsa-miR-513b
5′Pm0005f05f05f000f005f05f0f05m0*5m0*0
m0m000m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0005788
*0*f0*0*0
|
hsa-miR-513c
5′Pm05f005f05f05f05f05f05f005f05f05f05m0
m0m000m0m0000m00m0*0*m0TEGChol
|
MIMAT0005789
*0*5m0*0*f0*5m0*0
|
hsa-miR-514
5′Pm05f000f05f05f00f005f05f0f05m0*0*5m0
m0m000m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0002883
*5m0*f0*5m0*0
|
hsa-miR-514b-3p
5′Pm05f000f0005f0f05f000f00*0*0*0*5m0*
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0015088
5m0*0
|
hsa-miR-514b-5p
5′Pm05f0005f05f000f005f05f0f05m0*0*0*5
m0m000m0m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0015087
m0*5m0*0*0
|
hsa-miR-515-3p
5′Pm0005f0f005f05f05f0000f00*5m0*5m0*5
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0002827
m0*f0*5m0*0
|
hsa-miR-515-5p
5′Pm05f05f05f05f0000f05f05f05f05f05m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0002826
m0*5m0*5m0*5m0**
|
hsa-miR-516a-3p
5′Pm005f00f005f05f05f05f05f00f00*0*5m0*
m0m0m000m000m0m0m00*m0*m0TEGChol
|
MIMAT0006778
0*f0*0*
|
hsa-miR-516a-5p
5′Pm0000f005f00f05f05f005f00*0*5m0*5m0
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0004770
*5m0*5m0*0
|
hsa-miR-516b
5′Pm0000f005f05f0f05f0005f05m0*0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0002859
m0*5m0*5m0*0
|
hsa-miR-516b*
5′Pm05f05f05f0f05f05f05f05f005f05f05f00*5
m0m000m0m0000m000*0*m0TEGChol
|
MIMAT0002860
m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-517*
5′Pm05f000f005f05f05f0000f05m0*5m0*5m
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0002851
0*5m0*f0**
|
hsa-miR-517a
5′Pm05f05f05f05f05f05f05f0f05f005f0f00*0*
m0m00m00m0000m000*0*m0TEGChol
|
MIMAT0002852
5m0*0*5m0*5m0*0
|
hsa-miR-517b
5′Pm05f005f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0002857
m0*5m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-517c
5′Pm05f0005f005f05f0f0005f0f05m0*0*0*5
m0m00m0m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0002866
m0*5m0*5m0*0
|
hsa-miR-518a-3p
5′Pm0005f0f005f05f05f05f05f00f05m0*5m0*
m0m0m000m000m0m00m0*m0*m0TEGChol
|
MIMAT0002863
0*5m0*f0*0*0
|
hsa-miR-518a-5p
5′Pm05f000f005f05f05f05f05f00f00*0*5m0*
m0m0m000m000m0m0m0m0*0*m0TEGChol
|
MIMAT0005457
5m0*5m0*5m0*0
|
hsa-miR-518b
5′Pm05f0005f00005f005f00f00*5m0*0*0*f0
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0002844
*5m0*0
|
hsa-miR-518c
5′Pm005f05f05f005f05f05f005f005f05m0*5m
m0m0m00m0m000m0m000*m0*m0TEGChol
|
MIMAT0002848
0*0*5m0*5m0*0*0
|
hsa-miR-518c*
5′Pm005f05f0f05f0005f05f005f05f05m0*5m0
m0m00m00m0m0m00m000*m0*m0TEGChol
|
MIMAT0002847
*5m0*0*5m0*0*0
|
hsa-miR-518d-3p
5′Pm05f0005f05f05f005f00005f05m0*0*0*5
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0002864
m0*f0*0*0
|
hsa-miR-518d-5p
5′Pm005f005f00005f0005f0f00*5m0*5m0*0
m0m00m0m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0005456
*5m0*0*0
|
hsa-miR-518e
5′Pm005f00f05f05f05f05f05f05f005f05m0*5
m0m0m000m0000m0m00*m0*m0TEGChol
|
MIMAT0002861
m0*5m0*5m0*f0*5m0*0
|
hsa-miR-518e*
5′Pm005f005f005f05f0f05f0005f05m0*0*5m
m0m0m0m00m000m0m0m00*m0*m0TEGChol
|
MIMAT0005450
0*5m0*5m0*5m0*0
|
hsa-miR-518f
5′Pm0005f05f05f05f00f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0002842
5m0*5m0*0*0
|
hsa-miR-518f*
5′Pm0005f05f005f00f0005f05f05m0*0*0*0*f
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0002841
0*5m0*
|
hsa-miR-519a
5′Pm0005f05f05f05f05f0f05f000f05m0*0*0*
m0m0m0m00m0000m00m0*m0*m0TEGChol
|
MIMAT0002869
0*5m0*0*0
|
hsa-miR-519a*
5′Pm00005f05f05f05f0f05f0005f00*5m0*5m
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0005452
0*5m0*5m0*5m0*0
|
hsa-miR-519b-3p
5′Pm005f05f0f05f005f05f0000f00*5m0*5m0
m0m0m0m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0002837
*0*f0*5m0*0
|
hsa-miR-519b-5p
5′Pm0005f05f005f05f0f0000f05m0*5m0*0*0
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0005454
*f0*0*0
|
hsa-miR-519c-3p
5′Pm05f005f0f05f05f05f0f005f05f05f00*0*5
m0m000m0m0000m00m0*0*m0TEGChol
|
MIMAT0002832
m0*5m0*f0*5m0*0
|
hsa-miR-519c-5p
5′Pm05f05f05f0f0005f05f05f000f05m0*5m0*
m0m0m0m00m00m0m0m000*0*m0TEGChol
|
MIMAT0002831
5m0*0*5m0*0*0
|
hsa-miR-519d
5′Pm05f0005f05f05f05f0f05f05f00f00*5m0*0
m0m0m000m0000m0m0m0*0*m0TEGChol
|
MIMAT0002853
*5m0*5m0*0*0
|
hsa-miR-519e
5′Pm05f05f05f05f0005f05f005f05f0f00*0*0*
m0m000m0m00m0m0m000*0*m0TEGChol
|
MIMAT0002829
0*5m0*0*0
|
hsa-miR-519e*
5′Pm005f05f05f05f005f0f0005f05f00*5m0*5
m0m00m0m0m00m00m000*m0*m0TEGChol
|
MIMAT0002828
m0*0*5m0*0*0
|
hsa-miR-520a-3p
5′Pm005f00f00005f05f000f00*5m0*5m0*0*
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0002834
5m0*0*0
|
hsa-miR-520a-5p
5′Pm0000f05f0005f005f05f0f00*0*0*5m0*f0
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0002833
*0*0
|
hsa-miR-520b
5′Pm005f00f05f05f05f05f05f05f005f05m0*5
m0m0m000m0000m0m00*m0*m0TEGChol
|
MIMAT0002843
m0*5m0*5m0*f0*5m0*0
|
hsa-miR-520c-3p
5′Pm05f005f0f00005f05f000f00*0*5m0*5m0
m0m0m0m00m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0002846
*f0*5m0*0
|
hsa-miR-520c-5p
5′Pm00005f005f05f05f05f05f05f05f05m0*0*
m0m0000m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0005455
5m0*5m0*5m0*5m0*0
|
hsa-miR-520d-3p
5′Pm05f05f05f05f005f05f05f005f05f05f05m0
m0m000m0m000m0m000*0*m0TEGChol
|
MIMAT0002856
*0*0*5m0*f0*0*0
|
hsa-miR-520d-5p
5′Pm0000f05f05f05f05f05f000f05m0*5m0*5
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0002855
m0*5m0*f0*0*0
|
hsa-miR-520e
5′Pm005f05f0f05f05f005f05f05f05f0f00*0*5
m0m0000m0m000m000*m0*m0TEGChol
|
MIMAT0002825
m0*0*f0*0*0
|
hsa-miR-520f
5′Pm0000f0000f05f05f00f00*5m0*5m0*5m0
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0002830
*f0*5m0*0
|
hsa-miR-520g
5′Pm005f00f05f05f05f05f005f05f0f00*0*5m0
m0m000m0m0000m0m00*m0*m0TEGChol
|
MIMAT0002858
*0*5m0*5m0*0
|
hsa-miR-520h
5′Pm00005f05f000f05f05f05f0f00*0*5m0*0*
m0m0000m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0002867
5m0*5m0*0
|
hsa-miR-521
5′Pm0000f0000f0005f05f00*0*5m0*5m0*5
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0002854
m0*0*0
|
hsa-miR-522
5′Pm00005f05f005f0f005f05f0f00*0*5m0*0*
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0002868
5m0*5m0*0
|
hsa-miR-522*
5′Pm00005f05f000f05f005f0f05m0*0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0005451
m0*f0*0*0
|
hsa-miR-523
5′Pm05f005f05f005f05f05f0000f00*5m0*0*5
m0m0m0m0m0m000m0m00m0*0*m0TEGChol
|
MIMAT0002840
m0*f0*5m0*0
|
hsa-miR-523*
5′Pm05f000f0005f05f05f05f05f05f00*0*0*0*
m0m0000m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0005449
5m0*5m0*0
|
hsa-miR-524-3p
5′Pm0005f05f005f05f05f00005f00*5m0*0*0
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0002850
*5m0*5m0*0
|
hsa-miR-524-5p
5′Pm05f05f00f05f005f05f005f005f00*5m0*5
m0m0m00m0m00m00m0m00*0*m0TEGChol
|
MIMAT0002849
m0*0*f0*0*0
|
hsa-miR-525-3p
5′Pm0005f05f005f05f0f005f05f0f00*0*0*0*f
m0m000m0m000m0m00m0*m0*m0TEGChol
|
MIMAT0002839
0*5m0*0
|
hsa-miR-525-5p
5′Pm0005f0f05f05f005f05f005f0f00*5m0*5m
m0m00m00m0m000m00m0*m0*m0TEGChol
|
MIMAT0002838
0*0*f0*0*0
|
hsa-miR-526a
5′Pm05f05f00f005f00f0005f05f05m0*5m0*5
m0m00m0m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0002845
m0*0*f0*0*0
|
hsa-miR-526b
5′Pm005f05f05f0005f05f05f05f00f00*0*0*5
m0m0m000m00m0m0m000*m0*m0TEGChol
|
MIMAT0002835
m0*f0*5m0*0
|
hsa-miR-526b*
5′Pm005f05f05f05f05f05f0f005f00f05m0*0*0
m0m0m00m0m0000m000*m0*m0TEGChol
|
MIMAT0002836
*0*5m0*5m0*0
|
hsa-miR-527
5′Pm0005f0f005f00f00005f05m0*5m0*0*5m
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0002862
0*5m0*5m0*0
|
hsa-miR-532-3p
5′Pm005f05f05f0000f005f05f0f00*0*0*5m0*
m0m000m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0004780
5m0*5m0*0
|
hsa-miR-532-5p
5′Pm005f005f05f000f005f00f00*0*0*0*f0*0
m0m0m00m0m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0002888
*0
|
hsa-miR-539
5′Pm00005f05f005f05f05f05f005f00*0*0*0*
m0m0m000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003163
5m0*5m0*0
|
hsa-miR-541
5′Pm005f00f0000f00005f00*0*0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0004920
5m0*0
|
hsa-miR-541*
5′Pm005f005f00005f05f05f05f0f00*0*0*0*f0
m0m0000m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0004919
*0*0
|
hsa-miR-542-3p
5′Pm00005f05f05f05f0f05f05f05f05f05m0*5
m0m0000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0003389
m0*5m0*0*f0*0*0
|
hsa-miR-542-5p
5′Pm0005f0f05f005f0f005f005f00*0*0*5m0*
m0m0m00m0m00m00m00m0*m0*m0TEGChol
|
MIMAT0003340
f0*5m0*0
|
hsa-miR-543
5′Pm05f05f00f0005f05f0005f05f05m0*5m0*
m0m00m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0004954
0*0*5m0*0*0
|
hsa-miR-544
5′Pm0005f0f0000f0005f05f00*0*0*0*f0*0*0
m0m00m0m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0003164
|
hsa-miR-544b
5′Pm005f05f0f0005f0f005f00f00*0*0*0*f0*0
m0m0m00m0m00m0m0m000*m0*m0TEGChol
|
MIMAT0015004
*0
|
hsa-miR-545
5′Pm0000f005f05f0f0000f00*5m0*0*0*f0*0
m0m0m0m0m0m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0003165
*0
|
hsa-miR-545*
5′Pm05f000f0000f00005f00*0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004785
m0*5m0*0
|
hsa-miR-548a-3p
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0003251
m0*5m0*5m0*0
|
hsa-miR-548a-5p
5′Pm0000f005f05f0f05f0005f05m0*0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004803
m0*5m0*5m0*0
|
hsa-miR-548aa
5′Pm05f05f005f0000f00005f00*5m0*5m0*0
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0018447
*5m0**
|
hsa-miR-548b-3p
5′Pm05f0005f005f05f05f005f005f05m0*5m0
m0m0m00m0m000m0m0m0m0*0*m0TEGChol
|
MIMAT0003254
*5m0****
|
hsa-miR-548b-5p
5′Pm0000f05f0005f05f005f05f00*5m0*5m0*
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0004798
5m0*5m0*5m0*0
|
hsa-miR-548c-3p
5′Pm0000f0000f05f05f00f00*5m0*0*5m0*f0
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003285
**
|
hsa-miR-548c-5p
5′Pm0000f005f05f0f05f0005f05m0*0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0004806
m0*5m0*5m0*0
|
hsa-miR-548d-3p
5′Pm0005f0f005f05f0f05f000f05m0*0*0*0*5
m0m0m0m00m000m0m00m0*m0*m0TEGChol
|
MIMAT0003323
m0*5m0*0
|
hsa-miR-548d-5p
5′Pm005f005f05f05f00f0000f00*5m0*0*0*f0
m0m0m0m0m0m0m000m0m00*m0*m0TEGChol
|
MIMAT0004812
*0*0
|
hsa-miR-548e
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0005874
*5m0*5m0*f0*5m0*0
|
hsa-miR-548f
5′Pm05f05f005f0000f00005f00*5m0*5m0*0
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0005895
*5m0*5m0*0
|
hsa-miR-548g
5′Pm0000f0000f00005f00*0*5m0*5m0*f0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0005912
*0
Chol
|
hsa-miR-548h
5′Pm005f05f05f05f005f05f05f05f05f05f05m0
m0m0000m00m00m000*m0*m0TEGChol
|
MIMAT0005928
*0*0*0*5m0*0*0
|
hsa-miR-548i
5′Pm05f05f05f0f05f05f05f05f05f05f05f0f00*
m0m0000m0000m000*0*m0TEGChol
|
MIMAT0005935
0*5m0*0*5m0*5m0*0
|
hsa-miR-548j
5′Pm05f0005f05f05f005f05f05f05f05f00*0*5
m0m0000m0m000m0m0m0*0*m0TEGChol
|
MIMAT0005875
m0*5m0*5m0*5m0*0
|
hsa-miR-548k
5′Pm005f05f05f05f005f05f05f05f05f0f05m0*
m0m0000m00m00m000*m0*m0TEGChol
|
MIMAT0005882
5m0*5m0*5m0*5m0*0*
|
hsa-miR-548l
5′Pm005f05f05f05f05f05f0f005f05f05f05m0*
m0m000m0m0000m000*m0*m0TEGChol
|
MIMAT0005889
0*0*0*5m0*5m0*0
|
hsa-miR-548m
5′Pm05f05f05f05f0000f00005f00*5m0*5m0*
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005917
0*5m0*5m0*0
|
hsa-miR-548n
5′Pm0005f0f05f05f05f0f05f05f05f05f05m0*0
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0005916
*5m0*5m0*f0*0*0
|
hsa-miR-548o
5′Pm05f05f05f0f0000f005f00f00*0*5m0*0*f
m0m0m00m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0005919
0**
|
hsa-miR-548p
5′Pm05f05f00f005f05f05f00005f05m0*5m0*
m0m0m0m0m0m000m0m0m00*0*m0TEGChol
|
MIMAT0005934
5m0*5m0*5m0*5m0*0
|
hsa-miR-548q
5′Pm05f05f00f05f005f05f05f05f05f0f05m0*0
m0m0000m00m00m0m00*0*m0TEGChol
|
MIMAT0011163
*0*0*5m0*0*0
|
hsa-miR-548s
5′Pm05f05f05f0f0005f05f00005f00*0*0*5m0
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0014987
*f0*0*0
|
hsa-miR-548t
5′Pm0000f05f05f05f05f05f0005f00*5m0*5m
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0015009
0*5m0*f0*0*0
|
hsa-miR-548u
5′Pm05f0005f05f05f005f005f05f05f00*0*5m
m0m000m0m0m000m0m0m0*0*m0TEGChol
|
MIMAT0015013
0*5m0*5m0*5m0*0
|
hsa-miR-548v
5′Pm005f05f0f05f005f05f005f05f05f00*5m0*
m0m000m0m00m00m000*m0*m0TEGChol
|
MIMAT0015020
5m0*0*f0*0*0
|
hsa-miR-548w
5′Pm00005f05f000f05f005f0f00*0*5m0*0*f0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0015060
*0*0
|
hsa-miR-548x
5′Pm005f00f005f00f05f05f00f05m0*5m0*0*
m0m0m000m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0015081
0*f0*5m0*0
|
hsa-miR-548y
5′Pm05f05f00f05f005f05f05f05f05f0f05m0*0
m0m0000m00m00m0m00*0*m0TEGChol
|
MIMAT0018354
*0*0*5m0*0*0
|
hsa-miR-548z
5′Pm00005f0005f0f00005f05m0*5m0*5m0*
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0018446
0*5m0*5m0*0
|
hsa-miR-549
5′Pm05f05f05f05f0000f0000f00*0*5m0*0*f0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003333
*5m0*0
|
hsa-miR-550a
5′Pm05f05f00f05f05f05f05f0005f05f05m0*0*
m0m00m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0004800
0*5m0*5m0*0*0
|
hsa-miR-550a*
5′Pm05f005f0f005f05f05f05f005f0f05m0*0*0
m0m00m00m000m0m00m0*0*m0TEGChol
|
MIMAT0003257
*5m0*f0*5m0*0
|
hsa-miR-550b
5′Pm05f000f05f005f05f05f000f05m0*5m0*5
m0m0m0m00m00m00m0m0m0*0*m0TEGChol
|
MIMAT0018445
m0*5m0*5m0*0*0
|
hsa-miR-551a
5′Pm05f05f00f05f005f05f05f0005f00*0*0*5
m0m0m0m00m00m00m0m00*0*m0TEGChol
|
MIMAT0003214
m0*f0*5m0*0
|
hsa-miR-551b
5′Pm05f05f00f05f0005f0005f0f00*0*0*5m0*
m0m00m0m0m0m0m00m0m00*0*m0TEGChol
|
MIMAT0003233
5m0*5m0*0
|
hsa-miR-551b*
5′Pm00005f00005f05f000f05m0*5m0*5m0*
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004794
5m0*5m0*0*0
|
hsa-miR-552
5′Pm0005f0f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m00m0*m0*m0TEGChol
|
MIMAT0003215
0*0*0*f0*5m0*0
|
hsa-miR-553
5′Pm05f05f00f05f05f05f0f0000f00*0*0*5m0
m0m0m0m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0003216
*5m0*5m0*0
|
hsa-miR-554
5′Pm005f05f0f005f005f05f005f0f00*0*5m0*
m0m00m00m0m00m0m000*m0*m0TEGChol
|
MIMAT0003217
5m0*f0*0*0
|
hsa-miR-555
5′Pm005f05f0f05f05f00f0000f05m0*5m0*5m
m0m0m0m0m0m0m000m000*m0*m0TEGChol
|
MIMAT0003219
0*0*f0*0*0
|
hsa-miR-556-3p
5′Pm0005f05f05f05f00f005f05f05f00*5m0*5
m0m000m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0004793
m0*0*f0*5m0*0
|
hsa-miR-556-5p
5′Pm0000f0000f05f05f00f05m0*0*5m0*0*5
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003220
m0*0*0
|
hsa-miR-557
5′Pm05f05f05f05f05f000f05f005f0f00*5m0*5
m0m00m00m0m0m00m000*0*m0TEGChol
|
MIMAT0003221
m0*5m0*5m0*0*0
|
hsa-miR-558
5′Pm0005f05f05f05f05f0f0005f05f05m0*5m0
m0m00m0m0m0000m00m0*m0*m0TEGChol
|
MIMAT0003222
*0*0*5m0*0*0
|
hsa-miR-559
5′Pm05f05f05f0f00005f05f05f05f05f05m0*0*
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003223
0*5m0*f0*0*0
|
hsa-miR-561
5′Pm05f005f05f005f05f0f05f05f00f05m0*5m
m0m0m000m000m0m00m0*0*m0TEGChol
|
MIMAT0003225
0*5m0*0*5m0*5m0*0
|
hsa-miR-562
5′Pm05f005f05f05f05f05f05f00005f05m0*0*
m0m0m0m0m0m0000m00m0*0*m0TEGChol
|
MIMAT0003226
0*0*5m0**
|
hsa-miR-563
5′Pm05f000f005f05f0f05f000f05m0*0*0*0*f
m0m0m0m00m000m0m0m0m0*0*m0TEGChol
|
MIMAT0003227
0*0*0
|
hsa-miR-564
5′Pm005f00f0005f05f0005f05f00*0*5m0*0*
m0m00m0m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0003228
**
|
hsa-miR-566
5′Pm05f005f05f05f000f05f05f05f0f00*0*0*0
m0m0000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0003230
*5m0*5m0*0
|
hsa-miR-567
5′Pm005f00f05f0005f0005f0f00*5m0*0*0*f0
m0m00m0m0m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0003231
*5m0*0
|
hsa-miR-568
5′Pm05f000f00005f0000f00*0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003232
m0*0*0
|
hsa-miR-569
5′Pm05f05f05f05f05f0005f05f05f05f05f05m0
m0m0000m0m0m00m000*0*m0TEGChol
|
MIMAT0003234
*0*5m0*0*f0*5m0*0
|
hsa-miR-570
5′Pm005f05f05f005f05f0f05f005f0f05m0*5m
m0m00m00m000m0m000*m0*m0TEGChol
|
MIMAT0003235
0*0*0*f0*0*0
|
hsa-miR-571
5′Pm05f005f05f0000f05f05f05f05f05m0*0*0
m0m0000m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0003236
*0*f0*0*0
|
hsa-miR-572
5′Pm05f05f00f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m0m00*0*m0TEGChol
|
MIMAT0003237
5m0*5m0*5m0*5m0**
|
hsa-miR-573
5′Pm05f05f05f05f05f000f0000f00*0*5m0*0*
m0m0m0m0m0m0m0m00m000*0*m0TEGChol
|
MIMAT0003238
5m0*5m0*0
|
hsa-miR-574-3p
5′Pm05f05f005f005f00f005f005f00*5m0*0*5
m0m0m00m0m0m00m0m0m00*0*m0TEGChol
|
MIMAT0003239
m0*f0*5m0*0
|
hsa-miR-574-5p
5′Pm005f05f05f05f05f05f05f05f05f00f00*0*
m0m0m000m0000m000*m0*m0TEGChol
|
MIMAT0004795
0*0*5m0**
|
hsa-miR-575
5′Pm05f05f05f05f0000f0000f00*0*0*5m0*f0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003240
*5m0*0
|
hsa-miR-576-3p
5′Pm005f05f0f005f00f005f05f05f05m0*0*0*
m0m000m0m0m00m0m000*m0*m0TEGChol
|
MIMAT0004796
0*f0*0*0
|
hsa-miR-576-5p
5′Pm05f000f05f005f05f05f000f05m0*0*5m0
m0m0m0m00m00m00m0m0m0*0*m0TEGChol
|
MIMAT0003241
*0*5m0*0*0
|
hsa-miR-577
5′Pm0005f05f05f05f05f05f005f05f05f00*0*0
m0m000m0m0000m00m0*m0*m0TEGChol
|
MIMAT0003242
*0*f0*5m0*0
|
hsa-miR-578
5′Pm05f005f05f005f05f05f00005f00*0*0*5m
m0m0m0m0m0m000m0m00m0*0*m0TEGChol
|
MIMAT0003243
0*f0*0*0
|
hsa-miR-579
5′Pm05f05f05f0f005f005f005f00f05m0*0*5m
m0m0m00m0m0m00m0m000*0*m0TEGChol
|
MIMAT0003244
0*0*f0*0*0
|
hsa-miR-580
5′Pm005f05f05f00005f05f05f05f05f00*0*5m
m0m0000m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0003245
0*5m0*5m0*0*0
|
hsa-miR-581
5′Pm0000f05f005f0f005f00f05m0*0*0*5m0*
m0m0m00m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003246
f0*5m0*0
|
hsa-miR-582-3p
5′Pm05f05f05f0f0000f05f000f00*0*0*5m0*f
m0m0m0m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0004797
0*5m0*0
|
hsa-miR-582-5p
5′Pm005f05f0f05f005f05f05f0005f05m0*0*5
m0m0m0m00m00m00m000*m0*m0TEGChol
|
MIMAT0003247
m0*5m0*f0*0*0
|
hsa-miR-583
5′Pm05f05f00f05f005f05f0005f0f05m0*0*5m
m0m00m0m0m00m00m0m00*0*m0TEGChol
|
MIMAT0003248
0*5m0*5m0*5m0*0
|
hsa-miR-584
5′Pm0000f05f0005f00005f05m0*0*0*0*5m0
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0003249
**
|
hsa-miR-585
5′Pm05f05f00f05f05f005f05f05f05f0f00*5m0
m0m0000m0m000m0m00*0*m0TEGChol
|
MIMAT0003250
*5m0*5m0*5m0*5m0*0
|
hsa-miR-586
5′Pm05f05f00f05f0005f05f0005f00*5m0*0*0
m0m0m0m00m0m0m00m0m00*0*m0TEGChol
|
MIMAT0003252
*f0*5m0*0
|
hsa-miR-587
5′Pm05f000f0000f05f05f05f05f05m0*0*0*0*
m0m0000m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003253
f0*5m0*0
|
hsa-miR-588
5′Pm05f005f05f005f05f0f0000f00*5m0*5m0
m0m0m0m0m0m000m0m00m0*0*m0TEGChol
|
MIMAT0003255
*5m0***
|
hsa-miR-589
5′Pm005f05f0f05f000f05f005f0f05m0*0*5m0
m0m00m00m0m0m00m000*m0*m0TEGChol
|
MIMAT0004799
*5m0***
|
hsa-miR-589*
5′Pm005f00f005f05f05f005f05f0f05m0*0*0*
m0m000m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0003256
5m0*f0*5m0*0
|
hsa-miR-590-3p
5′Pm0000f00005f05f005f05f00*0*0*0*5m0*
m0m00m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004801
5m0*0
|
hsa-miR-590-5p
5′Pm005f05f0f005f05f05f005f05f0f00*0*5m0
m0m000m0m000m0m000*m0*m0TEGChol
|
MIMAT0003258
*0*5m0*5m0*0
|
hsa-miR-591
5′Pm0000f005f005f05f05f05f0f05m0*0*0*5
m0m0000m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0003259
m0*f0*5m0*0
|
hsa-miR-592
5′Pm005f00f0005f0f005f00f00*0*5m0*5m0*
m0m0m00m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0003260
f0*0*0
|
hsa-miR-593
5′Pm005f005f005f05f05f0005f0f00*0*5m0*5
m0m00m0m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0004802
m0*f0*0*0
|
hsa-miR-593*
5′Pm05f05f05f05f00005f0000f05m0*5m0*0*
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003261
5m0***
|
hsa-miR-595
5′Pm05f05f05f0f00005f00005f05m0*0*5m0*
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003263
5m0*f0*0*0
|
hsa-miR-596
5′Pm00005f05f005f05f0005f0f00*5m0*5m0*
m0m00m0m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003264
5m0*5m0*0*0
|
hsa-miR-597
5′Pm005f005f05f000f005f00f00*0*0*5m0*f0
m0m0m00m0m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0003265
*0*0
|
hsa-miR-598
5′Pm005f00f05f005f05f0005f0f00*0*0*5m0*
m0m00m0m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0003266
5m0*5m0*0
|
hsa-miR-599
5′Pm05f000f05f05f005f05f000f00*0*0*5m0*
m0m0m0m00m0m000m0m0m0*0*m0TEGChol
|
MIMAT0003267
5m0*0*0
|
hsa-miR-600
5′Pm05f000f05f0005f05f05f05f05f05m0*5m0
m0m0000m0m0m00m0m0m0*0*m0TEGChol
|
MIMAT0003268
*0*5m0*f0*5m0*0
|
hsa-miR-601
5′Pm05f05f05f05f00005f005f05f0f05m0*0*5
m0m000m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003269
m0*0*5m0*5m0*0
|
hsa-miR-602
5′Pm05f05f05f0f05f005f0f0005f0f00*0*5m0*
m0m00m0m0m00m00m000*0*m0TEGChol
|
MIMAT0003270
5m0*5m0*5m0*0
|
hsa-miR-603
5′Pm05f000f005f005f005f05f05f00*5m0*0*0
m0m000m0m0m00m0m0m0m0*0*m0TEGChol
|
MIMAT0003271
*5m0*0*0
|
hsa-miR-604
5′Pm00005f05f05f05f0f05f0005f05m0*5m0*
m0m0m0m00m0000m0m0m0*m0*m0TEGChol
|
MIMAT0003272
5m0*5m0*5m0**
|
hsa-miR-605
5′Pm05f05f00f05f05f05f05f0005f05f05m0*0*
m0m00m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0003273
0*5m0*5m0*5m0*0
|
hsa-miR-606
5′Pm005f05f05f05f05f05f05f05f05f00f00*0*
m0m0m000m0000m000*m0*m0TEGChol
|
MIMAT0003274
0*0*5m0**
|
hsa-miR-607
5′Pm0000f00005f00005f00*0*0*0*f0*5m0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0003275
Chol
|
hsa-miR-608
5′Pm00005f05f005f05f005f005f05m0*0*0*0
m0m0m00m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003276
*f0*5m0*
|
hsa-miR-609
5′Pm05f05f005f05f05f05f0f05f0005f00*5m0*
m0m0m0m00m0000m0m00*0*m0TEGChol
|
MIMAT0003277
5m0*0*f0*0*0
|
hsa-miR-610
5′Pm05f05f05f05f00005f0000f00*5m0*0*5m
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003278
0*5m0*0*0
|
hsa-miR-611
5′Pm0000f0000f0005f05f00*0*0*0*f0*5m0*0
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003279
|
hsa-miR-612
5′Pm05f0005f0005f0f0005f05f00*5m0*5m0*
m0m00m0m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003280
5m0*5m0*0*0
|
hsa-miR-613
5′Pm00005f0005f0f05f05f05f05f00*0*5m0*0
m0m0000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003281
*f0*5m0*0
|
hsa-miR-614
5′Pm05f05f005f05f05f05f0f05f0005f00*5m0*
m0m0m0m00m0000m0m00*0*m0TEGChol
|
MIMAT0003282
5m0*0*f0*0*0
|
hsa-miR-615-3p
5′Pm0000f05f005f0f005f05f0f05m0*0*0*0*f
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003283
0*5m0*0
|
hsa-miR-615-5p
5′Pm005f05f0f005f00f05f005f05f00*0*0*5m
m0m00m00m0m00m0m000*m0*m0TEGChol
|
MIMAT0004804
0*5m0*0*0
|
hsa-miR-616
5′Pm05f05f005f005f005f05f05f05f05f05m0*5
m0m0000m0m00m0m0m00*0*m0TEGChol
|
MIMAT0004805
m0*0*0*f0*0*0
|
hsa-miR-616*
5′Pm0000f05f005f0f005f05f05f05m0*0*5m0
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003284
*5m0*f0*0*0
|
hsa-miR-617
5′Pm0005f0f005f00f0005f0f00*0*0*5m0*5m
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0003286
0*5m0*0
|
hsa-miR-618
5′Pm05f05f005f0005f0f05f005f0f05m0*0*5m
m0m00m00m00m0m0m0m00*0*m0TEGChol
|
MIMAT0003287
0*5m0*5m0*5m0*0
|
hsa-miR-619
5′Pm005f05f05f005f005f05f0005f00*0*0*0*f
m0m0m0m00m0m00m0m000*m0*m0TEGChol
|
MIMAT0003288
0*0*0
|
hsa-miR-620
5′Pm0005f05f05f05f005f05f05f005f05m0*5m
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0003289
0*5m0*5m0*5m0*5m0*0
|
hsa-miR-621
5′Pm05f005f0f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m00m0*0*m0TEGChol
|
MIMAT0003290
0*0*0*f0*5m0*0
|
hsa-miR-622
5′Pm05f0005f00005f00005f05m0*0*0*5m0*
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003291
f0*5m0*0
|
hsa-miR-623
5′Pm05f05f005f00005f005f05f0f00*0*0*0*5
m0m000m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0003292
m0*0*0
|
hsa-miR-624
5′Pm05f05f005f005f005f05f05f05f05f05m0*5
m0m0000m0m00m0m0m00*0*m0TEGChol
|
MIMAT0004807
m0*0*0*f0*0*0
|
hsa-miR-624*
5′Pm05f005f05f05f05f005f005f05f05f05m0*0
m0m000m0m0m000m00m0*0*m0TEGChol
|
MIMAT0003293
*5m0*0*5m0*5m0*0
|
hsa-miR-625
5′Pm05f05f05f0f05f005f05f005f00f05m0*5m
m0m0m00m0m00m00m000*0*m0TEGChol
|
MIMAT0003294
0*5m0*0*f0*5m0*0
|
hsa-miR-625*
5′Pm005f00f005f05f0f00005f05m0*5m0*0*5
m0m0m0m0m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0004808
m0*f0*0*0
|
hsa-miR-626
5′Pm05f005f0f05f005f0f05f005f0f00*5m0*5
m0m00m00m00m00m00m0*0*m0TEGChol
|
MIMAT0003295
m0*0*5m0*5m0*0
|
hsa-miR-627
5′Pm05f005f05f05f0005f05f05f05f05f05m0*0
m0m0000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0003296
*5m0*0*5m0*5m0*0
|
hsa-miR-628-3p
5′Pm0000f05f000f05f005f0f05m0*0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0003297
m0*f0*0*0
|
hsa-miR-628-5p
5′Pm0005f0f005f005f05f05f05f0f05m0*5m0*
m0m0000m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004809
5m0*0*f0*5m0*0
|
hsa-miR-629
5′Pm00005f005f00f00005f05m0*5m0*0*0*f
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0004810
0*5m0*0
|
hsa-miR-629*
5′Pm005f00f05f000f005f00f00*0*5m0*5m0*
m0m0m00m0m0m0m00m0m00*m0*m0TEGChol
|
MIMAT0003298
5m0*5m0*0
|
hsa-miR-630
5′Pm00005f0000f0005f05f00*0*5m0*0*f0*0
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003299
*0
|
hsa-miR-631
5′Pm05f005f05f05f000f05f05f05f05f05m0*0*
m0m0000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0003300
5m0*0*5m0*5m0*0
|
hsa-miR-632
5′Pm005f005f05f005f05f005f05f0f05m0*0*5
m0m000m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0003302
m0*5m0*f0*0*0
|
hsa-miR-633
5′Pm05f000f05f05f05f05f005f00f05m0*0*0*
m0m0m00m0m0000m0m0m0*0*m0TEGChol
|
MIMAT0003303
0*f0*0*0
|
hsa-miR-634
5′Pm005f005f00005f05f000f05m0*0*5m0*5
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol
|
MIMAT0003304
m0*f0*5m0*0
|
hsa-miR-635
5′Pm0005f0f05f000f00005f05m0*0*0*0*5m
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0003305
0*0*0
|
hsa-miR-636
5′Pm005f05f0f05f000f005f00f00*0*5m0*5m
m0m0m00m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0003306
0*f0*5m0*0
|
hsa-miR-637
5′Pm0000f05f05f05f0f0000f05m0*0*0*0*f0*
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0003307
0*0
|
hsa-miR-638
5′Pm005f05f05f00005f005f005f05m0*5m0*0
m0m0m00m0m0m0m0m0m000*m0*m0TEGChol
|
MIMAT0003308
*5m0*f0*5m0*0
|
hsa-miR-639
5′Pm0000f0000f00005f00*0*5m0*5m0*5m0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0003309
*5m0*0
Chol
|
hsa-miR-640
5′Pm05f005f0f0005f05f05f0005f00*5m0*0*5
m0m0m0m00m00m0m0m00m0*0*m0TEGChol
|
MIMAT0003310
m0*f0*0*0
|
hsa-miR-641
5′Pm05f000f0005f05f05f005f0f00*0*5m0*5
m0m00m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003311
m0*5m0*5m0*0
|
hsa-miR-642a
5′Pm05f05f05f0f05f05f05f05f05f05f05f05f05
m0m0000m0000m000*0*m0TEGChol
|
MIMAT0003312
m0*5m0*5m0*5m0*5m0*5m0*0
|
hsa-miR-642b
5′Pm0005f05f05f05f005f0005f05f05m0*5m0
m0m00m0m0m0m000m00m0*m0*m0TEGChol
|
MIMAT0018444
*0*0*f0**
|
hsa-miR-643
5′Pm0000f05f05f00f05f05f05f05f05m0*5m0*
m0m0000m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0003313
5m0*5m0*5m0*0*0
|
hsa-miR-644
5′Pm0005f0f005f05f05f05f005f05f05m0*5m0
m0m00m00m000m0m00m0*m0*m0TEGChol
|
MIMAT0003314
*0*5m0*f0*0*0
|
hsa-miR-645
5′Pm005f005f005f05f05f005f05f05f00*0*0*0
m0m000m0m000m0m0m00*m0*m0TEGChol
|
MIMAT0003315
*f0*5m0*0
|
hsa-miR-646
5′Pm0000f05f0005f005f005f00*5m0*5m0*0
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0003316
*5m0*5m0*0
|
hsa-miR-647
5′Pm0000f0005f05f05f05f05f05f05m0*5m0*
m0m0000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003317
5m0*5m0*f0*0*0
|
hsa-miR-648
5′Pm05f000f0005f0f0005f0f05m0*0*0*0*f0*
m0m00m0m0m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003318
0*0
|
hsa-miR-649
5′Pm05f05f005f05f05f05f05f005f05f0f05m0*
m0m000m0m0000m0m00*0*m0TEGChol
|
MIMAT0003319
5m0*5m0*0*f0*0*0
|
hsa-miR-650
5′Pm0000f05f05f05f0f00005f05m0*5m0*5m
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0003320
0*5m0*f0*0*0
|
hsa-miR-651
5′Pm05f05f05f0f00005f05f05f05f0f00*5m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003321
m0*5m0*5m0*0*0
|
hsa-miR-652
5′Pm005f05f05f05f05f00f0005f05f05m0*0*0
m0m00m0m0m0m000m000*m0*m0TEGChol
|
MIMAT0003322
*0*5m0*0*0
|
hsa-miR-653
5′Pm05f005f0f05f05f05f0f05f05f05f05f00*0*
m0m0000m0000m00m0*0*m0TEGChol
|
MIMAT0003328
5m0*0*f0**
|
hsa-miR-654-3p
5′Pm05f05f05f05f05f000f05f005f0f00*5m0*0
m0m00m00m0m0m00m000*0*m0TEGChol
|
MIMAT0004814
*0*f0*5m0*0
|
hsa-miR-654-5p
5′Pm00005f0005f05f005f005f05m0*0*5m0*
m0m0m00m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003330
5m0*5m0*0*0
|
hsa-miR-655
5′Pm0000f0005f05f0000f00*5m0*0*0*f0*0*0
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003331
|
hsa-miR-656
5′Pm005f05f0f05f005f0f005f005f05m0*5m0*
m0m0m00m0m00m00m000*m0*m0TEGChol
|
MIMAT0003332
0*5m0*5m0*5m0*0
|
hsa-miR-657
5′Pm05f05f005f005f05f0f05f05f00f00*0*0*5
m0m0m000m000m0m0m00*0*m0TEGChol
|
MIMAT0003335
m0*5m0*5m0*0
|
hsa-miR-658
5′Pm00005f0000f05f05f05f05f05m0*0*5m0*
m0m0000m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003336
5m0*5m0*5m0*0
|
hsa-miR-659
5′Pm005f05f05f05f05f05f05f005f05f05f05m0
m0m000m0m0000m000*m0*m0TEGChol
|
MIMAT0003337
*5m0*5m0*0*f0*0*0
|
hsa-miR-660
5′Pm05f05f05f0f0000f05f000f05m0*5m0*5m
m0m0m0m00m0m0m0m0m000*0*m0TEGChol
|
MIMAT0003338
0*5m0*5m0*5m0*0
|
hsa-miR-661
5′Pm05f005f0f05f05f05f05f005f005f05m0*0*
m0m0m00m0m0000m00m0*0*m0TEGChol
|
MIMAT0003324
5m0*0*f0*5m0*0
|
hsa-miR-662
5′Pm005f05f0f05f0005f005f00f00*0*5m0*5
m0m0m00m0m0m0m00m000*m0*m0TEGChol
|
MIMAT0003325
m0*5m0*0*0
|
hsa-miR-663
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0003326
*5m0*0*5m0*5m0*0
|
hsa-miR-663b
5′Pm05f05f00f05f05f00f005f05f0f00*5m0*0*
m0m000m0m0m000m0m00*0*m0TEGChol
|
MIMAT0005867
5m0*f0*0*0
|
hsa-miR-664
5′Pm00005f00005f0000f00*0*0*0*5m0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0005949
Chol
|
hsa-miR-664*
5′Pm0005f05f0005f0f05f005f0f05m0*5m0*5
m0m00m00m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0005948
m0*5m0*5m0*5m0*
|
hsa-miR-665
5′Pm0005f0f05f0005f005f05f0f00*5m0*0*0*
m0m000m0m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0004952
f0*5m0*
|
hsa-miR-668
5′Pm05f05f05f05f005f005f005f00f00*0*5m0
m0m0m00m0m0m00m0m000*0*m0TEGChol
|
MIMAT0003881
*5m0*5m0*0*0
|
hsa-miR-670
5′Pm005f05f05f05f05f05f0f05f005f0f00*5m0
m0m00m00m0000m000*m0*m0TEGChol
|
MIMAT0010357
*0*0*f0*0*0
|
hsa-miR-671-3p
5′Pm00005f05f05f05f05f0000f00*5m0*0*0*f
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004819
0*0*0
|
hsa-miR-671-5p
5′Pm0005f0f05f05f05f0f05f0005f05m0*5m0*
m0m0m0m00m0000m00m0*m0*m0TEGChol
|
MIMAT0003880
5m0*0*f0*5m0*
|
hsa-miR-675
5′Pm0000f05f000f005f005f00*0*5m0*0*5m
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0004284
0*0*0
|
hsa-miR-675*
5′Pm0005f05f05f005f0f00005f05m0*0*0*0*f
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol
|
MIMAT0006790
0*5m0*0
|
hsa-miR-676
5′Pm0000f05f05f05f05f05f05f05f05f05m0*5
m0m0000m0000m0m0m0*m0*m0TEGChol
|
MIMAT0018204
m0*0*5m0*f0*0*0
|
hsa-miR-676*
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol
|
MIMAT0018203
0*f0*0*0
|
hsa-miR-7
5′Pm0005f0f00005f005f05f0f05m0*0*0*0*f0
m0m000m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0000252
*5m0*0
|
hsa-miR-708
5′Pm05f005f0f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol
|
MIMAT0004926
m0*5m0*5m0*0
|
hsa-miR-708*
5′Pm005f05f05f005f005f0000f00*0*5m0*5m
m0m0m0m0m0m0m00m0m000*m0*m0TEGChol
|
MIMAT0004927
0*f0*0*
|
hsa-miR-7-1*
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004553
*5m0*0*f0*0*0
|
hsa-miR-711
5′Pm005f00f05f05f05f0f005f05f0f05m0*0*5
m0m000m0m0000m0m00*m0*m0TEGChol
|
MIMAT0012734
m0*5m0*5m0*0*0
|
hsa-miR-718
5′Pm05f000f0005f05f05f000f00*0*0*5m0*f0
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol
|
MIMAT0012735
*0*
|
hsa-miR-7-2*
5′Pm0005f05f0000f0005f0f00*0*5m0*0*f0*
m0m00m0m0m0m0m0m0m00m0*m0*m0TEGChol
|
MIMAT0004554
0*0
|
hsa-miR-720
5′Pm05f05f005f005f05f0f05f05f00f00*0*0*5
m0m0m000m000m0m0m00*0*m0TEGChol
|
MIMAT0005954
m0*5m0*0*0
|
hsa-miR-744
5′Pm005f05f0f005f00f05f0005f00*5m0*5m0
m0m0m0m00m0m00m0m000*m0*m0TEGChol
|
MIMAT0004945
*5m0*f0*5m0*0
|
hsa-miR-744*
5′Pm0000f05f005f0f05f05f05f0f00*5m0*0*5
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004946
m0*f0*0*0
|
hsa-miR-758
5′Pm00005f05f05f05f05f0005f0f05m0*0*5m
m0m00m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0003879
0*5m0*f0*0*0
|
hsa-miR-759
5′Pm05f0005f05f05f005f05f000f00*5m0*5m
m0m0m0m00m0m000m0m0m0*0*m0TEGChol
|
MIMAT0010497
0*0*f0*0*0
|
hsa-miR-760
5′Pm0000f05f05f005f00005f00*5m0*5m0*0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0004957
*f0*5m0*0
|
hsa-miR-761
5′Pm005f05f05f005f05f05f005f05f05f05m0*5
m0m000m0m000m0m000*m0*m0TEGChol
|
MIMAT0010364
m0*0*0*5m0*5m0*0
|
hsa-miR-762
5′Pm005f005f005f05f05f05f05f05f05f00*0*0
m0m0000m000m0m0m00*m0*m0TEGChol
|
MIMAT0010313
*0*5m0*0*0
|
hsa-miR-764
5′Pm05f05f005f005f05f0f05f05f00f05m0*0*0
m0m0m000m000m0m0m00*0*m0TEGChol
|
MIMAT0010367
*5m0*5m0*0*0
|
hsa-miR-765
5′Pm00005f05f05f005f005f05f05f00*5m0*0*
m0m000m0m0m000m0m0m0*m0*m0TEGChol
|
MIMAT0003945
0*f0*5m0*0
|
hsa-miR-766
5′Pm05f005f05f05f000f05f05f05f0f00*0*0*0
m0m0000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0003888
*f0*5m0*0
|
hsa-miR-767-3p
5′Pm00005f00005f0000f00*0*0*0*5m0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG
|
MIMAT0003883
Chol
|
hsa-miR-767-5p
5′Pm00005f05f000f005f05f0f00*0*0*0*f0*5
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0003882
m0*0
|
hsa-miR-769-3p
5′Pm00005f00005f05f005f0f00*5m0*0*5m0
m0m00m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003887
*f0*0*0
|
hsa-miR-769-5p
5′Pm00005f00005f005f05f05f00*0*5m0*0*f
m0m000m0m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0003886
0*0*0
|
hsa-miR-770-5p
5′Pm05f0005f0000f005f00f00*0*0*5m0*5m
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0003948
0*5m0*0
|
hsa-miR-802
5′Pm05f05f00f05f05f00f0000f00*0*5m0*0*f
m0m0m0m0m0m0m000m0m00*0*m0TEGChol
|
MIMAT0004185
0*5m0*0
|
hsa-miR-873
5′Pm05f0005f05f05f05f05f05f05f00f00*0*5m
m0m0m000m0000m0m0m0*0*m0TEGChol
|
MIMAT0004953
0*5m0***
|
hsa-miR-874
5′Pm005f05f05f05f05f05f0f005f005f00*0*5m
m0m0m00m0m0000m000*m0*m0TEGChol
|
MIMAT0004911
0*0*5m0*5m0*0
|
hsa-miR-875-3p
5′Pm05f05f00f0005f05f05f05f00f05m0*5m0*
m0m0m000m00m0m0m0m00*0*m0TEGChol
|
MIMAT0004923
5m0*5m0*f0*5m0*
|
hsa-miR-875-5p
5′Pm005f00f05f005f05f05f05f05f05f00*5m0*
m0m0000m00m00m0m00*m0*m0TEGChol
|
MIMAT0004922
5m0*5m0*5m0*0*0
|
hsa-miR-876-3p
5′Pm05f05f005f0005f0f0005f05f05m0*5m0*
m0m00m0m0m00m0m0m0m00*0*m0TEGChol
|
MIMAT0004925
5m0*5m0*f0*0*0
|
hsa-miR-876-5p
5′Pm05f05f005f05f05f05f0f0005f0f05m0*5m
m0m00m0m0m0000m0m00*0*m0TEGChol
|
MIMAT0004924
0*5m0*5m0*5m0*5m0*0
|
hsa-miR-877
5′Pm05f005f05f05f05f00f05f05f05f0f00*0*0*
m0m0000m0m000m00m0*0*m0TEGChol
|
MIMAT0004949
0*f0*5m0*0
|
hsa-miR-877*
5′Pm00005f005f00f0000f00*5m0*5m0*0*f0
m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol
|
MIMAT0004950
*0*0
|
hsa-miR-885-3p
5′Pm05f05f05f05f05f05f005f0000f00*5m0*5
m0m0m0m0m0m0m000m000*0*m0TEGChol
|
MIMAT0004948
m0*0*5m0*5m0*0
|
hsa-miR-885-5p
5′Pm005f00f0005f0f0000f00*5m0*0*5m0*5
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0004947
m0*0*0
|
hsa-miR-887
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004951
*5m0*0*f0*0*0
|
hsa-miR-888
5′Pm05f05f05f05f0000f0000f00*5m0*0*5m0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0004916
*5m0*5m0*0
|
hsa-miR-888*
5′Pm0000f05f000f005f005f05m0*0*5m0*0*f
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0004917
0*5m0*0
|
hsa-miR-889
5′Pm05f05f05f0f0005f05f0000f05m0*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol
|
MIMAT0004921
m0*5m0*f0*5m0*
|
hsa-miR-890
5′Pm005f00f0005f0f05f05f00f05m0*0*5m0*
m0m0m000m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0004912
5m0*f0*5m0*0
|
hsa-miR-891a
5′Pm05f005f0f05f005f0f05f000f00*5m0*0*5
m0m0m0m00m00m00m00m0*0*m0TEGChol
|
MIMAT0004902
m0*5m0*5m0*0
|
hsa-miR-891b
5′Pm0005f05f05f0005f05f05f00f05m0*0*0*0
m0m0m000m0m0m00m00m0*m0*m0TEGChol
|
MIMAT0004913
*f0*0*0
|
hsa-miR-892a
5′Pm0005f0f05f05f00f05f05f05f05f05m0*5m
m0m0000m0m000m00m0*m0*m0TEGChol
|
MIMAT0004907
0*0*5m0*5m0*0*0
|
hsa-miR-892b
5′Pm005f00f005f00f05f000f05m0*5m0*5m0
m0m0m0m00m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0004918
*5m0*f0*0*0
|
hsa-miR-9
5′Pm05f000f05f05f05f0f05f05f05f0f00*0*5m
m0m0000m0000m0m0m0*0*m0TEGChol
|
MIMAT0000441
0*5m0*5m0*0*0
|
hsa-miR-9*
5′Pm05f005f0f05f000f05f005f0f05m0*0*5m0
m0m00m00m0m0m00m00m0*0*m0TEGChol
|
MIMAT0000442
*0*5m0*0*0
|
hsa-miR-920
5′Pm05f05f00f0000f05f05f00f00*0*5m0*5m
m0m0m000m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0004970
0*5m0*5m0*0
|
hsa-miR-921
5′Pm005f05f0f05f05f05f0f005f05f05f00*0*5
m0m000m0m0000m000*m0*m0TEGChol
|
MIMAT0004971
m0*5m0*5m0*0*0
|
hsa-miR-922
5′Pm05f05f05f05f05f000f05f005f0f05m0*0*5
m0m00m00m0m0m00m000*0*m0TEGChol
|
MIMAT0004972
m0*0*f0*5m0*0
|
hsa-miR-924
5′Pm0000f0005f05f05f05f00f00*0*5m0*5m0
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0004974
*5m0*5m0*0
|
hsa-miR-92a
5′Pm005f005f0005f0f05f05f005f00*5m0*5m
m0m0m000m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0000092
0*5m0*5m0*5m0*0
|
hsa-miR-92a-1*
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004507
*5m0*0*f0*0*0
|
hsa-miR-92a-2*
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol
|
MIMAT0004508
m0*5m0*5m0*0
|
hsa-miR-92b
5′Pm005f00f05f005f0f0005f0f00*5m0*0*5m
m0m00m0m0m00m00m0m00*m0*m0TEGChol
|
MIMAT0003218
0*f0*5m0*0
|
hsa-miR-92b*
5′Pm05f05f00f00005f005f05f0f00*0*0*5m0*
m0m000m0m0m0m0m0m0m00*0*m0TEGChol
|
MIMAT0004792
5m0*0*0
|
hsa-miR-93
5′Pm00005f05f0005f005f00f00*5m0*0*0*f0
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol
|
MIMAT0000093
*5m0*0
|
hsa-miR-93*
5′Pm05f000f00005f0000f00*0*0*5m0*f0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol
|
MIMAT0004509
|
hsa-miR-933
5′Pm05f05f00f05f05f05f05f05f000f00*5m0*5
m0m0m0m00m0000m0m00*0*m0TEGChol
|
MIMAT0004976
m0*5m0*5m0*0*0
|
hsa-miR-934
5′Pm005f05f05f005f05f0f0005f05f00*0*5m0
m0m00m0m0m000m0m000*m0*m0TEGChol
|
MIMAT0004977
*0*5m0*5m0*0
|
hsa-miR-935
5′Pm0005f0f05f05f005f05f005f0f05m0*0*5m
m0m00m00m0m000m00m0*m0*m0TEGChol
|
MIMAT0004978
0*5m0*f0*5m0*0
|
hsa-miR-936
5′Pm0000f05f005f05f005f05f05f00*5m0*0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004979
m0*f0*0*0
|
hsa-miR-937
5′Pm05f05f05f05f05f005f05f05f000f05m0*0*
m0m0m0m00m00m00m000*0*m0TEGChol
|
MIMAT0004980
5m0*5m0*f0**
|
hsa-miR-938
5′Pm05f000f05f005f0f0000f05m0*5m0*0*0*
m0m0m0m0m0m00m00m0m0m0*0*m0TEGChol
|
MIMAT0004981
f0*0*0
|
hsa-miR-939
5′Pm005f005f05f05f05f0f005f05f05f05m0*0*
m0m000m0m0000m0m00*m0*m0TEGChol
|
MIMAT0004982
5m0*5m0*f0*0*0
|
hsa-miR-940
5′Pm0005f0f005f005f005f05f0f05m0*5m0*0
m0m000m0m0m00m0m00m0*m0*m0TEGChol
|
MIMAT0004983
*0*5m0*5m0*0
|
hsa-miR-941
5′Pm005f00f0005f0f0000f05m0*0*0*5m0*f0
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol
|
MIMAT0004984
*0*0
|
hsa-miR-942
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol
|
MIMAT0004985
m0*5m0*5m0*5m0*0
|
hsa-miR-943
5′Pm0000f05f005f0f05f05f05f0f00*5m0*0*5
m0m0000m00m00m0m0m0*m0*m0TEGChol
|
MIMAT0004986
m0*f0*0*0
|
hsa-miR-944
5′Pm005f00f05f05f05f05f0000f00*0*0*0*5m
m0m0m0m0m0m0000m0m00*m0*m0TEGChol
|
MIMAT0004987
0*0*0
|
hsa-miR-95
5′Pm00005f0000f05f000f05m0*5m0*5m0*0
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0000094
*f0*5m0*0
|
hsa-miR-96
5′Pm0005f0f0005f0f05f0005f00*5m0*0*0*5
m0m0m0m00m00m0m0m00m0*m0*m0TEGChol
|
MIMAT0000095
m0*5m0*0
|
hsa-miR-96*
5′Pm005f00f005f005f00005f00*5m0*5m0*0
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0004510
*f0*5m0*0
|
hsa-miR-98
5′Pm0000f005f05f05f05f000f00*0*0*0*5m0
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol
|
MIMAT0000096
*5m0*0
|
hsa-miR-99a
5′Pm005f00f005f00f05f005f05f05m0*0*5m0
m0m00m00m0m00m0m0m00*m0*m0TEGChol
|
MIMAT0000097
*5m0*f0*0*0
|
hsa-miR-99a*
5′Pm005f05f05f05f000f05f005f05f05m0*5m0
m0m00m00m0m0m00m000*m0*m0TEGChol
|
MIMAT0004511
*5m0*5m0*5m0*5m0*0
|
hsa-miR-99b
5′Pm0000f0005f0f05f005f0f00*5m0*0*0*f0*
m0m00m00m00m0m0m0m0m0*m0*m0TEGChol
|
MIMAT0000689
5m0*0
|
hsa-miR-99b*
5′Pm00005f05f05f05f0f0000f05m0*0*5m0*5
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol
|
MIMAT0004678
m0*f0*0*0
|
|
Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
EQUIVALENTS
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
All references, including patent documents, disclosed herein are incorporated by reference in their entirety. This application incorporates by reference the entire contents, including all the drawings and all parts of the specification.