U.S. patent application Ser. No. 09/198,960, Fitzgerald et al., filed Nov. 24, 1998. |
U.S. patent application Ser. No. 09/764,182, Fitzgerald, filed Jan. 17, 2001. |
U.S. patent applictaion Ser. No. 09/764,177, Fitzgerald, filed Jan. 17, 2001. |
“CW Operation of a 1.3μm Strained Quantum Well Laser on a Graded InGaAs Buffer with a GaAs Substrate”; by Uchida et al.; Fujitsu Laboratories Ltd.; Japan; Publication date May 9, 1995; pp. 22-25. |
Krishniamoorthy et al., “Application of Critical Compositional Difference: Concept to the Growth of Low Dislocation Density InGaAs on GaAs,” J.Appl. Phys., vol. 72 No. 5, (Sep. 1, 1992) pp. 1752-1757. |
Chang et al., “Strain Relaxation of Compositionally Graded InGaAs Buffer Layers for Modulation Doped InGaAs Heterostructures,” Appl. Phys. Lett., vol. 60 No. 9, (Mar. 2, 1992): pp. 1129-1131. |
Lord et al., “Graded Buffer Layers for Molecular Beam Epitaxial Growth of High In Content InGaAs on GaAs for Optoelectronics,” Mat. Res. Soc. Symp. Proc., vol. 281, (1993) pp. 221-225. |
Molina et al., “Strain Relief in Linearly Composition Buffer Layers: A Design Scheme to Grow Dislocation-Free and Unstrained Epilayers,” Appl. Phys. Lett., vol. 65 No. 19, (Nov. 7, 1994) pp. 2460-2462. |
Goorsky et al., “Structural Properties of Highly Mismatched InGaAs-based devices grown by Molecular Beam Epitaxy on GaAs Substrates,” J. Vac. Sci. Technol., (Mar./Apr. 1994) pp. 1034-1037. |
Molina et al., “Dislocation Distribution in Graded Composition InGaAs Layers,” Mat. Res. Soc. Symp. Proc., vol. 325, (1994) pp. 223-228. |
Ferrari et al., “Mechanisms of Strain Release in Molecular Beam Epitaxy Grown InGaAs/GaAs Buffer Heterostructures,” Materials Science and Engineering, (1994) pp. 510-514. |
Sigle et al. “Strain Relaxation in Graded InGaAs and InP Buffer Layers on GaAs (001),” Scanning Microscopy, vol. 8 No. 4. (1994) pp. 897-904. |
Goldman et al., “Strain Relaxation in Compositionally Graded in GaAs/GaAs Heterostructures,” Scanning Microscopy, vol. 8 No. 1, (1994) pp. 905-912. |
Eldredge et al., “Effect of Substrate Miscut on the Structural Properties of InGaAs Linear Graded Buffer Layers Grown by Molecular-Beam Epitaxy on GaAs,” J. Vac. Sci. Technol., vol. 13 No. 2, (Mar./Apr. 1995) pp. 689-691. |
Rammohan et al., “Study of m-scale Spatial Variations in Strain of a Compositionally Step-Graded InGaAs/GaAs (001) Heterostructure,” Appl. Phys. Lett., vol. 66 No. 7, (Feb. 13, 1995) pp. 869-871. |
Goldman et al., “Effects of Substrate Misorientation Direction on Strain Relaxation at InGaAs/GaAs (001) Interfaces,” Mat. Res. Soc. Symp. Proc., vol. 379, (1995) pp. 21-26. |
Lee et al., “Reduction of Defects in Highly Lattice Mismatched InGaAs Grown on GaAs by MOCVD,” Mat. Res. Soc. Symp., vol. 355, (1995) pp. 649-654. |
Goldman et al., “Correlation of Buffer Strain Relaxation Modes with Transport Properties of Two Dimensional Electron Gases,” J. Appl. Phys., vol. 80 No. 12, (Dec. 15, 1996) pp. 6849-6854. |
Chyi et al., “Material Properties of Compositionally Grades in GaAs and InA1As Epilayers Grown on GaAs Substrates,” J. Appl. Phys., vol. 79 No. 11, (Jun. 1, 1996) pp. 8367-8370. |
Lee et al., “Optical Properties of InGaAs Linear Graded Buffer Layers on GaAs Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett., (May 20, 1996). |
Valtuena et al., “Influence of the Surface Morphology on the Relaxation of Low-Strained InxGa1−xAs Linear Buffer Structures” Journal of Crystal Growth (1997) pp. 281-291. |
Bulsara et al., “Relaxed InxGa1−xAs Graded Buffers Grown With Organometallic Vapor Phase Epitaxy on GaAs” American Institute of Physics (1998) vol. 72 No. 13 pp. 1608-1610. |
Knall et al., “The Use of Graded InGaAs Layers and Patterned Substrates To Remove Threading Dislocations From GaAs on Si” J. Appl. Phys. Sep. 1, 1994, pp. 2697-2702. |
Joshi et al., “Monolithic InGaAs-on-silicon Short Wave Infrared Detector Arrays” SPIE vol. 2999, pp. 211-224. |
Steve M. Ting, “Monolithic Integration of III-V Semiconductor Materials and Devices on Silicon” Department of Materials Science and Engineering (Apr. 30, 1999) pp. 3-152. |
Mayank T. Bulsara, “Materials Issues With the Integration of Lattice-Mismatched InxGa1−xAs Devices on GaAs”, Massachusetts Institute of Technology (1993) pp. 1-178. |
Uchida et al., “1.3 μm Strained Quantum Well Laser on a Graded InGaAs Buffer With a GaAs Substrate”, Journal of Electronic Materials, vol. 25, No. 4, 1996, pp. 581-584. |
International Search Report for related International Patent Application No. PCT/US02/02334, dated Nov. 26,2002, 3 pages. |