Described herein are systems and methods of fabricating dual damascene interconnects using a flared trench opening. In the following description, various aspects of the illustrative implementations will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative implementations. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative implementations.
Various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the present invention, however, the order of description should not be construed to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
Implementations of the invention enable substantially void-free copper interconnects to be formed at the sub-50 nanometer (nm) level with aspect ratios greater than 5:1. This is achieved using an interconnect fabrication process that implements a dual damascene technique having flared trench openings. The flared trench openings substantially reduce or eliminate trench overhang, thereby allowing the trench to be filled in a substantially void-free manner. This is due in part to the flared trench openings providing a larger opening for the copper metal to enter during the electroplating deposition process. The use of flared trench openings also provides robust trench sidewall seed coverage.
In some implementations of the invention, the flared trench openings may be fabricated by applying a plasma treatment during the photolithography process to form a flared photoresist profile. The flared photoresist profile may then be transferred to an underlying interlayer dielectric (ILD) during an etching process. In another implementation of the invention, the flared trench openings may be fabricated by depositing a fluorine-based material atop a patterned photoresist layer to create a flared profile that can also be transferred to the underlying ILD.
For reference,
After the adhesion layer 110 is formed, the conventional damascene process of
First, a semiconductor substrate is provided that includes a dielectric layer (process 302 of
The dielectric layer provides insulation between electrical components. As semiconductor device dimensions decrease, electrical components such as interconnects must be formed closer together. This increases the capacitance between components with the resulting interference and crosstalk degrading device performance. To reduce the interference and crosstalk, dielectric materials with lower dielectric constants (i.e., low-k dielectric materials) are used to provide insulation between electrical components. Common dielectric materials that may be used in the dielectric layer include, but are not limited to, oxides such as silicon dioxide (SiO2) and carbon doped oxide (CDO), organic polymers such as perfluorocyclobutane (PFCB), or fluorosilicate glass (FSG).
Next, a layer of photoresist material is deposited atop the dielectric layer (process 304). In some implementations, a spin-on deposition (SOD) process may be used to deposit the photoresist material. Many conventional photoresist materials may be used in implementations of the invention, as are well known by those of skill in the art.
The layer of photoresist material is then patterned using conventional photolithography techniques to form a photoresist mask (process 306). As is well known in the art, the deposited photoresist layer may be patterned by exposing the photoresist material to ultraviolet radiation through a patterned optical mask, baking or hardening the photoresist material, and developing the photoresist material. The pattern in the optical mask is transferred to the photoresist material during the exposure step. Portions of the photoresist material are removed during the development step. The photoresist structures that remain after development function as a mask that defines a trench profile that can be transferred into the underlying dielectric layer using an etching process.
A plasma is then applied to the photoresist mask to round off the top edges of the photoresist structures, thereby modifying the trench profile to define trenches with outwardly flared trench openings (process 308). In some implementations, the plasma species used may include, but is not limited to, argon (Ar), forming gas (e.g., 5% H2 in N2), phosphorous (P), nitrogen (N), carbon (C), or boron (B). The plasma introduces an energetic species that tends to etch portions of the photoresist material to round off the previously square edges at the top of each photoresist structure. The process parameters may be adjusted to induce the desired modification to the photoresist material, such as increasing or decreasing the degree to which the trench openings flare outward. These process parameters include, but are not limited to, the plasma pulse duration, the plasma power modulation, the entering plasma gases, reactor pressure, and temperature. For instance, in some implementations, an RF energy source may be applied at a power that ranges from 300 Watts (W) to 1200 W and at a frequency of 13.56 MHz, 27 Mhz, or 60 MHz. The reactor pressure may range from around 150 mTorr to around 500 mTorr.
Next, a dry etch chemistry is applied to the photoresist mask and the portions of the dielectric layer left exposed by the photoresist mask (process 310). As will be appreciated by those of skill in the art, conventional dry etch chemistries for etching the photoresist mask and the dielectric materials may be used here. In some implementations of the invention, the dry etch chemistry may consist of a plasma etch.
In accordance with implementations of the invention, the plasma etch of the dielectric layer is configured so as to transfer the flared trench profile of the photoresist mask into the dielectric layer. This is accomplished by choosing plasma conditions such that the direction of the ion bombardment and resulting physical sputtering of the dielectric is determined by collisions with the sidewalls in the flared trench profile of the overlying photoresist mask. In this case, rather than only impinging on the underlying exposed dielectric layer with an orthogonal trajectory, as is the ideal case with vertical sidewalls in the photoresist, incoming ions are scattered off the flared surface of the photoresist mask causing them to hit the dielectric layer at different angles. Ion scattering off the flared photoresist surface leads to the transfer of the flared trench profile into the underlying dielectric layer. The trenches formed in the dielectric layer therefore have flared trench openings.
In implementations of the invention, the plasma etch may utilize gases such as CF4, CF3H, CF2H2, C4F8, C4F6, O2, Ar, He, Xe, N2, and CO. Process parameters for some implementations of the plasma etch may include gas flows between 2 sccm and 1000 sccm, pressures between 20 mTorr and 100 mTorr, and an RF energy between 500 W and 4500 W that may be applied at various combinations of frequencies (e.g., 2, 13.56, 27 and 60 MHz) to the top and/or bottom electrodes. Process parameters other than these may be used in alternate implementations. Following the plasma etch, the wafer may be cleaned either by a plasma ashing process or a wet chemistry clean, as is known in the art, to remove any remaining photoresist.
Once the trenches have been formed with flared trench openings, metal may be deposited to form the interconnect structure. First, a barrier layer and an adhesion layer are deposited into the trenches (process 312). The barrier layer prevents copper in the interconnect from diffusing into the dielectric layer while the adhesion layer enables copper metal to adhere to the barrier layer. Both layers are generally deposited using a PVD process, such as a sputtering process. The barrier layer is generally formed using a material such as tantalum nitride (TaN) and may be around 0.5 Angstroms (Å) to 10 nanometers (nm) thick, although it is generally around 5 nm thick. The adhesion layer is generally formed using a metal such as tantalum (Ta) or ruthenium (Ru) and is generally around 2 nm to 10 nm thick. Alternate metals that may be used in the barrier layer and/or the adhesion layer include, but are not limited to, tungsten nitride (WN), titanium nitride (TiN), titanium (Ti), tungsten (W), molybdenum (Mo), molybdenum nitride (MoN), niobium (Nb), niobium nitride (NbN), and iridium (Ir).
After the barrier and adhesion layers are formed, two separate deposition processes are used to fill the trench with copper metal. The first deposition process is a PVD process that forms a non-conformal copper seed layer (process 314). The flared trench openings prevent trench overhang from occurring during the copper seed layer deposition, therefore, the copper seed layer does not pinch off the trenches. The flared trench openings allow PVD process to deposit the copper seed layer in a robust manner with good sidewall coverage. Metals that may be used as a copper seed layer include, but are not limited to, copper, cobalt, nickel, silver, gold, and Ru.
The second deposition process for filling the trench with copper is an electroplating process that deposits a bulk copper layer onto the copper seed layer (process 316). The copper seed layer functions as a catalyst for the copper electroplating process. The flared trench openings allow the bulk copper layer to fill the trench in a substantially void-free manner without issues such as trench overhang. In implementations of the invention, the bulk copper layer may have a low impurities content (e.g., less than 100 ppm) and an overburden thickness of greater than 0.2 micrometers (μm). Alternate deposition methods may be used to deposit the bulk copper layer, such as electroless plating, PVD, chemical vapor deposition (CVD), or atomic layer deposition (ALD).
After the trench is filled, the newly formed copper interconnect may undergo an optional annealing process (process 318). Annealing of the deposited copper metal allows large copper grains to be grown. This is particularly useful for sub-50 nm trenches because a large number of grain boundaries can have a significant detrimental impact on electrical resistance for copper interconnects this size. Growing larger copper grains reduces the number of grain boundaries, which in turn lowers the resistance of the copper interconnect. In implementations of the invention, the copper interconnect may be annealed at a temperature between around 100° C. and 400° C. for a time period between around 15 seconds and 5 minutes.
After the annealing process, the copper interconnect may undergo a chemical mechanical polishing (CMP) process to remove excess copper metal, barrier layer metal, and adhesion layer metal (process 320). The CMP process may also remove the flared trench opening, thereby completing the fabrication of a copper interconnect in accordance with implementations of the invention.
A semiconductor substrate is again provided that includes a dielectric layer (process 502 of
Next, a layer of photoresist material is deposited atop the dielectric layer (process 504) and patterned using conventional photolithography techniques to form a photoresist mask (process 506).
In accordance with this implementation of the invention, a conformal fluoropolymer layer is then deposited over the photoresist structures using a plasma process (process 508). The process parameters for the fluoropolymer deposition are chosen such that the fluoropolymer layer forms rounded peaks over the photoresist structures. A pair of adjacent rounded peaks then defines an outwardly flared trench opening, similar to the etched photoresist structures shown in
In implementations of the invention, the plasma-deposited conformal layer of fluoropolymer may be deposited through either a single deposition step or a sequence of alternating deposition and etch-back steps. The deposition of the fluoropolymer may occur in a semiconductor grade dry-etch chamber at a pressure between around 20 and around 300 mTorr. A mixture of deposition gases may be used to deposit the fluoropolymer layer. This mixture of deposition gases may include one or more of CH3F, CH2F2, CH3F, CF4, C4F6, C4F8, H2, O2, Ar, He, Xe, N2, and CO. The deposition gases may be introduced at flow rates that range from 0-2000 standard cubic centimeters per minute (SCCM). As this is a plasma-deposition process, the RF power used during deposition may range from around 100 W to around 800 W. The RF power may be applied at a variety of frequencies and to either a top and/or a bottom electrode.
If an etch-back process is used, one or more etch-back gases may be applied to the deposited fluoropolymer layer to form rounded peaks. In implementations of the invention, a mixture of etch-back gases may be used that includes one or more of CF4, CF3H, C4F8, O2, Ar, He, Xe, N2, and CO. The flow rates for the etch-back gases may range from 0-2000 SCCM. The RF power applied during the etch-back process may range from around 100 W to around 2000 W and the RF power may be applied at a variety of frequencies and to either a top and/or a bottom electrode.
In various implementations of the invention, multiple cycles of a fluoropolymer deposition followed by an etch-back step may be used. In some implementations of the invention, up to 20 such cycles may be used. Alternately, the etch-back may be unnecessary and only the fluoropolymer deposition process may be used.
Next, a dry etch chemistry is applied to transfer the trench profile defined in the fluroropolymer layer into the underlying dielectric layer (process 510). As will be appreciated by those of skill in the art, conventional dry etch chemistries for etching the fluroropolymer layer and the dielectric material may be used, such as the plasma etching processes described above. The trenches formed in the dielectric layer therefore have flared trench openings in accordance with implementations of the invention. Following the dry etch, the wafer may be cleaned either by a plasma ashing process or a wet chemistry clean, as is known in the art, to remove any remaining fluoropolymer.
Once the trenches have been formed with flared trench openings, metal may be deposited to form the interconnect structure. First, a barrier layer and an adhesion layer are deposited into the trenches using a sputtering process (process 512). The barrier layer and adhesion layer may be formed using the barrier/adhesion metals mentioned above.
After the barrier and adhesion layers are formed, two separate deposition processes are used to fill the trench with copper metal. The first deposition process is a PVD process that forms a non-conformal copper seed layer (process 514). The second deposition process is an electroplating process that deposits a bulk copper layer onto the copper seed layer (process 516). The flared trench openings prevent trench overhang from occurring during the copper deposition, therefore, neither the copper seed layer nor the bulk copper layer pinch off the trenches. The flared trench openings therefore allow the copper layer to fill the trench in a substantially void-free manner. In implementations of the invention, the bulk copper layer may have a low impurities content (e.g., less than 100 ppm) and an overburden thickness of greater than 0.2 micrometers (μm).
After the trench is filled, the newly formed copper interconnect may undergo an optional annealing process (process 518). As explained above, annealing of the deposited copper metal allows larger copper grains to be grown that lowers the resistance of the copper interconnect. In implementations of the invention, the copper interconnect may be annealed at a temperature between around 100° C. and 400° C. for a time period between around 15 seconds and 5 minutes.
After the annealing process, the copper interconnect may undergo a CMP process to remove excess copper metal, barrier layer metal, and adhesion layer metal (process 520). The CMP process may also remove the flared trench opening, thereby completing the fabrication of a copper interconnect in accordance with implementations of the invention.
In further implementations of the invention, materials other than fluoropolymers may be deposited over photoresist structures to define a flared trench profile. In some implementations, a sacrificial light-absorbing material (SLAM) may be used in lieu of a fluoropolymer. Examples of SLAMs that may be used include, but are not limited to, conventional spin-on glass materials that are well known in the art. In some instances, the etching of the SLAM layer may be modified to define the flared trench profile required for implementations of the invention.
In yet another implementation of the invention, a trench profile may be defined in which the trenches are interconnected at their openings. In some implementations, this interconnected trench profile may be defined in a material layer (e.g., the fluoropolymer layer or the SLAM layer) and then transferred into the underlying dielectric layer during a subsequent etching process. In other implementations, conventional or flared trenches may be defined in the dielectric layer and an etching process may be used to interconnect the trenches. Then, after the metals are deposited and the copper interconnects are formed, a CMP process may be used to remove the interconnected top portion of the trenches to isolate the trenches and form individual copper interconnects.
Accordingly, methods have been provided for forming trenches with flared trench openings that may be used in a damascene process to form copper interconnects. The use of flared trench openings substantially reduces or eliminates the occurrence of trench overhang that can lead to voids within the copper interconnects. The methods provided herein therefore enable void-free filling of sub-50 nm interconnect features using PVD copper seed layers and electroplated bulk copper layers. This extends the use of PVD and electroplating to the sub-50 nm level.
The above description of illustrated implementations of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific implementations of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications may be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific implementations disclosed in the specification and the claims. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.