Sandwich of impact resistant material

Information

  • Patent Grant
  • 8668803
  • Patent Number
    8,668,803
  • Date Filed
    Tuesday, December 14, 2010
    14 years ago
  • Date Issued
    Tuesday, March 11, 2014
    10 years ago
Abstract
A sandwich of impact resistant material comprising: a first tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the first tile and the first tile comprises a hardness value; a second tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the second tile and the second tile comprises a hardness value; and a third tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the third tile and the third tile comprises a hardness value, wherein the second tile is coupled in between the first tile and the third tile, and the second tile comprises a hardness value greater than the first tile and the second tile.
Description
FIELD OF THE INVENTION

The present invention relates to the field of materials processing. More specifically, the present invention relates to the use of powders to form impact resistant materials.


BACKGROUND OF THE INVENTION

The purpose of body armor is to stop a high velocity projectile. Currently, the best known method of stopping a projectile is to have it fly against a plate that comprises a tile and a backing material.


One method that is typically used in the prior art to form the tile is reaction bonding. In one example, micron-sized silicon carbide or boron carbide powder is mixed with silicon powder and carbon black powder. The mixture is then put in a form, then placed in a high temperature oven, where the silicon is melted in order to have the silicon react at high temperature with the carbon to form silicon carbide and surround the silicon carbide or boron carbide particles with the silicon carbide particles. This concept is similar to the making of concrete.


Another method that is typically used in the prior art is the standard sintering of silicon carbide. Micron-sized silicon carbide particles are sintered together under high temperature to form a solid tile of about 99% density.


Silicon carbide and boron carbide are typically used because they have what is known in the industry as high hardness, meaning they are very good at stopping projectiles. However, they exhibit low fracture toughness, meaning that they are extremely brittle and are not good at resisting fracture when they have a crack. Therefore, although tiles made from these materials can slow down and stop a high velocity projectile, such as a bullet, they often shatter in the process and are only good for a single hit.


It is desirable to form a material that is harder, but that also is higher in fracture toughness. However, that concept is a contradiction is terms. Currently, the higher the fracture toughness of a material, the more that material becomes metal-like, which means less brittle and more ductile. The higher the hardness of the material, the lower the ductility and the higher the brittleness. FIG. 1 illustrates a graph that plots the fracture toughness versus the hardness (measured in hardness Vickers) of different materials. As can be seen, aluminum comprises a high fracture toughness of 10, but a low hardness value of 130. In comparison, a material that is formed from micron-sized silicon carbide or boron carbide powder that has been put through a conventional sintering process exhibits a high hardness value of 2000, but a low fracture toughness value of between 2 and 4. The problem of the prior art is evident by the trend line, which supports the concept that the harder a material becomes, the lower the fracture toughness it comprises, and the higher fracture toughness a material has, the softer that material becomes.


SUMMARY OF THE INVENTION

It is an object of the present invention to buck the prior art fracture toughness/hardness trend line and provide an impact resistant material that exhibits both a higher fracture toughness and a higher hardness.


While the present invention is particularly useful in forming body armor, it is contemplated that it may have a variety of other applications as well, all of which are within the scope of the present invention.


In one aspect of the present invention, a sandwich of impact resistant material is provided. The sandwich of impact resistant material comprises a first tile, a second tile, and a third tile coupled together. The first tile comprises a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the first tile. The first tile comprises a hardness value. The second tile comprises a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the second tile. The second tile comprises a hardness value. The third tile comprises a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the third tile. The third tile comprises a hardness value. The second tile is coupled in between the first tile and the third tile. The second tile comprises a hardness value greater than the first tile and the third tile.


In some embodiments, the hardness value of the first tile is between 1000 and 1500 HV. In some embodiments, the hardness value of the second tile is between 2500 and 3500 HV. In some embodiments, the hardness value of the third tile is between 1000 and 1500 HV.


In some embodiments, the nano-particles that form first tile and the third tile comprise silicon nitride nano-particles. In some embodiments, the nano-particles that form the second tile comprise tungsten carbide nano-particles, tantalum carbide nano-particles, or titanium carbide nano-particles.


In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 1 to 10 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 10 to 50 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 50 to 100 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 100 to 250 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 250 to 500 nanometers.


In some embodiments, the second tile is coupled between the first tile and the third tile via adhesive layers.


In some embodiments, the sandwich of impact resistant material further comprises a ductile backing layer coupled to the third tile on a side opposite the second tile. In some embodiments, the ductile backing layer comprises an adhesive layer. In some embodiments, the ductile backing layer comprises a layer of polyethylene fibers and an adhesive material.


In another aspect of the present invention, a method of making a sandwich of impact resistant material is provided. The method comprises: providing a first tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the first tile and the first tile comprises a hardness value; providing a second tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the second tile and the second tile comprises a hardness value; providing a third tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the third tile and the third tile comprises a hardness value; and coupling the second tile in between the first tile and the third tile, wherein the second tile comprises a hardness value greater than the first tile and the third tile.


In some embodiments, the hardness value of the first tile is between 1000 and 1500 HV. In some embodiments, the hardness value of the second tile is between 2500 and 3500 HV. In some embodiments, the hardness value of the third tile is between 1000 and 1500 HV.


In some embodiments, the nano-particles that form first tile and the third tile comprise silicon nitride nano-particles. In some embodiments, the nano-particles that form the second tile comprise tungsten carbide nano-particles, tantalum carbide nano-particles, or titanium carbide nano-particles.


In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 1 to 10 nanometers. In some embodiments, the nano particles of the first tile, the second tile, and the third tile comprise an average grain size of 10 to 50 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 50 to 100 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 100 to 250 nanometers. In some embodiments, the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 250 to 500 nanometers.


In some embodiments, the second tile is coupled between the first tile and the third tile via adhesive layers. In some embodiments, coupling the second tile in between the first tile and the third tile comprises performing a spark plasma sintering process on the nano-particles of the first tile, the second tile, and the third tile.


In some embodiments, a ductile backing layer is coupled to the third tile on a side opposite the second tile. In some embodiments, the ductile backing layer comprises an adhesive layer. In some embodiments, the ductile backing layer comprises a layer of polyethylene fibers and an adhesive material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a graph that plots the fracture toughness versus the hardness of different materials.



FIG. 2 illustrates one embodiment of a method of making an impact resistant material in accordance with the principles of the present invention.



FIG. 3A illustrates one embodiment of an impact resistant plate with an SPS-formed micron-structured tile in accordance with the principles of the present invention.



FIG. 3B illustrates another embodiment of an impact resistant plate with an SPS-formed micron-structured tile in accordance with the principles of the present invention.



FIG. 4A illustrates one embodiment of an impact resistant plate with an SPS-formed nano-structured tile in accordance with the principles of the present invention.



FIG. 4B illustrates another embodiment of an impact resistant plate with an SPS-formed nano-structured tile in accordance with the principles of the present invention.



FIG. 5A illustrates one embodiment of an impact resistant plate with three layers of SPS-formed nano-structured tiles in accordance with the principles of the present invention.



FIG. 5B illustrates another embodiment of an impact resistant plate with three layers of SPS-formed nano-structured tiles in accordance with the principles of the present invention.



FIG. 6 illustrates one embodiment of a ceramic manufacture with improved fracture toughness in accordance with the principles of the present invention.



FIG. 7 illustrates one embodiment of a method of making an enhanced ceramic material in accordance with the principles of the present invention.



FIG. 8 illustrates one embodiment of a particle production system in accordance with the principles of the present invention.



FIG. 9 is an illustration of one embodiment of making an enhanced ceramic material in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.


This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders (nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.



FIG. 2 illustrates one embodiment of a method 200 of making an impact resistant material in accordance with the principles of the present invention.


At step 210, a powder is provided. In some embodiments, the powder comprises micron-sized particles. In some embodiments, the powder comprises an average grain size of 1 to 10 microns. In some embodiments, the powder comprises nano-particles. In some embodiments, the powder comprises an average grain size of 1 to 10 nanometers. In some embodiments, the powder comprises an average grain size of 10 to 50 nanometers. In some embodiments, the powder comprises an average grain size of 50 to 100 nanometers. In some embodiments, the powder comprises an average grain size of 100 to 250 nanometers. In some embodiments, the powder comprises an average grain size of 250 to 500 nanometers. In some embodiments, the powder comprises ceramic particles. In some embodiments, the powder comprises silicon carbide particles. In some embodiments, the powder comprises boron carbide particles. In some embodiments, the powder comprises cermet particles. For example, in some embodiments, the powder comprises particles having a silicon carbide core and a titanium outer layer inter-diffused with the silicon carbide core, thereby forming silicon carbide-titanium cermet particles.


At step 220, a spark plasma sintering process is performed on the powder to form a tile. Test results of the present invention have shown that by using spark plasma sintering instead of a conventional sintering process, an increase in both the hardness and the fracture toughness of a material can be achieved. In standard sintering, particles grow into larger particles during the process. Spark plasma sintering preserves the particle size throughout the sintering process all the way to the completed tile. In some embodiments, the tile is configured to cover the entire chest and a large portion of the abdomen of a human being. In some embodiments, the tile is approximately 0.4 inches thick and approximately 300 millimeters long.


At step 230, a backing layer is coupled to the tile. Preferably, the backing layer is ductile. In some embodiments, the backing layer comprises an adhesive layer. In some embodiments, the backing layer comprises a layer of polyethylene fibers and an adhesive layer coupling the layer of polyethylene fibers to the tile, wherein the adhesive layer comprises a thickness of 1 to 3 millimeters.



FIGS. 3A-5B illustrate different embodiments of the present invention, with like elements being numbered alike.



FIG. 3A illustrates one embodiment of an impact resistant plate 300A comprising a tile 310 and an adhesive backing layer 320A coupled to the tile 310. Tile 310 is formed by performing a spark plasma sintering process on micron sized powder. The micron structure of the powder is maintained by using a spark plasma sintering process instead of a conventional sintering process. In some embodiments, the powder comprises an average grain size of 1 to 10 microns. In some embodiments, the powder comprises ceramic particles. In some embodiments, the powder comprises silicon carbide particles. In some embodiments, the powder comprises boron carbide particles. In some embodiments, the tile is configured to cover the entire chest and a large portion of the abdomen of a human being. In some embodiments, the tile is approximately 0.4 inches thick and approximately 300 millimeters long. In some embodiments, the adhesive backing layer 320A comprises a glue manufactured by the chemical company BASF.



FIG. 3B illustrates another embodiment of an impact resistant plate 300B comprising tile 310, an adhesive layer 320B, and a ductile backing layer 330. In some embodiments, the adhesive layer 320B comprises a glue manufactured by the chemical company BASF. The adhesive layer 320B is preferably thinner than the adhesive layer 320A shown in FIG. 3A in order to accommodate the addition of the ductile backing layer 330. In some embodiments, the adhesive layer 320B comprises a thickness of 1 to 3 millimeters. In some embodiments, the ductile backing layer 330 comprises a layer of polyethylene fibers. In some embodiments, the ductile backing layer 330 comprises Dyneema® or Kevlar®.


As seen in FIG. 1, using a spark plasma sintering process to form the tile as shown in FIGS. 3A-B instead of a conventional sintering process results in an impact resistant material with both an increased hardness value and an increased fracture toughness value over the prior art.



FIG. 4A illustrates one embodiment of an impact resistant plate 400A comprising a tile 410 and an adhesive backing layer 320A coupled to the tile 410. Tile 410 is formed by performing a spark plasma sintering process on nano-sized powder. The nano-structure of the powder is maintained by using a spark plasma sintering process instead of a conventional sintering process. In some embodiments, the powder comprises an average grain size of 1 to 10 nanometers. In some embodiments, the powder comprises an average grain size of 10 to 50 nanometers. In some embodiments, the powder comprises an average grain size of 50 to 100 nanometers. In some embodiments, the powder comprises an average grain size of 100 to 250 nanometers. In some embodiments, the powder comprises an average grain size of 250 to 500 nanometers. In some embodiments, the powder comprises ceramic particles. In some embodiments, the powder comprises silicon carbide particles. In some embodiments, the powder comprises boron carbide particles. In some embodiments, the tile is configured to cover the entire chest and a large portion of the abdomen of a human being. In some embodiments, the tile is approximately 0.4 inches thick and approximately 300 millimeters long. As mentioned above, in some embodiments, the adhesive backing layer 320A comprises a glue manufactured by the chemical company BASF.



FIG. 4B illustrates another embodiment of an impact resistant plate 400B comprising tile 410, adhesive layer 320B, and ductile backing layer 330. As mentioned above, in some embodiments, the adhesive layer 320B comprises a glue manufactured by the chemical company BASF. The adhesive layer 320B is preferably thinner than the adhesive layer 320A shown in FIG. 4A in order to accommodate the addition of the ductile backing layer 330. In some embodiments, the adhesive layer 320B comprises a thickness of 1 to 3 millimeters. In some embodiments, the ductile backing layer 330 comprises a layer of polyethylene fibers. In some embodiments, the ductile backing layer 330 comprises Dyneema® or Kevlar®.


As seen in FIG. 1, using a nano-structured tile as shown in FIGS. 4A-B instead of a micron-structured tile, in addition to using a spark plasma sintering process to form the tile instead of a conventional sintering process, results in an impact resistant material with both an increased hardness value and an increased fracture toughness value over the prior art and the embodiments of FIGS. 3A-B.



FIG. 5A illustrates one embodiment of an impact resistant plate 500A comprising hard tiles 510-1 and 510-2 and an ultra-hard tile 515 sandwiched between the hard tiles 510-1 and 510-2. Hard tiles 510-1 and 510-2 are nano-structured tiles formed by performing a spark plasma sintering process on nano-powder. In some embodiments, the nano-powder comprises an average grain size of 1 to 10 nanometers. In some embodiments, the nanao-powder comprises an average grain size of 10 to 50 nanometers. In some embodiments, the nano-powder comprises an average grain size of 50 to 100 nanometers. In some embodiments, the nano-powder comprises an average grain size of 100 to 250 nanometers. In some embodiments, the nano-powder comprises an average grain size of 250 to 500 nanometers. In a preferred embodiment, the tiles 510-1 and 510-2 have a high hardness value and a high fracture toughness value. In some embodiments, the tiles 510-1 and 510-2 have a hardness value of approximately 1000-1500 HV. One example of a good candidate for the powder to be used to form the tiles 510-1 and 510-2 is silicon nitride. Of course, it is contemplated that other materials can be used as well.


Ultra-hard tile 515 is also a nano-structured tile formed by performing a spark plasma sintering process on nano-powder. In some embodiments, the nano-powder comprises an average grain size of 1 to 10 nanometers. In some embodiments, the nanao-powder comprises an average grain size of 10 to 50 nanometers. In some embodiments, the nano-powder comprises an average grain size of 50 to 100 nanometers. In some embodiments, the nano-powder comprises an average grain size of 100 to 250 nanometers. In some embodiments, the nano-powder comprises an average grain size of 250 to 500 nanometers. In a preferred embodiment, the ultra-hard tile 515 has an extremely high hardness value that is higher than the hardness values for tiles 510-1 and 510-2. In some embodiments, the ultra-hard tile has a hardness value of approximately 2500-3500 HV. In contrast to the tiles 510-1 and 510-2, the fracture toughness for ultra-hard tile 515 is allowed to be somewhat low. Examples of good candidates for the powder to be used to form the ultra-hard tile 515 include tungsten carbide, tantalum carbide, and titanium carbide. Of course, it is contemplated that other materials can be used as well.


A backing layer 530 is coupled to tile 510-2. In some embodiments, the backing layer 530 is ductile. In some embodiments, the backing layer 530 comprises an adhesive layer and ductile backing material. In some embodiments, the adhesive layer comprises a glue manufactured by the chemical company BASF. In some embodiments, the ductile backing material comprises a layer of polyethylene fibers. In some embodiments, the ductile backing material comprises Dyneema® or Kevlar®. In some embodiments, the backing layer 530 is formed using soaked fibers, a resin, and a hardener, such as disclosed in SDC-2800, filed herewith, entitled “WORKFLOW FOR NOVEL COMPOSITE MATERIALS,” which is hereby incorporated by reference in its entirety as if set forth herein.


It is important for there to be a good bond between tiles 510-1, 510-2, and 515. In some embodiments, the three layers are sintered together using a spark plasma sintering process. In one example of such an embodiment, the powder for tile 510-1 is poured into a form. A die is lowered to press the powder. The die is ramped back up. A layer of the powder for tile 515 is then poured into the form on top of the pressed powder. The die is again lowered to press the powder. The die is ramped back up. A layer of the powder for tile 510-2 is then poured into the form on top of the pressed powder. The die is once again lowered to press the powder. Heat, such as through spark plasma sintering, is then applied to the pressed powder in order to bond the three tile layers together.


In an alternative embodiment, an adhesive, such as a glue manufactured by the chemical company BASF, is placed between the three tile layers in order to bond them together. FIG. 5B illustrates one embodiment of an impact resistant plate 500B where tiles 510-1, 510-2, and 515 are bonded together using an adhesive layer 520 between tiles 510-1 and 515 and between tiles 515 and 510-2.


As seen in FIG. 1, using three layers of SPS-formed nano-structured tiles as shown in FIGS. 5A-B results in an impact resistant material with both an increased hardness value and an increased fracture toughness value over the prior art and the embodiments of FIGS. 3A-4B.


In some embodiments, the present invention employs a novel process for making the tiles, such as tiles 310, 410, 510-1, 510-2, and 515. Turning to FIG. 6, a ceramic tile 600 with improved fracture toughness is shown in accordance with an embodiment of the present invention. The tile 600 comprises a composite of ceramic material 601 and nano-particles 606.


The ceramic material 601 can comprise any number of suitable ceramic materials depending on a particular application. In an exemplary embodiment, the ceramic material 601 comprises a material from a group of non-oxide ceramics. These non-oxide ceramics can include, but are not limited to, any of the carbides, borides, nitrides, and silicides. Examples of a suitable non-oxide ceramic include, but are not limited to, silicon carbide and boron carbide. In an alternative embodiment, the ceramic material 601 can comprise an oxide ceramic material. Examples of suitable oxide ceramic include, but are not limited to, alumina and zirconia. In yet another embodiment, the ceramic material 601 can comprise a combination of oxide and non-oxide ceramic materials.


The method as described in detail below produces the tile 600 in a final form that includes grains 604 having a crystalline or granular structure propagated throughout the tile 600. In some embodiments, the granular structure of the tile 600 comprises grains 604 having an average grain boundary distance or diameter 608 of one to several micrometers. In some embodiments, the average grain diameter 608 equals approximately one micrometer. In some embodiments, the ceramic particles 601 have an average grain size greater than or equal to 1 micron. In some embodiments, the ceramic particles 601 have an average grain size of approximately 40 microns.


The nano-particles 606 comprise any number of suitable materials that can be utilized depending on a particular application. In some embodiments, the nano-particles 606 comprise a material from a group of non-oxide ceramics. Examples of suitable non-oxide ceramics include, but are not limited to, titanium carbide and titanium diboride. In some embodiments, the nano-particles 606 can comprise an oxide ceramic material. Examples of suitable oxide ceramic materials include, but are not limited to, alumina and zirconia. In some embodiments, the nano-particles 606 comprise a metallic material.


The novel method of the present invention produces the tile 600 having nano-particles 606 bonded within the grains 604. In a preferred embodiment, the nano-particles 606 are bonded within the grains 604 of the ceramic material 601 such that a bonding force between the nano-particles 606 and the ceramic material 601 are believed to be present in addition to an inherent ionic or covalent bond of the ceramic material 601. A surface 602 of the tile 600 reveals that the nano-particles 606 are substantially uniformly distributed throughout the granular structure. Additionally, the tile 600 includes the nano-particles 606 substantially uniformly distributed throughout the three dimensional volume of the tile 600. A novel result of the method of the present invention includes the nano-particles 606 being substantially uniformly distributed at triple points 610 of the ceramic material 601. The nano-particles 606 comprise an average diameter suitable for bonding within the grains 604 of the ceramic material. In some embodiments, the nano-particles 606 have an average grain size less than or equal to 10 nanometers. In some embodiments, the nano-particles 606 have an average diameter of approximately 10 to 40 nanometers. In some embodiments, the average diameter of the nano-particles 606 is 20 nanometers +/−10 nanometers. In some embodiments, the nano-particles 606 have an average grain size of approximately 5 to 15 nanometers.



FIG. 7 illustrates one embodiment of a method 700 of making a ceramic with improved fracture toughness in accordance with the principles of the present invention. FIG. 9 provides an illustration of one embodiment of making an enhanced ceramic material in order to aid in the visualization of the method, with certain steps in FIG. 9 corresponding to certain steps in FIG. 9. It is noted that the present invention is not merely limited to the shapes, sizes and configurations shown in FIG. 9.


At step 710a, a plurality of nano-particles is provided. The nano-particles can be in the form of a powder. As discussed above, the nano-particles comprise an average diameter suitable for bonding within the grains of the ceramic material. Depending on the application, the size of the nano-particles can vary. The size of the nano-particles includes, but is not limited to, the size ranges discussed above. In a preferred embodiment, the nano-particles are substantially uniform in size.


The nano-particles can be formed by introducing micron sized material into a plasma process, such as described and claimed in the co-owned and co-pending application Ser. No. 11/110,341, filed Apr. 19, 2005, and titled “High Throughput Discovery of Materials Through Vapor Phase Synthesis,” and the co-owned and co-pending application Ser. No. 12/151,935, filed May 8, 2008, and titled “Highly Turbulent Quench Chamber,” both of which are hereby incorporated by reference as if set forth herein.



FIG. 8 illustrates a particle production system 800 that uses a plasma process and a highly turbulent quench chamber 845 to produce nano-particles. The system 800 comprises a precursor supply device 810 a working gas supply device 820 fluidly coupled to a plasma production and reaction chamber 830. An energy delivery system 825 is also coupled with the plasma production and reactor chamber 830. The plasma production and reactor chamber 830 includes an injection port 840 that communicates fluidly with the constricting quench chamber 845. One or more ports 890 can also allow fluid communication between the quench chamber 845 and a controlled atmosphere system 870. The quench chamber 845 is also fluidly coupled to an outlet 865.


Generally, the chamber 830 operates as a reactor, producing an output comprising particles within a gas stream. Production includes the basic steps of combination, reaction, and conditioning as described later herein. The system combines precursor material supplied from the precursor supply device 810 and working gas supplied from the working gas supply device 820 within the energy delivery zone of the chamber 830.


In some embodiments, the precursor material comprises a powdered substance. In some embodiments, the precursor material is micron-sized. In some embodiments, the precursor material comprises an average grain diameter of 500-600 nanometers. In some embodiments, the precursor material comprises an average grain diameter of one micrometer. In some embodiments, the precursor material comprises an average grain diameter greater than or equal to 5 microns.


The system energizes the working gas in the chamber 830 using energy from the energy supply system 825, thereby forming a plasma. The plasma is applied to the precursor material within the chamber 830 to form an energized, reactive mixture. This mixture comprises one or more materials in at least one of a plurality of phases, which may include vapor, gas, and plasma. The reactive mixture flows from the plasma production and reactor chamber 830 into the quench chamber 845 through an injection port 840.


The quench chamber 845 preferably comprises a substantially cylindrical surface 850, a frusto-conical surface 855, and an annular surface 860 connecting the injection port 440 with the cylindrical surface 850. The frusto-conical surface 860 narrows to meet the outlet 865. The plasma production and reactor chamber 830 includes an extended portion at the end of which the injection port 840 is disposed. This extended portion shortens the distance between the injection port 840 and the outlet 865, reducing the volume of region in which the reactive mixture and the conditioning fluid will mix, referred to as the quench region. In a preferred embodiment, the injection port 840 is arranged coaxially with the outlet 865. The center of the injection port is positioned a first distance d1 from the outlet 865. The perimeter of the injection port is positioned a second distance d2 from a portion of the frusto-conical surface 855. The injection port 840 and the frusto-conical surface 855 form the aforementioned quench region therebetween. The space between the perimeter of the injection port 840 and the frusto-conical surface 855 forms a gap therebetween that acts as a channel for supplying conditioning fluid into the quench region. The frusto-conical surface 855 acts as a funneling surface, channeling fluid through the gap and into the quench region.


While the reactive mixture flows into the quench chamber 845, the ports 890 supply conditioning fluid into the quench chamber 845. The conditioning fluid then moves along the frusto-conical surface 855, through the gap between the injection port 840 and the frusto-conical surface 855, and into the quench region. In some embodiments, the controlled atmosphere system 870 is configured to control the volume flow rate or mass flow rate of the conditioning fluid supplied to the quench region.


As the reactive mixture moves out of the injection port 840, it expands and mixes with the conditioning fluid. Preferably, the angle at which the conditioning fluid is supplied produces a high degree of turbulence and promotes mixing with the reactive mixture. This turbulence can depend on many parameters. In a preferred embodiment, one or more of these parameters is adjustable to control the level of turbulence. These factors include the flow rates of the conditioning fluid, the temperature of the frusto-conical surface 855, the angle of the frusto-conical surface 855 (which affects the angle at which the conditioning fluid is supplied into the quench region), and the size of the quench region. For example, the relative positioning of the frusto-conical surface 855 and the injection port 840 is adjustable, which can be used to adjust the volume of quench region. These adjustments can be made in a variety of different ways, using a variety of different mechanisms, including, but not limited to, automated means and manual means.


During a brief period immediately after entering the quench chamber 845, particle formation occurs. The degree to which the particles agglomerate depends on the rate of cooling. The cooling rate depends on the turbulence of the flow within the quench region. Preferably, the system is adjusted to form a highly turbulent flow, and to form very dispersed particles. For example, in preferred embodiments, the turbidity of the flow within the quench region is such that the flow has a Reynolds Number of at least 1000.


Still referring to FIG. 8, the structure of the quench chamber 845 is preferably formed of relatively thin walled components capable of dissipating substantial quantities of heat. For example, the thin-walled components can conduct heat from inside the chamber and radiate the heat to the ambient.


Substantial heat is emitted, mostly in the form of radiation, from the reactive mixture following its entry into the quench chamber 845. The quench chamber 845 is designed to dissipate this heat efficiently. The surfaces of the quench chamber 845 are preferably exposed to a cooling system (not shown). In a preferred embodiment, the cooling system is configured to control a temperature of the frusto-conical surface 855.


Following injection into the quench region, cooling, and particle formation, the mixture flows from the quench chamber 845 through the outlet port 865. Suction generated by a generator 895 moves the mixture and conditioning fluid from the quench region into the conduit 892. From the outlet port 865, the mixture flows along the conduit 892, toward the suction generator 895. Preferably, the particles are removed from the mixture by a collection or sampling system (not shown) prior to encountering the suction generator 895.


Still referring to FIG. 8, the controlled atmosphere system 870 comprises a chamber 885, fluidly coupled to the quench region through port(s) 890, into which conditioning fluid is introduced from a reservoir through a conduit 880. As described above, the conditioning fluid preferably comprises argon. However, other inert, relatively heavy gases are equally preferred. Also, as discussed above, the preferable mechanism of providing the conditioning fluid into the quench chamber 845 is the formation of a pressure differential between the quench chamber 845 and the outlet 865. Such pressure differential will draw the conditioning fluid into the quench chamber 845 through the ports 890. Other methods of providing the conditioning fluid include, but are not limited to, forming positive pressure within the chamber 885.


The angle of the frusto-conical surface affects the angle at which the conditioning fluid is supplied into the quench region, which can affect the level of turbulence in the quench region. The conditioning fluid preferably flows into the quench region along a plurality of momentum vectors. The greater the degree of the angle between the momentum vectors, the higher the level of turbulence that will be produced. In a preferred embodiment, the high turbulent quench chamber comprises a frusto-conical surface that is configured to funnel at least two conditioning fluid momentum vectors into the quench region such that there is at least a 90 degree angle between the two momentum vectors. It is contemplated that other angle degree thresholds may be applied as well. For example, attention may also be paid to the angle formed between at least one of the conditioning fluid momentum vectors and the momentum vector of the reactive mixture. In one embodiment of a highly turbulent quench chamber, a reactive mixture inlet is configured to supply the reactive mixture into the quench region along a first momentum vector, the frusto-conical surface is configured to supply the conditioning fluid to the quench region along a second momentum vector, and the second momentum vector has an oblique angle greater than 20 degrees relative to the first momentum vector.


The size of the quench region also affects the level of turbulence in the quench region. The smaller the quench region, the higher the level of turbulence that will be produced. The size of the quench region can be reduced by reducing the distance between the center of the injection port 840 and the outlet 865.


The high turbulence produced by the embodiments of the present invention decreases the period during which particles formed can agglomerate with one another, thereby producing particles of more uniform size, and in some instances, producing smaller-sized particles. Both of these features lead to particles with increased dispersibility and increased ratio of surface area to volume. While the plasma process described above is extremely advantageous in producing the nano-particles, it is contemplated that the nano-particles can be produced in other ways as well.


Referring to the embodiment illustrated in FIG. 9, at step 910A, the nano-particles 914 are provided in a container 912. In a preferred embodiment, the nano-particles 914 are produced and provided under completely inert conditions, which can be achieved in a variety of ways. In some embodiments, the plasma process described above is performed in an oxygen free environment, with the plasma gun being run with an inert gas, such as argon or nitrogen, and a reducing gas, such as hydrogen. In some embodiments, the produced nano-particles 914 are then collected under inert conditions in a glove box 916. In some embodiments, an inert gas, such as argon, is present in the glove box 916 prior to the nano-particles 914 being placed in it. Since the residual amount of oxygen in the nano-particles is key for the success of the subsequent sintering process, which will be discussed below, it is preferable to minimize, if not completely eliminate, the amount of oxygen present in the nano-particle environment.


At step 720a, a dispersion 922 of the nano-particles 914 is prepared, preferably within the glove box 916, as shown at step 920A, or using some other means of providing inert conditions. The dispersion 922 comprises a suspension of the nano-particles 914 in a suitable liquid or suspension liquid. In some embodiments, the liquid comprises water and a surfactant. In a preferred embodiment, the liquid comprises water, a surfactant, and a dispersant.


In some embodiments, the surfactant is a non-ionic surfactant. In some embodiments, the surfactant is some type of polyethylene oxide material. In some embodiments, the surfactant is a non-volatile oxazoline-type compound. One suitable example of a surfactant that is a non-volatile-type compound is sold under the name Alkaterge™. It is contemplated that other surfactants can be used for the dispersion. In some embodiments, the dispersant is SOLSPERSE® 46000, manufactured by Lubrizol Corporation. However, it is contemplated that other dispersants can be used for the dispersion.


The concentrations by weight of the nano-particles, water, surfactant, and dispersant in the dispersion can be varied depending on the application and all ranges are within the scope of the present invention. However, testing has shown that certain concentrations provide better results than others. For example, a low weight percentage for the nano-particles results in better mixing with the ceramic slurry, which will be discussed in further detail below. In some embodiments, the nano-particles comprise 0.5-20% of the dispersion. However, testing has shown that a nano-particle concentration of 10% or greater does not result in good mixing with the ceramic slurry. In some embodiments, the nano-particles comprise 0.5-10% of the dispersion. In some embodiments, the nano-particles comprise approximately 10% of the dispersion. In some embodiments, the nano-particles comprise approximately 1.0% of the dispersion. In some embodiments, the surfactant comprises approximately 10% of the dispersion. In some embodiments, the surfactant comprises approximately 3% of the dispersion. In some embodiments, the dispersant comprises approximately 5% of the dispersion. In some embodiments, the dispersant comprises approximately 2% of the dispersion. In some embodiments, water comprises approximately 85% of the dispersion. Depending on the desired ratio and the process to be performed, the dispersion can be further diluted by simply adding more water to the already formed dispersion.


One feature of the present invention is that the dispersion comprises a substantially uniform distribution of the nano-particles within the dispersion liquid. The uniform dispersion prevents forming large aggregations of the nano-particles, which facilitates a uniform diameter of the nano-particles in the liquid. A high concentration of large aggregations of nano-particles can inhibit the desired uniform distribution of the nano-particles within the grains 604 of the tile 600.


Once the nano-particles are in the dispersion liquid, it is no longer required to provide an inert environment through the use of the glove box or similar means. The dispersion liquid provides a stable environment for the nano-particles 914. The container 912 holding the dispersion 922 can be removed from the glove box 916 and operated on further.


At step 730a, some embodiments include agitating the dispersion of nano-particles in order to help completely and uniformly disperse the nano-particles in the dispersion liquid. In a preferred embodiment, sonication is used to agitate the dispersion and disperse the nano-particles within the liquid. As shown at step 930A in FIG. 9, a sonicator 932 can be placed in and provide sonic energy to the dispersion 922. Dry nano-particles have a tendency to stick together due to Van der Waals forces. As a result, the nano-particles can form loose agglomerates in the dispersion liquid, with surfactant polymer chains floating around in the liquid. The sonic energy from the sonicator causes the agglomerates to break up. The dispersant absorbs onto the surface of the nano-particles and coats them. In a preferred embodiment, the dispersant is chosen so that one portion of the dispersant couples onto the surface of the nano-particle and the other portion couples into the water, thereby helping the nano-particles stay afloat and dispersed. The surfactant remains in the solution, while some of it is absorbed onto the edge of the nano-particles. The surfactant chains repel each other, thereby preventing the particles from agglomerating again. The length of the sonication depends on the volume of the dispersion liquid. In some embodiments with a small dispersion volume, the sonication is performed for between 30 minutes and 1 hour. In some embodiments with a large volume, the sonication is performed for half a day.


In some embodiments, the solution is taken the way it is and analyzed. This analysis can include, but is not limited to, checking the viscosity; performing a Dynamic Light Scattering process and getting a Z-average to determine the particle size that is left in dispersion, and performing a dry down and determining the weight percentage of solid material in the dispersion. Modifications can be made if any of the measurements reveal insufficient characteristics of the dispersion. In some embodiments, it is preferable to have the nano-particles account for approximately 1-7% by weight of the dispersion.


At step 710b, a ceramic powder is provided. At step 910B in FIG. 9, the ceramic powder 915 is shown being held in a container 913. The ceramic powder is what makes up the ceramic material 601 discussed above. As previously mentioned, the ceramic powder can comprise any number of suitable ceramic materials depending on a particular application. In an exemplary embodiment, the ceramic powder comprises a material from a group of non-oxide ceramics. These non-oxide ceramics can include, but are not limited to, any of the carbides, borides, nitrides, and silicides. Examples of a suitable non-oxide ceramic include, but are not limited to, silicon carbide and boron carbide. In an alternative embodiment, the ceramic powder can comprise an oxide ceramic material. Examples of suitable oxide ceramic include, but are not limited to, alumina and zirconia. In yet another embodiment, the ceramic powder can comprise a combination of oxide and non-oxide ceramic materials. While the size of the ceramic powder can vary from embodiment to embodiment, it is important that it not be too small. If the ceramic powder is too small, it leads to runaway grain growth during the sintering process. This runaway growth produces big clumps of ceramic material with large grains. The presence of large grains decreases the fracture toughness of the manufacture. In some embodiments, the ceramic particles have an average grain size greater than or equal to 1 micron. In some embodiments, the ceramic particles have an average grain size of approximately 40 microns. In some embodiments, the ceramic particles have an average diameter of 500-600 nm.


At step 720b, a ceramic slurry is formed from the ceramic powder. Step 920B of FIG. 9 shows this slurry 923 of ceramic particles 915 in the container 913. The ceramic slurry preferably comprises a viscous suspension of the ceramic powder in a suitable liquid. In some embodiments, forming the ceramic slurry comprises adding the liquid to the container holding the ceramic powder. In some embodiments, the ceramic powder comprises 50% by weight of the slurry. However, it is contemplated that other concentrations are within the scope of the present invention. In an exemplary embodiment, the suspension liquid comprises water. Other liquids known to a person of skill can also be utilized. In some embodiments, the slurry includes various additives or binders that facilitate a mixing, a drying, and a sintering step described later below.


In some embodiments, it is advantageous to mix up the ceramic slurry, since the ceramic particles may have begun to settle and agglomerate. Accordingly, at step 730b, the ceramic slurry is agitated. In some embodiments, such as shown in step 930B of FIG. 9, a sonicator 933 is placed in the ceramic slurry 923 in order to provide sonic energy to the slurry and mix it up, thereby dispersing the ceramic particles in the slurry. In some embodiments (not shown), the slurry 923 is pumped out of the container 913 and through a sonicator, where it is sonicated, and then sent back into the container 913.


At step 740, the dispersion of nano-particles and the ceramic slurry are combined to form a dispersion/slurry mixture. In some embodiments, such as seen in step 940 of FIG. 9, the ceramic slurry 923 is poured, pumped, or otherwise moved into a container already holding the nano-particle dispersion 922, not the other way around. Although it is counterintuitive, test results have shown that movement of the ceramic slurry into the nano-particle dispersion provides a much better dispersion of nano-particles in the resulting mixture than if the nano-particle dispersion were moved into the ceramic slurry. It is believed that the relatively large size of the ceramic particles in the ceramic slurry and the accompanying velocity help break through and break up the nano-particles in the dispersion. When the nano-particles are poured into the ceramic slurry, they have a tendency to clump together rather than disperse.


In some embodiments, it is beneficial to further mix the dispersion/slurry mixture, such as shown at step 750. The mixing of the nano-dispersion/slurry mixture produces a dispersion of the nano-particles within the slurry such that the nano-particles are uniformly distributed throughout the nano-dispersion/slurry mixture. The mixing of the nano-dispersion/slurry mixture can comprise suitable agitation methods known to a person of skill. These agitation methods can be performed during or after the ceramic slurry is moved into the nano-dispersion. In some embodiments, the mixing can be accomplished by simply pouring the slurry slowly into the dispersion. In some embodiments, a stir bar is used to agitate the nano-dispersion/slurry mixture. In some embodiment, such as shown in step 950 of FIG. 9, a sonicator 953 is placed in the dispersion/slurry mixture 958 and provides sonic energy, thereby completely and uniformly dispersing the nano-particles 914 within the mixture 958, as well as helping to coat the nano-particles 914 with any additives that have been used. It is contemplated that other mixing techniques known to a person of skill in the art can be substituted for the mixing and agitation described above. Furthermore, any number or combination of agitation methods can be used.


In some embodiments, the nano-particles account for 0.5% to 20% by weight of the nano-dispersion/slurry mixture. In some embodiments, the nano-particles account for 0.5% to 10% by weight of the nano-dispersion/slurry mixture. In some embodiments, the nano-particles account for 0.5% to 3.0% by weight of the nano-dispersion/slurry mixture. In some embodiments, the nano-particle dispersion and the ceramic slurry are configured so that the weight percentage of the nano-particles will be a certain percentage even after combined with the ceramic slurry and the water is pulled off. In some embodiments, the nano-particle dispersion and the ceramic slurry are configures such that the ratio of the ceramic material 601 to the nano-particles 606 in the fully dried manufacture 200 is 99:1. In some embodiments, the nano-particles account for approximately 1% by weight of the nano-dispersion, while the ceramic particles account for approximately 35-50% by weight of the ceramic slurry.


In some embodiments, the nano-dispersion comprises a pH suitable for best mixing results with the ceramic slurry. The pH of the dispersion can be manipulated using additives. In an exemplary embodiment, the pH of the dispersion is slightly basic, as testing has shown that such a configuration provides the best mixing results. In some embodiments, the pH of the dispersion is 7.5. The slurry 923 comprises a pH suitable for best mixing results with the dispersion 922. In an exemplary embodiment, the pH of the slurry 923 comprises a base. In one embodiment, the base pH comprises an 8.0-9.0 pH. In another embodiment, the base pH comprises an 11.0 pH.


In some embodiments, various additives or binders that facilitate mixing, drying, and sintering can be added to the ceramic slurry before the slurry is combined and/or mixed with the nano-dispersion. In some embodiments, various additives or binders that facilitate mixing, drying, and sintering can be added to the ceramic slurry after the slurry is combined and/or mixed with the nano-dispersion.


At step 760, a drying process is performed on the dispersion/slurry mixture. In some embodiments, such as shown in step 960 of FIG. 9, a spray drying process is utilized to dry the nano-dispersion/slurry mixture 958. In some embodiments, the spray drying process comprises loading a spray gun 953 and spraying the nano-dispersion/slurry mixture into a container or a closed compartment (e.g., a glove box). The nano-dispersion/slurry mixture is sprayed within the compartment and then allowed to dry. As the drying proceeds, appreciable amounts of the liquid of the nano-dispersion/slurry mixture evaporate to result in a powdered form or a premanufacture. In some embodiments, the drying process comprises a freeze drying process. In some embodiments, freeze drying comprises placing the nano-dispersion/slurry mixture into a freeze dryer and allowing the liquid of the nano-dispersion/slurry mixture to evaporate until what results comprises a powdered form or premanufacture. In a preferred embodiment, the premanufacture comprises the nano-particles uniformly distributed throughout the ceramic material.


At step 770, the dried mixture, or powdered premanufacture, is formed into a mold, such as the mold 972 shown in step 970 of FIG. 9. The mold can be formed in the desired shape of the resulting tile. The mixture can then be pressed to form a molded or formed premanufacture. In some embodiments, the mixture is subjected to additional drying in order to facilitate the removal of any organic binders remaining in the formed dried mixture. In some embodiments, the molded premanufacture is dried using a low temperature furnace. In some embodiments, the molded premanufacture is dried using a convection drying oven.


At step 780, a bonding process is then performed on the formed dried mixture. In some embodiments, the bonding process comprises a sintering process involving some sort of sintering mechanism, such as furnace or oven 982 shown in step 980 of FIG. 9. The sintering process can comprise any of a variety of sintering processes. In some embodiments, the sintering process comprises a hot isostatic pressing (HIP) process. The hot isostatic pressing comprises placing the molded premanufacture into a HIP furnace where the molded premanufacture is heated under pressure. The HIP process facilitates a removal of porosity within the molded premanufacture. In some embodiments, a liquid phase sintering process is used. In some embodiments, a simple hot pressing process is used. In some embodiments, a pressureless sintering process is used. However, as evident by the above discussion regarding FIGS. 1-5B, it is preferable to use a spark plasma sintering process to achieve the most beneficial results.


As a result of the bonding process, a manufacture of tile is produced. Referring back to FIG. 6, a result of the method 700 comprises the tile 600 with improved fracture toughness in accordance with an embodiment of the present invention. The tile 600 comprises a composite of a ceramic material 601 and nano-particles or nano-material 606. A novel feature of the method 700 produces the tile 600 comprising the nano-particles 606 uniformly distributed throughout the ceramic material 601. This complete and uniform distribution of nano-particles throughout the tile or manufacture is achieved by the unique characteristics of the nano-dispersion and the novel method of combining and mixing the ceramic slurry with the nano-dispersion. By efficiently distributing the nano-particles 606 throughout the tile 600, the present invention significantly reduces crack propagation. When a crack propagates through a tile, it loses energy every step of the way along the tile, until it eventually stops. By placing the nano-particles in the ceramic tile, the crack eventually finds a nano-particle as it propagates through the tile. It then has to move around that nano-particle because it cannot go through it. It then runs into another nano-particle and has to move around that nano-particle. Every time the crack hits a nano-particle, it dissipates energy. Since there are so many nano-particles in the tile and they are so well dispersed throughout the tile, the nano-particles provide a very high surface area for the crack to hit. As a result, the crack energy dissipates very quickly and the length of the cracks is very short. A ceramic tile with the nano-particles dispersed throughout in accordance with the principles of the present invention is significantly more efficient than a standard ceramic tile.


This disclosure provides several embodiments of the present invention. It is contemplated that any features from any embodiment can be combined with any features from any other embodiment unless otherwise stated. In this fashion, hybrid configurations of the illustrated embodiments are well within the scope of the present invention.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made and equivalents may be substituted for elements in the embodiments chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims
  • 1. A method of making a sandwich of impact resistant material, the method comprising: providing a first tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the first tile and the first tile comprises a hardness value;providing a second tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the second tile and the second tile comprises a hardness value;providing a third tile comprising a plurality of nano-particles bonded together, wherein the nano-structure of the nano-particles is present in the third tile and the third tile comprises a hardness value; andcoupling the second tile in between the first tile and the third tile,wherein the second tile comprises a hardness value greater than the first tile and third tile.
  • 2. The method of claim 1, wherein: the hardness value of the first tile is between 1000 and 1500 HV;the hardness value of the second tile is between 2500 and 3500 HV; andthe hardness value of the third tile is between 1000 and 1500 HV.
  • 3. The method of claim 1, wherein the nano-particles that form first tile and the third tile comprise silicon nitride nano-particles.
  • 4. The method of claim 1, wherein the nano-particles that form the second tile comprise tungsten carbide nano-particles, tantalum carbide nano-particles, or titanium carbide nano-particles.
  • 5. The method of claim 1, wherein the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 1 to 10 nanometers.
  • 6. The method of claim 1, wherein the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 10 to 50 nanometers.
  • 7. The method of claim 1, wherein the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 50 to 100 nanometers.
  • 8. The method of claim 1, wherein the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 100 to 250 nanometers.
  • 9. The method of claim 1, wherein the nano-particles of the first tile, the second tile, and the third tile comprise an average grain size of 250 to 500 nanometers.
  • 10. The method of claim 1, wherein the second tile is coupled between the first tile and the third tile via adhesive layers.
  • 11. The method of claim 1, wherein coupling the second tile in between the first tile and the third tile comprises performing a spark plasma sintering process on the nano-particles of the first tile, the second tile, and the third tile.
  • 12. The method of claim 1, further comprising a ductile backing layer coupled to the third tile on a side opposite the second tile.
  • 13. The method of claim 12, wherein the ductile backing layer comprises an adhesive layer.
  • 14. The method of claim 12, wherein the ductile backing layer comprises: a layer of polyethylene fibers; andan adhesive material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.

US Referenced Citations (450)
Number Name Date Kind
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3042511 Reding, Jr. Jul 1962 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3181947 Vordahl May 1965 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kiernan Jun 1969 A
3457788 Nobuo Miyajima Jul 1969 A
3537513 Austin Nov 1970 A
3552653 Inoue Jan 1971 A
3617358 Dittrich Nov 1971 A
3667111 Chartet Jun 1972 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3761360 Auvil et al. Sep 1973 A
3774442 Gustavsson Nov 1973 A
3804034 Stiglich, Jr. Apr 1974 A
3830756 Sanchez et al. Aug 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959094 Steinberg May 1976 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4021021 Hall et al. May 1977 A
4127760 Meyer et al. Nov 1978 A
4139497 Castor et al. Feb 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4189925 Long Feb 1980 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4260649 Dension et al. Apr 1981 A
4284609 deVries Aug 1981 A
4315874 Ushida et al. Feb 1982 A
4344779 Isserlis Aug 1982 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4419331 Montalvo Dec 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4440733 Lawson et al. Apr 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4523981 Ang et al. Jun 1985 A
4545872 Sammells et al. Oct 1985 A
RE32244 Andersen Sep 1986 E
4609441 Frese, Jr. et al. Sep 1986 A
4723589 Iyer et al. Feb 1988 A
4731517 Cheney Mar 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4836084 Vogelesang et al. Jun 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4885038 Anderson et al. Dec 1989 A
4921586 Molter May 1990 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5006163 Benn et al. Apr 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5133190 Abdelmalek Jul 1992 A
5151296 Tokunaga Sep 1992 A
5157007 Domesle et al. Oct 1992 A
5192130 Endo et al. Mar 1993 A
5230844 Macaire et al. Jul 1993 A
5233153 Coats Aug 1993 A
5269848 Nakagawa Dec 1993 A
5330945 Beckmeyer et al. Jul 1994 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5436080 Inoue et al. Jul 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5534270 De Castro Jul 1996 A
5543173 Horn, Jr. et al. Aug 1996 A
5553507 Basch et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Calderon et al. Jul 1997 A
5714644 Irgang et al. Feb 1998 A
5723187 Popoola et al. Mar 1998 A
5726414 Kitahashi et al. Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5804155 Farrauto et al. Sep 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5858470 Bernecki et al. Jan 1999 A
5884473 Noda et al. Mar 1999 A
5905000 Yadav et al. May 1999 A
5928806 Olah et al. Jul 1999 A
5935293 Detering et al. Aug 1999 A
5973289 Read et al. Oct 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6004620 Camm Dec 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6066587 Kurokawa et al. May 2000 A
6084197 Fusaro, Jr. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6093378 Deeba et al. Jul 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6168694 Huang et al. Jan 2001 B1
6190627 Hoke et al. Feb 2001 B1
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6362449 Hadidi et al. Mar 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6488904 Cox et al. Dec 2002 B1
6506995 Fusaro, Jr. et al. Jan 2003 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569393 Hoke et al. May 2003 B1
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6744006 Johnson et al. Jun 2004 B2
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6841509 Hwang et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6858170 Van Thillo et al. Feb 2005 B2
6886545 Holm May 2005 B1
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919065 Zhou et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7255498 Bush et al. Aug 2007 B2
7265076 Taguchi et al. Sep 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7402899 Whiting et al. Jul 2008 B1
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7517826 Fujdala et al. Apr 2009 B2
7534738 Fujdala et al. May 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7557324 Nylen et al. Jul 2009 B2
7572315 Boulos et al. Aug 2009 B2
7576029 Saito et al. Aug 2009 B2
7576031 Beutel et al. Aug 2009 B2
7604843 Robinson et al. Oct 2009 B1
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7632775 Zhou et al. Dec 2009 B2
7635218 Lott Dec 2009 B1
7674744 Shiratori et al. Mar 2010 B2
7678419 Kevwitch et al. Mar 2010 B2
7704369 Olah et al. Apr 2010 B2
7709411 Zhou et al. May 2010 B2
7709414 Fujdala et al. May 2010 B2
7745367 Fujdala et al. Jun 2010 B2
7750265 Belashchenko et al. Jul 2010 B2
7803210 Sekine et al. Sep 2010 B2
7851405 Wakamatsu et al. Dec 2010 B2
7874239 Howland Jan 2011 B2
7875573 Beutel et al. Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7902104 Kalck Mar 2011 B2
7905942 Layman Mar 2011 B1
7935655 Tolmachev May 2011 B2
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8080494 Yasuda et al. Dec 2011 B2
8089495 Keller Jan 2012 B2
8142619 Layman et al. Mar 2012 B2
8168561 Virkar May 2012 B2
8173572 Feaviour May 2012 B2
8211392 Grubert et al. Jul 2012 B2
8258070 Fujdala et al. Sep 2012 B2
8278240 Tange et al. Oct 2012 B2
8294060 Mohanty et al. Oct 2012 B2
8309489 Roldan Cuenya et al. Nov 2012 B2
8349761 Xia et al. Jan 2013 B2
20010004009 MacKelvie Jun 2001 A1
20010042802 Youds Nov 2001 A1
20010055554 Hoke et al. Dec 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020071800 Hoke et al. Jun 2002 A1
20020079620 Dubuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030047617 Shanmugham et al. Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030129098 Endo et al. Jul 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040109523 Singh et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040166036 Chen et al. Aug 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050066805 Park et al. Mar 2005 A1
20050070431 Alvin et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050133121 Subramanian et al. Jun 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Persiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050275143 Toth Dec 2005 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060211569 Dang et al. Sep 2006 A1
20060213326 Gollob et al. Sep 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080026041 Tepper et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080045405 Beutel et al. Feb 2008 A1
20080047261 Han et al. Feb 2008 A1
20080057212 Dorier et al. Mar 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080125313 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080187714 Wakamatsu et al. Aug 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080248704 Mathis et al. Oct 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277264 Sprague Nov 2008 A1
20080277266 Layman et al. Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger et al. Nov 2008 A1
20080277271 Layman Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Biberger Nov 2008 A1
20080283411 Eastman et al. Nov 2008 A1
20080283498 Yamazaki Nov 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090092887 McGrath et al. Apr 2009 A1
20090098402 Kang et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090208367 Calio et al. Aug 2009 A1
20090209408 Kitamura et al. Aug 2009 A1
20090223410 Jun et al. Sep 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20090324468 Golden et al. Dec 2009 A1
20100089002 Merkel Apr 2010 A1
20100092358 Koegel et al. Apr 2010 A1
20100124514 Chelluri et al. May 2010 A1
20100166629 Deeba Jul 2010 A1
20100180581 Grubert et al. Jul 2010 A1
20100180582 Mueller-Stach et al. Jul 2010 A1
20100186375 Kazi et al. Jul 2010 A1
20100240525 Golden et al. Sep 2010 A1
20100275781 Tsangaris Nov 2010 A1
20110006463 Layman Jan 2011 A1
20110052467 Chase et al. Mar 2011 A1
20110143041 Layman et al. Jun 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143926 Yin et al. Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110243808 Fossey et al. Oct 2011 A1
20110245073 Oljaca et al. Oct 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20110305612 Müller-Stach et al. Dec 2011 A1
20120023909 Lambert et al. Feb 2012 A1
20120045373 Biberger Feb 2012 A1
20120097033 Arnold et al. Apr 2012 A1
20120122660 Andersen et al. May 2012 A1
20120124974 Li et al. May 2012 A1
20120171098 Hung et al. Jul 2012 A1
20120308467 Carpenter et al. Dec 2012 A1
20130213018 Yin et al. Aug 2013 A1
Foreign Referenced Citations (42)
Number Date Country
1 134 302 Sep 2001 EP
1 619 168 Jan 2006 EP
1 307 941 Feb 1973 GB
56-146804 Nov 1981 JP
61-086815 May 1986 JP
63-214342 Sep 1988 JP
1-164795 Jun 1989 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
6-93309 Apr 1994 JP
6-135797 May 1994 JP
6-272012 Sep 1994 JP
H6-065772 Sep 1994 JP
7031873 Feb 1995 JP
07-256116 Oct 1995 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2002-336688 Nov 2002 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
2007-46162 Feb 2007 JP
2007-203129 Aug 2007 JP
493241 Mar 1976 SU
200611449 Apr 2006 TW
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO 02092503 Nov 2002 WO
WO 2004052778 Jun 2004 WO
WO-2005063390 Jul 2005 WO
WO 2006079213 Aug 2006 WO
WO-2008130451 Oct 2008 WO
WO-2008130451 Oct 2008 WO
WO-2011081833 Jul 2011 WO
Non-Patent Literature Citations (81)
Entry
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I li, P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, 1996, pp. 605-610.
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91, (1992).
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
M. Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,” Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled “Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages.
Bateman, J. E. et al. (Dec. 17, 1998). “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed. 37(19):2683-2685.
Carrot, G. et al. (Sep. 17, 2002). “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules 35(22):8400-8404.
Chen, H.-S. et al. (Jul. 3, 2001). “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4:62-66.
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491.
Faber, K. T. et al. (Sep. 1988). “Toughening by Stress-Induced Microcracking in Two-Phase Ceramics,” Communications of the American Ceramic Society 71(9): C-399-C401.
Fojtik, A. et al. (Apr. 29, 1994). “Luminescent Colloidal Silicon Particles,”Chemical Physics Letters 221:363-367.
Fojtik, A. (Jan. 13, 2006). “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B. 110(5):1994-1998.
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63.
Hua, F. et al. (Mar. 2006). “Organically Capped Silicon Nanoparticles With Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir 22(9):4363-4370.
Ji, Y. et al. (Nov. 2002) “Processing and Mechanical Properties of Al2O3-5 vol.% Cr Nanocomposites,” Journal of the European Ceramic Society 22(12):1927-1936.
Jouet, R. J. et al. (Jan. 25, 2005). “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater.17(11):2987-2996.
Kim, N. Y. et al. (Mar. 5, 1997). “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc. 119(9):2297-2298.
Kwon, Y.-S. et al. (Apr. 30, 2003). “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211:57-67.
Langner, A. et al. (Aug. 25, 2005). “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc. 127(37):12798-12799.
Li, D. et al. (Apr. 9, 2005). “Environmentally Responsive ”Hairy“ Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J. Am. Chem. Soc. 127(7):6248-6256.
Li, X. et al. (May 25, 2004). “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir 20(11):4720-4727.
Liao, Y.-C. et al. (Jun. 27, 2006). “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc. 128(28):9061-9065.
Liu, S.-M. et al. (Jan. 13, 2006). “Enhanced Photoluminescence from Si Nano-Organosols by Functionalization With Alkenes and Their Size Evolution,” Chem. Mater. 18(3):637-642.
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347.
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464.
Neiner, D. (Aug. 5, 2006). “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc. 128:11016-11017.
Netzer, L. et al. (1983). “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc. 105(3):674-676.
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056.
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2and TiO2Cores,” Langmuir 20: 4246-4253.
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., last accessed Aug. 5, 2013, 2 pages.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
Rahaman, R. A. et al. (1995). “Synthesis of Powders,” in Ceramic Processing and Sintering. Marcel Decker, Inc., New York, pp. 71-77.
Sailor, M. J. (1997). “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater. 9(10):783-793.
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132.
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81.
Tao, Y.-T. (May 1993). “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc. 115(10):4350-4358.
Ünal, N. et al. (Nov. 2011). “Influence of WC Particles on the Microstructural and Mechanical Properties of 3 mol% Y2O3 Stabilized ZrO2 Matrix Composites Produced by Hot Pressing,” Journal of the European Ceramic Society (31)13: 2267-2275.
Zou, J. et al. (Jun. 4, 2004). “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters 4(7):1181-1186.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leaman.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
U.S. Appl. No. 13/589,024, filed Aug. 17, 2012, for Yin et al.
U.S. Appl. No. 13/801,726, filed Mar. 13, 2013, for Qi et al.
Provisional Applications (1)
Number Date Country
61284329 Dec 2009 US