Scatter X-ray imaging with adaptive scanning beam intensity

Information

  • Patent Grant
  • 11175245
  • Patent Number
    11,175,245
  • Date Filed
    Monday, June 15, 2020
    4 years ago
  • Date Issued
    Tuesday, November 16, 2021
    3 years ago
Abstract
This specification describes an X-ray scanning system that adaptively generates a scatter signal, in the course of a single scan, based on the detected brightness areas of a scanned object. An X-ray source is configured to emit an X-ray beam towards an area over a target object. At least one detector detects radiation scattered from the target object and generates a corresponding scatter radiation signal. The scatter radiation signal is characterized, at least in part, by one or more brightness levels corresponding to one or more scanned areas of the target object. A feedback controller receives the scatter radiation signal from the detector, generates a signal that is a function of the one or more brightness levels and that is based on the received scatter radiation signal, and transmits the signal to the X-ray source. In response, the X-ray source is configured to receive the signal and adjust the X-ray beam intensity based on the signal.
Description
FIELD

The present specification relates to X-ray imaging systems, and, in particular, X-ray scatter imaging systems and methods with adaptive X-ray beam dosing for different areas of a target object.


BACKGROUND

Scatter imaging systems emit X-ray beams that produce a secondary type of radiation, known as scatter radiation, after the X-ray beam enters an inspection area comprising a target object. A scatter imaging system typically uses a steerable beam of X-ray radiation, also referred to as a pencil beam, which scans the object under inspection. The area where the beam impinges on the target object is referred to as a “beam spot”. A fraction of the X-rays may be Compton-scattered when the beam of X-rays interacts with the target object. The detectors are typically positioned to capture as much of the scatter radiation as possible. The detector's signal is used to sequentially form an image of the target object.


The signal strength of the detected scatter radiation depends on the nature of the target object and a distance of the target object from the source of the X-ray beam. Particularly, material composition and dimensions of the target object relative to a beam spot size determine an amount of scatter radiation. Target objects having materials with low atomic numbers, and an areal density sufficient to interact with most of the beam's X-rays, generate the most scatter radiation. For example, plastics, sugar, water, oil, and the human body tend to generate the most scatter radiation, and, in a scatter image, these materials appear bright with a relatively high signal to noise ratio (SNR). Less scatter radiation is generated by materials with high atomic numbers, such as metals, due to the photoelectric effect, which dominates interaction with the X-ray beam. Accordingly, materials with higher atomic numbers appear darker in the scatter image. Thin layers of materials with higher atomic numbers may also obscure the signals of low atomic number materials that may be located behind them, thus reducing the brightness and SNR. In this case, increasing the X-ray beam power increases the SNR, thereby increasing the relative visibility of the obscured objects.



FIG. 1A illustrates an exemplary backscatter image 100 of a car with a driver. The human driver appears as a bright area 102 in the image, as humans are comprised of dense, low atomic number materials. Conversely, the body of the car, which is mostly metal and includes higher atomic number materials, appears as darker areas 104 relative to the bright areas 102, within the complete image of the target object. The distance between the X-ray imaging system and the target object is critical for two main reasons.


First, a scanning X-ray beam always has some divergence. With increasing distance, the beam spot projected onto the object increases in size, thus reducing the spatial resolution of the image. The amount of scatter radiation generated per time, however, remains the same (not taking into consideration attenuation by air) as long as the object is large enough to accommodate the entire beam spot. Notwithstanding this effect, the scatter signal decreases with increasing distance because the detectors will receive a smaller fraction of the scattered radiation due to the decrease of solid angle of the detectors. The detected scatter signal decreases with approximately the square of the distance.


Second, if the target object is smaller than the beam spot projected onto it (and thus, is entirely covered by the beam spot), the detected scatter signal decreases with approximately the fourth power of the distance. This is the case because an even smaller fraction of the expanding beam spot will generate scatter radiation. The assumption is that the fraction of the beam that does not reach or “cover” the target object will not scatter off of other objects further back. For elongated objects, like rods or wires, that have one dimension larger than the beam spot and another dimension smaller than the beam spot, the signal decreases with the third power of the distance. Therefore, for a distance ‘r’, the signal is the combination of 1/r due to reduced effective area of the beam spot and r−2 due to the reduced solid angle of the detectors.


For an imaging system with azimuthal scan motion, the X-ray beam dose received by the target object decreases with a square of the distance. Azimuthal scan motion imaging systems produce images with central projection in both dimensions. For imaging systems with linear scan motion, which produce mixed projection images (parallel along the linear scan motion and central in the other dimension), the X-ray dose decreases inverse to the distance.


The detected signal is dominated by Poisson statistics. Since noise is quantified as the standard deviation of the signal, and for a Poisson signal, the standard deviation is the square root of the signal, the SNR in the image varies similarly to the square root of the signal.


Accordingly, bright image areas have a higher SNR than less bright areas. Increasing the imaging X-ray dose either by scanning at a slower speed or increasing the beam power improves image quality and, as a result, detection performance. However, when imaging people with X-rays the dose must be minimized to reduce the harmful effects of the radiation. These competing goals, for improving image quality and minimizing X-ray dose, have spurred many refinements in X-ray imaging systems, especially the most common transmission imaging systems.


U.S. Pat. No. 2,773,117, entitled “Cathode Ray Tube Beam Intensity Control”, discloses “[a] cathode ray tube system comprising a cathode ray tube having means for generating an electron beam, means including a control electrode for varying the intensity of said beam and a beam intercepting member, means for producing a signal having variations determined by the intensity variations of said beam, means coupled to said signal producing means for limiting the amplitude of said signal when said beam intensity exceeds a given value, and means for applying said signal to said beam intensity control means in a sense to oppose variations in the intensity of said beam when the intensity value thereof is less than said given value.” The primary objective of U.S. Pat. No. 2,773,117 is to create constant beam intensity by deriving a feedback signal from the electron beam directly so as to detect beam variation.


U.S. Pat. No. 4,998,270 (“the '270 patent), entitled “Mammographic apparatus with collimated controllable X-ray intensity and plurality filters”, discloses “[a] method of improving imaging in an X-ray mammography machine having a controllable X-ray source for generating an X-ray beam of selected radiation intensity and a target area for the X-ray beam, the method comprising the steps of: directing the X-ray beam in a preselected configuration onto a part of the target area; detecting the radiation intensity of the X-ray beam in each of a plurality of substantially equal segments of the target area; identifying at least one segment of lowest radiation intensity; adjusting the X-ray source to establish a predetermined radiation intensity in the identified at least one segment; identifying other segments each having a radiation intensity greater than a predetermined percentage of the predetermined radiation intensity in the identified at least one segment; and attenuating the radiation intensity directed toward the identified other segments.”


U.S. Pat. No. 5,054,048 (“the '048 patent), entitled “X-ray radiography method and system”, discloses “[a] system for imaging an object with a scanning beam of penetrating radiation which is modulated prior to impinging on the object, comprising: a source which generates penetrating radiation at an origin; a scanning mechanism which forms said penetrating radiation into an impinging beam and scans an object with said impinging beam in a scanning direction to cause an object-attenuated beam to emerge from said object; an imaging receptor which receives said object-attenuated beam and in response forms an image of said object; and a modulator which is between the source and the object position and comprises at least one row of modulation elements which extends in a direction transverse to the scanning direction; said modulation elements being generally wedge-shaped in a section which is in a plane that includes the radiation origin and the scanning direction; and a control circuit which selectively moves the modulation elements along the scanning direction as the impinging beam scans the object position to selectively modulate respective portions of the impinging beam in order to selectively equalize the image formed by said imaging receptor; wherein said modulating elements are generally wedge-shaped over a distance in the scanning direction which is at least a substantial portion of the dimension of the beam in the scanning direction at the place where the elements modulate the beam.”


The '270 and '048 patents, described above, teach the optimization of a transmission imaging system with fan beam through the use of adjustable filters and/or masks.


U.S. Patent Application No. 20130329855, entitled “Systems and Methods for Using an Intensity-Modulated X-Ray Source”, discloses “[a]n X-ray scanning system comprising: a. A plurality of detectors; b. A controller, wherein said controller is configured to receive and identify a minimum X-ray transmission level detected by at least one of said plurality of detectors, wherein said controller compares said minimum X-ray transmission level to at least one predetermined threshold transmission level, and wherein, based on said comparison, said controller generates an adjustment signal; and c. An X-ray source, wherein said X-ray source receives said adjustment signal and is configured to adjust an X-ray pulse duration based on said adjustment signal.” This patent however applies exclusively to transmission imaging systems with pulsed X-ray sources.


In inspection processes that are used to scan persons the available dose per image and thus the image quality is limited by the maximum acceptable dose received by humans. Particular imaging conditions, such as the distance of a person from an X-ray source or occluding materials that may be shielding a person, are typically not known in advance. Thus it is to be assumed that imaging conditions are not favorable, meaning a person is too close to the X-ray source and/or is not well-shielded, among other conditions. This is advantageous in that in most cases the person receives a dose much lower than legally allowable, but at the same time imposes a severe constraint on image quality, and thus the detection performance of the inspection system.


What is needed are methods and systems for increasing the low SNR of the darker areas in a detected image by increasing the areal dose of the X-ray beam in those areas, improving both image quality and detection performance, for use in X-ray inspection processes that scan objects and humans in X-ray scatter applications. What is also needed are methods and systems for scanning bright image areas with a lower intensity X-ray beam, keeping within the acceptable limits of the X-ray dose for scanning people, and reducing the scatter dose to the operator of hand-held inspection systems.


SUMMARY

The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.


The present specification discloses an X-ray scanning system adapted to generate and detect a scatter signal, the X-ray scanning system comprising: an X-ray source configured to emit an X-ray beam, having an X-ray beam intensity, towards an area over a target object for scanning the target object; at least one detector adapted to detect radiation scattered from the target object and generate a corresponding scatter radiation signal, wherein the scatter radiation signal is characterized, at least in part, by one or more brightness levels corresponding to one or more scanned areas of the target object; and a feedback controller, wherein the feedback controller is configured to receive the scatter radiation signal from the at least one detector, generate a control signal that is a function of the one or more brightness levels and that is based on the received scatter radiation signal, and transmit the control signal to the X-ray source and wherein the X-ray source is configured to receive the control signal and adjust the X-ray beam intensity based on the control signal.


Optionally, the X-ray source is an X-ray tube comprising a control grid. Optionally, the feedback controller is configured to compare a voltage of the control grid to the scatter radiation signal.


Optionally, the feedback controller receives the scatter radiation signal in analog form. Optionally, the feedback controller receives the scatter radiation signal from the at least one detector prior to the scatter radiation signal being processed by an analog to digital converter.


Optionally, the X-ray source is configured to operate with tube voltages between 50 kV and 500 kV.


Optionally, the control signal generated by the feedback controller is adapted to cause the X-ray source to reduce the X-ray beam intensity as the scatter radiation signal increases and increase the X-ray beam intensity as the scatter radiation signal decreases.


The at least one detector may comprise an organic scintillator detector.


Optionally, the feedback controller is configured to continuously adjust the X-ray beam intensity as the X-ray beam moves from one of the one or more scanned areas to another of the one or more scanned areas.


Optionally, the X-ray source is configured to adjust the X-ray beam intensity based on the detector signal while the X-ray source is operating and without having to wait until the X-ray source is turned off.


Optionally, a response time of the at least one detector is shorter than a pixel integration time for generating a detected image.


The present specification also discloses an X-ray scanning method for generating and detecting a backscatter signal, the method comprising: using an X-ray source, emitting an X-ray beam, having an X-ray beam intensity, toward an area of a target object for scanning the target object; using at least one detector, detecting backscatter radiation from the area of the target object and generating a corresponding backscatter signal, wherein the backscatter signal is characterized, at least in part, by one or more brightness levels corresponding to one or more scanned areas of the target object; using a feedback controller, receiving the backscatter radiation signal from the at least one detector, generating a control signal that is a function of the one or more brightness levels and that is based on the received backscatter signal, and transmitting the control signal to the X-ray source, wherein the X-ray source is configured to receive the control signal and adjust the X-ray beam intensity based on the control signal.


Optionally, the X-ray scanning method further comprises determining an intensity level required to improve an image quality of an image produced from the backscatter signal.


Optionally, the X-ray scanning method further comprises determining an intensity level required to reduce an intensity level for the one or more brightness levels above a threshold level.


Optionally, the X-ray scanning method further comprises determining an intensity level required to increase an intensity level for the one or more brightness levels below a threshold level.


Optionally, the feedback controller is configured to compare a voltage of a control grid of the X-ray source to the backscatter signal.


Optionally, the X-ray source is configured to operate with tube voltages between 50 kV and 500 kV.


The at least one detector may be an organic scintillator detector.


Optionally, the feedback controller receives the backscatter signal in analog form.


Optionally, the feedback controller receives the backscatter signal from the at least one detector prior to the backscatter signal being processed by an analog to digital converter.


Optionally, a response time of the at least one detector is shorter than a pixel integration time for generating a detected image from the backscatter signal.


Optionally, the signal generated by the feedback controller is adapted to cause the X-ray source to reduce the X-ray beam intensity as the backscatter signal increases and increase the X-ray beam intensity as the backscatter signal decreases.


Optionally, the feedback controller is configured to continuously adjust the X-ray beam intensity as the X-ray beam moves from one of the one or more scanned areas to another of the one or more scanned areas.


Optionally, the X-ray source is configured to adjust the X-ray beam intensity based on the signal while the X-ray source is operating and without having to wait until the X-ray source is turned off.


Optionally, the X-ray source is configured to adjust the X-ray beam intensity based on the signal while the X-ray beam moves from one of the one or more scanned areas to another of the one or more scanned areas without having to wait until the X-ray source is turned off or without having to wait until another target object is being scanned.


The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the detailed description when considered in connection with the accompanying drawings:



FIG. 1A is an illustration of an exemplary, unprocessed backscatter image of a car with a driver;



FIG. 1B shows the histogram of gray-values for each pixel in FIG. 1A;



FIG. 1C shows the same histogram as FIG. 1B but with enlarged y-axis;



FIG. 2A shows the same image as FIG. 1A after applying a square-root-filter;



FIG. 2B shows the histogram of gray-values for each pixel in FIG. 2A;



FIG. 3 is a block diagram of an exemplary X-ray backscatter imaging system in accordance with some embodiments of the present specification;



FIG. 4 is a graph illustrating an exemplary signal vs. object brightness correspondence in accordance with an embodiment of the present specification;



FIG. 5A shows the same image as FIG. 1A, however, with the signal vs. object brightness correspondence of FIG. 4 applied by simulation;



FIG. 5B shows the histogram of gray-values for each pixel in FIG. 5A;



FIG. 6A shows the same image as FIG. 1A, however with the signal vs. object brightness correspondence of FIG. 4 applied by simulation, the gray values rescaled to the full range, and a square-root-filter applied;



FIG. 6B shows the histogram of gray-values for each pixel in FIG. 6A; and



FIG. 7 is a flow chart illustrating an exemplary process of scatter X-ray radiation scanning, in accordance with the embodiments of the present specification.





DETAILED DESCRIPTION

The present specification is directed toward X-ray scatter imaging systems and methods that adapt the X-ray beam dose for different areas of a target object, in order to improve the Signal to Noise Ratio (SNR) of dark areas in the images. In embodiments, the present specification also provides systems and methods to adaptively scan areas of a target object with a lower intensity X-ray beam, and in particular those areas that generate bright areas in the images. In some embodiments, the present specification describes X-ray scatter imaging systems for use with applications that may inspect humans, either directly or indirectly, while keeping the X-ray beam intensity within the acceptable limits of X-ray dose for scanning people. In embodiments, the intensity of the scanning beam is adjustable within pixel integration time, which is used to reduce the scanning beam intensity for bright image areas and to increase the scanning beam intensity for dark image areas. Accordingly, in the time required for a detector signal to be generated representative of one or more pixels, the system a) acquires the requisite signal needed to determine what adjustments in intensity need to be made and b) performs the scanning beam intensity adjustment. The pixel integration time may extend to a few microseconds, whereas response time of the detector can be less than microseconds (for example, extending to a few tens of nanoseconds), allowing the signal to be adjusted during the pixel integration time.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.


In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.


Using a dynamically modified beam intensity scatter radiation detection system has several advantages. For equivalent image quality, modulating intensity lowers the overall dose to the scanned object, and particularly to areas which appear bright in the traditional scatter image. This is of utmost importance for drive-through vehicle inspection systems, in order to reduce the dose to the people in the vehicle. A person not shielded by the vehicle, for example such as when driving with an open window, and close to the X-ray source, would receive the highest possible dose, thus generating the strongest possible scatter signal. This situation is illustrated by FIG. 1A where a person 102 is near the top of the images’ dynamic range. Dynamically reducing the beam intensity significantly reduces the dose to that person. This will provide for inspection systems that allow for the use of high power and are also safe for imaging applications that are used to either directly scan people or inadvertently expose people, such as operators or bystanders, to X-rays.


The use of adaptive scan beam intensities also reduces the dynamic range required of the detectors and can eliminate the need for generalized gain adjustments, which can adversely affect the detection of other objects in the same inspection region, in response to changed inspection conditions. Further, in combination with a known outline of the scanned object, the use of adaptive scan beam intensities allows for a significant reduction in beam power while the scanning X-ray beam is not covering the object. The outline of the scanned object may be acquired before the scanning, for example, by an optical camera.


In embodiments, the present specification is directed toward X-ray scatter imaging systems and methods that adapt the X-ray beam dose for different areas of a target object while the X-ray system is in operation and in the course of scanning an object. Conventional systems, including transmission systems, adapt the scanning beams once a scan is complete. The adaptive techniques described herein, however, advantageously adapt, in real-time, the intensity of the pencil beam scanned over an object based on a detected signal. Thus, the dynamic modulation occurs while the beam is still being scanned over the object.


In addition, for scanning applications where people are in close proximity to the scanner, such as with the operator of handheld imaging systems, the use of adaptive scan beam intensities reduces operator exposure to scatter radiation. It also reduces the dose should the operator accidentally point the scanner towards a person in close proximity, including herself/himself.


Generally, the use of dynamic modification of intensity reduces the radiation footprint of the system. Further, the use of adaptive scan beam intensities reduces the energy consumption and cooling load of the X-ray generator.



FIG. 1A shows the unprocessed (raw) backscatter image of a car with a driver 102 and some clearly visible contraband 103 in the rear door panel and less visible contraband 104 in the trunk. FIG. 2A shows the same image after application of a filter, such as but not limited to a square-root-filter, on the original image of FIG. 1A, which brightens the darker areas of the image and compresses the brighter regions. As a result, the contraband 204 is now more visible in FIG. 2A. This is done to help the analyst identify objects or anomalies in the image, as the typical regions of interest in the image tend to be dark. These image regions correspond to the gray-value ‘Range of Interest’ in histograms of FIGS. 1B and 2B, shown as 114 and 214 (pointing to, in this example, approximately 0.25 and 0.45, respectively) respectively. It should be noted that in this context, the terms “tonal” and “gray-value” may be used interchangeably and are considered synonymous. The histograms of FIGS. 1B and 2B are graphical representations of tonal (or gray-value) distribution in the X-ray image. Areas 112 and 212, in FIGS. 1B and 2B, respectively show the contribution of the driver 102 to the gray-value. The effect of the filter is illustrated by the histograms of gray-values in FIG. 1B for FIG. 1A, and in FIG. 2B for FIG. 2A, respectively. The x-axis of these histograms spans the normalized signal intensity represented by the pixel gray-values between 0 (black) and 1 (white). The y-axis shows the number of pixels for each gray-value. FIG. 1C is a vertically expanded view of FIG. 1B to make the hardly noticeable contribution 112 of the driver 102 more visible.



FIG. 3 illustrates an exemplary X-ray backscatter imaging system 300 in accordance with some embodiments of the present specification. System 300 includes an X-ray tube 302 powered by a high voltage power source (HVPS) 306, and a beam former 308 to generate a scanning X-ray pencil beam 310. In embodiments, the X-ray tube 302 is a grid-controlled X-ray tube, which operates in a voltage ranging between 50 and 500 kV. System 300 further includes at least one detector 316 for detection of scatter radiation 314 from a target object 312 under inspection. An analog to digital converter 322 converts an analog detector signal ‘S’ 318 to digital image data which are used by a control and imaging system 324 to generate a scatter image for display and further analysis.


X-ray tube 302 comprises, in embodiments, a control grid 304 for modulating the tube current and thus the X-ray beam intensity for transmission towards the target object 312. Grid controlled X-ray tubes are well known in the industry and are commercially available. The grid voltage is provided by a grid controller 320. Grid controller 320 generates a grid voltage ‘G’ as a monotonic function of the analog signal S 318 from detector 316. Accordingly, the analog signal S 318 constitutes an analog feedback which may be used to modulate an amount of the grid voltage G. For the smallest detector signals, the grid voltage will be zero which enables the full output of the X-ray tube resulting in an X-ray beam of maximum intensity. As the detector signal increases, grid controller 320 generates an increasingly negative grid voltage which reduces the X-ray beam intensity. The feedback function implemented through the grid controller 320, which is adapted to reduce the beam intensity as the detector signal increases, establishes a negative feedback loop. The grid controller 320 and the specific form of the feedback function are designed to provide stability and sufficient bandwidth to the imaging system. The design of control systems with feedback is well known in the industry and extensively covered in the literature.


In embodiments the values of the grid control 320 voltage may be recorded together with the detector signal S 318 which enables a more flexible choice of feedback function. In this case, the combination of recorded detector signal S 318 and recorded grid control 320 voltage can be used to generate the inspection image. It shall be noted that a suitably fast feedback control requires a detector response time significantly shorter than the pixel integration time. Commonly used inorganic scintillator detectors such as GOS and BaFCl have scintillation decay times of several microseconds and may be too slow for some applications. However, most organic scintillator detectors have two to three orders of magnitude shorter decay times which will suffice even for fast scanning imaging systems.



FIG. 4 is a graph illustrating one exemplary feedback function, in accordance with the present specification, showing the detected signal (y-axis) as a function of the inherent image brightness (x-axis). In conventional backscatter imaging systems, the detected signal is a linear function of the object brightness with the proportionality factor (slope) depending on the constant X-ray tube current and numerous other system parameters. This behavior is represented by straight lines 402 and 404, which are respectively below and above of a signal threshold value t 406. A preferred relation between brightness and signal would be a square root function as represented by lines 410 and 408, which are respectively below and above of threshold value t 406. However, as line 402 represents the maximum available dose, dashed signal values 410 cannot be generated. Therefore, for signals below a threshold t 406, the maximum available tube current is used. Once the signal reaches threshold t 406, the grid controller starts reducing the tube current so the signal increases less with object brightness than for low signals. Therefore, the slope of line 408 above the threshold is lower than that of line 402 below the threshold. The behavior of line 408 could be linear, a square root as in FIG. 4, or another monotonically increasing form.



FIG. 5A shows the same image as FIG. 1A but with the signal vs. object brightness correspondence of FIG. 4 applied by simulation. In FIG. 5A the reduced beam intensity produces a lower signal above the threshold 406 which is manifested by the darker rendering of the driver 502. The image areas darker than threshold t 406 (516) are rendered identically to FIG. 1A, which is confirmed by comparing the histograms of FIGS. 1B and 5B. FIG. 5B is a histogram that is a graphical representation of tonal (or gray-value) distribution in the X-ray image of FIG. 5A. The image regions, such as region 514 corresponds to the gray-value ‘Range of Interest’ in the image of FIG. 5A. Region 512 shows the tonal (or gray-value) distribution in the X-ray image of the driver. A point 516 on the x-axis shows the signal threshold value t. Once the signal reaches threshold t 516, the grid controller starts reducing the tube current so the signal increases less with object brightness than for low signals. A region or area 512, on the x-axis shows the detected signal (y-axis) as a function (square root) of the inherent image brightness (x-axis). Referring to FIG. 4, maximum available tube current is used for signals below point 516, which includes the region of interest 514 (which, in an embodiment, points to approximately 0.25).


In FIG. 6A, first the dynamic range of the image in FIG. 5A has been restored by dividing each gray-value by the square-root of the threshold 406 and, second, a square-root-filter has been applied. Therefore, FIG. 6A represents an image equivalent to FIG. 2A, but with the signal vs. object brightness correspondence of FIG. 4 applied by simulation. Comparing the image histograms of FIG. 6B to FIG. 2B, it can be observed that the gray-value or tonal range of interest 614 (which, in an embodiment, points to approximately 0.55) below the threshold has been expanded while the gray-value range 612 above the threshold has been compressed.


Again, the feedback function illustrated by FIGS. 4 through 6B is only one exemplary embodiment. In another embodiment the feedback loop could be chosen to keep the detector signal above the threshold constant. In this case the grid voltage needs to be recorded as it now contains all the object brightness information. In embodiments, the process of controlling and/or adjusting the X-ray beam intensity is continuous as the X-ray beam moves from one area over the target object 312 to another.



FIG. 7 is a flow chart illustrating an exemplary process of scatter X-ray radiation scanning, in accordance with the embodiments of the present specification. At step 702, an X-ray beam is emitted over an area of a target object for scanning the target object. In embodiments, the X-ray beam is generated by a grid-controlled X-ray tube, operating in a voltage range of 50 kV to 500 kV. The control grid is responsible for modulating beam current and thus the X-ray beam intensity for transmission towards the target object. At step 704, scatter radiation produced from the area of the target object is detected to generate a detected signal. The detected signal is indicative of brightness of the area of the target object. At step 706, the detected signal is compared to the signal level corresponding to the currently active grid voltage and the amount of mismatch determined. At step 708, the grid voltage is adjusted based on the determined signal mismatch which will adjust the intensity of the X-ray beam to correspond to the current brightness of the target object. The adjusted grid voltage is then used to correspondingly modulate the beam current, which in turn is used to emit X-ray beam over the target area. Therefore, the process repeats itself enabling a continuous monitoring of the detected signal and adjusting of the beam current. In some embodiments, an initial X-ray beam current generated by the system in accordance with embodiments of the present specification, may correspond to the maximum operating voltage of the X-ray tube. The beam current is then immediately adjusted to reflect the target object image's brightness. In embodiments, the X-ray beam intensity is continuously adjusted as the X-ray beam moves from one scanned area in the target object to another scanned area. In embodiments, the X-ray beam intensity is adjusted while the X-ray source is operating and without having to wait until the X-ray source is turned off. The intensity of the scanning X-ray beam is preferably adjustable within the pixel integration time.


For the smallest detector signals the grid voltage will be zero which enables the full output of the X-ray tube resulting in an X-ray beam of maximum intensity. As the detector signal increases, the grid controller generates an increasingly negative grid voltage which reduces the X-ray beam intensity. The feedback function implemented through the grid controller, which acts to reduce the beam intensity as the detector signal increases, establishes a negative feedback loop. It shall be noted that a suitably fast feedback control requires a detector response time significantly shorter than the pixel integration time.


In embodiments, improved image quality and detection performance is realized to increase the low SNR of the darker areas by increasing the areal dose of X-ray beam in those areas. Concurrently, while scanning people it is ensured that the acceptable dose limits are not exceeded by decreasing the areal dose of X-ray beam in the bright areas.


The above examples are merely illustrative of the many applications of the systems and methods of present specification. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. An X-ray scanning system adapted to generate and detect a scatter signal, the X-ray scanning system comprising: an X-ray source configured to emit an X-ray beam, having an X-ray beam intensity, towards an area over a target object for scanning the target object;at least one detector adapted to detect radiation scattered from the target object and generate a corresponding scatter radiation signal, wherein the scatter radiation signal is characterized, at least in part, by one or more brightness levels corresponding to one or more scanned areas of the target object; anda feedback controller, wherein the feedback controller is configured to receive the scatter radiation signal from the at least one detector, generate a control signal that is a function of the one or more brightness levels and that is based on the received scatter radiation signal, and transmit the control signal to the X-ray source and wherein the X-ray source is configured to receive the control signal and adjust the X-ray beam intensity based on the control signal.
  • 2. The X-ray scanning system of claim 1, wherein the X-ray source is an X-ray tube comprising a control grid.
  • 3. The X-ray scanning system of claim 2, wherein the feedback controller is configured to compare a voltage of the control grid to the scatter radiation signal.
  • 4. The X-ray scanning system of claim 1, wherein the feedback controller receives the scatter radiation signal in analog form.
  • 5. The X-ray scanning system of claim 1, wherein the feedback controller receives the scatter radiation signal from the at least one detector prior to the scatter radiation signal being processed by an analog to digital converter.
  • 6. The X-ray scanning system of claim 1, wherein the X-ray source is configured to operate with tube voltages between 50 kV and 500 kV.
  • 7. The X-ray scanning system of claim 1, wherein the control signal generated by the feedback controller is adapted to cause the X-ray source to reduce the X-ray beam intensity as the scatter radiation signal increases and increase the X-ray beam intensity as the scatter radiation signal decreases.
  • 8. The X-ray scanning system of claim 1, wherein the at least one detector comprises an organic scintillator detector.
  • 9. The X-ray scanning system of claim 1, wherein the feedback controller is configured to continuously adjust the X-ray beam intensity as the X-ray beam moves from one of the one or more scanned areas to another of the one or more scanned areas.
  • 10. The X-ray scanning system of claim 1, wherein the X-ray source is configured to adjust the X-ray beam intensity based on the detector signal while the X-ray source is operating and without having to wait until the X-ray source is turned off.
  • 11. The X-ray scanning system of claim 1, wherein a response time of the at least one detector is shorter than a pixel integration time for generating a detected image.
  • 12. An X-ray scanning method for generating and detecting a backscatter signal, the method comprising: using an X-ray source, emitting an X-ray beam, having an X-ray beam intensity, toward an area of a target object for scanning the target object;using at least one detector, detecting backscatter radiation from the area of the target object and generating a corresponding backscatter signal, wherein the backscatter signal is characterized, at least in part, by one or more brightness levels corresponding to one or more scanned areas of the target object;using a feedback controller, receiving the backscatter radiation signal from the at least one detector, generating a control signal that is a function of the one or more brightness levels and that is based on the received backscatter signal, and transmitting the control signal to the X-ray source, wherein the X-ray source is configured to receive the control signal and adjust the X-ray beam intensity based on the control signal.
  • 13. The X-ray scanning method of claim 12, further comprising determining an intensity level required to improve an image quality of an image produced from the backscatter signal.
  • 14. The X-ray scanning method of claim 12, further comprising determining an intensity level required to reduce an intensity level for the one or more brightness levels above a threshold level.
  • 15. The X-ray scanning method of claim 12, further comprising determining an intensity level required to increase an intensity level for the one or more brightness levels below a threshold level.
  • 16. The X-ray scanning method of claim 12, wherein the feedback controller is configured to compare a voltage of a control grid of the X-ray source to the backscatter signal.
  • 17. The X-ray scanning method of claim 12, wherein the X-ray source is configured to operate with tube voltages between 50 kV and 500 kV.
  • 18. The X-ray scanning method of claim 12, wherein the at least one detector is an organic scintillator detector.
  • 19. The X-ray scanning method of claim 12, wherein the feedback controller receives the backscatter signal in analog form.
  • 20. The X-ray scanning method of claim 12, wherein the feedback controller receives the backscatter signal from the at least one detector prior to the backscatter signal being processed by an analog to digital converter.
  • 21. The X-ray scanning method of claim 12, wherein a response time of the at least one detector is shorter than a pixel integration time for generating a detected image from the backscatter signal.
  • 22. The X-ray scanning method of claim 12, wherein the signal generated by the feedback controller is adapted to cause the X-ray source to reduce the X-ray beam intensity as the backscatter signal increases and increase the X-ray beam intensity as the backscatter signal decreases.
  • 23. The X-ray scanning method of claim 12, wherein the feedback controller is configured to continuously adjust the X-ray beam intensity as the X-ray beam moves from one of the one or more scanned areas to another of the one or more scanned areas.
  • 24. The X-ray scanning method of claim 12, wherein the X-ray source is configured to adjust the X-ray beam intensity based on the signal while the X-ray source is operating and without having to wait until the X-ray source is turned off.
  • 25. The X-ray scanning method of claim 12, wherein the X-ray source is configured to adjust the X-ray beam intensity based on the signal while the X-ray beam moves from one of the one or more scanned areas to another of the one or more scanned areas without having to wait until the X-ray source is turned off or without having to wait until another target object is being scanned.
US Referenced Citations (487)
Number Name Date Kind
2831123 Daly Apr 1958 A
2972430 Johnson Feb 1961 A
3766387 Heffan Oct 1973 A
3780291 Stein Dec 1973 A
3784837 Holmstrom Jan 1974 A
3961186 Leunbach Jun 1976 A
3971948 Pfeiler Jul 1976 A
4031401 Jacob Jun 1977 A
4045672 Watanabe Aug 1977 A
4047035 Dennhoven Sep 1977 A
4064440 Roder Dec 1977 A
4101776 Mansfield Jul 1978 A
4139771 Dennhoven Feb 1979 A
4180737 Kingsley Dec 1979 A
4210811 Dennhoven Jul 1980 A
4216499 Dennhoven Aug 1980 A
4242583 Annis Dec 1980 A
4259582 Albert Mar 1981 A
4260898 Annis Apr 1981 A
4267446 Brown May 1981 A
4315146 Rudin Feb 1982 A
4342914 Bjorkholm Aug 1982 A
4366382 Kotowski Dec 1982 A
4380817 Harding Apr 1983 A
4420182 Kaneshiro Dec 1983 A
4430568 Yoshida Feb 1984 A
4472822 Swift Sep 1984 A
4494001 Peck Jan 1985 A
4497062 Mistretta Jan 1985 A
4503332 Annis Mar 1985 A
4511799 Bjorkholm Apr 1985 A
4525854 Molbert Jun 1985 A
4566113 Doenges Jan 1986 A
4599740 Cable Jul 1986 A
4620099 Schoenig Oct 1986 A
4641330 Herwig Feb 1987 A
4646339 Rice Feb 1987 A
4692937 Sashin Sep 1987 A
4736401 Donges Apr 1988 A
4788436 Koechner Nov 1988 A
4788704 Donges Nov 1988 A
4799247 Annis Jan 1989 A
4809312 Annis Feb 1989 A
4825454 Annis Apr 1989 A
4839913 Annis Jun 1989 A
4864142 Gomberg Sep 1989 A
4870670 Geus Sep 1989 A
4884289 Glockmann Nov 1989 A
4979202 Siczek Dec 1990 A
4991189 Boomgaarden Feb 1991 A
5022062 Annis Jun 1991 A
5056129 Steinmeyer Oct 1991 A
5065418 Bermbach Nov 1991 A
5068883 DeHaan Nov 1991 A
5077771 Skillicorn Dec 1991 A
5091924 Bermbach Feb 1992 A
5098640 Gozani Mar 1992 A
5103099 Bourdinaud Apr 1992 A
5179581 Annis Jan 1993 A
5181234 Smith Jan 1993 A
5182764 Peschmann Jan 1993 A
5224144 Annis Jun 1993 A
5237598 Albert Aug 1993 A
5247561 Kotowski Sep 1993 A
5253283 Annis Oct 1993 A
5281820 Groh Jan 1994 A
5302817 Yokota Apr 1994 A
5313511 Annis May 1994 A
5319547 Krug Jun 1994 A
5343046 Smith Aug 1994 A
5367552 Peschmann Nov 1994 A
5376795 Hasegawa Dec 1994 A
5379334 Zimmer Jan 1995 A
5391878 Petroff Feb 1995 A
5394454 Harding Feb 1995 A
5420959 Walker May 1995 A
5430787 Norton Jul 1995 A
5446288 Tumer Aug 1995 A
5493596 Annis Feb 1996 A
5524133 Neale Jun 1996 A
5548123 Perez-Mendez Aug 1996 A
5550380 Sugawara Aug 1996 A
5600144 Worstell Feb 1997 A
5600303 Husseiny Feb 1997 A
5617462 Spratt Apr 1997 A
5629515 Maekawa May 1997 A
5629523 Ngo May 1997 A
5638420 Armistead Jun 1997 A
5642393 Krug Jun 1997 A
5642394 Rothschild Jun 1997 A
5665969 Beusch Sep 1997 A
5666393 Annis Sep 1997 A
5687210 Maitrejean Nov 1997 A
5692028 Geus Nov 1997 A
5692029 Husseiny Nov 1997 A
5696806 Grodzins Dec 1997 A
5734166 Czirr Mar 1998 A
5751837 Watanabe May 1998 A
5763886 Schulte Jun 1998 A
5764683 Swift Jun 1998 A
5768334 Maitrejean Jun 1998 A
5783829 Sealock Jul 1998 A
5784507 Holm-Kennedy Jul 1998 A
5787145 Geus Jul 1998 A
5805660 Perion Sep 1998 A
5838759 Armistead Nov 1998 A
5903623 Swift May 1999 A
5910973 Grodzins Jun 1999 A
5930326 Rothschild Jul 1999 A
5936240 Dudar Aug 1999 A
5940468 Huang Aug 1999 A
5968425 Bross Oct 1999 A
5974111 Krug Oct 1999 A
6018562 Willson Jan 2000 A
6031890 Bermbach Feb 2000 A
6058158 Eiler May 2000 A
6067344 Grodzins May 2000 A
6078052 DiFilippo Jun 2000 A
6081580 Grodzins Jun 2000 A
6094472 Smith Jul 2000 A
6151381 Grodzins Nov 2000 A
6188747 Geus Feb 2001 B1
6192101 Grodzins Feb 2001 B1
6192104 Adams Feb 2001 B1
6195413 Geus Feb 2001 B1
6198795 Naumann Mar 2001 B1
6203846 Ellingson Mar 2001 B1
6212251 Tomura Apr 2001 B1
6218943 Ellenbogen Apr 2001 B1
6236709 Perry May 2001 B1
6249567 Rothschild Jun 2001 B1
6252929 Swift Jun 2001 B1
6256369 Lai Jul 2001 B1
6278115 Annis Aug 2001 B1
6282260 Grodzins Aug 2001 B1
6292533 Swift Sep 2001 B1
6301326 Bjorkholm Oct 2001 B2
6320933 Grodzins Nov 2001 B1
6333502 Sumita Dec 2001 B1
6356620 Rothschild Mar 2002 B1
6421420 Grodzins Jul 2002 B1
6424695 Grodzins Jul 2002 B1
6434219 Rothschild Aug 2002 B1
6435715 Betz Aug 2002 B1
6442233 Grodzins Aug 2002 B1
6445765 Frank Sep 2002 B1
6453003 Springer Sep 2002 B1
6453007 Adams Sep 2002 B2
6456684 Mun Sep 2002 B1
6459761 Grodzins Oct 2002 B1
6459764 Chalmers Oct 2002 B1
6473487 Le Oct 2002 B1
RE37899 Grodzins Nov 2002 E
6483894 Hartick Nov 2002 B2
6507025 Verbinski Jan 2003 B1
6532276 Hartick Mar 2003 B1
6542574 Grodzins Apr 2003 B2
6542578 Ries Apr 2003 B2
6542580 Carver Apr 2003 B1
6543599 Jasinetzky Apr 2003 B2
6546072 Chalmers Apr 2003 B1
6552346 Verbinski Apr 2003 B2
6556653 Hussein Apr 2003 B2
6563903 Kang May 2003 B2
6567496 Sychev May 2003 B1
6580778 Meder Jun 2003 B2
6584170 Aust Jun 2003 B2
6597760 Beneke Jul 2003 B2
6606516 Levine Aug 2003 B2
6621888 Grodzins Sep 2003 B2
6636581 Sorenson Oct 2003 B2
6637266 Froom Oct 2003 B1
6653588 Gillard-Hickman Nov 2003 B1
6658087 Chalmers Dec 2003 B2
6663280 Doenges Dec 2003 B2
6665373 Kotowski Dec 2003 B1
6665433 Roder Dec 2003 B2
6687326 Bechwati Feb 2004 B1
6747705 Peters Jun 2004 B2
6763635 Lowman Jul 2004 B1
6785357 Bernardi Aug 2004 B2
6812426 Kotowski Nov 2004 B1
6816571 Bijjani Nov 2004 B2
6837422 Meder Jan 2005 B1
6839403 Kotowski Jan 2005 B1
6843599 Le Jan 2005 B2
6859607 Sugihara Feb 2005 B2
6876719 Ozaki Apr 2005 B2
6879657 Hoffman Apr 2005 B2
6909770 Schramm Jun 2005 B2
6920197 Kang Jul 2005 B2
6965662 Eppler Nov 2005 B2
7010094 Grodzins Mar 2006 B2
7039159 Muenchau May 2006 B2
7067079 Bross Jun 2006 B2
7072440 Mario Jul 2006 B2
7099434 Adams Aug 2006 B2
7103137 Seppi Sep 2006 B2
7110493 Kotowski Sep 2006 B1
7115875 Worstell Oct 2006 B1
RE39396 Swift Nov 2006 E
7162005 Bjorkholm Jan 2007 B2
7203276 Arsenault Apr 2007 B2
7207713 Lowman Apr 2007 B2
7215737 Li May 2007 B2
7217929 Hirai May 2007 B2
7218704 Adams May 2007 B1
7253727 Jenkins Aug 2007 B2
7308076 Studer Dec 2007 B2
7322745 Agrawal Jan 2008 B2
7326933 Katagiri Feb 2008 B2
7333587 De Feb 2008 B2
7366282 Peschmann Apr 2008 B2
7369463 Van Dullemen May 2008 B1
7369643 Kotowski May 2008 B2
7379530 Hoff May 2008 B2
7400701 Cason Jul 2008 B1
7409042 Bertozzi Aug 2008 B2
7417440 Peschmann Aug 2008 B2
7486768 Allman Feb 2009 B2
7505556 Chalmers Mar 2009 B2
7505562 Dinca Mar 2009 B2
7508910 Safai Mar 2009 B2
7517149 Agrawal Apr 2009 B2
7519148 Kotowski Apr 2009 B2
7538325 Mishin May 2009 B2
7551715 Rothschild Jun 2009 B2
7551718 Rothschild Jun 2009 B2
7555099 Rothschild Jun 2009 B2
7579845 Peschmann Aug 2009 B2
7593506 Cason Sep 2009 B2
7593510 Rothschild Sep 2009 B2
7720195 Allman May 2010 B2
7742568 Smith Jun 2010 B2
7783004 Kotowski Aug 2010 B2
7783005 Kaval Aug 2010 B2
7796733 Hughes Sep 2010 B2
7796734 Mastronardi Sep 2010 B2
7809109 Mastronardi Oct 2010 B2
7817776 Agrawal Oct 2010 B2
7856081 Peschmann Dec 2010 B2
7864920 Rothschild Jan 2011 B2
7876880 Kotowski Jan 2011 B2
7924979 Rothschild Apr 2011 B2
7963695 Kotowski Jun 2011 B2
7995705 Allman Aug 2011 B2
7995707 Rothschild Aug 2011 B2
8000436 Seppi Aug 2011 B2
8054938 Kaval Nov 2011 B2
8135110 Morton Mar 2012 B2
8135112 Hughes Mar 2012 B2
8138770 Peschmann Mar 2012 B2
8148693 Ryge Apr 2012 B2
8194822 Rothschild Jun 2012 B2
8199996 Hughes Jun 2012 B2
8275091 Morton Sep 2012 B2
8275092 Zhang Sep 2012 B1
8325871 Grodzins Dec 2012 B2
8331535 Morton Dec 2012 B2
8345819 Mastronardi Jan 2013 B2
8369481 Shimada Feb 2013 B2
8389942 Morton Mar 2013 B2
8401147 Ryge Mar 2013 B2
8428217 Peschmann Apr 2013 B2
8433036 Morton Apr 2013 B2
8439565 Mastronardi May 2013 B2
8442186 Rothschild May 2013 B2
8451974 Morton May 2013 B2
8457274 Arodzero Jun 2013 B2
8483356 Bendahan Jul 2013 B2
8503605 Morton Aug 2013 B2
8503606 Rothschild Aug 2013 B2
8532823 Mcelroy Sep 2013 B2
8576982 Gray Nov 2013 B2
8582720 Morton Nov 2013 B2
8605859 Mastronardi Dec 2013 B2
8638904 Gray Jan 2014 B2
8668386 Morton Mar 2014 B2
8670522 Lee Mar 2014 B2
8690427 Mastronardi Apr 2014 B2
8731137 Arroyo May 2014 B2
8735833 Morto May 2014 B2
8750452 Kaval Jun 2014 B2
8750454 Gozani Jun 2014 B2
8774357 Morton Jul 2014 B2
8774362 Hughes Jul 2014 B2
8798232 Bendahan Aug 2014 B2
8804899 Morton Aug 2014 B2
8824632 Mastronardi Sep 2014 B2
8831176 Morto Sep 2014 B2
8842808 Rothschild Sep 2014 B2
8861684 Al-Kofahi Oct 2014 B2
8884236 Rothschild Nov 2014 B2
8885794 Morton Nov 2014 B2
8903045 Schubert Dec 2014 B2
8903046 Morton Dec 2014 B2
8908831 Bendahan Dec 2014 B2
8923481 Schubert Dec 2014 B2
8929509 Morton Jan 2015 B2
8958526 Morton Feb 2015 B2
8971487 Mastronardi Mar 2015 B2
8993970 Morton Mar 2015 B2
8995619 Gray Mar 2015 B2
9014339 Grodzins Apr 2015 B2
9020100 Mastronardi Apr 2015 B2
9020103 Grodzins Apr 2015 B2
9042511 Peschmann May 2015 B2
9052271 Grodzins Jun 2015 B2
9052403 Morton Jun 2015 B2
9057679 Morton Jun 2015 B2
9069101 Arroyo, Jr. Jun 2015 B2
9099279 Rommel Aug 2015 B2
9117564 Rommel Aug 2015 B2
9121958 Morton Sep 2015 B2
9128198 Morton Sep 2015 B2
9146201 Schubert Sep 2015 B2
9158030 Morton Oct 2015 B2
9182516 Gray Nov 2015 B2
9183647 Morton Nov 2015 B2
9207195 Gozani Dec 2015 B2
9208988 Morton Dec 2015 B2
9223050 Kaval Dec 2015 B2
9251915 Lai Feb 2016 B2
9257208 Rommel Feb 2016 B2
9268058 Peschmann Feb 2016 B2
9285325 Gray Mar 2016 B2
9285488 Arodzero Mar 2016 B2
9291582 Grodzins Mar 2016 B2
9291741 Gray Mar 2016 B2
9316760 Bendahan Apr 2016 B2
9417060 Schubert Aug 2016 B1
9465135 Morton Oct 2016 B2
9466456 Rommel Oct 2016 B2
9535019 Rothschild Jan 2017 B1
9541510 Arodzero Jan 2017 B2
9562866 Morton Feb 2017 B2
9576766 Morton Feb 2017 B2
9606259 Morton Mar 2017 B2
9632205 Morton Apr 2017 B2
9658343 Arodzero May 2017 B2
9791590 Morton Oct 2017 B2
9823201 Morton Nov 2017 B2
9841386 Grodzins Dec 2017 B2
9915752 Peschmann Mar 2018 B2
9958569 Morton May 2018 B2
10134254 Jarvi Nov 2018 B2
10168445 Morton Jan 2019 B2
10209372 Arodzero Feb 2019 B2
10228487 Mastronardi Mar 2019 B2
10266999 Rothschild Apr 2019 B2
10295483 Morton May 2019 B2
10408967 Morton Sep 2019 B2
10670740 Couture Jun 2020 B2
10724192 Rothschild Jul 2020 B2
10762998 Rothschild Sep 2020 B2
10770195 Rothschild Sep 2020 B2
10794843 Rothschild Oct 2020 B2
10830911 Couture Nov 2020 B2
10976465 Morton Apr 2021 B2
20010016028 Adams Aug 2001 A1
20010046275 Hussein Nov 2001 A1
20020082492 Grzeszczuk Jun 2002 A1
20020117625 Pandelisev Aug 2002 A1
20030223549 Winsor Dec 2003 A1
20040004482 Bouabdo Jan 2004 A1
20040057554 Bjorkholm Mar 2004 A1
20040086078 Adams May 2004 A1
20040104347 Bross Jun 2004 A1
20040109653 Kerr Jun 2004 A1
20040140431 Schmand Jul 2004 A1
20040141584 Bernardi Jul 2004 A1
20040218714 Faust Nov 2004 A1
20040251415 Verbinski Dec 2004 A1
20040256565 Adams Dec 2004 A1
20050018814 Kerschner Jan 2005 A1
20050053199 Miles Mar 2005 A1
20050078793 Ikeda Apr 2005 A1
20050135560 Dafni Jun 2005 A1
20050185757 Kresse Aug 2005 A1
20050190878 De Man Sep 2005 A1
20050236577 Katagiri Oct 2005 A1
20060078091 Lasiuk Apr 2006 A1
20060251211 Grodzins Nov 2006 A1
20070009088 Edic Jan 2007 A1
20070019781 Haras Jan 2007 A1
20070029493 Kniss Feb 2007 A1
20070098142 Rothschild May 2007 A1
20070222981 Ponsardin Sep 2007 A1
20070235655 Rhiger Oct 2007 A1
20070237294 Hoff Oct 2007 A1
20070258562 Dinca Nov 2007 A1
20070280417 Kang Dec 2007 A1
20080037707 Rothschild Feb 2008 A1
20080043913 Annis Feb 2008 A1
20080099692 Poreira May 2008 A1
20080152081 Cason Jun 2008 A1
20080197279 Kang Aug 2008 A1
20080219804 Chattey Sep 2008 A1
20080273652 Arnold Nov 2008 A1
20090067575 Seppi Mar 2009 A1
20090086907 Smith Apr 2009 A1
20090103686 Rothschild Apr 2009 A1
20090116617 Mastronardi May 2009 A1
20090188379 Hiza Jul 2009 A1
20090230295 Waring Sep 2009 A1
20090230925 Nathan Sep 2009 A1
20090257555 Chalmers Oct 2009 A1
20090268871 Rothschild Oct 2009 A1
20090274270 Kotowski Nov 2009 A1
20090309034 Yoshida Dec 2009 A1
20100061509 D Ambrosio et al. Mar 2010 A1
20100072398 Fruehauf Mar 2010 A1
20100091947 Niu Apr 2010 A1
20100108859 Andressen May 2010 A1
20100270462 Nelson Oct 2010 A1
20100276602 Clothier Nov 2010 A1
20110079726 Kusner Apr 2011 A1
20110110490 Samant May 2011 A1
20110206179 Bendahan Aug 2011 A1
20110215222 Eminoglu Sep 2011 A1
20110309253 Rothschild Dec 2011 A1
20110309257 Menge Dec 2011 A1
20120033791 Mastronardi Feb 2012 A1
20120061575 Dunleavy Mar 2012 A1
20120076257 Star-Lack Mar 2012 A1
20120104265 Workman May 2012 A1
20120148020 Arroyo, Jr. Jun 2012 A1
20120199753 Chuang Aug 2012 A1
20120280132 Nakamura Nov 2012 A1
20120298864 Morishita Nov 2012 A1
20130039463 Mastronardi Feb 2013 A1
20130156156 Roe Jun 2013 A1
20130195248 Rothschild Aug 2013 A1
20130202089 Schubert Aug 2013 A1
20130208857 Arodzero Aug 2013 A1
20130315368 Turner Nov 2013 A1
20140105367 Horvarth Apr 2014 A1
20140110592 Nelson Apr 2014 A1
20140182373 Sbihli Jul 2014 A1
20150016794 Mori Jan 2015 A1
20150055751 Funk Feb 2015 A1
20150060673 Zimdars Mar 2015 A1
20150168589 Morton Jun 2015 A1
20150355117 Morton Dec 2015 A1
20160025888 Peschmann Jan 2016 A1
20160025889 Morton Jan 2016 A1
20160170044 Arodzero Jun 2016 A1
20160170077 Morton Jun 2016 A1
20160223706 Franco Aug 2016 A1
20170023696 Morton Jan 2017 A1
20170045630 Simon Feb 2017 A1
20170059739 Mastronardi Mar 2017 A1
20170184516 Chen Jun 2017 A1
20170200524 Adler Jul 2017 A1
20170245819 Rothschild Aug 2017 A1
20170299526 Morton Oct 2017 A1
20170299764 Morton Oct 2017 A1
20170315242 Arodzero Nov 2017 A1
20170358380 Rothschild Dec 2017 A1
20180038969 Mccollough Feb 2018 A1
20180038988 Morton Feb 2018 A1
20180106735 Gellineau Apr 2018 A1
20180128935 Morton May 2018 A1
20180136340 Nelson May 2018 A1
20180252841 Grodzins Sep 2018 A1
20180284316 Morton Oct 2018 A1
20180286624 Rommel Oct 2018 A1
20180294066 Rothschild Oct 2018 A1
20180313770 Morton Nov 2018 A1
20180328861 Grodzins Nov 2018 A1
20190139385 Jarvi May 2019 A1
20190293810 Couture Sep 2019 A1
20190346382 Rothschild Nov 2019 A1
20190383953 Arodzero Dec 2019 A1
20200025955 Gozani Jan 2020 A1
20200033274 Couture Jan 2020 A1
20200073008 Parikh Mar 2020 A1
20200103357 Morton Apr 2020 A1
20200103547 Morton Apr 2020 A1
20200158908 Morton May 2020 A1
20200191991 Morton Jun 2020 A1
20200233100 Rothschild Jul 2020 A1
20200326291 Rothschild Oct 2020 A1
20200326436 Couture Oct 2020 A1
20200355631 Yu Nov 2020 A1
20200355632 Morton Nov 2020 A1
20210018650 Morton Jan 2021 A1
Foreign Referenced Citations (89)
Number Date Country
1493176 Apr 2004 CN
1745296 Mar 2006 CN
102519988 Jun 2012 CN
104204854 Dec 2014 CN
107209282 Sep 2017 CN
2639631 Mar 1978 DE
4017100 Dec 1990 DE
102013102749 Oct 2013 DE
113291 Jul 1984 EP
0261984 Mar 1988 EP
0813692 Dec 1997 EP
0813692 Dec 1997 EP
0864884 Sep 1998 EP
0971215 Jan 2000 EP
1168249 Jan 2002 EP
1135700 Mar 2005 EP
1254384 Jan 2008 EP
2054741 May 2009 EP
1733213 Feb 2010 EP
2049888 May 2014 EP
3271709 Jan 2018 EP
2492159 Apr 1982 FR
1505498 Mar 1978 GB
2084829 Apr 1982 GB
2150526 Jul 1985 GB
2277013 Oct 1994 GB
2400480 Oct 2004 GB
2482024 Jan 2012 GB
58103678 Jun 1983 JP
62147349 Jul 1987 JP
S63299100 Dec 1988 JP
10232284 Feb 1997 JP
H10185842 Jul 1998 JP
2000515629 Nov 2000 JP
2006505805 Feb 2006 JP
2013205122 Oct 2013 JP
3195776 Feb 2015 JP
9701089 Jan 1997 WO
1997001089 Jan 1997 WO
9802763 Jan 1998 WO
1998002763 Jan 1998 WO
1998003889 Jan 1998 WO
9805946 Feb 1998 WO
1998020366 May 1998 WO
9913323 Mar 1999 WO
1999039189 Aug 1999 WO
2000033060 Jun 2000 WO
2000037928 Jun 2000 WO
0159485 Aug 2001 WO
0173415 Oct 2001 WO
02091023 Nov 2002 WO
03075037 Sep 2003 WO
2004010127 Jan 2004 WO
2004043740 May 2004 WO
2005079437 Sep 2005 WO
2005098400 Oct 2005 WO
2005103759 Nov 2005 WO
2005103759 Nov 2005 WO
2006111323 Oct 2006 WO
2006111323 Oct 2006 WO
2007051092 May 2007 WO
2008021807 Feb 2008 WO
2008024825 Feb 2008 WO
2008063695 May 2008 WO
2008105782 Sep 2008 WO
2009027667 Mar 2009 WO
2009067394 May 2009 WO
2010129926 Nov 2010 WO
2011008718 Jan 2011 WO
2011011583 Jan 2011 WO
2011014445 Feb 2011 WO
2011053972 May 2011 WO
2011149566 Dec 2011 WO
2011163108 Dec 2011 WO
2011163108 Dec 2011 WO
2012058207 May 2012 WO
2012109307 Aug 2012 WO
2012142453 Oct 2012 WO
2012142456 Oct 2012 WO
2012174265 Dec 2012 WO
2013112819 Aug 2013 WO
2013116058 Aug 2013 WO
2013122763 Aug 2013 WO
2014058495 Apr 2014 WO
2016003547 Jan 2016 WO
2016081881 May 2016 WO
2018064434 Apr 2018 WO
2019217596 Nov 2019 WO
2020041161 Feb 2020 WO
Non-Patent Literature Citations (56)
Entry
International Search Report for PCT/US20/37716, dated Sep. 9, 2020.
Written Opinion of the International Searching Authority for PCT/US20/37716, dated Sep. 9, 2020.
Williams et al.:“PET Detector Using Waveshifting Optical Fibers and Microchannel Plate PMT with Delay Line Readout”, IEEE Transactions on Nuclear Science, IEEE Service Center, New York, Ny, US, vol. 45, No. 2, Apr. 1, 1998 (1998-04-01), pp. 195-205, XP011087844, Issn: 0018-9499, DOI: 10.1109/23.664171.
Beznosko et al., “FNAL-NICADD Extruded Scintillator,” FERMILAB-CONF-04-216-E, pp. 1-4 (Sep. 2004).
Case et al., “Wavelength-shifting fiber readout of LaC13 and LaBr3 scintillators,” Proc, of SPIE, vol. 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV, p. 58980K-1-58980K-8 (2005).
Gundiah, “Scintillation properties of Eu.sup.2+-activated barium fluoroiodide,” Lawrence Berkeley National Laboratory, pp. 1-10 (Feb. 2011).
Hutchinson et al., “Optical Readout for Imaging Neutron Scintillation Detectors,” Engineering Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 6 pages. (Nov. 2002).
Keizer, “The optimal cosmic ray detector for High-Schools,” 21 pages (2011).
Maekawa et al., “Thin Beta-ray Detectors using Plastic Scintillator Combined with Wavelengthshifting Fibers for Surface Contamination Monitoring,” J. Nucl. Sci. Technol., vol. 35, No. 12, pp. 886-894 (Dec. 1998).
Moiseev et al., “High-efficiency plastic scintillator detector with wavelength-shifting fiber readout for the GLAST Large Area Telescope,” Nucl. Instrum. Meth. Phys. Res. A, vol. 583, pp. 372-381 (2007).
Nishikido et al. “X-ray detector made of plastic scintillators and WLS fiber for real-time dose distribution monitoring in interventional radiology,” IEEE Nuclear Science Symposium and Medical Imaging Conference Record.
Pla-Dalmau et al., “Extruded Plastic Scintillator for Minerva,” FERMILAB-CONF-05-506-E, pp. 1298-1300 (2005).
Yoshimura et al., “Plastic scintillator produced by the injection-molding technique,” Nucl. Instr. Meth. Phys. Res. A, vol. 406, pp. 435-441 (1998).
Jae Yul Ahn, Authorized officer Korean Intellectual Property Office, International Search Report-Application No. PCT/US2013/024585, date of mailing Jun. 2, 2013, along with Written Opinion of the International Searchi.
Nishikido et al. “X-ray detector made of plastic scintillators and WLS fiber for real-time dose distribution monitoring in interventional radiology,” IEEE Nuclear Science Symposium and Medical Imaging Conference Reco, pp. 1272-1274 (2012).
International Search Report for PCT/US17/54211, dated Jan. 18, 2018.
International Search Report for PCT/US2019/027242, dated Jul. 17, 2019.
Rose, Kathryn, “NuMI Off-Axis Experiment” Datasheet (online). University of Oxford & Rutherford Appleton Laboratory, 2003. <URL: https://slideplayer.com/slide/8765673/>.
International Search Report for PCT/US2019/027252, dated Aug. 2, 2019.
International Search Report for PCT/US2013/024585, dated Jun. 2, 2013.
https://en.wikipedia.Org/wiki/ISM_band#Common_non-ISM_uses., downloaded from Internet Nov. 23, 2020.
International Search Report for PCT/US2013/023125, dated May 15, 2013.
International Search Report for PCT/US99/29185, dated Sep. 27, 2000.
Chou, C, “Fourier coded-aperture imaging in nuclear medicine”, IEEE Proc. Sci. Meas. Technol., vol. 141. No. 3, May 1994, pp. 179-184.
Mertz, L.N., et al., “Rotational aperture synthesis for x rays”, Journal. Optical Society of America, vol. 3, Dec. 1986, pp. 2167-2170.
International Bureau of WIPO, International Preliminary Report on Patentability, PCT/US2005/011382, dated Oct. 19, 2006, 7 pages.
International Search Report and Written Opinion for PCT/US2010/041757, dated Oct. 12, 2010.
European Patent Office, International Search Report, International Application No. PCT/US99/28266, dated Sep. 6, 2000, 3 pages.
Written Opinion of the International Searching Authority, PCT/US2007/066936, dated Sep. 30, 2008, 7 pages.
International Search Report, PCT/US1999/028035, dated Sep. 15, 2000, 6 pages.
International Search Report, PCT/US1998/18642, dated Jul. 7, 1999, 4 pages.
International Search Report, PCT/US2007/066936; dated: Sep. 30, 2008, 5 pages.
European Patent Office, International Search Report and Written Opinion of the International Searching Authority, PCT/US2005/011382, dated Oct. 21, 2005.
Nittoh et al., “Discriminated neutron and X-ray radiography using multi-color scintillation detector,” Nuclear Instruments and Methods in Physics Research A, vol. 428, pp. 583-588 (1999).
Novikov, “A method for monitoring of Gd concentration in Gd-loaded scintillators,” Nuclear Instruments and Methods in Physics Research A, vol. 366, pp. 413-414 (1995).
International Search Report for PCT/US2016/023240, dated Jul. 12, 2016.
Osswald et al. “Injection Molding Handbook”, p. 394, Chemical Industry Press, Mar. 31, 2005.
Yoshiaki et al. “Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen (PSA) using firefly luciferas”, Abstract, Luminescence, vol. 16, Issue 4, Jul. 31, 2001.
International Search Report for PCT/US01/09784, dated Jan. 28, 2002.
International Search Report for PCT/US02/13595, dated Aug. 6, 2002.
International Search Report for PCT/US03/35232, dated Nov. 8, 2004.
International Search Report for PCT/US03/05958, dated Jun. 27, 2003.
International Search Report for PCT/US2005/011382, dated Oct. 21, 2005.
International Seach Report for PCT/US2008/083741, dated Oct. 30, 2009.
International Search Report for PCT/US2007/066936, dated Sep. 30, 2008.
International Search Report for PCT/US2006/060158, dated Jul. 5, 2007.
International Search Report for PCT/US2007/076497, dated Jul. 28, 2008.
International Search Report for PCT/US2007/075323, dated Feb. 5, 2008.
International Search Report for PCT/US2010/043201, dated Oct. 29, 2010.
International Search Report for PCT/US2012/024248, dated Jul. 9, 2012.
International Search Report for PCT/US11/23143, dated Nov. 25, 2011.
International Search Report for PCT/US2012/033581, dated Oct. 31, 2012.
International Search Report for PCT/US2011/041033, dated Feb. 17, 2012.
International Search Report for PCT/US2012/033585, dated Nov. 29, 2012.
International Search Report for PCT/US2013/022715, dated May 15, 2013.
International Search Report for PCT/US2015/031115, dated Jul. 29, 2015.