Floating gate type of non-volatile memory cell has achieved widespread adoptions in various IC devices due to their CMOS compatibility and low cost. However, current floating gate type of memory cell suffers from scaling issue, endurance/retention limit, high power consumption, complex structure, additional processing and high cost. In view of this, resistive-switching random access memory is attracting increasing interest as a potential candidate which overcomes the limitations of floating gate type of memory cells.
Currently, 1 transistor, 1 resistor (1T1R) resistive memory device is being implemented to form NOR/NAND structure. However, standard logic complementary metal oxide semiconductor (CMOS) transistor requires cell size which is larger than 30F2 (F˜feature size) to provide sufficient driving current and offers only 1-bit per cell structure. Thus, there are issues and drawbacks associated with existing resistive switching type of random access memory and its manufacturing thereof. Accordingly, there remains a need for improved resistive-switching based memory devices with better drivability and requires smaller cell area as well as and manufacturing methods thereof.
Embodiments generally relate to memory devices and manufacturing methods thereof. In one embodiment, a device is disclosed. The device includes a substrate and a memory cell having at least one selector and a storage element. The selector includes a well of a first polarity type disposed in the substrate, a region of a second polarity type disposed over the well and in the substrate, and first and second regions of the first polarity type disposed adjacent to the region of the second polarity type. The storage element includes a programmable resistive layer disposed on the region of the second polarity type and an electrode disposed over the programmable resistive layer.
In another embodiment, a device is presented. The device includes a substrate and a memory cell having first and second memory structures. The memory cell includes a well of a first polarity type disposed in the substrate and common to the first and second memory structures, first and second regions of a second polarity type disposed in the substrate over the well and are separated by a cavity, an isolation region disposed in the well and below the cavity, a programmable resistive layer which lines the cavity, and an electrode disposed over the programmable resistive layer and within the cavity. The memory cell also includes first and second layers of the first polarity type disposed over the first and second regions of the second polarity type and adjacent to first and second sides of the programmable resistive layer and electrode.
In another embodiment, a method of forming a device is presented. The method includes providing a substrate and forming a memory cell. A well of a first polarity type is formed in the substrate. At least a first region of a second polarity type is formed adjacent to the well. A patterned programmable resistive layer and electrode is provided on the substrate. First and second regions of the first polarity type are formed adjacent to the first region of the second polarity type and adjacent to the programmable resistive layer and electrode.
These embodiments, along with other advantages and features herein disclosed, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the present disclosure. In the following description, various embodiments of the present disclosure are described with reference to the following drawings, in which:
Embodiments generally relate to memory devices and manufacturing methods thereof. A memory device according to the present disclosure includes a resistive random access memory (RRAM) integrated with a selector structure, such as bipolar junction transistor (BJT). The memory device according to the present disclosure is built on or integrated with complementary metal oxide semiconductor (CMOS) processing. For illustration purpose, the first polarity type, for example, may be referred to as n-type while the second polarity type, for example, may be referred to as p-type. However, it is understood that modifications may be made such that the first polarity type, for example, may be referred to as p-type while the second polarity type, for example, may be referred to as n-type. The memory device according to the present disclosure offers a number of novel features vis-à-vis existing designs of memory devices. Firstly, a memory device according to the present disclosure is compact in size. Secondly, a memory device according to the present disclosure achieves better performance in terms of lower operating voltage, faster read/write operation, and better retention, endurance and scalability. Thirdly, a single-bit-per-cell (1-bit) or two-bits-per-cell (2-bits) structure may be achieved. Moreover, the process of manufacturing the memory device according to the present disclosure is compatible with CMOS technology.
The resistive storage element includes a programmable resistive layer. The programmable resistive layer can be put in a first or a second state. The programmable resistive layer remains in a stable state until switched to the other state. In one embodiment, the programmable resistive layer is formed from a material which, when conductions paths or filaments are formed, can be broken (reset) or reformed (set) to be in a high or low resistive state. In one embodiment, when the conduction paths are broken or reset during a reset procedure, the programmable resistive layer is in the first or high resistive state which corresponds to a logic “0” stored; when the conduction paths are formed or reformed (set) in the programmable resistive layer, it is in the second or low resistive state which corresponds to a logic “1” stored. Other configurations of resistive states and data stored in the programmable resistive layer may also useful.
As described, the selector is a BJT while the storage element is a resistive storage element, forming a BJT-RRAM structure. Other suitable emerging storage elements, such as but not limited to phase change random access memory (PCRAM) and magneto-resistive random access memory (MRAM) could also be applied with this structure.
The substrate includes a device region. The device region, in one embodiment, serves as a cell region for a memory cell. It is, however, understood that the substrate may include a plurality of device regions. In one embodiment, the cell region serves as a device region of a single-bit BJT-RRAM structure. Numerous cell regions may be provided in an array region to form a plurality of memory cells. Isolation regions (not shown) are formed in the substrate 102. The isolation region serves to isolate the cell region from other device regions (not shown) for other types of devices. The isolation region, for example, is a shallow trench isolation (STI) region. The STI region, for example, includes an isolation or dielectric material, such as silicon oxide, disposed in a trench which surrounds the device region. Other types of isolation regions may also be useful.
A well 104 of a first polarity type is disposed in the substrate 102. The first polarity type dopants, for example, are n-type dopants. The dopant concentration is about, for example, 1E11-1E12 cm−3. Other suitable types of dopants and dopant concentrations may also be useful. In one embodiment, the well 104 extends to a depth below the isolation regions (not shown). Other suitable depths may also be useful. In one embodiment, the first polarity type is n-type and the second polarity type is p-type. In such case, the well 104 is an n-type well or a deep n-type well (DNW), and the substrate 102 is a p-type substrate.
A region of second polarity type 106 is disposed over the well in the substrate. The region 106 includes lightly doped second polarity type dopants. Second polarity type dopants, such as p-type dopants which include B, BF2, In or a combination thereof, are implanted at a dose of about 1E12-1E14 atom/cm2 with an energy of about 50-300 keV into the substrate to form the region 106. Other suitable depth dimensions and dopant concentrations may also be useful, depending on technology node.
As described, the storage element includes a resistive storage element. In one embodiment, the resistive storage element is disposed directly on the substrate 102. The resistive storage element includes a programmable resistive layer disposed directly on the substrate and a top electrode disposed on top of the programmable resistive layer. In some embodiments, the region of the second polarity type 106 may serve as a bottom electrode of the resistive storage element instead of using other types of metals for the bottom electrode. As shown in
The programmable resistive layer, in one embodiment, includes a transitional metal oxide, such as but not limited to nickel oxide (NiO2), hafnium oxide (HfO2), zirconium oxide (ZrO2), aluminum oxide (AlO2), titanium oxide (TiO2), tantalum oxide (Ta2O5), tungsten oxide (WOx), titanium oxynitride (TiON), germanium oxide (GeO), silicon oxide (SiO2) or tin oxide (SnO2). Other suitable types of programmable resistive materials may also be useful. The thickness and length of the programmable resistive layer 164a, for example, may be about 2-5 nm and 10-20 nm respectively. Other suitable thicknesses and lengths may also be useful.
The top electrode 166a, as shown, is disposed on top of the programmable resistive layer 164a. The electrode may serve as a top electrode of the memory cell. The electrode is coupled to a contact (not shown). The electrode, for example, is the same layer used for forming gate electrode of other devices, such as but not limited to I/O and core devices, disposed on the same substrate. The electrode, for example, includes metal. Various suitable types of metal, such as Ru, W, Pt, TiN, Ti, Zr, TaN, Si or Al, can be used. Other suitable types of electrode materials, such as metal or metal nitride, are also useful.
Referring to
In an alternative embodiment, the dopant concentrations for the regions 108a and 108b may be different from each other. For example, the second region 108b in the substrate adjacent to second side of the electrode as shown in
Sidewall spacers 118 may be disposed over the first and second sidewalls of the programmable resistive layer and electrode. The sidewall spacers, for example, may be silicon nitride. Other suitable types of dielectric material, such as silicon oxide or silicon oxynitride may also be used. The thickness of the sidewall spacers may be about, for example, 5 nm. Other suitable thickness ranges may also be useful.
In one embodiment, the first and second regions of the first polarity type 108a and 108b are disposed in the substrate and have top surfaces substantially coplanar with top surface of the region of the second polarity type 106 or substrate. As shown, the storage element is disposed on top of the region of the second polarity type or the substrate.
The portion of the device 200a further includes an interlevel dielectric (ILD) layer 120 disposed over the substrate and the storage element. The ILD layer, for example, includes an oxide layer. Other suitable types of dielectric material may also be used. Silicide contacts 112 may be disposed between the ILD layer 120 and the first and second regions of the first polarity type 108a/108b. As described earlier, the portion of the device is a single-bit-per-BJT RRAM cell integrated with CMOS processing. The region of the second polarity type 106 serves as the base while the first and second regions of the first polarity type 108a and 108b serve as the collector and emitter of the BJT. The region of the second polarity type 106 also serves as the bottom electrode of the RRAM cell. The electrode 166a is configured to function as the top electrode and a word line of the device. The ILD layer 120 includes a first contact 122a coupling the first region of the first polarity type 108a or the collector of the BJT to a source line (SL) of the device. The ILD layer 120 also includes a second contact 122b coupling the second region of the first polarity type 108b or emitter of the BJT to a bit line (BL) of the device. The ILD layer 120 also includes a contact (not shown) which is coupled to the electrode (166a) or word line (WL) of the device.
Referring to
To access the memory cell, appropriate voltages should be applied to the WL and BL respectively. The programmable resistive layer cis an be put in a first or a second state, depending on the voltage which is applied to the WL. The programmable resistive layer remains in a stable state until switched to the other state. In one embodiment, the programmable resistive layer is formed from a material which, when conductions paths or filaments are formed, can be broken (reset) or reformed (set) to be in a high or low resistive state. In one embodiment, when the conduction paths are broken or reset during a reset procedure, the programmable resistive layer is in the first or high resistive state which corresponds to a logic “0” stored; when the conduction paths are formed or reformed (set) in the programmable resistive layer, it is in the second or low resistive state which corresponds to a logic “1” stored. Other configurations of resistive states and data stored in the programmable resistive layer may also useful.
A plurality of the memory cells as described in any of the embodiments shown in
A memory cell may be accessed by applying appropriate voltages to the terminals. By applying appropriate voltages to the WLs, SL and BLs, a bit or multiple bits of the memory array may be selected for accessing. A memory access may include a program, read or erase operation. Table 1 below shows various signals applied to the terminals of a memory array of selected and non-selected cells for the different memory operations:
It is understood that various suitable types of voltage values may be applied to the terminals of the memory array, depending on the technology node.
The embodiments as described in
Each of the first and second memory structures includes a selector 420 and a storage element 430. The selector includes first, second and third terminals while the storage element includes first and second terminals. The selector, in one embodiment, is a BJT and the storage element, in one embodiment, is a resistive storage element, forming a BJT-RRAM structure. Referring to
As described, the selector is a BJT while the storage element is a resistive storage element, forming a BJT-RRAM structure. Other suitable types of selector and storage elements may also be useful. For example, other suitable emerging storage elements, such as but not limited to PCRAM and MRAIVI may also be useful.
The portion of the device includes a memory cell. The device 500 may include similar features as already described in
In one embodiment, the portion of the device 500 includes a two-bits-per-cell structure as that described in
The portion of the device 500 includes a well of a first polarity type 504 disposed in a substrate 502 of a second polarity type. In one embodiment, the device includes a first fin structure correspond to a first region 5061 of the second polarity type disposed over the well 504, a second fin structure corresponds to a second region 5062 of the second polarity type disposed over the well 504, and a cavity 1082 separating the first and second regions 5061 and 5062 of the second polarity. The first and second fin structures and the well, for example, are part of the substrate. The dopant concentrations for the well of the first polarity type 504 and for the first and second regions of the second polarity type 5061 and 5062 are the same as that described for the well 104 and region of the second polarity type 106 as described in
In one embodiment, portion of an electrode 566 and a programmable resistive layer 564 of the memory cell are disposed within the cavity and extend below the top surfaces of the first and second regions of the second polarity type 5061 and 5062. For example, a portion of the programmable resistive layer 564 lines the cavity and a portion of the electrode 566 is disposed within the cavity while remaining portions of the programmable resistive layer and electrode are disposed on top surfaces of the first and second regions of the second polarity type. Spacers 518 are disposed on first and second sides of the programmable resistive layer and electrode. The materials for the programmable resistive layer, electrode and spacers are the same as that described in
The portion of the device 500, in one embodiment, includes a first layer of the first polarity type 5081 disposed on the first region of the second polarity type 5061 of the first fin structure and adjacent a first side of the electrode. The portion of the device 500, in one embodiment, includes a second layer of the first polarity type 5082 disposed on the second region of the second polarity type 5062 of the second fin structure and adjacent a second side of the electrode which is opposite the first side of the electrode. The first and second layers of the first polarity type 5081 and 5082 include material and dopant concentration of the second region or layer of the first polarity type 108b as that already described in
The portion of the device 500 further includes an ILD layer 520 disposed over the first and second layers of the first polarity type 5081/5082 and the electrode. Silicide contacts 512 may be formed between the ILD layer 520 and the first and second layers of the first polarity type 5081/5082. As described earlier, the portion of the device is a 2-bits-per-cell structure integrated with CMOS processing. The first and second layers of the first polarity type 5081/5082 serve as the emitter of the respective first and second BJT-RRAM structures. Further, the first and second regions of the second polarity type 5061/5062 serve as the base of the respective first and second BJT-RRAM structures while the well 504 serves as the common collector of the respective first and second BJT-RRAM structures. The well also functions as the common source line of the device while the electrode 566 is configured to function as a common word line of the device. The ILD layer 120 includes a first contact 5221 coupling the first layer of the first polarity type 5081 or the emitter of the first BJT-RRAM structure to a first bit line (BL1) of the device. The ILD layer 520 also includes a second contact 5222 coupling the second layer of the first polarity type 5082 or emitter of the second BJT-RRAM structure to a second bit line (BL2) of the device. The ILD layer 120 also includes a contact (not shown) which is coupled to the electrode (566) or common word line (WL) of the device.
A plurality of the memory cells as described in the embodiments shown in
A BJT-RRAM structure may be accessed by applying appropriate voltages to the terminals. By applying appropriate voltages to the WLs, SL and BLs, a bit or multiple bits of the memory array may be selected for accessing. A memory access may include a program, read or erase operation. The operation of the memory cell 400 is similar to the operation of the memory cell 100 and the example voltage values as described in Table 1 above may be employed to the memory cell 400. Thus, such details will not be described.
The embodiments as described in
The substrate includes a device region. The device region, in one embodiment, serves as a cell region for a memory cell. It is, however, understood that the substrate may include a plurality of device regions. In one embodiment, the cell region serves as a device region of a RRAM with the embedded selector. For example, the cell region serves as a device region for a single-bit BJT-RRAM structure. Numerous cell regions may be provided in an array region to form a plurality of memory cells. Isolation regions (not shown) are formed in the substrate 102. The isolation region serves to isolate the cell region from other device regions (not shown) for other types of devices. The isolation region, for example, is a shallow trench isolation (STI) region. Other types of isolation regions may also be useful. The STI region, for example, includes an isolation or dielectric material, such as silicon oxide, disposed in a trench. The STI regions (not shown) may be formed using various suitable techniques.
The process continues to form a well 104. The well, in one embodiment, includes first polarity type dopants. The first polarity type dopants, for example, are n-type dopants. The dopant concentration is about, for example, 1E11-1E12 cm−3. Other suitable types of dopants and dopant concentrations may also be useful. In one embodiment, the well 104 extends to a depth below the isolation regions (not shown). Other suitable depths may also be useful. The well 104, for example, may be part of the substrate. For example, dopants are implanted into the substrate to form the well. Providing any suitable implant energies and doses may also be useful. The implant parameters, such as energy and dose, are tailored to produce the well at the desired location and have the desired effect. By adjusting the energy and dose of the implant, the location and depth of the well can be controlled. In another embodiment, the well may be formed by epitaxial technique and in-situ doped with first polarity type dopants. Other suitable techniques for providing the well may also be useful.
In one embodiment, the process continues to form a region of second polarity type 106 over the well in the substrate as shown in
The process continues to form the storage element. In one embodiment, a programmable resistive layer 564 is provided on the top surface of the substrate or the region of the second polarity type. Depending on the CMOS process, the programmable resistive layer 564, for example, may be the same layer used for forming gate dielectric of other devices. The programmable resistive layer, in one embodiment, includes a transitional metal oxide, such as but not limited to nickel oxide (NiO2), hafnium oxide (HfO2), zirconium oxide (ZrO2), aluminum oxide (AlO2), titanium oxide (TiO2), tantalum oxide (Ta2O5), tungsten oxide (WOx), titanium oxynitride (TiON), germanium oxide (GeO), silicon oxide (SiO2) or tin oxide (SnO2). Other types of programmable resistive materials may also be useful. The programmable resistive layer is formed by, for example, thermal oxidation, chemical vapor deposition (CVD) or atomic layer deposition (ALD). The thickness of the programmable resistive layer, for example, may be about 3-5 nm.
An electrode layer 566, as shown, is formed on top of the programmable resistive layer 564. The electrode layer 566, for example, may be the same layer used for forming gate electrode of other devices, such as but not limited to I/O and core devices, disposed on the same substrate. Various suitable types of metal, such as Ru, W, Pt, TiN, Ti, Zr, TaN, Si or Al, can be used. Other suitable types of electrode materials, such as polysilicon, metal or metal nitride, are also useful. The thickness of the electrode layer may be about, for example, 50-500 nm. The electrode layer, for example, can be formed by CVD. Other suitable techniques for forming and other suitable thickness dimensions for the programmable resistive and electrode layers may also be useful.
Referring to
In one embodiment, the process continues to form first and second regions of first polarity type 108a/108b in the substrate adjacent to first and second sides of the patterned programmable resistive and electrode layers as shown in
In an alternative embodiment, the second region 108b in the substrate adjacent to second side of the patterned programmable resistive and electrode layers as shown in
Sidewall spacers 118 may be formed over the first and second sidewalls of the patterned layers. To form the sidewall spacers, a spacer layer is deposited on the substrate. The spacer layer, for example, may be silicon nitride. Other suitable types of dielectric material, such as silicon oxide or silicon oxynitride may also be used. The spacer layer may be formed by CVD. The spacer layer may also be formed using other techniques. The thickness of the spacer layer may be about, for example, 5 nm. Other suitable thickness ranges may also be useful. The thickness, for example, may depend on the desired width of the spacers. An anisotropic etch, such as RIE, may be performed to remove horizontal portions of the spacer layer, leaving spacers 118 on the sidewalls as shown in
The steps illustrated with respect to
The process may continue to complete the memory cell. For example, silicide contacts 112 may be formed on the first and second regions of the first polarity type 108a/108b. The silicide contacts, for example, may be nickel-based metal silicide layers. Other suitable types of silicide contacts may also be useful. The silicide contacts facilitate reduced contact resistance. To form silicide contacts, a metal layer may be deposited over the substrate and annealed to cause a reaction with silicon. Unreacted metal is removed by, for example, a wet etch, leaving the silicide contacts on the first and second first polarity type doped regions 108a/108b as shown in
Referring to
In one embodiment, the process may continue to form contacts which are coupled to contact regions of the substrate, followed by BEOL process. To form contacts 122a/122b, a soft mask (not shown) may be used to form via or contact openings to the contact regions. The soft mask, for example, is a photoresist mask. To improve lithographic resolution, an anti-reflective coating (ARC) may be provided between the PMD layer and soft mask. The soft mask is patterned to form openings corresponding to the contact regions. A conductive layer is then formed on the substrate, filling the openings and covering the ILD layer 120. A planarizing process, such as CMP, removes excess conductive layer, forming contacts 122a/122b having a substantially coplanar surface with the top surface of the ILD layer 120. Other techniques for forming contacts may also be useful.
As described, the first region of the first polarity type 108a serves as the collector, the second polarity type region 106 serves as the base while the second region of the first polarity type 108b serves as the emitter of the BJT. The first and second contacts 122a/122b are coupled to the respective first and second regions of the first polarity type 108a/108b. The first contact 122a couples the collector of the BJT to the bit line while the second contact 122b couples the emitter of the BJT to the source line. Contact to the electrode (not shown) or to the base of the BJT are formed at the end of the electrode. The contact to the electrode is a WL contact. As shown, the programmable resistive layer is directly disposed on the base of the BJT.
The process may continue to complete the memory cell. For example, BEOL process including interconnect metal levels may be provided to form interconnections to the terminals of the memory cell and other circuit components, as desired. Other processes may also be included to complete the memory cell or device, for example, final passivation, dicing and packaging.
The embodiment as described in
In one embodiment, the process continues to form first and second regions of the first polarity type 108a/108b after forming the region of the second polarity type 106 as shown in
Referring to
The process may continue to complete the memory cell. For example, the process continues from
Referring to
In one embodiment, the process continues to form an elevated layer of the first polarity type 908 over the second polarity type doped region 106 as shown in
As shown in
Referring to
Referring to
Sidewall spacers 118 may be formed over the first and second sidewalls of the patterned layers as shown in
The process may continue to complete the memory cell. For example, silicide contacts 112 may be formed on the first and second elevated layers of first polarity type 208a/208b as shown in
The embodiment as described in
Referring to
Referring to
Forming the fin structures 1020a/1020b may be achieved using various methods. The fin structures, for example, may be formed by patterning the substrate. For example, a patterned hard mask (not shown) is formed over the substrate. In one embodiment, a hard mask layer (not shown), such as silicon oxide or silicon nitride, is formed on the substrate 502. Other suitable types of materials which are selective to an isolation layer as will be described later may also be used as the hard mask layer. The hard mask layer may be formed by chemical vapor deposition (CVD). Other suitable types of hard mask or techniques for forming the hard mask may also be useful.
The hard mask layer is patterned to correspond to the shape of the fin structures. The patterning of the hard mask layer can be achieved by mask and etch techniques. For example, a patterned soft mask (not shown), such as photoresist, may be used as an etch mask to pattern the hard mask layer. The soft mask may be patterned by photolithography. To improve lithographic resolution, an ARC (not shown) may be provided beneath the photoresist. The pattern of the photoresist mask is transferred to the hard mask by, for example, an anisotropic etch, such as aRIE. The soft mask is removed. An anisotropic etch, such as a RIE, is performed to remove portions of the substrate surface unprotected by the hard mask, leaving fin structures 1020a/1020b as described above disposed on the top surface of the substrate. Other suitable methods may also be employed to form the fin structures. The hard mask (not shown), remains on the top surface of the fin.
The process continues to form the isolation layer or region 524. An isolation layer, such as a dielectric layer which includes a silicon oxide layer, is formed over the substrate covering the fin structures. Other suitable types of dielectric layer may also be useful. The isolation layer, for example, may be formed over the substrate using CVD or high aspect ratio process (HARP). Other techniques for forming the isolation layer may also be useful. In one embodiment, a polishing process, such as CMP is performed to planarize the isolation layer to the top surface of the hard mask over the fin structures. A removal process, such as selective to the isolation layer which includes oxide material, is performed to remove or recess portions of the oxide to form the isolation region 524 and a gap or opening 1082 between the fin structures as shown in
A well 504 is formed in the substrate as shown in
In one embodiment, the process continues to form first and second regions of second polarity type 5061/5062 in the fin structures 1020a/1020b as shown in
The process continues to form programmable resistive and electrode layers 1064 and 1066. As shown in
The process continues to form a patterned programmable resistive layer 564 and gate electrode 566. The patterning of the layers can be achieved, for example, by mask and etch techniques. For example, as shown in
Sidewall spacers 518 may be formed over the first and second sidewalls of the patterned layers as shown in
Referring to
The process may continue to complete the memory cell. For example, silicide contacts 512 may be formed on the first and second elevated layers of first polarity type 5081/5082 as shown in
The embodiment as described in
The present disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments, therefore, are to be considered in all respects illustrative rather than limiting the present disclosure described herein. Scope of the present disclosure is thus indicated by the appended claims, rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
This application is a divisional application claiming the benefit of co-pending U.S. patent application Ser. No. 14/483,160, filed on Sep. 11, 2014. All disclosures are herein incorporated by reference in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 14483160 | Sep 2014 | US |
Child | 16223074 | US |