The present invention relates to a semiconductor device having a structure for enhancing gain and band characteristics of an amplifier using a high-electron mobility transistor device (HEMT) of a nitride semiconductor represented by GaN, and a method of manufacturing the semiconductor device.
A structure of a HEMT using a nitride semiconductor represented by GaN (GaN HEMT) is known (see, for example, Non Patent Literature 1). Taking as an example “GaN-Based RF Power Devices and Amplifiers” presented in Non Patent Literature 1, the structure is described below.
Gain is an important feature of an amplifier. The gain is proportional to the ratio of a mutual conductance (gm) to a gate-drain capacitance (Cgd). Therefore, reduction in Cgd results in gain enhancement.
As a method for reducing Cgd, FIG. 5(b) of Non Patent Literature 1 presents a method using a source field plate (SFP). This is a method in which an electrode having the same potential as that of a source is placed between a gate and a drain. According to this conventional method, a part of electric flux lines between the gate and the drain extends toward the field plate, and thus, the electric flux lines between the gate and the drain decrease to reduce Cgd.
However, the conventional technology has the following problem.
According to this conventional method, the electric flux lines between the gate and the drain are reduced, but electric flux lines between the field plate and the drain are increased. In this case, the potential of the field plate is the same as that of the source, and thus, the result is that the source-drain capacitance (Cds) is increased.
Increase in Cds limits the band of the amplifier. Further, when the SFP is not used, although Cds is not increased, Cgd cannot be reduced. From the above-mentioned reason, in a conventional semiconductor device using a GaN HEMT, it is difficult to attain both high gain and a broad band (that is, to attain both reduction in Cgd and reduction in Cds).
In a microwave amplifier, signals in a wide frequency band are required to be amplified with high gain. However, in a conventional semiconductor device using a GaN HEMT, reduction in Cgd for the purpose of enhancing the gain results in increase in Cds, and it is difficult to attain both gain and band.
The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to obtain a semiconductor device using a GaN HEMT which can attain both high gain and a broad band (that is, attain both reduction in gate-drain capacitance and reduction in source-drain capacitance), and a method of manufacturing the semiconductor device.
According to the present invention, there is provided a semiconductor device, including: a GaN channel layer through which electrons travel; a barrier layer which is provided on the GaN channel layer in order to form two-dimensional electron gas in the GaN channel layer and which contains at least any one of In, Al, and Ga and contains N; a gate electrode, a source electrode, and a drain electrode; and a plate formed of a material having polarization, which is provided between the gate electrode and the drain electrode, the plate being held in contact with a part of the barrier layer and held out of contact with the gate electrode.
According to the present invention, there is provided a method of manufacturing a semiconductor device, the semiconductor device including: a GaN channel layer through which electrons run; a barrier layer which is provided on the GaN channel layer in order to form two-dimensional electron gas in the GaN channel layer and which contains at least any one of In, Al, and Ga and contains N; a gate electrode, a source electrode, and a drain electrode; and a plate formed of a material having polarization, which is provided between the gate electrode and the drain electrode, the plate being held in contact with a part of the barrier layer, the method including: a step of manufacturing the barrier layer; and thereafter a step of manufacturing the plate in the same manufacturing system used in manufacturing the barrier layer without exposing the plate to atmosphere.
According to the semiconductor device and the method of manufacturing the semiconductor device of the present invention, by further including the plate formed of the material having polarization, which is provided between the gate electrode and the drain electrode so as to be held in contact with a part of the barrier layer, there can be obtained a semiconductor device using a GaN HEMT which can attain both high gain and a broad band (that is, attain both reduction in Cgd and reduction in Cds) and a method of manufacturing the semiconductor device.
A semiconductor device and a method of manufacturing the semiconductor device according to exemplary embodiments of the present invention are described in the following with reference to the drawings.
It is known that gain G can be improved by reducing Cgd and a frequency band W can be improved by reducing Cds. The magnitude of a capacitance (such as Cgd or Cds) is known from distribution of a potential formed in a GaN HEMT. For example, in the case of Cgd, a capacitance is thought to be generated in a region in which equipotential lines are dense in potential distribution between a gate and a drain.
Accordingly, potential distribution on a cross-section of a GaN HEMT was calculated by device simulation.
The semiconductor device actually also includes an element isolation region, wiring, and the like, which are omitted from
Further,
Accordingly, it is thought that, by causing the potential distribution in these two dense regions to be sparse, Cgd and Cds can be reduced at the same time. A potential varies depending on charges, and thus, by placing a fixed charge around a border region between Cgd and Cds, the potential distribution can be sparse. Therefore, in the present invention, as this fixed charge, polarization of a nitride semiconductor such as GaN or AlGaN, or a pyroelectric material such as a PbTiO3-based material or a PZT-based material is used.
The semiconductor device according to the first embodiment illustrated in
The substrate 1 is a sapphire substrate, an SiC substrate, an Si substrate, a GaN substrate, or the like. In particular, a semi-insulating SiC substrate which is high in heat conductivity is commonly used, but an Si substrate which is extremely common as a semiconductor substrate is often used.
The buffer 2 is a layer interposed between the substrate 1 and the GaN channel 3. Various structures such as MN, AlGaN, GaN/InGaN, and AlN/AlGaN are used as the buffer 2 for the purpose of improving the crystallinity of the GaN channel 3 and trapping electrons in the GaN channel 3.
The AlGaN barrier 4 is provided on the GaN channel 3. The AlGaN barrier 4 can obtain the effect of the present invention not only when single-layer AlGaN is used but also when a plurality of kinds of AlGaN having different compositions, film thicknesses, or impurity concentrations are used, or when a combination of AlGaN and GaN or AlN is used.
The n+ regions 5 are formed under the source electrode 6 and under the drain electrode 7 respectively for the purpose of reducing the contact resistances of the source and the drain. Note that, the effect of the present invention can be obtained without the n+ regions 5 insofar as an ohmic contact can be formed for each of the source electrode 6 and the drain electrode 7.
Next, operation of the semiconductor device in the first embodiment is described. In the first embodiment, the GaN plate 20 having polarization (fixed charge) is placed on the AlGaN barrier 4 between the gate electrode 8 and the drain electrode 7.
With regard to potential distribution in regions originating the above-mentioned conventional Cgd and Cds illustrated in
Specifically, it can be seen that, by placing the GaN plate 20 in the above-mentioned region in which the equipotential lines are dense illustrated in
Further, in a GaN HEMT which operates at a high frequency, a T-shaped gate electrode 8 is used. When a part of the GaN plate 20 is placed under the T-shaped gate electrode 8 as illustrated in
Next, for the purpose of indicating a more specific effect of the GaN plate 20, Cgd and Cds were calculated by device simulation.
distance: space between a base portion of the T-shaped gate electrode 8 and the GaN plate 20
length: horizontal dimension of the GaN plate 20 in
thickness: vertical dimension of the GaN plate 20 in
Next, the result of calculation of Cgd and Cds when, among these three parameters (distance, length, and thickness), two parameters are fixed and the remaining one parameter is variable is described with reference to
(1) Result of Calculation of Cgd and Cds when Distance is Variable
As is clear from the results of calculation shown in
With reference to the result of calculation shown in
With regard to Cgd, judging from the result shown in
(2) Result of Calculation of Cgd and Cds when Length is Variable
As is clear from the results of calculation shown in
(3) Result of Calculation of Cgd and Cds when Thickness is Variable
As is clear from the results of calculation shown in
As described above, according to the first embodiment, there is formed a semiconductor device further including a plate formed of a material having polarization, which is provided between the gate electrode and the drain electrode so as to be held in contact with a part of the barrier layer. As a result, a semiconductor device using a GaN HEMT which can attain both high gain and a broad band (that is, attain both reduction in Cgd and reduction in Cds) can be obtained.
Note that, in the first embodiment, the effect thereof is described taking as an example the GaN plate 20 manufactured from GaN. However, the present invention is not limited to the GaN plate 20. For the purpose of changing the potential, GaN is not necessarily required to be used, and the material which has a fixed charge, that is, polarization may be used. Therefore, a similar effect can be obtained even when a nitride semiconductor other than GaN, for example, AlGaN, InGaN, AlN, InN, or AlInGaN, is used.
Further, the plate may be formed of a pyroelectric material (a PbTiO3-based material such as PbCaTiO3 or PbTiO3-La2/3TiO3, or a PZT-based material such as Pb(Ti,Zr)O3-Pb(Sn1/2Sb1/2)O3). Further, the plate may be crystalline, polycrystalline, or amorphous. Further, even when a plate in which a plurality of such various kinds of plates are combined is used, a similar effect can be obtained.
Further, the impurity concentration in the GaN plate 20 is uniform in the first embodiment, but the impurity concentration in the GaN plate may be nonuniform. Further, the GaN plate 20 in the first embodiment is not held in contact with the gate electrode 8. Therefore, the GaN plate 20 can be applied also to a gate recess in which etching is carried out under the gate electrode 8.
In the above-mentioned first embodiment, a case in which there is one GaN plate 20 is described. On the other hand, in this second embodiment, a case in which a plurality of GaN plates 20 are used is described.
The semiconductor device according to the second embodiment illustrated in
As described above, according to the second embodiment, there is formed a semiconductor device further including a plurality of plates formed of a material having polarization, which are provided between the gate electrode and the drain electrode so as to be held in contact with a part of the barrier layer. As a result, similarly to the case of the above-mentioned first embodiment, a semiconductor device using a GaN HEMT which can attain both high gain and a broad band (that is, attain both reduction in Cgd and reduction in Cds) can be obtained.
In the above-mentioned first and second embodiments, cases in which the potential of the GaN plate 20 is not fixed are described. On the other hand, in this third embodiment, a case in which the potential of the GaN plate 20 is fixed is described.
For example, the GaN plate 20 may be connected by wiring to the source electrode 6 to be at the source potential.
Further,
As described above, according to the third embodiment, in addition to the structure of the above-mentioned first and second embodiments, a wiring structure for fixing the potential of the plate is further included. As a result, similarly to the cases of the above-mentioned first and second embodiments, a semiconductor device using a GaN HEMT which can attain both high gain and a broad band (that is, attain both reduction in Cgd and reduction in Cds) can be obtained. Further, by connecting the plate and the source electrode by wiring, for example, a further effect can be obtained that an extra capacitance formed by the gate electrode and the source electrode can be reduced.
In the above-mentioned first to third embodiments, the structure and operation of the semiconductor device according to the present invention are described, and the effectiveness thereof is demonstrated from the results of calculation by device simulation. On the other hand, in this fourth embodiment, a method of manufacturing a semiconductor device according to the present invention is described.
First, as illustrated in
Further, when the GaN plate 20 is formed by a manufacturing method other than that for other layers (for example, plasma CVD, sputtering, or vapor deposition), the GaN plate 20 may be formed after the structure up to the AlGaN barrier 4 is formed by crystal growth.
Then, as illustrated in
Then, as illustrated in
Then, as illustrated in
Finally, by forming the gate electrode 8, the protective film 9, the wiring (not shown), and the like as illustrated in
As described above, according to the fourth embodiment, the plate (GaN plate) which is a technical feature of the present invention can be easily built at a location between the gate electrode and the drain electrode so as to be held in contact with a part of the barrier layer by using an existing manufacturing system.
Note that, in the fourth embodiment, a case in which, after the GaN plate 20 is etched (
Further, in the case of manufacturing the structure having the wiring 21 described in the above-mentioned third embodiment, after the series of processes illustrated in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP10/70002 | 11/10/2010 | WO | 00 | 3/16/2013 |