This application claims priority to Taiwan Application Serial Number 105141643, filed Dec. 15, 2016, which is herein incorporated by reference.
The present invention relates to a semiconductor device and a method of manufacturing the same. More particularly, the present invention relates to a high electron mobility transistor.
In semiconductor technologies, III-V compound semiconductors can be used to form a variety of integrated circuit devices, such as high power field effect transistors, high frequency transistors, and high electron mobility transistors (HEMTs). The III-V compound semiconductors have the potential to replace the semiconductor material of the traditional silicon transistors.
However, when the III-V compound semiconductor is gallium nitride or gallium oxide, the channel of the device is in the normally-on state. Since the threshold voltage of a normally-on transistor is a negative value, current in the transistor is still in the conducting state when the transistor is at zero gate bias and it causes an extra power loss. Currently, methods to solve this problem, such as thinning of the gallium nitride layer, ion implantation, or the use of p-type gallium oxide, propose approaches to increase the threshold voltage to a level of higher than 0V. However, the threshold voltage of the transistor should be more than 6V to prevent the abnormal turn-on caused by an unstable fluctuation of the gate voltage. Nowadays, most of the methods proposed by the academic and industrial fields provide ways to add additional circuits to resolve this issue. However, those methods cause the parasitic effect and result in the unnecessary energy loss. The conventional methods also cause the increase in manufacturing cost. The embodiments of the present application can increase the threshold voltage of the transistors to be more than 6V and allow the transistors to have excellent characteristics.
According to various embodiments of the present application, a semiconductor device is provided. The semiconductor device includes a substrate, a channel layer, a barrier layer, a recess, a charge trapping layer, a ferroelectric material, a gate, a source and a drain. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The barrier layer has a recess, and a portion of the barrier layer under the recess has a thickness. The source and the drain are disposed on the barrier layer. The charge trapping layer covers the bottom of the recess. The ferroelectric material is disposed on the charge trapping layer. The gate is disposed over the ferroelectric material.
In some embodiments, the semiconductor device further includes a first dielectric layer disposed between the bottom surface of the recess and the charge trapping layer.
In some embodiments, the semiconductor device further includes a second dielectric layer disposed between the ferroelectric material layer and the gate.
In some embodiments, the first dielectric layer has a bandgap, and the bandgap ranges between 7 eV and 12 eV.
In some embodiments, the thickness of the portion of the barrier layer under the recess ranges between 5 nm and 15 nm.
In some embodiments, the ferroelectric material layer includes a layer made of BaTiO3, KH2PO4, HfZrO2, SrBi2Ta2O9, or PbZrTiO3.
According to various embodiments of the present application, the invention provides a method of manufacturing a semiconductor device. The method includes: providing a substrate; forming a channel layer on the substrate; forming a barrier layer on the channel layer; forming a source and a drain on the barrier layer; forming a recess in the barrier layer, the recess having a bottom surface and a portion of the barrier underneath the recess having a thickness; forming a charge trapping layer covering the bottom surface of the recess; forming a ferroelectric material layer on the charge trapping layer; heating the ferroelectric material layer to a first temperature, and the first temperature is higher than a crystallization temperature of the ferroelectric material layer; cooling down the ferroelectric material layer to a second temperature to crystallize the ferroelectric material layer; and forming a gate over the ferroelectric material layer.
In some embodiments, after forming the recess in the barrier layer, the method further includes forming a first dielectric layer covering the bottom of the recess.
In some embodiments, forming the ferroelectric material layer includes plasma enhanced atomic layer deposition, metal-organic chemical vapor deposition (MOCVD), chemical vapor deposition, physical vapor deposition, sputtering, or pulsed laser evaporation.
In some embodiments, the first temperature ranges between 400° C. and 600° C.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Embodiments of a semiconductor device and a method of manufacturing the semiconductor device are provided hereinafter. The structure and the characteristics of the semiconductor device and the steps or operations of manufacturing the semiconductor device are described in detail hereinafter.
In recent years, high electron mobility transistors (HEMTs) have been widely applied to high-power circuit systems due to the excellent characteristics, such as a high output power, a high breakdown voltage, and an excellent resistance to high temperatures. Since a large number of polarized charges exist between the channel layer and the barrier layer of the high electron mobility transistor known in the art, these polarized charges form a two dimensional electron gas (2DEG) and allow the electrons to have a high mobility. Under the circumstances, current in the transistor is still in the conducting state when no gate bias is applied to the transistor. The transistor is therefore called a normally-on transistor. The threshold voltage of normally-on transistor is a negative value. That is, current is still in the conducting state when the transistor is at zero gate bias and thereby causes an extra power loss. Additionally, the normally-on transistor does not possess fail-safe characteristics, and it therefore has potential danger. Accordingly, the development of a normally-off transistor is an important topic in the development of the high-power transistors. Further, the high-power circuit systems need to be operated at a high bias voltage, and it may easily generate instantaneous voltage pulses at the high bias voltage. If the threshold voltage of the transistor is not high enough, the high power component may easily be abnormally turned on and thereby causes the abnormal operation of the circuit and impacts the stability thereof. Hence, the present invention provides a high electron mobility transistor device having a high threshold voltage, which is a normally-off high electron mobility transistor, and it can retain high output current in the meanwhile.
In
A channel layer 120 is then formed on the substrate 110. Next, a barrier layer 130 is formed on the channel layer 120. In examples, the channel layer 120 may be a layer made of AlGaN, GaN, indium gallium nitride (InGaN), aluminum indium gallium nitride (AlInGaN), or compounds including III-V elements. In examples, the barrier layer 130 includes a layer of AlN, aluminum indium nitride (AlInN), AlGaN, GaN, InGaN, AlInGaN, or compounds including III-V elements. The band gap of the channel layer120 is less than the band gap of the barrier layer 130. The selection of the materials and the thicknesses of the channel layer 130 and the barrier layer 130 should be able to generate a two dimensional electron gas. In one example, each of the channel layer 120 and the barrier layer 130 may be a multi-layered structure. In another embodiment, some other layers may be further formed. For example, an intermediate layer (not shown) may be formed between the channel layer 120 and the barrier layer 130. A doped layer (not shown) may be formed on the barrier layer 130 to increase electrons of the two dimensional electron gas. A capping layer (not shown) may be formed on the barrier layer 130 to prevent the barrier layer 130 from oxidization.
Referring to
As shown in
The recess R has a depth d1 and a width W. In some embodiments, the depth d1 ranges from 15 nm to 25 nm, such as 15 nm, 20 nm or 25 nm. The width W ranges from 0.1 μm to 3 μm, such as 0.5 μm, 1 μm, 2 μm or 2.5 μm. The recess R is disposed between the source S and the drain D, and the recess R does not penetrate through the barrier 130. The purpose of the recess R is to attenuate the polarization of the barrier layer 130 and eliminate the carriers of the two dimensional electron gas such that the threshold voltage may be more than 0V. A relatively thin barrier layer may raise the energy level of the conduction band. Therefore, decreasing in the thickness of the barrier layer underneath the gate region can deplete the two dimensional electron gas. The portion of the barrier layer 130 between the bottom surface of the recess R and the top surface of the channel layer 120 has a thickness d2. The thickness d2 ranges from 0 nm to 10 nm, such as 1 nm, 3 nm, 5 nm or 8 nm. It should be noticed that if the thickness d2 is thicker than 10 nm, the barrier layer 130 may have a large number of polarized charges and hence the channel turns into a normally-on state.
In some examples, the width W of the recess R is less than 3 μm, such as 0.05 μm, 0.5 μm, 1 μm or 2 μm. In examples, the distance between the recess R and the source S is different from the distance between the recess R and the drain D. For example, the distance between the edge of the recess R and the source S ranges from 1 μm to 3 μm, such as 1.5 μm, 2 μm or 2.5 μm. The distance between the edge of the recess R and the drain D ranges from 5 μm to 15 μm, such as 7.5 μm, 10 μm or 12.5 μm.
In
In various examples, the ferroelectric material layer 230 includes a layer made of BaTiO3, KH2PO4, HfZrO2, SrBi2Ta2O9 (SBT), PbZrTiO3 (PZT) or other materials that can trigger the ferroelectric effect. The ferroelectric material refers to a material having characteristics of spontaneous polarization and polarization transition in an external electric field. The ferroelectric effect refers to an effect that electric dipoles will align with the direction of an electric field when the external electric field is applied, and the remnant polarization (Pr) in the polarization direction is still retained after the removal of the external electric field. For any ferroelectric material, the remnant polarization indicates that the ferroelectric material has a characteristic of permanent polarization. After the formation of the ferroelectric material layer 230, a thermal annealing process is performed to treat the ferroelectric material layer 230. The ferroelectric material layer 230 is heated to a first temperature, and the first temperature is higher than the crystallization temperature (Tc) thereof. The ferroelectric material layer 230 is then cooled down to a second temperature to crystallize the ferroelectric material layer 230 and become a material having the ferroelectric effect. In examples, the first temperature ranges between 400° C. and 600° C., such as 450° C., 500° C. or 550° C. The second temperature ranges between 25° C. and 100° C., such as 25° C. or 80° C.
In
In
In the semiconductor devices of the present application, when a positive voltage is applied to the gate 250, and the ferroelectric material layer 230 may be polarized and collect charges. The charge trapping layer 220 provides a place for storing the charges. Meanwhile, the bandgaps of the channel layer 120 and the barrier layer 130 underneath the gate 250 and the ferroelectric composite material layer begin to change, and further the negative electric potential of the surface of the barrier layer 130 increases, thereby increasing the threshold voltage of the semiconductor device to a positive value.
In one embodiment, after the ferroelectric material layer 230 is polarized, the delta value of the threshold voltages of the semiconductor device may be larger than 5V. The threshold voltage of the semiconductor device changes from about 0V to a value larger than 5V. That is, the semiconductor device becomes an enhanced semiconductor device. In another embodiment, the threshold voltage may be tuned by adjusting the depth of the recess R. In the condition where the thicknesses (d1+d2) of the barrier layer is kept the same, a thinner thickness d2 may result in a larger positive value of the threshold voltage. However, the maximum of drain current may be unfavorably decreased when thinning down the thickness d2, and hence the value of the thickness d2 should be controlled in a certain range.
In summary, the various embodiments of the present application provide a semiconductor device that utilizes the polarization of the ferroelectric material layer to change the bandgaps of the channel layer and the barrier layer. Therefore, the semiconductor device may have a relatively higher threshold voltage to attenuate extra power loss and improve the stability of the circuit system.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
105141643 | Dec 2016 | TW | national |