This application is the U.S. national phase of International Application No. PCT/JP2005/020945 filed 15 Nov. 2005 which designated the U.S. and claims priority to JP 2005-005300 filed 12 Jan. 2005, the entire contents of each of which are hereby incorporated by reference.
The technology presented herein relates to a method for fabricating a semiconductor device and a semiconductor device.
SOI (Silicon On Insulator) substrates are known as silicon substrates in which a single crystal silicon layer is formed on a surface of an insulating layer. The formation of a device, such as a transistor, on an SOI substrate provides reduced parasitic capacitance and enhanced insulation resistance. This increases the integration density of devices and enhances the device performance. The insulating layer is formed, for example, of a silicon dioxide (SiO2) film.
In order to increase the device operating speed and further reduce the device parasitic capacitance, the single crystal silicon layer of the SOI substrate is preferably formed with a small thickness. There are known SOI substrate fabrication methods for attaining this by attaching a silicon substrate onto another substrate, such as a glass substrate, and then separating and removing part of the silicon substrate (see, for example, Non-patent Document 1).
A description is given below of an SOI substrate fabrication method involving the attachment step as described above with reference to
In the above manner, an SOI substrate is fabricated in which a SiO2 layer (insulating layer) 202 is formed on a surface of the silicon substrate (second substrate) 203 and a thin silicon layer 201 is formed on a surface of the SiO2 layer 202.
In forming a plurality of elements on a substrate, a commonly known technique for insulatively separating adjacent devices is to use a LOCOS (Local Oxidation of Silicon) process to form a selective oxide film (hereinafter, referred to as a LOCOS oxide film). A general LOCOS oxide film is fabricated by forming a patterned silicon nitride film over a silicon substrate with an oxide film therebetween and then subjecting the layer stack to oxidation to selectively form an oxide film on a region of the silicon substrate surface not covered with the silicon nitride film. During the formation of the LOCOS oxide film, silicon is consumed by an amount corresponding to approximately 45% of the thickness of the LOCOS oxide film. Therefore, the surface of the LOCOS oxide film becomes higher than the unoxidized surface of the silicon substrate by an approximately half of the thickness of the LOCOS oxide film, thereby forming a level difference.
Non-patent Document 1: Michel Bruel, “Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding”, Jpn. J. Appl. Phys., Vol. 36 (1997), pp. 1636-1641
The inventors found that if a hydrogen implanted layer is formed in a semiconductor substrate having semiconductor elements, such as MOS transistors, and part of the semiconductor substrate is separated off, the semiconductor elements can be fabricated with reduced thickness on another substrate.
Generally, in methods for fabricating a semiconductor device including MOS transistors, it is desirable to reduce the number of process steps by reducing the number of masks used in order to shorten the production time and save the production cost. An exemplary known technique to attain this is to form wells for NMOS and PMOS transistors in a single photolithography process.
Consequently, it can be considered to carry out the above fabrication method found by the inventors using a single photolithography process. A description is given below of the process steps of the fabrication method with reference to
First, as shown in
Thereafter, the resist 104 is removed and, as shown in
Next, the thermally oxidized film 102 and the oxide film 106 are removed and the silicon substrate 101 is then thermally treated in an oxidized atmosphere. Thus, as shown in
Although a detailed description is not given of the later process steps, as shown in
Each of the NMOS transistor 111 and the PMOS transistor 112 includes a gate oxide film 113, a LOCOS oxide film 114, a gate electrode 115 and sidewalls 116. The NMOS transistor 111 further includes N-type high-concentration impurity regions 119 and N-type low-concentration impurity regions 120, while the PMOS transistor 112 further includes P-type high-concentration impurity regions 117 and P-type low-concentration impurity regions 118.
Subsequently, in order to form the semiconductor elements with reduced thickness on another substrate, as shown in
A description is given below of the reason why the planarizing film 121 is formed prior to the hydrogen ion implantation. If, as shown in
For the above reason, in order to surely separate part of the silicon substrate 101 off from the hydrogen implanted layer, it is essential to form a planarizing film 121 to planarize the substrate surface prior to the hydrogen ion implantation. However, as shown in
The thickness of the silicon layer has a significant effect on electrical properties of the transistors, such as parasitic capacitance, switching voltage threshold value and subthreshold characteristics. Therefore, if, as above, the NMOS transistor 111 and the PMOS transistor 112 have different silicon layer thicknesses, their electrical properties are unbalanced and their silicon layer thicknesses become hard to control.
Furthermore, for full-depletion SOI transistors, it is necessary to restrict the thickness of the silicon layer within the range from 50 to 100 nm, both inclusive. If the silicon layers of the NMOS transistor 111 and the PMOS transistor 112 have different thicknesses as mentioned above, the silicon layer of one of these transistors may be thicker or thinner than that of the other transistor by adjusting the thickness of the silicon layer of the other transistor to 50 to 100 nm. This causes a problem that the silicon layers of both the NMOS transistor 111 and the PMOS transistor 112 cannot be formed to have appropriate thicknesses.
The example embodiment presented herein has been made in view of the foregoing points and, therefore, a feature is to form a plurality of element forming surfaces of different heights on a semiconductor layer in which a release layer is to be formed and form semiconductor elements, one on each of the element forming surfaces, thereby forming associated portions of the semiconductor layer in the semiconductor elements with the same thickness.
To attain the above feature, a level-difference compensation insulating film is formed on the semiconductor layer to cover the semiconductor elements and have a surface with different levels along the element forming surfaces.
Specifically, a method for fabricating a semiconductor device according to an example embodiment comprises: an element forming surface formation step of forming a plurality of element forming surfaces of different heights on a semiconductor layer to have different levels; a semiconductor element formation step of forming a plurality of semiconductor elements, one in each of a corresponding number of regions of the semiconductor layer, each region including an associated one of the plurality of element forming surfaces; a level-difference compensation insulating film formation step of forming a level-difference compensation insulating film on the semiconductor layer to cover the semiconductor elements and have a surface with different levels along the element forming surfaces; a release layer formation step of forming a release layer in the semiconductor layer by ion-implanting a peeling material through the level-difference compensation insulating film into the semiconductor layer; and a separation step of separating part of the semiconductor layer along the release layer.
The level-difference compensation insulating film formation step preferably comprises: an insulating film deposition step of depositing an insulating film having a flat surface onto the semiconductor layer to cover the semiconductor elements; and a shaping step of shaping the surface of the insulating film to have different levels along the element forming surfaces.
The shaping step may comprise shaping the surface of the insulating film by etching.
The method may further comprise: a planarizing film formation step of forming a planarizing film to cover the level-difference compensation insulating film; and an attachment step of attaching a substrate onto the surface of the planarizing film.
The attachment step is preferably performed prior to the separation step.
The element forming surface formation step may comprise forming the element forming surfaces to have different levels by forming a selective oxide film on the semiconductor layer using a mask layer formed by photolithography.
The semiconductor layer is preferably a silicon layer.
The peeling material is preferably composed of at least one of hydrogen and inert gas.
The semiconductor elements may be MOS transistors.
An aspect of a semiconductor device according to an example embodiment comprises: a semiconductor layer having a plurality of element forming surfaces of different heights formed to have different levels; a plurality of semiconductor elements formed one in each of a corresponding number of regions of the semiconductor layer, each region including an associated one of the element forming surfaces; and a level-difference compensation insulating film formed on the semiconductor layer to cover the semiconductor elements and have a surface with different levels along the element forming surfaces, part of the semiconductor layer being separated along a release layer formed by ion-implanting a peeling material into the semiconductor layer.
Another aspect of a semiconductor device according to an example embodiment comprises: a semiconductor layer having a plurality of element forming surfaces of different heights formed to have different levels; a plurality of semiconductor elements formed one in each of a corresponding number of regions of the semiconductor layer, each region including an associated one of the element forming surfaces; and a level-difference compensation insulating film formed on the semiconductor layer to cover the semiconductor elements and have a surface with different levels along the element forming surfaces, the semiconductor layer being formed with a fixed thickness.
The semiconductor device may further comprise a planarizing film covering the level-difference compensation insulating film; and a substrate attached onto the surface of the planarizing film.
The substrate is preferably a glass substrate.
The semiconductor layer is preferably a silicon layer.
The peeling material is preferably composed of at least one of hydrogen and inert gas.
The semiconductor elements may be MOS transistors.
Next, a description is given of the operation of the example embodiment presented herein.
In fabricating a semiconductor device, first in the element forming surface formation step, a plurality of element forming surfaces of different heights are formed on a semiconductor layer made for example of a silicon layer to have different levels. For example, in the element forming surface formation step, the element forming surfaces can be formed to have different levels by forming a selective oxide film on the semiconductor layer using a mask layer formed by photolithography.
Subsequently, in the semiconductor element formation step, semiconductor elements, such as MOS transistors, are formed one in each of a corresponding number of regions of the semiconductor layer, each region including an associated one of the element forming surfaces. At this time, since the semiconductor elements are formed on the element forming surfaces, the surface of the semiconductor layer has relatively steep irregularities.
Next, in the level-difference compensation insulating film formation step, a level-difference compensation insulating film is formed on the semiconductor layer to cover the semiconductor elements and have a surface with different levels along the element forming surfaces. The level-difference compensation insulating film formation step can be implemented by the insulating film deposition step and the shaping step. Specifically, first in the insulating film deposition step, an insulating film having a flat surface is deposited onto the semiconductor layer to cover the semiconductor elements. Subsequently, in the shaping step, the surface of the insulating film is shaped to have different levels along the element forming surfaces, for example, by etching. Thus, the surface of the semiconductor layer having the irregularities is formed into a relatively gently shelving surface and the level-difference compensation insulating film on the element forming surfaces is formed with a fixed thickness.
Thereafter, in the release layer formation step, a release layer is formed in the semiconductor layer by ion-implanting a peeling material, such as hydrogen or inert gas, through the level-difference compensation insulating film into the semiconductor layer. The release layer is formed at a fixed depth from the surface of the level-difference compensation insulating film through which the peeling material is ion-implanted. Therefore, the release layer is formed to have different levels along the level-difference compensation insulating film and the element forming surfaces. In other words, the release layer is formed at a fixed depth from the element forming surfaces.
Next, in the separation step, part of the semiconductor layer is separated off along the release layer. As a result, since the release layer is formed to have different levels along the element forming surfaces, the remaining semiconductor layer is formed with a fixed thickness. Therefore, the plurality of semiconductor elements thus formed can have the same electrical properties and the thickness of the semiconductor layer in each of the semiconductor elements can be appropriately controlled.
Furthermore, the planarizing film formation step and the attachment step can be performed prior to the separation step. Specifically, in the planarizing film formation step, a planarizing film is formed to cover the level-difference compensation insulating film. Subsequently, in the attachment step, a substrate, such as a glass substrate, is attached onto the surface of the planarizing film.
According to the example embodiment presented herein, the formation of a level-difference compensation insulating film having a surface with different levels along the element forming surfaces enables a release layer to be formed at a fixed depth from the element forming surfaces by ion implantation. Therefore, the semiconductor layer left after separation can be formed with a fixed thickness. As a result, the electrical properties of the plurality of semiconductor elements thus formed can be uniformized and the thickness of the semiconductor layer in each of the semiconductor elements can be appropriately controlled.
A detailed description is given below of embodiments of the present invention with reference to the drawings. However, the present invention is not limited to the following embodiments.
The semiconductor layer 1 is formed, for example, of a silicon layer and a plurality of element forming surfaces 50 of different heights are formed on a bottom surface of the semiconductor layer 1 when viewed in
The N-well region 9 of the semiconductor layer 1 is formed with an active region 53 including P-type low-concentration impurity regions 20 and P-type high-concentration impurity regions 27 that are doped with a P-type impurity element, such as boron. The P-well region 10 of the semiconductor layer 1 is formed with an active region 54 including N-type low-concentration impurity regions 17 and N-type high-concentration impurity regions 24 that are doped with an N-type impurity element, such as phosphorus.
Another surface of the semiconductor layer 1 opposite to the element forming surfaces 50 (i.e., a top surface thereof in
The semiconductor elements 51 and 52 are MOS transistors: one of the MOS transistors is a PMOS transistor 51 formed in the N-well region 9 including the associated element forming surface 50 and the other is an NMOS transistor 52 formed in the P-well region 10 including the associated element forming surface 50. In other words, the PMOS transistor 51 and the NMOS transistor 52 are formed at different heights from the glass substrate 36.
The PMOS transistor 51 includes the active region 53, the gate oxide film 13 covering the associated element forming surface 50 and a gate electrode 14 formed above the element forming surface 50 with the gate oxide film 13 therebetween. The gate electrode 14 has sidewalls 21 formed on the right and left sides thereof. A part of the active region 53 above the gate electrode 14 is formed into a channel region and parts of the active region 53 above the sidewalls 21 are formed into respective P-type low-concentration impurity regions 20. The P-type high-concentration impurity regions 27 are formed on the outsides of the P-type low-concentration impurity regions 20.
The NMOS transistor 52 includes the active region 54, the gate oxide film 13 covering the associated element forming surface 50 and a gate electrode 14 formed above the element forming surface 50 with the gate oxide film 13 therebetween. The gate electrode 14 has sidewalls 21 formed on the right and left sides thereof. A part of the active region 54 above the gate electrode 14 is formed into a channel region and parts of the active region 54 above the sidewalls 21 are formed into respective N-type low-concentration impurity regions 17. The N-type high-concentration impurity regions 24 are formed on the outsides of the N-type low-concentration impurity regions 17.
The level-difference compensation insulating film 28 covers the PMOS transistor 51 and the NMOS transistor 52 on the opposite side to the semiconductor layer 1 and has a surface with different levels along the element forming surfaces 50. Thus, the level-difference compensation insulating film 28 compensates for steep steps formed by the gate electrodes 14 and the sidewalls 21 to form a relatively gently shelving surface. The interlayer insulating film 32 is formed to cover the level-difference compensation insulating film 28 with a uniform thickness. The planarizing film 35 is formed of an insulating film and disposed to cover the level-difference compensation insulating film 28 with the interlayer insulating film 32 therebetween. The bottom surface of the planarizing film 35 is formed into a flat surface.
Contact holes 33 are formed through the gate oxide film 13, the level-difference compensation insulating film 28 and the interlayer insulating film 32. Each contact hole 33 is formed with an electrode 34 so as to be connected to the associated N-type high-concentration impurity region 24 or the associated P-type high-concentration impurity region 27.
The glass substrate 36 is attached to the flat surface of the planarizing film 35. As can be seen from the above, the semiconductor device S of this embodiment includes a plurality of MOS transistors 51, 52 provided over the glass substrate 36 with a plurality of insulating films including the level-difference compensation insulating film 28 interposed therebetween and separated from each other by the LOCOS oxide film 12.
—Fabrication Method of Semiconductor Device—
Next, a description is given of a method for fabricating a semiconductor device according to an example embodiment with reference to
The fabrication method according to this embodiment includes an element forming surface formation step, a semiconductor element formation step, a level-difference compensation insulating film formation step, a release layer formation step, an electrode formation step, a planarizing film formation step, an attachment step and a separation step.
First, in the element forming surface formation step, a plurality of element forming surfaces 50 of different heights are formed on a semiconductor substrate 1 providing a semiconductor layer 1 to have different levels. In the element forming surface formation step, the element forming surfaces are formed to have different levels by forming a selective oxide film on the semiconductor substrate 1 using a mask layer (a resist 4) formed by photolithography.
Specifically, as shown in
Thereafter, the resist 4 is removed and, as shown in
Next, the thermal oxide film 2 and the selective oxide film 6 are removed and the semiconductor substrate 1 is then thermally treated in an oxidized atmosphere. Thus, as shown in
Subsequently, a semiconductor element formation step is performed. In the semiconductor element formation step, at least respective active regions 53 and 54 and respective gate electrodes 14 of a PMOS transistor 51 and an NMOS transistor 52 are formed in the N-well region 9 and the P-well region 10 including the element forming surfaces 50.
First, a LOCOS oxide film 12 is formed in a boundary region of the layer stack between the N-well region 9 and the P-well region 10. Specifically, as shown in
Subsequently, as shown in
Next, as shown in
Thereafter, a SiO2 film is formed on the layer stack by CVD or other deposition methods and, as shown in
Next, as shown in
In the above manner, the N-well region 9 is formed with the active region 53, the gate electrode 14 and the sidewalls 21 for the PMOS transistor 51, while the P-well region 10 is formed with the active region 54, the gate electrode 14 and the sidewalls 21 for the NMOS transistor 52. At this time, since the gate electrodes 14 and the sidewalls 21 are formed above the element forming surfaces 50 with the gate oxide film 13 therebetween to project from the gate oxide film 13, the top surface of the semiconductor substrate 1 has relatively steep irregularities.
In a level-difference compensation insulating film formation step performed next, a level-difference compensation insulating film 28 is formed on the semiconductor substrate 1 to cover the gate electrodes 14 and the other parts of the PMOS transistor 51 and NMOS transistor 52 and have a surface with different levels along the element forming surfaces 50. The level-difference compensation insulating film formation step is implemented by an insulating film deposition step and a shaping step.
Specifically, first in the insulating film deposition step, as shown in
At this time, the boundary region between the thinned region and the non-thinned region preferably forms a gentle shelving. Examples of suitable etching methods include isotropic dry etching and wet etching. In this manner, the top surface of the semiconductor substrate 1 is covered with the level-difference compensation insulating film 28 having a relatively gently shelving surface.
Next, a release layer formation step is performed. In the release layer formation step, as shown in
In an electrode formation step performed next, as shown in
Thereafter, as shown in
Next, in a planarizing film formation step, as shown in
In the separation step performed next, as shown in an upside-down manner in
Thereafter, the release layer 31 is removed by etching or other removal techniques and a protective film 37 is formed on the semiconductor layer 1 in order to protect the exposed surface of the semiconductor layer 1 and provide electrical insulation. In this case, following the etching of the release layer 31, the semiconductor layer 1 may be etched until exposure of the LOCOS oxide film 12 to provide element isolation. In the manner described so far, a semiconductor device S is fabricated.
According to Embodiment 1, the PMOS transistor 51 and the NMOS transistor 52 can be fabricated with a reduced thickness on the glass substrate 36 that is a substrate different from the semiconductor substrate 1. Furthermore, since wells for the PMOS transistor 51 and the NMOS transistor 52 can be formed in a single photolithography process, the production time can be shortened and the production cost can be saved. Furthermore, since the substrate surface through which ion implantation is made is formed into a relatively gently shelving surface by covering the gate electrodes 14 and other transistor parts with the level-difference compensation insulating film 28, the release layer 31 can be prevented from being formed to have steep steps.
In addition, since the surface of the level-difference compensation insulating film 28 is formed to have different levels along the element forming surfaces 50, the release layer 31 can be formed, by ion implantation, at a fixed depth from the surface of the level-difference compensation insulating film 28 and the element forming surfaces 50. Therefore, as shown in
In a semiconductor device S according to this embodiment, a planarizing film 35 is disposed over a glass substrate 36 with an insulating film 40 therebetween. Furthermore, prior to an attachment step, electrical elements 41, such as active elements or passive elements, are formed above the glass substrate 36. The electrical elements 41 are covered with the same film as a protective film 37 covering a semiconductor layer 1. Contact holes 38 are formed in the protective film 37 on top of the electrical elements 41. Contact holes 38 are also formed through an interlayer insulating film 32, a level-difference compensation insulating film 28 and the protective film 37 on top of one of electrodes 34 of a PMOS transistor 51 and one of electrodes 34 of an NMOS transistor 52. Each electrical element 41 is electrically connected to the associated electrode 34 via an associated metal wiring line 39 filled in the associated contact holes 38. Note that in this embodiment LOCOS oxide films 12 are formed, one on each of the right and left sides of the PMOS transistor 51 and the NMOS transistor 52.
In fabricating the semiconductor device S, previously, the insulating film 40 is deposited on the glass substrate 36 and the electrical elements 41 are formed on the glass substrate 36. Then, In the attachment step in Embodiment 1, the surface of the planarizing film 35 formed in the planarizing film formation step is attached onto the insulating film 40 deposited on the glass substrate 36.
Subsequently, like Embodiment 1, the separation step is performed. Thus, the PMOS transistor 51 and the NMOS transistor 52 are overlaid on the glass substrate 36. Thereafter, the protective film 37 is formed to cover the semiconductor layer 1 and the electrical elements 41. During the time, the planarizing film 35, the side surfaces of the interlayer insulating film 32 and the level-difference compensation insulating film 28 are also covered with the protective film 37.
In a wiring formation step performed next, contact holes 38 are formed, one on each top of the electric elements 41 and the electrodes 34. The contact holes 38 are filled with a conducting material. Then, the conducting material is patterned, whereby metal wiring lines 39 are formed to connect the electrical elements 41 to the associated electrodes 34. According to the above steps, a semiconductor device S is fabricated.
Although in the above embodiments the level-difference compensation insulating film 28, the interlayer insulating film 32 and the planarizing film 35 are formed in this order, the formation order of these films in the present invention is not limited to this. For example, the level-difference compensation insulating film 28 may be formed with a larger thickness and the planarizing film 35 may be then deposited directly on the level-difference compensation insulating film 28. Thus, the fabrication process can be simplified, thereby providing reduced production cost.
As described so far, the example embodiment presented herein is useful for a method for fabricating a semiconductor device and a semiconductor device and particularly suitable for the case where a plurality of element forming surfaces with different heights are formed on a semiconductor layer in which a release layer is formed, semiconductor elements are formed one on each element forming surface and associated portions of the semiconductor layer in the semiconductor elements are formed with the same thickness.
Number | Date | Country | Kind |
---|---|---|---|
2005-005300 | Jan 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/020945 | 11/15/2005 | WO | 00 | 6/7/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/075444 | 7/20/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3865654 | Chang et al. | Feb 1975 | A |
4466174 | Darley et al. | Aug 1984 | A |
4516316 | Haskell | May 1985 | A |
4708770 | Pasch | Nov 1987 | A |
4728619 | Pfiester et al. | Mar 1988 | A |
4743563 | Pfiester et al. | May 1988 | A |
4777147 | Scott et al. | Oct 1988 | A |
4929565 | Parrillo | May 1990 | A |
4983537 | Wei | Jan 1991 | A |
5019526 | Yamane et al. | May 1991 | A |
5024961 | Lee et al. | Jun 1991 | A |
5100830 | Morita | Mar 1992 | A |
5134085 | Gilgen et al. | Jul 1992 | A |
5242844 | Hayashi | Sep 1993 | A |
5298782 | Sundaresan | Mar 1994 | A |
5338691 | Enomoto et al. | Aug 1994 | A |
5362979 | Merchant | Nov 1994 | A |
5413944 | Lee | May 1995 | A |
5519237 | Itoh et al. | May 1996 | A |
5523247 | Wright | Jun 1996 | A |
5525823 | Chan | Jun 1996 | A |
5541455 | Hodges | Jul 1996 | A |
5552346 | Huang et al. | Sep 1996 | A |
5573963 | Sung | Nov 1996 | A |
5624857 | Yang | Apr 1997 | A |
5670409 | Otori et al. | Sep 1997 | A |
5716886 | Wen | Feb 1998 | A |
5766970 | Kim et al. | Jun 1998 | A |
5777358 | Yajima | Jul 1998 | A |
5780352 | Park et al. | Jul 1998 | A |
5780900 | Suzuki et al. | Jul 1998 | A |
5795802 | Ko et al. | Aug 1998 | A |
5815223 | Watanabe et al. | Sep 1998 | A |
5863823 | Burgener | Jan 1999 | A |
5880009 | Wang | Mar 1999 | A |
5880039 | Lee | Mar 1999 | A |
5882984 | Fan et al. | Mar 1999 | A |
5972789 | Jeng et al. | Oct 1999 | A |
6150695 | Gardner et al. | Nov 2000 | A |
6194257 | Kwon | Feb 2001 | B1 |
6194320 | Oi | Feb 2001 | B1 |
6198148 | Hsu | Mar 2001 | B1 |
6211046 | Sekikawa et al. | Apr 2001 | B1 |
6239000 | Tung | May 2001 | B1 |
6258673 | Houlihan et al. | Jul 2001 | B1 |
6271897 | Ichikawa et al. | Aug 2001 | B1 |
6274509 | Hsieh et al. | Aug 2001 | B1 |
6277684 | Hayashi et al. | Aug 2001 | B1 |
6503778 | Yamauchi et al. | Jan 2003 | B1 |
6583061 | Stevens | Jun 2003 | B2 |
6673660 | Komatsubara | Jan 2004 | B2 |
6723640 | Lee et al. | Apr 2004 | B2 |
6770507 | Abe et al. | Aug 2004 | B2 |
6794219 | Stevens et al. | Sep 2004 | B1 |
6849887 | Nagano et al. | Feb 2005 | B2 |
7183179 | Droes et al. | Feb 2007 | B2 |
7192840 | Kanamori | Mar 2007 | B2 |
20010029093 | Sekikawa et al. | Oct 2001 | A1 |
20010036710 | Hayashi et al. | Nov 2001 | A1 |
20030062587 | Sekikawa et al. | Apr 2003 | A1 |
20030068870 | Komatsubara | Apr 2003 | A1 |
20040227192 | Yoshida et al. | Nov 2004 | A1 |
20050040451 | Nakamura | Feb 2005 | A1 |
20050062129 | Komatsubara | Mar 2005 | A1 |
20050079722 | Yu | Apr 2005 | A1 |
20050087739 | Ogawa et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
11-186186 | Jul 1999 | JP |
2001-189465 | Jul 2001 | JP |
0166038 | Dec 1998 | KR |
Number | Date | Country | |
---|---|---|---|
20080128807 A1 | Jun 2008 | US |