The present invention relates to a semiconductor integrated circuit device; and, more particularly, the invention relates to a technique that is effective when applied to the formation of a connector portion between interconnects in a semiconductor integrated circuit device.
With a recent tendency toward miniaturization of interconnects and multilevel metallization in a semiconductor integrated circuit device, a so-called damascene technique for use in the formation of interconnects or the like, by forming a trench in an insulating film and then embedding a conductive film inside of the trench, has been under investigation.
This damascene technique includes a single damascene method of embedding a trench for an interconnect and a trench for connecting between interconnects by two different steps and a dual damascene method of simultaneously embedding these two trenches. As a conductive film to be embedded in these trenches, a copper film or the like having a small electrical resistance is used.
Inside of the trench, a conductive film having a barrier property (which will hereinafter be called a “barrier film”) is formed in order to prevent diffusion of a metal into an insulating film, such as the copper constituting the conductive film to be embedded, or in order to improve the adhesion between the conductive film to be embedded and the insulating film.
For instance, in NIKKEI MICRODEVICES, PP 65 to 66 (July, 2000), it is pointed out as a problem that, upon formation of an underlying film on the inside wall of a hole by sputtering, sputter particles move easily at the peripheral part of a wafer, thereby deteriorating the ability to uniformly cover the holes.
The present inventors have carried out an investigation on ways to effect an improvement in the reliability of interconnects or the like formed by the damascene technique and have found that the reliability of the damascene wiring has a close relation to the way the barrier film has adhered inside of the trench.
More specifically, the barrier film is required to have a sufficient thickness in order to prevent diffusion of a metal in an insulating film, such as the copper constituting a conductive film to be embedded in a trench, and to improve adhesion of the conductive film to be embedded in the trench with the insulating film.
When the barrier film has a poor coverage property, the thickness of the barrier film varies on the bottom or sidewalls of the trench. If the entire barrier film is formed to be thick so as to prevent such unevenness, the aspect ratio of a hole to be embedded with a conductive film becomes large, causing an embedding failure of the conductive film.
The barrier film has a higher electrical resistance than the conductive film to be embedded in the trench. If the barrier film is made excessively thick, the electrical resistance of an interconnect or connector portion becomes large, thereby disturbing high-speed operation of a semiconductor integrated circuit device.
The barrier film is thus required to have a thickness not greater than a predetermined thickness. If some portions of the barrier film are thin owing to uneven thickness, they provide a current pathway because a smaller resistance exists at these portions. Particularly at contact holes, if the shortest distance of a current pathway and such a portion coincide with each other, a concentration of electrons occurs. As a result, so-called electromigration, that is, attraction of metal atoms from such portions by electrons occurs. Voids appear at portions after the metal atoms have been transferred, and a connection failure or disconnection occurs.
An object of the present invention is to optimize the structure of a connector portion for connecting interconnects, thereby improving the electromigration properties.
Another object of the present invention is to optimize the structure of a barrier film at a connector portion between interconnects, thereby improving the characteristics of a semiconductor integrated circuit device.
The above-described objects and other objects, advantages and novel features of the present invention will be apparent from the description herein and the accompanying drawings.
An outline of typical aspects of the invention, among the embodiments disclosed in the present application, will next be described briefly.
(1) In one aspect of the present invention, there is provided a semiconductor integrated circuit device which has a hole made in an insulating film formed over a semiconductor substrate; a first conductive film formed on the bottom and sidewalls of the hole, which film has a film thickness increasing from the center of the bottom toward the sidewalls of the hole; and a second conductive film that is formed over the first conductive film and embedded inside of the hole.
(2) In another aspect of the present invention, there is provided a semiconductor integrated circuit device which has a hole made in an insulating film formed over a semiconductor substrate; a first conductive film formed on the bottom and sidewalls of the hole, which film is smaller in film thickness B at the center of the bottom of the hole than in film thickness A corresponding to a perpendicular line extending toward the bottom of the hole from the shortest point from the corner of the bottom of the hole to the surface of the first conductive film; and a second conductive film that is formed over the first conductive film and embedded inside of the hole.
(3) In a further aspect of the present invention, there is provided a semiconductor integrated circuit device which has a hole made in an insulating film formed over a semiconductor substrate; a first conductive film formed on the bottom and sidewalls of the hole, which film has an electrical resistance lower at the center of the bottom of the hole than at a portion corresponding to a perpendicular line extending toward the bottom of the hole from the shortest point from the corner of the bottom of the hole to the surface of the first conductive film; and a second conductive film that is formed over the first conductive film and embedded inside of the hole.
(4) In a still further aspect of the present invention, there is provided a semiconductor integrated circuit device which has a first interconnect formed over a semiconductor substrate; a hole which is made in an insulating film formed over the first interconnect and having a bottom from which the first interconnect is exposed; a first conductive film formed on the bottom and sidewalls of the hole; a second conductive film formed over the first conductive film and embedded inside of the hole; and a second interconnect formed over the second conductive film, wherein a site at which a shortest pathway from the first interconnect to the second interconnect through the first and second conductive films cuts across the first conductive film does not coincide with the lowest electrical resistance site of the first conductive film.
(5) In a still further aspect of the present invention, there is provided a semiconductor integrated circuit device, which comprises a first interconnect formed over a semiconductor substrate, an insulating film formed over the first interconnect, a hole which is made in the first interconnect and the insulating film and has a bottom positioned deeper than the surface of the first interconnect, a first conductive film which is formed on the bottom and sidewalls of the hole and is greater in the film thickness E of the sidewall portion of the hole contiguous to the surface of the first interconnect than in the film thickness B at the center of the bottom of the hole, and a second conductive film that is formed over the first conductive film and is embedded therewith inside of the hole.
a) is a fragmentary plan view of a substrate illustrating the manufacturing method of the semiconductor integrated circuit device according to Embodiment 1 of the present invention, and
a) is a fragmentary plan view of a substrate illustrating the manufacturing method of the semiconductor integrated circuit device according to Embodiment 1 of the present invention, and
a) is a fragmentary plan view of a substrate illustrating the manufacturing method of the semiconductor integrated circuit device according to Embodiment 1 of the present invention, and
a) is a fragmentary plan view of a substrate illustrating the manufacturing method of the semiconductor integrated circuit device according to Embodiment 1 of the present invention, and
a) is a fragmentary plan view of a substrate of the semiconductor integrated circuit device illustrating the effect of Embodiment 1 of the present invention, and
a) is a fragmentary plan view of a substrate illustrating the semiconductor integrated circuit device according to Embodiment 1 of the present invention, and
Various embodiments of the present invention will be described hereinafter with reference to the accompanying drawings. In all the drawings, members having like functions will be identified by like reference numerals, and overlapping descriptions thereof will be omitted
The semiconductor integrated circuit device according to one Embodiment of the present invention will be described in accordance with its method of manufacture.
First, as illustrated in
A semiconductor substrate 1 made of, for example, p type single crystal silicon is etched to form a trench therein. An insulating film, for example, a silicon oxide film 7 is then embedded inside of the trench, whereby an isolation region 2 is formed. This isolation region 2 defines an active region in which the MISFET is to be formed.
After ion implantation of a p type impurity and an n type impurity into the semiconductor substrate (which will hereinafter simply be called a “substrate”) 1, these impurities are diffused by heat treatment to form a p type well 3 and an n type well 4. By thermal oxidation, a clean gate insulating film 8 is formed over the surface of each of the p type well 3 and n type well 4.
Over the gate insulating film 8, a low-resistance polycrystalline silicon film 9a, a thin WN (tungsten nitride) film (not illustrated) and a W (tungsten) film 9c are deposited successively as conductive films, followed by deposition of a silicon nitride film 10 thereover to serve as an insulating film.
The silicon nitride film 10 is then etched by dry etching or the like so as to leave it in a region in which a gate electrode is to be formed. Using the remaining silicon nitride film 10 as a mask, the W film 9c, WN film (not illustrated) and polycrystalline film 9a are etched by dry etching or the like, whereby a gate electrode 9, that is formed of the polycrystalline film 9a, WN film (not illustrated) and W film 9c, is formed.
By ion implantation of an n type impurity into the p type well 3, extending to both sides of the gate electrode 9 n− type semiconductor regions 11 are formed, while ion implantation of a p type impurity into the n type well 4 is performed to form p− type semiconductor regions 12.
A silicon nitride film is then deposited over the substrate 1 to serve as an insulating film, followed by anisotropic etching, whereby sidewall spacers 13 are formed on the sidewalls of the gate electrode 9.
By ion implantation of an n type impurity to the p type well 3, n+ type semiconductor regions 14 (source and drain), having a higher impurity concentration than the n− type semiconductor regions 11, are formed; while, by ion implantation of a p type impurity to the n type well 4, p+ type semiconductor regions 15 (source and drain), having a higher impurity concentration than the p− type semiconductor regions 12, are formed.
By the steps so far described, the n channel type MISFETQn and p channel type MISFETQp, having an LDD (Lightly Doped Drain) structure and being equipped with a source and a drain, are formed.
Next, an interconnect will be formed for electrically connecting the MISFETQn and MISFETQp. Steps for forming this interconnect will be described next.
First, as illustrated in
Over the interlayer insulating film TH1, a photoresist film (not illustrated is formed). This film will hereinafter simply be called a “resist film”. Using this resist film as a mask, the interlayer insulating film TH1 is etched to form a contact hole C1 over each of the n+ type semiconductor regions 14 and p+ type semiconductor regions 15 over the main surface of the semiconductor substrate 1.
A plug P1 is then formed in the contact hole C1 by depositing, over the interlayer insulating film TH1, including the inside of the contact hole C1, a tungsten (W) film to serve as a conductive film by CVD, and then this tungsten film is polished by CMP until the interlayer insulating film TH1 is exposed. Alternatively, this plug P1 may be formed to have a laminate structure of a barrier film—which has a single layer of a titanium nitride (TiN) film or a titanium (Ti) film, or a laminate film thereof—and a tungsten film.
As illustrated in
Over the interconnect-trench-forming insulating film H1, including the inside of the interconnect trench HM1, a barrier film M1a made of titanium nitride is deposited by sputtering. Then, a copper film M1b, serving as a conductive film, is formed over the barrier film M1a by electroplating. Prior to the formation of the copper film M1b by electroplating, a thin copper film may be formed by sputtering or CVD as a seed film for the electroplating.
After heat treatment of the copper film M1b, the copper film M1b and barrier film M1a outside of the interconnect trench HM1 are removed by CMP, whereby a first-level interconnect M1 is formed, having the copper film M1 and barrier film M1a.
As illustrated in
Over the interlayer insulating film TH2, a resist film (not illustrated), that is opened at a region in which a second-level interconnect is to be formed, is formed. Using this resist film as a mask, the silicon oxide film TH2d and silicon nitride film TH2c are etched from the interlayer insulating film TH2 to form the interconnect trench HM2.
Over the interlayer insulating film TH2, including the inside of the interconnect trench HM2, a first resist film (not illustrated) is deposited. The interconnect trench HM2 is embedded with the first resist film by etch back. A second resist film (not illustrated), that is opened at a connecting region of the first-level interconnect, with the second-level interconnect is then formed over the first resist film. Using this second resist film as a mask, the first resist film, the silicon oxide film TH2b and silicon nitride film TH2a are etched, whereby the contact hole C2 is formed.
Here, the formation of the interconnect trench HM2 is followed by the formation of the contact hole C2. Alternatively, after formation of the contact hole C2 by etching the silicon nitride film TH2a, silicon oxide film TH2b, silicon nitride film TH2c and silicon oxide film TH2d from a connecting region of the first-level interconnect with the second-level interconnect, the interconnect trench HM2 may be formed by etching the silicon oxide film TH2d and silicon nitride film TH2c from a region in which the second interlevel interconnect is to be formed.
As illustrated in
At this time, the barrier film PM2a is formed to have a structure as described below.
As illustrated in
In the contact hole C2, the barrier film PM2a on the bottom thereof is formed so that its thickness increases from the center of the bottom toward the sidewalls. This increase in thickness of the barrier film PM2a on the bottom of the contact hole C2, from the center of the bottom toward the sidewalls, is applied all around the bottom. As illustrated in
The film thickness B or the film thickness D, which is a film thickness of the barrier film at the upper portion of each of the sidewalls of the contact hole C2, is formed to be at least the minimum thickness permitting maintenance of barrier properties. Below the barrier film PM2a on the bottom of the contact hole C2, the first-level interconnect M1 is formed, so that the barrier film PM2a at such a position is not always required to have a film thickness large enough to maintain barrier properties. As illustrated in
As illustrated in
After heat treatment of the copper films PM2b and PM2c, the copper films PM2b, PM2c and barrier film PM2a outside the interconnect trench HM2 and the contact hole C2 are removed by CMP to form a second-level interconnect M2 and a connector portion (plug) P2 between the first-level interconnect, and the second-level interconnect as illustrated in
The essential points in the structure of the second-level interconnect M2, connector portion (plug) P2 and first-level interconnect M1 will be described briefly.
The second-level interconnect M2 and connector portion (plug) P2 are each made of the copper films PM2b, PM2c and barrier film PM2a. As illustrated in
As described above, the barrier film PM2a on the bottom of the contact hole C2 increases in thickness from the center of the bottom toward the sidewalls. In other words, the barrier film PM2a has a portion which declines towards the center of the bottom from the sidewalls of the contact hole C2. As illustrated in
The actual surface of the barrier film, as illustrated in
In the case where electric current (i) flows from the second-level interconnect M2 to the first-level interconnect M1 via such a connector portion (plug) P2, electrons (e) flow, as illustrated in
According to this Embodiment, the geometrically shortest route (route Rul) of electric current from the second-level interconnect M2 to the first-level interconnect M1 does not coincide with a thin portion of the barrier film PM2a at which the electrical resistance becomes lowest, so that a current route can be dispersed. Accordingly, a concentration of electrons (e) does not occur easily, making it possible to improve the electromigration properties.
As illustrated in
When the contact hole exists on the left edge of the wafer, the barrier film PM2a′ is formed so as to be thick on the left sidewall of the contact hole C2 and is formed so as to be thin on its right sidewall as illustrated in
When an electric current flows from the second-level interconnect M2 to the first-level interconnect M1 through the connector portion (plug) P2, as illustrated in
As described above, when the barrier film PM2a′ has a shape as illustrated in
In this Embodiment, on the other hand, the barrier film PM2a on the bottom of the contact hole C2 is formed to have a thickness increasing from the center of the bottom toward the sidewalls. The geometrically shortest route Ru1 of electric current, therefore, does not cross over a thin portion (a portion whose electrical resistance becomes lowest) of the barrier film, thereby preventing a concentration of electrons to this portion. As a result, improvement in electromigration properties can be attained.
In this Embodiment, as illustrated in
More specifically, as illustrated in
An increase in the thickness of the barrier film PM2a from the center of the bottom toward the sidewalls, all around the bottom of the contact hole C2, as in this Embodiment, makes it possible to improve the electromigration properties as illustrated in
According to this Embodiment, as illustrated in
Even when the second-level interconnect M2 is disposed as illustrated in
As described above, the film thickness C of the barrier film PM2a on the bottom of the sidewalls of the contact hole C2 is greater than the film thickness B at the center of the bottom (Refer to
The actual surface of the barrier film, as illustrated in
By setting the film thickness C so that it is greater than the film thickness B, a concentration of electrons can be prevented even if overetching not greater than the film thickness A is conducted upon formation of the contact hole C2. This effect will be described in detail in the description of Embodiment 3, so that further description is omitted here.
Next, one example of the formation of the barrier film PM2a and a method of controlling the film thicknesses A and B will be described.
Upon film formation, it is preferred that the deposition rate is 50 nm/min, the film forming pressure is 0.1 Pa or less, and the film forming temperature falls within a range of from room temperature to 400° C.
Thus, by controlling the substrate bias, the film thickness ratio (A/B) can be controlled and conditions permitting adjustment of the film thickness ratio (A/B) to 1 or greater, as described in this Embodiment, can be selected. The conditions permitting adjustment of the film thickness ratio (A/B) to 1 or greater vary, depending on the size of the interconnect or connecting hole.
In order to satisfy both A≧B and C≧B, film formation must be carried out at a substrate bias of 3 or greater.
Next, steps for forming upper-level interconnects (third to fifth-level interconnects) over the second-level interconnect M2 will be described.
As illustrated in
By forming interlayer insulating films TH4 and TH5, fourth-level and fifth-level interconnects M4 and M5, and connecting portions (plugs) P4 and P5 to have similar structures to the interlayer insulating film TH3, third-level interconnect M3 and connector portion (plug) P2, respectively, a five-layer interconnect is formed, as illustrated in
After deposition of a silicon nitride film, to serve as a copper diffusion preventive film, over the fifth-level interconnect M5, a laminate film PV of a silicon oxide film and a silicon nitride film is deposited as a protective film.
Although no particular limitation is imposed, the second-level interconnect M2 and fourth-level interconnect M4 are formed to extend mainly in the X direction, while the third-level interconnect M3 and fifth-level interconnect M5 are formed to extend mainly in a direction orthogonal to the X direction. With the first-level interconnect M1 to the fifth-level interconnect M5, MISFETQn and MISFETQp are linked so as to constitute, for example, a logic circuit of a microprocessor.
In this Embodiment, the first-level interconnect is formed from a copper film M1b. As the first-level interconnect, a copper alloy (an alloy containing, in addition to copper, magnesium (Mg), silver (Ag), platinum (Pt), titanium (Ti), tantalum (Ta) or aluminum (Al)), silver or a silver alloy, gold (Au) or a gold alloy, or aluminum or an aluminum alloy (an alloy containing, in addition to aluminum, silicon (Si), copper, niobium (Nb) or titanium) may be used as a main material. In this Embodiment, the first-level interconnect is formed by the damascene method. Alternatively, after deposition of the above-described material over the interlayer insulating film TH1, it may be patterned into a desired shape by dry etching.
In Embodiment 1, the second-level interconnect M2 and connector portion (plug) 2 are formed by the dual damascene method. Alternatively, the single damascene method may be employed, as described below, to form them. A semiconductor integrated circuit device according to this Embodiment of the present invention will be described in accordance with its method of manufacture.
As illustrated in
Over the interlayer insulating film TH22, a resist film (not illustrated) is formed, having an opening in a region in which a connector portion (plug) is to be formed. Using this resist film as a mask, the interlayer insulating film TH22 (silicon nitride film TH2a and silicon oxide film TH2b) is etched to form a contact hole C2.
Then, in a similar manner to that employed for the formation of the barrier film PM2a in Embodiment 1, a barrier film P2a is formed.
More specifically, as illustrated in
As illustrated in
The copper films P2b and P2c are heat treated, followed by removal of the copper films P2b and P2c and barrier film P2a outside the contact hole C2 by CMP so as to form a connector portion (plug) P2 between the first-level interconnect M1 and the second-level interconnect M2, as illustrated in
As illustrated in
Over the interconnect-trench-forming insulating film H22, a resist film (not illustrated) is formed, having an opening in a region in which a second-level interconnect is to be formed. Using this resist film as a mask, the interconnect-trench-forming insulating film H2 (silicon oxide film TH2d and silicon nitride film TH2c) is etched to form the interconnect trench HM2.
Over the interlayer insulating film TH2, including the inside of the interconnect trench HM2, a refractory metal, for example, Ti (titanium), is deposited to form a barrier film M2a.
After formation of a copper film M2b over the barrier film M2a by sputtering or CVD to serve as a seed film for electroplating, a copper film M2c is formed thereover to serve as a conductive film by electroplating.
The copper films M2b and M2c are heat treated, followed by removal of the copper films 2b and M2c and the barrier film M2a outside the interconnect trench HM2 by CMP to form the second-level interconnect M2.
By repeating the formation of interlayer insulating films (TH23 to TH25), connector portions (P3 to P5), interconnect-trench-forming insulating films (H23 to H25) and interconnects (M3 to M5), a five-layer interconnect is formed, as illustrated in
After formation of a silicon nitride film, to serve as a copper diffusion preventive film, over the fifth-level interconnect M5, as in Embodiment 1, a laminate film PV of a silicon oxide film and a silicon nitride film is formed by deposition to serve as a protective film. By this, the barrier films P3a, P4a and P5a on the bottoms of the contact holes C3, C4 and C5 are each formed to have a film thickness that increases from the center of the bottom toward the sidewalls, all around the bottom of the contact hole as in Embodiment 1.
According to this Embodiment, the barrier film P2a on the bottom of the contact hole C2 is formed so that its thickness increases from the bottom of the contact hole toward its sidewalls, as described in Embodiment 1. The geometrically shortest route of an electric current from the second-level interconnect M2 to the first-level interconnect M1, therefore does not cross over a thin portion (a portion whose electric resistance becomes the lowest) of the barrier film, whereby a concentration of electrons to this portion can be prevented. As a result, the electromigration properties can be improved.
By setting the film thickness C to be greater than the film thickness B, a concentration of electrons can be prevented even if overetching not greater than the film thickness A is conducted upon formation of the contact hole C2.
The semiconductor integrated circuit device according to this Embodiment of the present invention will be described in accordance with its manufacturing process.
As illustrated in
Over the interlayer insulating film TH2, a resist film (not illustrated) is formed, that is opened at a region in which a second interconnect is to be formed. Using this resist film as a mask, the silicon oxide film TH2d and silicon nitride film TH2c are etched from the interlayer insulating film TH2 to form the interconnect trench HM2.
Over the interlayer insulating film TH2, including the inside of the interconnect trench HM2, a first resist film (not illustrated) is deposited. The interconnect trench HM2 is embedded with the first resist film by etch back. A second resist film (not illustrated), that is opened at a connecting region of the first-level interconnect with the second-level interconnect, is then formed over the first resist film. Using this second resist film as a mask, the first resist film, silicon oxide film TH2b and silicon nitride film TH2a are etched, whereby the contact hole (C2) is formed. As described with reference to Embodiment 1, the interconnect trench HM2 may be formed after the formation of the contact hole C2.
If overetching is conducted upon formation of this contact hole C2, the bottom of the contact hole C2 comes at a position deeper than the surface of the first-level interconnect M1 as illustrated in
As illustrated in
In the contact hole C2, the barrier film PM2a on the bottom thereof is formed so that its film thickness increases from the center of the bottom of the contact hole C2 toward the sidewalls, all around the bottom of the contact hole C2. As illustrated in
As illustrated in Embodiment 1, the film thickness B or the film thickness D of the barrier film on the sidewalls of the contact hole C2 must be adjusted to at least the minimum thickness permitting maintenance of barrier properties.
As illustrated in
After heat treatment of the copper films PM2b and PM2c, the copper films PM2b,PM2c and barrier film PM2a outside the interconnect HM2 and contact hole C2 are removed by CMP to form a second-level interconnect M2 and a connector portion (plug) P2 between the first-level interconnect and the second-level interconnect.
The essential points in the structure of the second-level interconnect M2, connector portion (plug) and first-level interconnect M1 will be described.
The second-level interconnect M2 and connector portion (plug) P2 are each made of the copper films PM2b, PM2c and barrier film PM2a. As illustrated in
As described above, the barrier film PM2a on the bottom of the contact hole C2 increases in thickness from the center of the bottom toward the sidewalls. In other words, the barrier film PM2a has a portion that declines toward the center of the bottom from the sidewalls of the contact hole C2. The film thickness B of the barrier film on the center of the bottom of the contact hole C2 is smaller than the film thickness A, which is the film thickness at an end portion, in the direction of sidewalls, of the bottom of the contact hole C2 (A≧B). The film thickness A can be determined, for example, by dropping a perpendicular line toward the bottom of the contact hole C2 from the end of the shortest distance L between the corner of the bottom of the contact hole C2 to the surface of the barrier film.
The actual surface of the barrier film is, as illustrated in
The connector portion (plug) P2 has a bottom at a position deeper by an overetching amount OE from the surface F of the first-level interconnect M1, and the film thickness E of the barrier film PM2a, at a portion contiguous to the surface F of this first-level interconnect M1, is greater than the film thickness B (refer to
According to this Embodiment, the film thickness E is greater than the film thickness B, so that the geometrically shortest route Ru1 (refer to
According to this Embodiment, the geometrically shortest route of electric current from the second-level interconnect M2 to the first-level interconnect M1 does not coincide with a thin portion of the barrier film PM2a at which the electrical resistance becomes lowest, so that the current route can be dispersed. Accordingly, a concentration of electrons (e) does not occur easily, even if overetching occurs upon formation of the contact hole C2, making it possible to improve the electromigration properties.
As described in Embodiment 1, when the barrier film has some variations in its thickness inside of the contact hole (refer to
When the thickness of the barrier film contiguous to the surface of the first-level interconnect M1 is smaller than that on the bottom of the contact hole, the geometrically shortest route of an electric current coincides with a thin portion of the barrier film PM2a whose electrical resistance becomes the lowest, which causes a concentration of electrons (e), and deteriorates the electromigration properties.
In this Embodiment, on the other hand, when the film thickness E of the barrier film, which is contiguous to the surface F of the first-level interconnect M1, is set to be greater than the film thickness B, the above-described effect is available.
In similar a manner to that employed for the formation of the second-level interconnect M2 and connector portion (plug) P2, third-level to fifth-level interconnects M3 to M5 and connector portions (plugs) P1 to P5 are then formed. However, illustrations and a detailed description thereof will be omitted.
In this Embodiment, the second-level interconnect M2 and connector portion (plug) 2 were formed using the dual damascene method. Alternatively, the second-level interconnect M2 and connector portion (plug) 2 were formed by separate steps by using the single damascene method, as described with reference to Embodiment 2. Also, in this case, the above-described effect is available by setting the film thickness E of the barrier film PM2a in the connector portion (plug) to be greater than the film thickness B.
The present invention has been described specifically on the basis of various Embodiments. However, the present invention is not limited by these Embodiments, but can be modified to an extent not departing from the gist of the invention.
For example, MISFETQn and MISFETQp were given as examples of a semiconductor element. Not only a MISFET, but also another element, such as bipolar transistor, can be formed.
Effects available by the typical aspects of the invention, among the features disclosed by the present application, will be described briefly below.
(1) A conductive film on the bottom and sidewalls of a hole made in an insulating film formed over a semiconductor substrate is formed so that its thickness increases from the center of the hole toward the side walls, whereby the geometrically shortest route of an electric current in the hole does not coincide with a thin portion of the conductive film at which the electrical resistance becomes the lowest, which makes it possible to disperse the route of electrical current.
By such a constitution, a concentration of electrons does not occur readily, and the electromigration properties can be improved. Moreover, the characteristics of a semiconductor integrated circuit device having such a conductive film can be improved.
As a result, the yield of the product can be heightened, and its life (electromigration life) can be prolonged.
(2) When the bottom of the hole exists at a position deeper than the surface of the interconnect extending therebelow, a conductive film on the bottom and sidewalls is formed so that the film thickness E of the conductive film that is contiguous to the surface of the interconnect becomes greater than the film thickness B. The geometrically shortest route of an electrical current in the hole, therefore, does not coincide with a thin portion of the conductive film at which the electrical resistance becomes the lowest, which makes it possible to disperse the route of the electrical current.
By such a constitution, a concentration of electrons does not occur readily, and the electromigration properties can be improved. Moreover, the characteristics of a semiconductor integrated circuit device having such a conductive film can be improved.
As a result, the yield of the product can be heightened, and its life (electromigration life) can be prolonged.
Number | Date | Country | Kind |
---|---|---|---|
2001-309007 | Oct 2001 | JP | national |
The present application is a continuation of U.S. application Ser. No. 11/444,316, filed Jun. 1, 2006, which, in turn, is a continuation of U.S. application Ser. No. 10/263,829, filed Oct. 4, 2002, and now U.S. Pat. No. 7,095,120; and the entire disclosures of which are hereby incorporated by reference. U.S. application Ser. No. 10/327,024, filed Dec. 24, 2002, now U.S. Pat. No. 7,018,919, is related to the present application in that it was filed as a separate continuation of the same original patent application as that of the present application.
Number | Date | Country | |
---|---|---|---|
Parent | 11444316 | Jun 2006 | US |
Child | 12345917 | US | |
Parent | 10263829 | Oct 2002 | US |
Child | 11444316 | US |