This application claims priority under 35 USC § 119 to Korean Patent Application No. 2005-31618 filed on Apr. 15, 2005, the contents of which are herein incorporated by reference in their entirety.
This application claims priority under 35 USC § 119 to U.S. Provisional Application No. 60/671,091 filed Apr. 14, 2005, the contents of which are herein incorporated by reference in their entirety.
This application is a continuation under 35 USC § 120 to U.S. application Ser. No. 11/246,303 filed Oct. 11, 2005, the contents of which are herein incorporated by reference in their entirety.
1. Field of the Invention
The present invention relates to semiconductor modules such as a module printed circuit board (PCB) with one or more semiconductor chip packages mounted thereon, and a method of forming the semiconductor module.
2. Description of the Related Art
Recently, semiconductor modules, such as memory modules, have been widely employed in various multi-media apparatuses and digital apparatuses where the semiconductor modules have rapid response speed, low power consumption, minute sizes, etc. Generally, ball grid array (BGA) semiconductor chip packages are employed in the semiconductor modules.
The BGA semiconductor chip packages are usually divided into a micro BGA type, a wire bonding BGA (WBGA) type and a board on chip (BOC) type. A semiconductor package including a BGA is combined with a module board using solder balls instead of leads. About two to about thirty-two units of the BGA semiconductor chip packages are usually mounted on one module board.
The PCB 10 is socketed into a socket 20 by a manual socketing procedure. In this procedure, one or more of the BGA semiconductor chip packages 150 may be grasped by the person inserting the PCB 10 into the socket 20. This may cause a BGA semiconductor chip package 150 to become bent or twisted, and a crack in the BGA semiconductor package 150 may occur. When this happens, the electrical characteristics of the BGA semiconductor chip package 150 may decrease.
The present invention relates to a semiconductor module.
In one embodiment of the present invention, a semiconductor module includes at least one semiconductor chip package, a board having functional pads and dummy pads, and at least one solder joint electrically connecting the semiconductor chip package and one of the functional pads of the board. Furthermore, at least one supporting solder bump is formed on one of the dummy pads and is disposed under a portion of the semiconductor chip package. For example, the supporting solder bump may be disposed under a peripheral area of the semiconductor chip package.
In one embodiment, more than one supporting solder bump arrangement is formed on the board, and each supporting solder bump arrangement corresponds to a different sized semiconductor chip package.
In an embodiment, the supporting solder bump is disposed under the semiconductor chip package such that a gap exists between the semiconductor chip package and the supporting solder bump. In another embodiment, the supporting solder bump contacts the semiconductor chip package.
In yet another embodiment, the semiconductor module includes at least one semiconductor chip package, a board, and at least one solder joint electrically connecting the semiconductor chip package and the board. Furthermore, at least one supporting solder bump is formed on the board under a portion of the semiconductor chip package such that a gap exists between the semiconductor chip package and the supporting solder.
The present invention further relates to a method of forming a semiconductor module.
In one embodiment, the method includes the steps of forming functional and dummy pads on a board, and mounting at least one semiconductor chip package on the board such that at least one solder joint electrically connects the semiconductor chip package to one of the functional pads and at least one supporting solder bump is formed on at least one of the dummy pads disposed under the semiconductor chip package. For example, at least one of the supporting solder bumps may be disposed under a peripheral area of the semiconductor chip package.
In one embodiment of the method, the mounting step forms more than one supporting solder bump arrangement on the board, and each supporting solder bump arrangement corresponds to a different sized semiconductor chip package.
In an embodiment of the method, the supporting solder bump may be disposed under the semiconductor chip package such that a gap exists between the semiconductor chip package and the supporting solder bump, while in another embodiment, the supporting solder bump contacts the semiconductor chip package.
In another embodiment of the method of forming a semiconductor module, functional pads are formed on a board. Then at least one semiconductor chip package is mounted on the board such that at least one solder joint electrically connects the semiconductor chip package to one of the functional pads and at least one supporting solder bump is formed on the board under a portion of the semiconductor chip package such that a gap exists between the semiconductor chip package and the supporting solder.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, wherein like reference numerals designate corresponding parts in the various drawings, and wherein:
FIGS. 6 to 11 are cross-sectional views illustrating a method of forming the semiconductor module as shown in
Example embodiments of the invention are described more fully hereinafter with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The PCB 100 further includes supporting solder bumps 102. The supporting solder bumps 102 are disposed under the semiconductor chip package 150. For example, the supporting solder bumps 102 may be formed under a peripheral area of the semiconductor chip package 150 such as a corner portion of the semiconductor chip package 150. As will described in more detail below, the supporting solder bumps 102 may contact the semiconductor chip package 150, or a gap may exist between the semiconductor chip package 150 and the supporting solder bumps 102.
Next a method of forming a semiconductor module as shown in
Referring to
Next, functional solder and supporting solder is formed on the functional solder pads 130 and dummy pads 132, for example, by employing surface mount technology (SMT). As shown in
Furthermore,
As shown in
Next, the semiconductor chip packages 150 are aligned on the PCB100, and a well-known thermal process such as a reflow process is conducted. As shown in
As shown in
As shown in the above Table, as the width W4 of second opening in the stencil 140 increases, the height H2 of the supporting solder bumps 102 increases so that the gap H1 between the supporting solder bumps 102 and the semiconductor chip package 150 decreases.
For example, when the width W4 is about 550 μm, the mean height of the supporting solder bumps 102 is about 0.17908 mm, and the gap H1 between the supporting solder bumps 102 and the semiconductor chip package 150 is about 94.0299 μm. When the width W4 is about 650 μm, the mean height of the supporting solder bumps 102 is about 0.21180 mm, and the gap H1 between the supporting solder bumps 102 and the semiconductor chip package 150 is about 49.253 μm. When the width W4 is about 750 μm, the mean height of the supporting solder bumps 102 is about 0.24819 mm, and the gap H1 between the supporting solder bumps 102 and the semiconductor chip package 150 is about 28.358 μm. When the width W4 is about 850 μm, the mean height of the supporting solder bumps 102 is about 0.27831 mm, and the gap H1 between the supporting solder bumps 102 and the semiconductor chip package 150 is about 0.0 μm so that the supporting solder bumps 102 substantially make contact with the semiconductor chip package 150. This last example is illustrated in
The ratio of the gaps H1 relative to the heights H2 of the supporting solder bumps 102 may be below about 0.5 when the stencil has the thickness of about 0.12 mm. For example, the ratio of the gaps H1 relative to the heights H2 of the supporting solder bumps 102 is about 0.12 when the width W4 is about 550 μm. In addition, the ratio of the gaps H1 relative to the heights H2 of the supporting solder bumps 102 is about 0.23 when the width W4 is about 650 μm. Furthermore, the ratio of the gaps H1 relative to the heights H2 of the supporting solder bumps 102 is about 0.11 when the width W4 is about 750 μm. When the width W4 is about 650 μm, the ratio of the gaps H1 relative to the heights H2 of the supporting solder bumps 102 is about 0.23.
The heights H2 of the supporting solders 102 may also be adjusted by varying the width W2 of the opening in the PSR 120 that exposes the dummy pad 132, by varying the width W1 of the dummy pads 132 and/or the thickness of the stencil 140. Namely, as the width W2 of the opening in the PSR 120 that exposes the dummy pad 132 decreases, the heights H2 of the supporting solder bumps 102 also decrease.
When the supporting solder bumps 102 are disposed on portions of the PCB 100 corresponding to edge or peripheral portions of the semiconductor chip package 150, a pressing pressure applied by when the semiconductor module is grasped (e.g., during the manual socketing procedure) may be uniformly distributed about the semiconductor chip package 150, thereby preventing the generation of a crack in the semiconductor chip package 150 and/or between the functional solder joint 112 and the semiconductor chip package 150.
Signal lines may be disposed at a fourth portion 1604 of the PCB 100 so that the supporting solder bumps 102 may be selectively formed on the fourth portion 1604 of the PCB 100 in consideration of the electrical characteristics of the PCB 100. For example, the supporting solder bumps 102 may be formed on the fourth portion 1604 of the PCB 100 corresponding to a left edge portion (or a right edge portion) of the fifth semiconductor chip package 5.
In another example embodiment of the present invention, the PCB 100 may include semiconductor chip packages 150 mounted on opposite faces of the PCB 100. Each face may include the same arrangement of semiconductor chip packages as shown in
Additional supporting solder bumps 102 may also be formed on portions of the PCB 100 corresponding to edge portions of the second semiconductor chip package 2 and the eighth semiconductor chip package 8, respectively.
In a further example embodiment of the present invention, the PCB 100 may include semiconductor chip packages 150 mounted on opposite faces of the PCB 100. Each face may include the same arrangement of semiconductor chip packages as shown in
In yet another example embodiment of the present invention, the arrangements of the supporting solder bumps 102 in FIGS. 13 or 14 may be employed for any number of semiconductor chip packages 150 mounted on one or both faces of the PCB 100. For example, the supporting solder bump arrangements of FIGS. 13 or 14 may be employed for first to eighteenth semiconductor packages 150 mounted on one face of the PCB 100. As another example, the arrangements of the supporting solder bumps 102 in FIGS. 13 or 14 may be employed for first to the eighteenth semiconductor chip packages 150 mounted on a first face of the PCB 100, and nineteenth to the thirty-sixth semiconductor chip packages 150 mounted on the second face of the PCB 100.
Signal lines may be disposed at a fourth portion 1704 of the PCB 100 so that the supporting solder bumps 102 may be selectively formed on the fourth portion 1704 of the PCB 100 in consideration of the electrical characteristics of the PCB 100. For example, the supporting solder bumps 102 may be formed on the fourth portion 1704 of the PCB 100 corresponding to a left edge portion (or a right edge portion) of the second semiconductor chip package 2. Alternatively, the supporting solder bumps 102 may be formed on the fourth portion 1704 of the PCB 100 corresponding to a left edge portion (or a right edge portion) of the third semiconductor chip package 3.
In another example embodiment of the present invention, the PCB 100 may include semiconductor chip packages 150 mounted on opposite faces of the PCB 100. Each face may include the same arrangement of semiconductor chip packages as shown in
As discussed above with respect to the embodiments of
Furthermore, it will be understood that for each of the supporting solder bump positions discussed above, and further discussed below, a corresponding dummy pad may be likewise positioned and the supporting solder bump may be disposed on the dummy pad.
Referring to
While the supporting solder bumps 102 were described as being formed on the PCB 100 in the above-described embodiment, as an alternative, the supporting solder bumps may be formed on the semiconductor chip package 150 such that the supporting solder bumps contact the PCB 100 or leave a gap between the solder bumps and the PCB 100. Also, while the embodiments of the present invention were described using a BGA semiconductor chip package as the example semiconductor chip package, it will be understood that the present invention is not limited in application to semiconductor modules including BGA semiconductor chip packages. Instead, the semiconductor chip package 150 may be a WBGA type, BOC type, etc.
As described above, the present invention provides at least (i) a PCB having a supporting solder bump arrangement for at least one semiconductor chip package, (ii) a semiconductor module including the PCB and at least one semiconductor chip package mounted thereon, and (iii) methods of forming the PCB and the semiconductor module. When an external mechanical impact is applied to the semiconductor chip package, at least one supporting solder bump, provided on a portion of the PCB under a peripheral portion of the semiconductor chip package, helps support the semiconductor chip package and distribute the force of the impact. The supporting solder bumps may be easily formed on the PCB together with a normal solder joint by a screen printing process and without any additional process steps. Furthermore, the height of the supporting solder bump, and thus the gap between the supporting solder bump and the semiconductor chip package may be controlled.
Therefore, when the semiconductor module is socketed by a manual socketing procedure, a crack in semiconductor chip package, crack in the solder joint and/or a crack pattern on the PCB may be reduced.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications are intended to be included within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-31618 | Apr 2005 | KR | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11246303 | Oct 2005 | US |
Child | 11604678 | Nov 2006 | US |