This application claims benefit of priority to Korean Patent Application No. 10-2017-0170178 filed on Dec. 12, 2017 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
The present inventive concept relates to a process chamber, and in more detail, to a semiconductor process chamber simultaneously performing a deposition process and a plasma process.
In order to increase a degree of integration in semiconductor devices without increased costs, the requirements for various material layers to form semiconductor devices have increased. For example, it is necessary to form a thinner material layer having uniform characteristics for a shorter period of time. Among material layers used in semiconductor devices, material layers formed using various process chambers, having been separated from each other, have been present. For example, a SiN material may be formed using a deposition process chamber and a plasma process chamber, having been separated from each other. As such, there is a limitation in reducing the time required to form material layers using various process chambers, separated from each other.
An aspect of the present inventive concept is to provide a semiconductor process chamber capable of producing a deposition layer having an improved quality.
Another aspect of the present inventive concept is to provide a semiconductor process chamber having increased productivity.
According to an aspect of the present inventive concept, provided is a semiconductor process chamber including a susceptor, a showerhead structure, a first plate, a second plate and a blocking structure, wherein the susceptor comprises a plurality of wafer zones, wherein the showerhead structure, the first plate, the second plate and the first blocking structure are disposed opposite to the susceptor and spaced apart from the susceptor, wherein a distance between the showerhead structure and the susceptor is less than a distance between the first plate and the second plate and the susceptor, and wherein a distance between the first blocking structure and the susceptor is less than the distance between the first plate and the second plate and the susceptor.
According to another aspect of the present inventive concept, provided is a semiconductor process chamber including a susceptor, a showerhead structure, a plurality of plates, and a blocking structure disposed between plates, among the plurality of plates, disposed adjacent to each other, wherein the susceptor comprises a plurality of wafer zones, wherein the showerhead structure, the plurality of plates are disposed to be spaced apart from the susceptor wherein a distance between the showerhead structure and the susceptor is less than a distance between the plurality of plates and the susceptor, and wherein a distance between the blocking structure and the susceptor is less than the distance between the plurality of plates and the susceptor.
According to another aspect of the present inventive concept, provided is a semiconductor process chamber including a susceptor, a showerhead structure, on a deposition process region of the susceptor, a first plate on a first plasma process region of the susceptor, a second plate on a second plasma process region of the susceptor, and a first blocking structure disposed between the first plasma process region and the second plasma process region and disposed to be spaced apart from the susceptor, wherein the susceptor comprises a plurality of wafer zones, wherein a distance between the showerhead structure and the susceptor is less than a distance between the first plate and the second plate, and the susceptor, and wherein a distance between the first blocking structure and the susceptor is less than the distance between the first plate and the second plate, and the susceptor.
The above and other aspects, features, and advantages of the present disclosure will be more clearly understood from the following detailed description, taken in conjunction with the accompanying drawings, in which:
A semiconductor process chamber according to an example embodiment will be described with reference to
First, with reference to
Hereinafter, descriptions will be provided such that the first process region 12 is substituted with the term ‘a deposition process region’, the second process region 13 is substituted with the term ‘a first plasma process region’, and the third process region 14 is substituted with ‘a second plasma process region’, and the fourth process region 15 is substituted with ‘a third plasma process region’.
Due to term substitution described above, the present inventive concept is not limited to a semiconductor process chamber, according to an example embodiment, including a single deposition process region and three plasma process regions. For example, the present inventive concept may also include a semiconductor process chamber including a plurality of deposition process regions and a plurality of plasma process regions.
With reference to
The support structure 25 may include a support shaft 35 supporting the susceptor 20 and a driving portion 30 disposed below the support shaft 35 and rotating the susceptor 20 by rotating the support shaft 35.
The semiconductor process chamber 10 may include a wafer lifter 40 disposed below the susceptor 20 and lifter pins 45 connected to the wafer lifter 40. The wafer lifter 40 may move the lifter pins 45 up and down.
The susceptor 20 may include a plurality of wafer zones 22. The wafer zone 22 may be provided as a region in which a wafer 50 is disposed to perform a semiconductor process.
In an example embodiment, the wafer zone 22 may be recessed from a surface of the susceptor 20.
The susceptor 20 may include pin holes 23 penetrating through the wafer zone 22.
A gate 11 through which the wafer 50 may enter and exit the semiconductor process chamber 10 may be disposed on a side of the semiconductor process chamber 10.
The wafer 50 may be lifted from the wafer zone 22 of the susceptor 20 above the susceptor 20 or may be lowered from above the susceptor 20 to the wafer zone 22 of the susceptor 20 by the lifter pins 45 penetrating through the pin holes 23. The wafer 50 having penetrated through the gate 11 to be moved above the susceptor 20 may be supported by the lifter pins 45 connected to the wafer lifter 40 and may be lowered to be mounted on a wafer mounting portion of the susceptor 20. The wafer 50 in which the semiconductor process has been completed may be lifted above the susceptor 20 by the lifter pins 55 of the wafer lifter 40 to be moved out of the semiconductor process chamber through the gate 11.
With reference to
The showerhead structure (130 of
The showerhead structure (130 of
In an example embodiment, the edge portion 120 may surround the showerhead portion 110.
The deposition process region (12 of
The edge portion 120 may include an edge hole 121 injecting an inert gas and an exhaust hole 122 discharging a process gas and an inert gas outwardly of the semiconductor process chamber 10. The exhaust hole 122 may be provided as a vacuum hole. The inert gas may be provided as a purge gas. The exhaust hole 122 may be disposed closer to the showerhead portion 110 than is the edge hole 121.
The edge hole 121 and the exhaust hole 122 in the edge portion 120 may play a role in separating the deposition process region 12 from the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 or blocking the deposition process region 12. For example, the inert gas may be injected from the edge hole 121, and the inert gas in the exhaust hole 122 and the process gas in the deposition process region 12 may be intaken, thereby preventing the process gas in the deposition process region 12 from being introduced to the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 in the semiconductor process chamber 10. In addition, the edge hole 121 and the exhaust hole 122 in the edge portion 120 may block the process gases in the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 or prevent the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 from being introduced to the deposition process region 12.
In an example embodiment, a central blocking structure (105 of
The first plate (140 of
In a case in which the susceptor 20 is rotated to perform the semiconductor process, the wafer 50 above the wafer zone 22 of the susceptor 20 may pass below the deposition process region 12 and then, may pass below the first plasma process region 13.
In a case in which the semiconductor process is performed, a first plasma region P1 may be formed in the first plasma process region (13 of
The second plate (142 of
In a case in which the susceptor 20 is rotated to perform, the semiconductor process, the wafer 50 above the wafer zone 22 of the susceptor 20 may pass below the first plasma process region (13 of
In a case in which the semiconductor process is performed, a second plasma region P2 may be formed in the second plasma process region (14 of
The third plate (144 of
In a case in which the susceptor 20 is rotated to perform the semiconductor process, the wafer 50 above the wafer zone 22 of the susceptor 20 may pass below the second plasma process region (14 of
In a case in which the semiconductor process is performed, a third plasma region P3 may be formed in the third plasma process region (15 of
Injectors 160, 162, and 164 may include a first injector (160 of
The first injector (160 of
The second injector (162 of
The third injector (164 of
The third nozzle (164a of
The first nozzle 160a, the second nozzle 162a, and the third nozzle 164a may be disposed closer to the susceptor 20 than are the first plate 140, the second plate 142, and the third plate 144.
The first blocking structure (170 of
The first blocking structure (170 of
In an example embodiment, the first blocking structure (170 of
In an example embodiment, the first injector (160 of
The semiconductor process chamber 10 may include a plurality of exhaust ports 180, 184, and 186, disposed outwardly of the susceptor 20. The plurality of exhaust ports 180, 184, and 186 may include a first exhaust port (180 of
The first exhaust port (180 of
The first exhaust port (180 of
The second exhaust port (182 of
The third exhaust port 184 may be disposed in a position closer to the third plasma process region 15 than the first plasma process region 13 and the second plasma process region 14 and distant from the third injector 164 to a maximal extent.
The first exhaust port 180, the second exhaust port 182, and the third exhaust port 184 may prevent the process gases injected from the first injector 160, the second injector 162, and the third injector 164 from moving into other plasma process regions.
The second exhaust port 182 and the third exhaust port 184 may be disposed adjacent to each other, thereby preventing the process gas injected from the second nozzle 162a of the second injector 162 from flowing into the third plasma process region 15 and preventing the process gas injected from the third nozzle 164a of the third injector 164 from flowing into the second plasma process region 14.
A distance between the first plate 140 and the susceptor 20, a distance between the second plate 142 and the susceptor 20, and a distance between the third plate 144 and the susceptor 20 may be equal. A distance between the first blocking structure 170 and the susceptor 20 may be less than a distance between first, second, and third injectors 160, 162, and 164 and the susceptor 20. A distance between the showerhead structure 130 and the susceptor 20 may be less than a distance between first, second, and third plates 140, 142, and 144 and the susceptor 20.
As such, the showerhead structure 130 may be disposed closer to the susceptor 20 than are the first plate 140, the second plate 142, and the third plate 144 and may include the edge portion 120 described above. The showerhead structure 130 may prevent the process gas in the deposition process region 12 from flowing into the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 and prevent the process gas in the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 from flowing into the deposition process region 12.
As illustrated in
As illustrated in
According to example embodiments described above, the first blocking structure 170 may be disposed between the first plasma process region 13 and the second plasma process region 14, while a separate blocking structure may not be disposed between the second plasma process region 14 and the third plasma process region 15. However, the present inventive concept is not limited thereto. For example, as illustrated in
The semiconductor process chamber 10 may form various materials required in a semiconductor device to have a high quality in a relatively short period of time. For example, a plurality of wafers 50 may be simultaneously loaded into the susceptor 20 in a single semiconductor process chamber 10. As such, a plurality of semiconductor processes may be performed to a plurality of wafers 50. For example, forming a high quality silicon nitride layer having a relatively low impurity content may include depositing silicon on the wafer 50 in the deposition process region 12, performing a nitriding process using plasma in one or two of the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15, and performing a hydrogen plasma treatment process to remove impurities in nitrided silicon from the remainder of plasma process regions, which are repeated. Alternatively, forming silicon oxynitride (SiON) may include depositing silicon on the wafer 50 in the deposition process region 12, performing a plasma oxidation process in one of the first plasma process region 13 and the second plasma process region 14, performing a plasma nitridation process in the other, and performing the hydrogen plasma treatment process to remove impurities in silicon oxynitride (SiON) from the third plasma process region 15, which are repeated.
As described above, the deposition process region 12, the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15 may not be affected by the process gas in other process regions disposed adjacent to each other due to the edge portion 120 of the showerhead structure 130, blocking structures 170 and 172, and exhaust ports 180, 182, and 184. Therefore, the edge portion 120 of the showerhead structure 130, the blocking structures 170 and 172, and the exhaust ports 180, 182, and 184 may strengthen independence of semiconductor processes performed in the deposition process region 12, the first plasma process region 13, the second plasma process region 14, and the third plasma process region 15. Therefore, a higher quality material may be manufactured in the semiconductor process chamber 10 more quickly.
As set forth above, according to example embodiments of the present inventive concept, a semiconductor process chamber simultaneously performing a deposition process and a plurality of plasma processes in a single process chamber may be provided. Thus, an amount of time required for a semiconductor process may be reduced. According to example embodiments of the present inventive concept, since independence of semiconductor processes performed in a deposition process region and plasma process regions may be strengthened, a higher quality material may be formed in a single semiconductor process chamber.
While example embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present inventive concept as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0170178 | Dec 2017 | KR | national |