The present disclosure relates generally to semiconductor processing and, more particularly, to semiconductor processing via atomic layer deposition (ALD) and/or chemical vapor deposition (CVD).
During semiconductor device fabrication, layers of materials are formed over semiconductor substrates, e.g., wafers. Among the materials which can be included in such layers are tantalum pentoxide, titanium nitride, titanium silicon nitride, tantalum nitride, tantalum silicon nitride, titanium silicide, tantalum silicide, tungsten nitride, aluminum oxide, hafnium oxide, zirconium oxide, silicon nitride, silicon dioxide, elemental tungsten and elemental titanium. Methods for forming layers of such materials can include chemical vapor deposition (CVD) and atomic layer deposition (ALD).
Chemical vapor deposition includes mixing two or more reactants in a chamber to form a material which subsequently deposits across exposed surfaces of one or more semiconductor substrates. In CVD processes, it can be difficult to control reactions between the reactants provided in the chamber and various side-reactions can occur which can generate contaminants. Additionally, it can be difficult to form a uniform layer over multiple exposed surfaces of one or more semiconductor substrates with CVD. The deposition of CVD material can be faster in various regions of semiconductor topography than other regions, which can lead to within wafer (WIW) non-uniformity, e.g., increased WIW uniformity variance in a thickness of the deposited material across various exposed surfaces of semiconductor substrates provided within a CVD reaction chamber.
Atomic layer deposition (ALD) can overcome some of the problems discussed above relative to CVD. ALD processing includes forming thin films of material by repeatedly depositing monoatomic layers. The technique involves individually depositing reactants, e.g., precursors, that react in situ to form a desired film of material across a semiconductor substrate. More specifically, ALD processes involve introduction of a first reactant which reacts with a substrate to form a monolayer across the substrate. The first reactant will often react with the substrate, but not with itself. Accordingly, side-reactions can be reduced or eliminated. Further, the reaction of the reactant with the substrate can be self-limiting, e.g., once a monolayer forms across exposed surfaces of the substrate there is no longer further reaction of the reactant with the substrate.
In ALD processes, after the monolayer is formed, the excess first reactant can be evacuated from the reaction chamber via a purge process, and a second reactant can be subsequently introduced. A purge process can include one or more purge steps in which a purge gas, e.g., an inert gas, is introduced into the reaction chamber and one or more pumping steps preceding and/or following introduction of the purge gas to remove excess reactant, catalyst, purge gas, and/or by-product gases from the chamber.
In ALD processes, the second reactant reacts with the monolayer of material formed from the first reactant to convert such monolayer into a desired material layer over the substrate. The desired material layer can have a relatively uniform thickness across the various surfaces of the substrate, which can be made thicker by evacuating the second reactant from the processing chamber via a purge process and repeating the above-described process until a desired thickness of the desired material layer is formed.
Depending on the reactant system and with long enough pump and/or purge times, an ALD process can produce very uniform thickness across a wafer regardless of topography and can maintain uniform thickness profiles for each wafer in a batch if the processing temperature is held constant. However, the layer by layer ALD processing can have significantly lower throughput as compared to CVD processing techniques. To improve the throughput associated with ALD processes, the purge process can be shortened by using shorter pump and/or purge times between reactant pulses. In some cases, the deposition rate associated with ALD processing can be improved by increasing or decreasing the process temperature. Also, ALD throughput can be improved by processing a plurality of wafers simultaneously in a batch process.
However, performing batch processes, increasing or decreasing the process temperature, and/or shortening pump and/or purge times can lead to an added CVD component associated with an ALD process. An ALD process having an added CVD component refers to a quasi-ALD process which exhibits some CVD process characteristic, such as increased direct reactions between residual reactants and/or other CVD process characteristics, which can increase the WIW uniformity variance associated with the deposition process. For example, performing batch processes, increasing or decreasing the process temperature, and/or shortening the pump and/or purge time, e.g., the time used to evacuate the chamber between ALD reactant pulses, can lead to incomplete removal of the ALD reactants and thereby increases contaminants and/or co-reactions within the chamber.
Embodiments of the present disclosure include semiconductor processing methods and systems. Various embodiments can improve the throughput of an atomic layer deposition (ALD) process by controlling and/or compensating for one or more chemical vapor deposition (CVD) components associated with the ALD process.
One method includes forming a material layer on a semiconductor substrate by exposing a deposition surface of the substrate to at least a first and a second reactant sequentially introduced into a reaction chamber having an associated process temperature. The method includes removing residual first reactant from the chamber after introduction of the first reactant, removing residual second reactant from the chamber after introduction of the second reactant, and establishing a temperature differential substantially between an edge of the substrate and a center of the substrate via a purge process.
As used herein the terms “wafer” and “substrate” may include a number of semiconductor-based structures that have an exposed semiconductor surface. Structure can be understood to include silicon, silicon-on-insulator (SOI), silicon-on sapphire (SOS), doped, and undoped semiconductors. In addition, structure can be understood to include epitaxial layers of silicon supported by a base semiconductor foundation. The base semiconductor foundation is typically the lowest layer of silicon material on a wafer or a silicon layer deposited on another material.
The semiconductor need not be silicon-based. For example, the semiconductor can be silicon-germanium, germanium, or gallium-arsenide. When reference is made to “wafer” and “substrate” in the following description, previous process steps may have been utilized to form regions or junctions in or on the semiconductor structure and/or foundation.
As used herein, “layer” can refer to a layer formed on a substrate using a deposition process such as an atomic layer deposition (ALD), plasma deposition, and/or chemical vapor deposition (CVD) process. The term “layer” is meant to include layers specific to the semiconductor industry, such as “barrier layer”, “dielectric layer”, and “conductive layer”. The term “layer” is also meant to include layers found in technology outside of semiconductor technology, such as coatings on glass.
In one or more embodiments, the WIW uniformity of a material layer, e.g., layer 104-1, can be determined based on a measured thickness of a wafer at a number of different points of the wafer. In such embodiments, the WIW uniformity can be defined as the difference between a maximum thickness measurement and a minimum thickness measurement divided by an average of the number of thickness measurements, e.g., (maximum thickness measurement−minimum thickness measurement)/average thickness measurement). As such, WIW uniformity measurements closer to zero, indicate a wafer having a more uniform thickness profile. The number of measured points used to determine the WIW uniformity can be 9, 13, 25, or 49 points, among others. In this manner, wafers determined to have a larger measured WIW uniformity can be said to have an increased WIW uniformity variance, e.g., an increased WIW non-uniformity.
In various embodiments of the present disclosure, the material layer, e.g., 104-1, can include, for example, an oxide layer such as Al2O3, TiO2, ZrO2, HfO2, Ta2O5, Nb2O5, CeO2, SiO2, In2O3, or IrO2. The material layer, e.g., 104-1, can also be a composite oxide layer, a nitride layer, a complex nitride layer, a metal layer, or a silicide layer. Embodiments of the present disclosure are not limited to a particular type of material layer, i.e., the above list is not exhaustive.
In the illustrations shown in
The non-uniform thickness profile, e.g., edge-thick profile, of material layer 104-1 shown in
In such cases, the associated reaction rate, e.g., deposition rate, decreases as the second reactant moves across the deposition surface, e.g. the concentration of residual first reactant decreases as the residual amount of first reactant reacts with the second reactant as the second reactant moves from the edge of the wafer toward the center 105. The reactant gradient, e.g., the decreasing reaction rate toward the center, can lead to an edge-thick material layer profile such as that shown in
As used herein, a purge process refers to a process used to remove an amount of residual reactant from a reaction chamber. A purge process can include one or more purge steps in which a purge gas, e.g., an inert gas, is introduced into the reaction chamber and one or more pumping steps preceding and/or following introduction of the purge gas to remove excess reactant, catalyst, purge gas, and/or by-product gases from the chamber.
As noted above, performing batch processes, lowering the process temperature, and/or shortening pump/purge times can lead to an added CVD component associated with an ALD process, which can increase the deposition rate and/or throughput of the process. However, the increased throughput can lead to an increase in WIW uniformity variance associated with the material layer, e.g., 104-1, for the reasons stated above. For example, an added CVD component associated with the ALD process can result in an edge-thick or “bowl” shaped profile as illustrated in
In various embodiments, the process temperature of the chamber can be maintained at a steady temperature during deposition of a material layer upon wafer. For example, one or more heating elements internal and/or external to a reaction chamber can be used to maintain a reaction chamber and/or batch of semiconductor wafers at a steady process temperature while the deposition surface of the wafers are exposed to sequentially introduced reactants.
In embodiments in which the purge gas is introduced at a temperature greater than the process temperature, the temperature of the purge gas decreases as the purge gas progresses from an edge of the wafer toward the center 105 of the wafer. In the example shown in
In one or more embodiments, the purge gas establishes a temperature differential substantially between an edge of the wafer and a center, e.g., 105, of the wafer. That is, the purge gas having a temperature greater than the process temperature of the reaction chamber can create a temperature differential across the deposition surface of the wafer as the heated purge gas cools, e.g., from T1 to T2, as it moves over the deposition surface.
In some embodiments of the present disclosure, the temperature differential across the wafer results in a non-uniform deposition rate across the wafer. For instance, the deposition rate near the edge of the wafer, which is hotter than the process temperature due to the purge gas, is slower than the deposition rate near the center, e.g., 105, of the wafer, which is cooler than the edge of the wafer due to the introduction of the heated purge gas.
In prior ALD processes, creating a temperature differential across a wafer during processing is discouraged because the temperature differential leads to non-uniform deposition rates, e.g., the deposition rate of the material layer can be slower at portions of the deposition surface which are hotter than at portions of the deposition surface which are cooler. That is, in various prior ALD processes, a uniform temperature across the deposition surface is desirable in order to achieve a uniform deposition rate, e.g., uniform thickness, across the wafer.
The illustration 101-2 of
As described above, the edge-thick profile of material layer 104-1 shown in
The material layer 104-2 can represent a material layer formed via an ALD process having the same CVD component presence as that associated with deposition of material layer 104-1. That is, the material layer 104-2 represents a material layer formed in accordance with a processing embodiment of the present disclosure which compensates for the CVD component, e.g., reduces the edge-thick profile and/or thickness variance ΔA associated with material layer 104-1 shown in
The wafers 207 can be vertically stacked and spaced apart from each other in the carrier 209 and can be rotated about their centers 205 during processing. Although the system 200 illustrates a vertical reaction chamber 202 for processing a vertically stacked batch of wafers 207 rotated about their centers 205, embodiments are not limited to batch deposition processes, to vertical chambers, to rotating wafers, or to a particular orientation of the semiconductor wafers within the chamber.
The reaction chamber 202 and/or the wafers 207 can be heated to a desired process temperature (Tp) via a number of heaters 206-1, 206-2, 206-3, and 206-4. Although the chamber 202 includes four heaters, embodiments can include more or fewer heaters. The system 200 includes a pump 240 which can be used to remove residual, e.g., excess, gas such as residual reactant gas, catalyst, purge gas, and/or by-products from the chamber 202 through evacuation port 242. The pump 240 is coupled to a flow controller 241 which can be used to control the exhaust rate through port 242. In the embodiment shown in
In various embodiments, and as shown in
The vertical injectors 230-1, 230-2, and 230-3 are elongate multi-holed injectors each having a number of apertures 232 along their respective lengths. The number, size, and/or orientation of the apertures 232 can depend on a number of factors such as one or more process parameters associated with the deposition of a material layer on the batch of wafers 207, the type of material layer being deposited, etc.
In various embodiments, a semiconductor processing system can include an injector for introducing purge gas into an upper portion of the reaction chamber and/or for delivering purge gas toward an upper surface of the chamber. In the embodiment illustrated in
A higher concentration of residual gases toward the top of the chamber, e.g., additional CVD component, can lead to increased WIW uniformity variance of wafers near the top of the batch. That is, an edge-thick profile can be more pronounced and/or the thickness variance, e.g., variance ΔA shown in
As described in connection with
In some embodiments, the injector 235 includes only an aperture, e.g., 236, at its end. Embodiments are not so limited. For instance, in some embodiments, the injector 235 can include multiple apertures located at or near its tip and/or along its length. In some embodiments, the injector 235 can have a curved shape. In such embodiments, the curved end of the injector 235 can be used to introduce heated purge gas into an upper portion of the chamber 202.
Various system embodiments can include a number of gas sources, e.g., reactant gas sources, catalyst gas sources, purge gas sources, and carrier gas sources. In the embodiment illustrated in
In the system 200, a first reactant (REACTANT1), a second reactant (REACTANT2), and a catalyst are delivered to the assembly 229 from respective sources 210-1, 210-2, and 212 through respective gas lines 220-1, 220-2, and 220-3 and are introduced into the chamber 202 via respective injectors 230-1, 230-2, and 230-3. The gas flow from sources 210-1, 210-2, and 212 is controlled by respective flow controllers 213-1, 213-2, and 214. As discussed in connection with
In the embodiment illustrated in
In the embodiment illustrated in
In some embodiments, the source 215-1 and/or 215-2 can be both a source of purge gas and a source of carrier gas. That is, carrier gas lines (not shown) from source 215-1 and/or source 215-2 can be coupled to source 210-1, 210-2, and/or 212. However, in some embodiments, the system 200 can include a separate carrier source, e.g., a source separate from sources 215-1 and 215-2, which can be used as the carrier source.
In the embodiment illustrated in
The gas line 216-1 has a number of associated gas lines 222-1, 222-2, and 222-3 which are connected to, e.g., are in fluid communication with, respective gas lines 220-1, 220-2, and 220-3 for delivering cold purge gas PURGE1 from source 215-1 to injectors 230-1, 230-2, and 230-3, respectively. The flow of PURGE1 through gas lines 222-1, 222-2, and 222-3 can be controlled with respective flow controllers 221-1, 221-2, and 221-3.
The gas line 216-2 has a number of associated gas lines 219-1, 219-2, and 219-3 which are connected to, e.g., are in fluid communication with, respective gas lines 220-1, 220-2, and 220-3 for delivering hot purge gas PURGE2 from source 215-2 to injectors 230-1, 230-2, and 230-3, respectively. The flow of PURGE2 through gas lines 219-1, 219-2, and 219-3 can be controlled with respective flow controllers 223-1, 223-2, and 223-3.
The gas line 216-2 also has an associated gas line 225 which can be used to deliver PURGE2 from source 215-2 to the injector assembly 229 for introduction of the purge gas into chamber 202 via injector 235. As described further below, in some embodiments purge gas PURGE2, heated to a temperature greater than the process temperature (Tp), can be introduced into the chamber 202 through each of the injectors 230-1, 230-2, 230-3, and 235 during one or more purge processes associated with deposition of a material layer on the batch of wafers 207.
In some embodiments, an amount of hot purge gas PURGE2 can be introduced into the chamber 202 during one or more reactant pulses. For instance, in such embodiments, an amount of PURGE2 can be flowed into the chamber 202 along with a pulse of REACTANT1 and/or along with a pulse of REACTANT2.
In some embodiments, hot purge gas can be used to perform a chamber cleaning process, e.g., a bake out, in between deposition processes. As one of ordinary skill in the art will appreciate, a bake out process can be performed to remove unwanted reactant, catalyst, and/or by-products which may have formed a layer of film on the chamber side walls and upper surface during the deposition process. In such embodiments, hot purge gas can be flowed into the chamber via one or more of the injectors 230-1, 230-2, 230-3, and 235 while the boat 209 is being reloaded with a subsequent batch of wafers 207. In various embodiments, the hot purge gas used for the cleaning process can be hotter than the hot purge gas used for the purge processes. In some embodiments, the hot purge gas has a temperature of about 150° C.-250° C., e.g., the purge gas line 216-2 is heated to a temperature of about 150° C.-250° C. via heating element 218-2.
Using a hot purge gas, e.g., PURGE2, to perform a bake out process can provide several benefits. For instance, performing the bake out with the hot purge gas can reduce or prevent the use of chamber heaters, e.g., 206-1, 206-2, 206-3, and 206-4, to perform the bake out process. Using the chamber heaters 206-1, 206-2, 206-3, and 206-4 to heat the chamber 202 for a bake out process can decrease processing throughput by increasing the time associated with performing the bake out process. For example, it can be difficult to quickly reduce the temperature of the heaters from the elevated bake out temperature to the appropriate process temperature for a subsequent deposition process. Also, it can be difficult to controllably cool the heaters 206-1, 206-2, 206-3, and 206-4 from the elevated temperature to the process temperature since the heaters may cool at different rates. In embodiments in which hot purge gas is used to perform the bake out, the bake out process can be performed with the chamber heaters held at or near the process temperature of the chamber, which can reduce the time associated with cooling the chamber heaters.
In embodiments in which hot purge gas is used to perform the bake out, the processing system, e.g., system 200, may include a separate gas source and/or separate gas lines heated to the elevated bake out temperature to deliver the heated bake out gas to the chamber. For instance, the system 200 can include an additional purge gas line heated to a temperature greater than the process temperature, e.g., a gas line in addition to 216-1 and 216-2 shown in
As discussed above in connection with
In some embodiments, a first portion of the amount of hot purge gas PURGE2 introduced into the chamber 202 during a purge process is delivered through one or more vertical injectors, e.g., 230-1, 230-2, and/or 230-3, configured to direct the first portion through a number of apertures toward a center 205 of the wafers 207. In some embodiments, a second portion of the amount of hot purge gas PURGE2 introduced into the chamber 202 during a purge process is delivered through a vertical injector, e.g., 235, configured to direct the second portion through an aperture at an end of the second vertical injector, e.g., aperture 236, toward an upper surface of the chamber 202. As described below in connection with
In one or more embodiments in which an amount of hot purge gas, e.g., PURGE2, is introduced into the reaction chamber 202, the temperature of the hot purge gas decreases as the purge gas progresses from an edge of the wafer 207 toward the center 205 of the wafer 207. For instance, as shown in the example of
As described above in connection with
Compensating for WIW uniformity variance, e.g., WIW non-uniformity, associated with the presence of a CVD component in an ALD process can provide improved throughput as compared to prior ALD methods. For example, embodiments of the present disclosure can allow a particular ALD process, e.g., deposition of a particular material layer having a desired thickness and suitable WIW uniformity, to be performed in a shortened amount of time. The deposition time associated with a particular ALD process can be shortened by adjusting various processing parameters which lead to an increase in the presence of a CVD component associated with the ALD process, e.g., an increase in the amount residual reactants between reactant pulses. Examples of processing parameter adjustments which can decrease the deposition time include reducing the amount of pumping and/or purging time between reactant pulses, reducing the number of pumping and/or purging cycles between reactant pulses, increasing the temperature of a reactant source, performing the process at a lower process temperature, and/or flowing an amount of reactant into the chamber during a purge process, among other processing parameter adjustments.
As one of ordinary skill in the art will appreciate, and as described above, an added CVD component associated with an ALD process can increase the deposition rate, e.g., increased throughput, of the ALD process but can cause an increased WIW uniformity measurement, e.g., a more pronounced “bowl” shape profile such as that shown in
In various embodiments, the first purge gas PURGE1 and the second purge gas PURGE2 can be the same gas, e.g., nitrogen gas, argon gas, etc. That is, the same type of purge gas can be delivered from first purge gas source 215-1 and second purge gas source 215-2. In such embodiments, providing a separate gas source and/or separate gas line for hot purge gas, e.g., PURGE2, and for cold purge, e.g., PURGE1, can provide several benefits.
For example, as described further below in connection with
The increased thickness variance, e.g., higher WIW uniformity variance, associated with wafers at the top of a boat can be caused by a higher concentration of excess reactant and/or catalyst on the upper surface of the reaction chamber than on lower portions of the chamber, e.g., chamber side-walls. The higher concentration of excess reactant and/or catalyst on the upper surface of the reaction chamber can be due to factors such as the distance between the upper surface and the evacuation port 242 and the relatively large surface area of the upper surface, among other factors. The higher concentration of residual gases toward the top of the chamber adds a CVD component to the system which can lead to increased WIW uniformity of wafers near the top of the batch as shown in graph 301.
In the embodiment shown in graph 303, curve 308 illustrates the temperature of a purge gas introduced into an upper portion of a reaction chamber, e.g., chamber 202 shown in
As described in
As one example, the chamber 402 can be used to form a material layer, e.g., material layer 104-2 shown in
In various embodiments, one or more heaters, e.g., 206-1 to 206-4 shown in
In some embodiments, the HCD and H2O reactants and the pyridine catalyst can be introduced into the chamber 409 at a temperature at or below the process temperature. That is, one or more gas lines used to deliver the reactants and the catalyst can be heated such that the temperature of the gases passing therethrough have a temperature at or below the process temperature, e.g., 75° C. in this example, when introduced into the chamber 409 via the respective injectors 430-1, 430-2, and 430-3. In some embodiments, and as described further below, an amount of purge gas, e.g., nitrogen gas in this example, heated to temperature greater than the process temperature, can be introduced into the chamber along with one or both of the reactant pulses. In such embodiments, the hot purge gas introduced along with the reactant pulse can be used to establish a temperature differential across the surfaces of the wafers.
In various embodiments, a purge process is performed after each reactant pulse. As discussed above, the purge process includes performing one or more pumping and/or one or more purging steps in order to remove excess reactant and/or by-products from the reaction chamber between the sequentially introduced, e.g., separately introduced, reactant pulses. The purging steps involve introducing an amount of purge gas into the chamber and the pumping steps involve evacuating the excess reactant gases, purging gases, and by-product gases from the chamber. The reader will appreciate that an ALD process can be repeated until a desired material layer thickness is deposited on a wafer, e.g., until a desired thickness of silicon oxide is formed on the batch of wafers.
As described above, at least one of the first and second purge process includes creating a temperature differential across the deposition surface of a number of the wafers by directing an amount of purge gas across the deposition surface of the number of wafers. In one or more embodiments, the purge gas is heated to a temperature greater than the process temperature. For instance, in the example shown in
The temperature differential established by the hot purge gas creates a deposition rate gradient which can compensate for an edge-thick profile of a material layer, e.g., 104-1 shown in
Although in the example described in connection with
In the embodiment illustrated in
The gas line 516 has a number of associated gas lines 519-1, 519-2, and 519-3 which are connected to, e.g., are in fluid communication with, respective gas lines 520-1, 520-2, and 520-3 for delivering purge gas PURGE/CARRIER from source 515 to one or more injectors, e.g., injectors 230-1 to 230-3 shown in
As illustrated in
In the embodiment illustrated in
In some embodiments, the system 500 can include a separate source for carrier gas and purge gas. For instance, source 515 can be a source of purge gas and the system 500 can include a separate source of carrier gas.
In the embodiment illustrated in
The gas lines 616-1 and 616-2 are coupled to respective heating elements 618-1 and 618-2 which can be used to heat the PURGE/CARRIER gas delivered from source 615 to the assembly 629. In the embodiment illustrated in
The gas line 616-1 has a number of associated gas lines 622-1, 622-2, and 622-3 which are connected to, e.g., are in fluid communication with, respective gas lines 620-1, 620-2, and 620-3 for delivering cold purge gas PURGE/CARRIER from source 615 to one or more injectors, e.g., injectors 230-1 to 230-3 shown in
As noted above, it can be desirable to adjust the temperature of a purge/carrier gas, e.g., PURGE/CARRIER, used during deposition processing. For instance, in various embodiments of the present disclosure, one or more purge processes are performed with a hot purge/carrier gas, e.g., PURGE/CARRIER heated to a temperature above Tp, and one or more reactant pulses are conducted with a cooler purge/carrier gas, e.g., PURGE/CARRIER gas heated to a temperature at or below Tp. In such embodiments, it can be difficult to adjust the temperature of a gas line, e.g., 616-1 and/or 616-2, to different levels in the time between reactant pulses and purge pulses, which can be on the order of seconds. Therefore, providing one or more separate gas lines, e.g., 616-2 for hot purge gas and 616-1 for cold purge gas, can allow the system 600 to rapidly switch between using the hot or cold purge gas without increasing processing time due to adjusting the gas line temperature.
In various embodiments, the method includes maintaining the chamber at a steady process temperature while exposing the deposition surface of the wafers to the sequentially introduced first and the second reactants. In some embodiments the process is a catalytic ALD process used to form a material layer of silicon oxide on a batch of wafers.
As shown at block 720, the method includes removing residual first reactant from the chamber after introduction of the first reactant. As shown at block 730, the method includes removing residual second reactant from the chamber after introduction of the second reactant.
As shown at block 740, the method includes establishing a temperature differential substantially between an edge of the substrate and a center of the substrate via a purge process. In one or more embodiments, establishing the temperature differential includes, during the purge process, introducing an amount of purge gas having a temperature different than the process temperature into the chamber.
In various embodiments, the amount of purge gas has a temperature less than the process temperature, and establishing the temperature differential includes delivering the amount of purge gas across a deposition surface of the substrate. In various embodiments, the amount of purge gas has a temperature greater than the process temperature, and establishing the temperature differential includes delivering a first portion of the amount of purge gas across a deposition surface of the substrate.
In embodiments in which an amount of purge gas hotter than the process temperature is delivered across the deposition surface of the substrate, a first portion of the amount of purge gas can be delivered from a gas source through a number of elongate injectors of an injector assembly such that a temperature of the deposition surface of the wafers decreases as the first portion of the amount of purge gas moves from the edge of the substrate toward the center. In embodiments in which an amount of purge gas hotter than the process temperature is delivered across the deposition surface of the substrate, the method can include delivering a second portion of the amount of purge gas having a temperature greater than the process temperature from an injector assembly toward an upper surface of the chamber.
In some embodiments, the method includes heating the amount of purge gas to different temperatures for the first and second purge processes. In some embodiments, the method includes delivering an amount of purge gas heated to a temperature greater than the process temperature into the chamber during introduction of at least one of the first reactant and the second reactant into the chamber, e.g., during a reactant pulse.
One or more of the method embodiments create a temperature differential across a deposition surface of the wafers by introducing a first portion of the amount of purge gas into the chamber through a first vertical injector configured to direct the first portion through a number of apertures along a length of the first vertical injector toward a center of the number of wafers.
In some embodiments, at least one of the first and second purge processes includes introducing a second portion of an amount of hot purge gas into the chamber through a second vertical injector configured to direct the second portion through an aperture at an end of the second vertical injector toward an upper surface of the chamber. As described in connection with
In some embodiments, the method includes using a particular gas source as a purge gas source and as a carrier gas source. In such embodiments, the method can include providing one or more separate gas lines for delivering purge gas heated to a temperature greater than the process temperature to the chamber and for delivering a purge gas heated to a temperature not greater than the process temperature to the reactant sources.
Embodiments of the present disclosure include semiconductor processing methods and systems. Various embodiments can improve the throughput of an atomic layer deposition (ALD) process by controlling and/or compensating for one or more chemical vapor deposition (CVD) components associated with the ALD process.
One method includes forming a material layer on a semiconductor substrate by exposing a deposition surface of the substrate to at least a first and a second reactant sequentially introduced into a reaction chamber having an associated process temperature. The method includes removing residual first reactant from the chamber after introduction of the first reactant, removing residual second reactant from the chamber after introduction of the second reactant, and establishing a temperature differential substantially between an edge of the substrate and a center of the substrate via a purge process.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of various embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a Divisional of U.S. application Ser. No. 11/891,575, filed Aug. 10, 2007, the specification of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5755886 | Wang et al. | May 1998 | A |
5871811 | Wang et al. | Feb 1999 | A |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6429152 | Yang et al. | Aug 2002 | B1 |
6435865 | Tseng et al. | Aug 2002 | B1 |
6585823 | Van Wijck | Jul 2003 | B1 |
6803546 | Boas et al. | Oct 2004 | B1 |
6828218 | Kim et al. | Dec 2004 | B2 |
6902763 | Elers et al. | Jun 2005 | B1 |
6929699 | Whitesell | Aug 2005 | B2 |
7007933 | Lee et al. | Mar 2006 | B2 |
7056806 | Basceri et al. | Jun 2006 | B2 |
7060514 | Mercaldi et al. | Jun 2006 | B2 |
7105441 | Derderian et al. | Sep 2006 | B2 |
7112544 | Doan et al. | Sep 2006 | B2 |
7115528 | Vaartstra et al. | Oct 2006 | B2 |
7118783 | Carpenter et al. | Oct 2006 | B2 |
7128787 | Castovillo et al. | Oct 2006 | B2 |
7169713 | Wu et al. | Jan 2007 | B2 |
7183208 | Doan et al. | Feb 2007 | B2 |
7199023 | Ahn et al. | Apr 2007 | B2 |
7294202 | Chen et al. | Nov 2007 | B2 |
7582544 | Gunji et al. | Sep 2009 | B2 |
7928019 | Surthi | Apr 2011 | B2 |
20040058560 | Ranish et al. | Mar 2004 | A1 |
20050098107 | Du Bois et al. | May 2005 | A1 |
20060029792 | Chen et al. | Feb 2006 | A1 |
20060090694 | Cho et al. | May 2006 | A1 |
20060292841 | Quick | Dec 2006 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070084406 | Yudovsky et al. | Apr 2007 | A1 |
20070134919 | Gunji et al. | Jun 2007 | A1 |
20070193637 | Cantin et al. | Aug 2007 | A1 |
20090042404 | Surthi | Feb 2009 | A1 |
20090176379 | Surthi | Jul 2009 | A1 |
20090283038 | Gunji et al. | Nov 2009 | A1 |
20110185970 | Surthi | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
07-249584 | Sep 1995 | JP |
2003-0090463 | Nov 2003 | KR |
Entry |
---|
Baek, Yang Gyu, International Search report from related PCT application mailed Mar. 12, 2009 (3 pgs.). |
Number | Date | Country | |
---|---|---|---|
20110185970 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11891575 | Aug 2007 | US |
Child | 13086133 | US |