This disclosure relates to a semiconductor structure and a method for manufacturing the same. More particularly, this disclosure relates to a semiconductor structure comprising memory cells and a method for manufacturing the same.
For reasons of decreasing volume and weight, increasing power density, improving portability and the like, three-dimensional (3-D) semiconductor structures have been developed. In addition, elements arid spaces in a semiconductor device have continuously been shrunk. This may cause some problems. For example, in a manufacturing process for a 3-D memory device, stacks having a high aspect ratio may be formed for the construction of memory cells and/or other components. Such a stack may bend or collapse due to its high aspect ratio. As such, various improvements for the semiconductor structures and the methods for manufacturing them are still desired.
This disclosure is directed to semiconductor structures and methods for manufacturing the same, and particularly to a semiconductor structure comprising memory cells and a method for manufacturing the same.
According to some embodiments, a semiconductor structure comprises a substrate and a plurality of sub-array structures disposed on the substrate. The sub-array structures separated from each other by a plurality of trenches. The semiconductor structure comprises a three-dimensional array of memory cells. The memory cells comprise a plurality of cell groups disposed in the sub-array structures, respectively. The semiconductor structure further comprises a plurality of support pillars and a plurality of conductive pillars disposed in the trenches. The support pillars and the conductive pillars in each of the trenches are alternately arranged in an extending direction of the trenches. The semiconductor structure further comprises a plurality of conductive lines disposed in the trenches and on the support pillars and the conductive pillars. Each of the conductive lines connects the conductive pillars thereunder.
According to some embodiments, a method for manufacturing a semiconductor structure comprises the following steps. First, an initial structure is provided. The initial structure comprises a substrate and a preliminary array structure formed on the substrate. The preliminary array structure comprises a stack and a plurality of active structures penetrating through the stack. Each of the active structures comprises a channel layer and a memory layer formed between the channel layer and the stack. A plurality of support pillars are formed in predetermined trench positions for a plurality of trenches configured for separating the preliminary array structure into a plurality of sub-array structures. The support pillars are separated from each other in each of the predetermined trench positions. Then, a plurality of conductive pillars are formed in the predetermined trench positions such that the conductive pillars and the support pillars in each of the predetermined trench positions are alternately arranged in an extending direction of the predetermined trench positions. A plurality of conductive lines are formed on the support pillars and the conductive pillars.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
Various embodiments will be described more fully hereinafter with reference to accompanying drawings. The accompanying drawings are provided for illustrative and explaining purposes rather than a limiting purpose. For clarity, the elements may not be drawn to scale. In addition, some components and/or reference numerals may be omitted from some drawings. It is contemplated that the elements and features of one embodiment can be beneficially incorporated in another embodiment without further recitation.
A semiconductor structure according to embodiments comprises a substrate and a plurality of sub-array structures disposed on the substrate. The sub-array structures separated from each other by a plurality of trenches. The semiconductor structure comprises a three-dimensional array of memory cells. The memory cells comprise a plurality of cell groups disposed in the sub-array structures, respectively. The semiconductor structure further comprises a plurality of support pillars and a plurality of conductive pillars disposed in the trenches. The support pillars and the conductive pillars in each of the trenches are alternately arranged in an extending direction of the trenches. The semiconductor structure further comprises a plurality of conductive lines disposed in the trenches and on the support pillars and the conductive pillars. Each of the conductive lines connects the conductive pillars thereunder.
Referring to
The semiconductor structure comprises a substrate 102. The substrate 102 may comprise structures, components, and the like formed therein and/or thereon. For example, the substrate 102 may comprise a buried layer 104 disposed thereon
The semiconductor structure comprises a plurality of sub-array structures 140 disposed on the substrate 102. The sub-array structures 140 are separated from each other by a plurality of trenches 150. According to some embodiments, each sub-array structure 140 may comprises a stack 108 and one or more active structures 120 penetrating through the stack 108. While
The semiconductor structure comprises a plurality of support pillars 152 and a plurality of conductive pillars 153 disposed in the trenches 150. The support pillars 152 and the conductive pillars 153 in each trench 150 are alternately arranged in an extending direction of the trenches 150 (the X-direction in the drawings). According to some embodiments, the support pillars 152 may be formed of an insulating material, such as an oxide material. According to some embodiments, each conductive pillar 153 may comprise a conductive center portion 154 and an insulating liner layer 156 surrounding the conductive center portion 154. The semiconductor structure further comprises a plurality of conductive lines 158 disposed in the trenches 150 and on the support pillars 152 and the conductive pillars 153. Each conductive line 158 connects the conductive pillars 153 thereunder. In some embodiments, the conductive lines 158 and the conductive pillars 153 are formed of the same material.
The semiconductor structure comprises a three-dimensional array of memory cells 130. The memory cells 130 comprise a plurality of cell groups (not indicated in the drawings) disposed in the sub-array structures 140, respectively. More specifically, the memory cells 130 in the cell group disposed in the each sub-array structure 140 can be defined by cross points between the conductive layers 110 of the stack 108 and the one or more active structures 120. According to some embodiments, the conductive layers 110 of the stacks 108 of the sub-array structures 140 may be configured for word lines, the conductive pads 128 of the sub-array structures 140 may be configured for bit lines, and the conductive pillars 153 and the conductive lines 158 may be configured for common source lines.
Now the description is directed to a method for manufacturing a semiconductor structure according to embodiments. It comprises the following steps. First, an initial structure is provided. The initial structure comprises a substrate and a preliminary array structure formed on the substrate. The preliminary array structure comprises a stack and a plurality of active structures penetrating through the stack. Each of the active structures comprises a channel layer and a memory layer formed between the channel layer and the stack. A plurality of support pillars are formed in predetermined trench positions for a plurality of trenches configured for separating the preliminary array structure into a plurality of sub-array structures. The support pillars are separated from each other in each of the predetermined trench positions. Then, a plurality of conductive pillars are formed in the predetermined trench positions such that the conductive pillars and the support pillars in each of the predetermined trench positions are alternately arranged in an extending direction of the predetermined trench positions. A plurality of conductive lines are formed on the support pillars and the conductive pillars.
Referring to
As shown in
As shown in
As such, said “initial structure” is formed. The initial structure comprises a substrate 102 and a preliminary array structure formed on the substrate 102, wherein the preliminary array structure comprises a plurality of sub-array structures 140 that will be separated in the following steps. The preliminary array structure comprises a stack 208 and a plurality of active structures 120 penetrating through the stack 108. Each active structure 120 comprises a channel layer 122 and a memory layer 124 formed between the channel layer 122 and the stack 208. In some embodiments, the preliminary array structure further comprises a plurality of conductive pads 128 coupled to the active structures 120, respectively. In some embodiments, the preliminary array structure further comprises an interlayer dielectric layer 232 formed on the stack 208.
As shown in
After forming the support pillars 252, as shown in
Before filling a first conductive material into the second openings 278 for the formation of the conductive pillars 253, a process of replacing the sacrificial layers 210 with conductive layers 110 may be carried out using the second openings 278. As shown in
As shown in
As shown in
Thereafter, other processes typically used for manufacturing a semiconductor structure, such as BEOL processes, may be carried out. For example, in the BEOL processes, word lines are defined using the conductive layers 110, bit lines are defined using the conductive pads 128, common source lines are defined using the conductive pillars 153 and the conductive lines 158, and memory cells 130 are defined by cross points between the word lines and the channel layers 122.
In the method described above, since the support pillars are formed and long trenches are not directly formed in the manufacturing process, a mechanical support can be provided to stacks having a high aspect ratio, and thereby the sloping of the stacks can be prevented. Furthermore, a dislocation of contacts formed in the BEOL processes due to the sloping of the stacks can be prevented. While the forgoing examples are illustrated using a 3-D vertical channel NAND memory structure and a method applying a process using sacrificial layers, the embodiments are not limited thereto. The concepts described here can be applied to other methods for manufacturing semiconductor structures in which stacks having a high aspect ratio are formed and the semiconductor structures manufactured by the methods.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments. It is intended that the specification arid examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.