The present invention generally relates to semiconductor mask manufacture, and particularly to optical validation of semiconductor masks.
Semiconductor photomasks are designed to define circuit patterns for the transitions and interconnect layers. The photomask design also contains white space in between and around the circuit patterns for the transitions and interconnect layers. The greater the available white space on a photomask, the greater the possibility of additional circuit elements being added to the design by a third party.
An embodiment of the invention may include a semiconductor structure. The semiconductor structure may include an electrical circuit necessary for the operation of the semiconductor circuit. The semiconductor structure may include white space, which may have no electrical circuit. The semiconductor structure may include an optical pattern formed in the white space of the electrical circuit for validating the semiconductor circuit design. In an embodiment of the invention, the optical pattern may include one or more deposition layers. In an embodiment of the invention, the optical pattern may include covershapes. In an embodiment of the invention, the optical pattern may be physically isolated from the electrical circuit. The optical pattern may include a Moiré pattern.
The following detailed description, given by way of example and not intended to limit the invention solely thereto, will best be appreciated in conjunction with the accompanying drawings, in which:
Elements of the figures are not necessarily to scale and are not intended to portray specific parameters of the invention. For clarity and ease of illustration, scale of elements may be exaggerated. The detailed description should be consulted for accurate dimensions. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.
The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention is provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces unless the context clearly dictates otherwise.
In the interest of not obscuring the presentation of embodiments of the present invention, in the following detailed description, some processing steps or operations that are known in the art may have been combined together for presentation and for illustration purposes and in some instances may have not been described in detail. In other instances, some processing steps or operations that are known in the art may not be described at all. It should be understood that the following description is rather focused on the distinctive features or elements of various embodiments of the present invention.
Embodiments of the invention generally relate to methods of optically validating the usage of a photomask in semiconductor manufacture. Semiconductor photomasks define the circuit patterns for the transitions and interconnect layers. Photomasks also contain white space in between and around the circuit patterns for the transitions and interconnect layers which allow for the possibility of unwanted additional circuit elements being added by a third party. The present invention uses an algorithm to analyze the available white space on a photomask and designs an optical pattern to be inserted on the photomask to consume the white space. The optical pattern may be viewed under a microscope and/or using a light source. Thus, the present invention prevents the addition of unwanted circuit elements into the design for a semiconductor by providing an optically viewable pattern to occupy the white space in a photomask design.
Embodiments of the present invention will now be described in detail with reference to the accompanying Figures.
Referring to step S110, described in conjunction with
Referring to step S112, described in conjunction with
Optical fingerprint 220 may be a design for trenches to be etched into the deposition layer 212 of semiconductor chip 214. In another embodiment of the invention, the optical fingerprint 220 may also be designed to fit within kerf 218 on photomask 210 between the designs for semiconductor chips 214.
Referring to step S114, described in conjunction with
Referring to step S116, the photomask design containing the semiconductor circuit design and the design for optical fingerprint 220 may be optionally enhanced using optical proximity correction. Optical proximity correction is a photolithography enhancement technique used to compensate for image errors due to diffraction or process effects.
Referring to step S118, a photomask is built according to the photomask design to include optical fingerprint 220, and a wafer is fabricated using the photomask at step S120. The trenches to be etched into the deposition layer 212 of semiconductor chip 214 may contain metal and/or silicon depending on deposition layer 212. For example, semiconductor fabrication consists of several stages including, Front-End-Of-The-Line (FEOL), Middle-Of-The-Line (MOL), and Back-End-Of-The-Line (BEOL) processes. For deposition layers 212 created in FEOL processes, the trenches may be filled with a either silicon, such as, but not limited to Poly Silicon, or Amorphous Silicon, or a metal, such as, but not limited to, copper, aluminum, or tungsten. For deposition layers 212 created in MOL or BEOL processes, the trenches may be filled with a metal, such as, but not limited to, copper, aluminum, or tungsten. In an embodiment of the invention, steps S110-S120 may be repeated until all deposition layers 212 of semiconductor chip 214 are completed.
Referring to step S122, the wafer is optically analyzed to confirm the correct photomask design was used. For example, the trenches of the different deposition layers 212 of optical fingerprint 220 design may have a unique overlap pattern. For example, overlap areas 222x may form Moiré patterns. The wafer may be analyzed using a light source, such as, but not limited to, an ultraviolet (UV) light source to illuminate semiconductor chip 214. In an embodiment of the invention, the wafer may be analyzed using a microscope. The wafer may be optically analyzed after each deposition layer 212 has been deposited. In an embodiment of the invention, the wafer may be analyzed after two or more deposition layers 212 of semiconductor chip 214 have been deposited.
Referring to step S124, the optical patterns of the wafer are compared to the known optical patterns of optical fingerprint 220. When the optical patterns of the wafer match the known optical patterns of optical fingerprint 220, the wafer is validated at step S126. When the optical patterns of the wafer do not match the known optical patterns of optical fingerprint 220, the wafer is discarded at step S128. In an embodiment of the invention, the wafer may be compared to known covershape designs.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiment, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated but fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6047068 | Rhelimi | Apr 2000 | A |
7241538 | Zhang | Jul 2007 | B2 |
7265904 | Schilling | Sep 2007 | B2 |
7554337 | Tuyls | Jun 2009 | B2 |
7780893 | Sreenivasan | Aug 2010 | B2 |
7840803 | Devadas | Nov 2010 | B2 |
7851110 | Progler | Dec 2010 | B2 |
7880880 | Van Bilsen | Feb 2011 | B2 |
8351087 | Amidror | Jan 2013 | B2 |
8610454 | Plusquellic | Dec 2013 | B2 |
20050095509 | Zhang | May 2005 | A1 |
20060078807 | Chen | Apr 2006 | A1 |
20060238270 | Rostami | Oct 2006 | A1 |
20070016321 | Rathei | Jan 2007 | A1 |
20070037394 | Su | Feb 2007 | A1 |
20070074145 | Tanaka | Mar 2007 | A1 |
20070148794 | Cha | Jun 2007 | A1 |
20070245290 | Bueti | Oct 2007 | A1 |
20080120586 | Hoerold | May 2008 | A1 |
20080201677 | Baker | Aug 2008 | A1 |
20090304181 | Fischer | Dec 2009 | A1 |
20130214337 | Kashihara | Aug 2013 | A1 |
20160012174 | Shin | Jan 2016 | A1 |
20160064447 | Kimura | Mar 2016 | A1 |
20160233177 | Choi | Aug 2016 | A1 |
20170081756 | Benvenuti | Mar 2017 | A1 |
20170212165 | Bickford | Jul 2017 | A1 |
20180196463 | Dusatko | Jul 2018 | A1 |
20190163071 | Corliss et al. | May 2019 | A1 |
20190163857 | Corliss et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
1932651 | Mar 2007 | CN |
104317159 | Jan 2015 | CN |
2007193795 | Aug 2007 | JP |
2008058166 | Mar 2008 | JP |
Entry |
---|
IBM: List of IBM Patents or Patent Applications Treated as Related (Appendix P), Jul. 24, 2019, pp. 1-2. |
Buehler et al., Abstract for “The Use of Electrical Test Structure Arrays for Integrated Circuit Process Evaluation”, Journal of the Electrochemical Society, vol. 127, No. 10, pp. 2284-2290, Apr. 1980. |
Markman et al., “Security authentication with a three-dimensional optical phase code using random forest classifier”, Research Article, Journal of the Optical Society of America A, Optics, Image Science and Vision, vol. 33, No. 6, Jun. 2016, pp. 1160-1165. |
Muldavin “Long-Term Strategy for DoD Trusted and Assured Microelectronics Needs” 19th Annual NDIA Systems Engineering Conference, Springfield, VA, Oct. 26, 2016, pp. 1-28. |
Roy et al., “Ending Piracy of Integrated Circuits”, Computer, published by the IEEE Computer Society, Oct. 2010, pp. 30-38. |
Volodin et al., “A polymeric optical pattern-recognition system for security verification”, Letters to Nature, vol. 383, Sep. 5, 1996, pp. 58-60. |
International Search Report and Written Opinion, International Application No. PCT/1B2018/059222, 9 pages, dated Mar. 20, 2019. |
International Search Report and Written Opinion, International Application No. PCT/1B2018/059223, 9 pages, dated Mar. 11, 2019. |
Number | Date | Country | |
---|---|---|---|
20190346773 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15827561 | Nov 2017 | US |
Child | 16522753 | US |