Embodiments of the present invention generally relate to the field of semiconductor process chambers, and more particularly, to shutter disks for use in semiconductor process chambers.
Conventional semiconductor device formation is commonly performed in one or more process chambers, typically combined to form a multi-chamber processing system (e.g., a cluster tool) which has the capability to process multiple substrates (e.g., semiconductor wafers) in a controlled processing environment. To maintain process uniformity and ensure optimal performance of the process chamber, various conditioning operations are periodically performed. For example, in a physical vapor deposition (PVD) processing chamber, one commonly used conditioning operation is a “burn-in” process, wherein a target disposed in the PVD processing chamber is bombarded with plasma ions to remove oxides or other contaminants from the target prior to performing substrate processes. Another commonly used conditioning operation is a “pasting” process, wherein a covering is applied over material deposited on process chamber surfaces to prevent the material from flaking off the process chamber surfaces and contaminating the substrate during subsequent processes.
In both of the aforementioned conditioning operations, a shutter disk may be positioned via a transfer robot atop a substrate support disposed in the process chamber to prevent the deposition of any materials upon the substrate support. Thus, the shape of the shutter disk is important for both the positional accuracy of robotic handling and placement, along with substrate support coverage, as errors in either may lead to undesirable exposure of the upper surface of the substrate support during the conditioning operations.
Moreover, conventional shutter disks are typically made of a material having a mechanical stiffness sufficient enough to resist deformation due to the additional weight of the deposited material. For example, the shutter disk commonly comprises a metal alloy, such as stainless steel (SST), or a ceramic, such as silicon carbide (SiC). However, shutter disks constructed of such materials weigh a substantial amount, leading to increased costs due to providing and maintaining a transfer robot capable of securely maneuvering the shutter disk. In addition, the coefficient of thermal expansion (CTE) is limited in range, resulting in a potentially significant difference between the coefficients of thermal expansion of the shutter disk and deposited materials, leading to diminished adhesion between the deposited material and the surface of the shutter disk, thus increasing the risk of the deposited material peeling or flaking off and contaminating the underlying substrate support. To alleviate this problem, the surface of the shutter disk may be textured via an abrasive blasting process to increase adhesion. However, due to the hardness of materials such as SST or SiC, such processes are difficult and costly.
Thus, there is a need for an improved shutter disk.
A shutter disk suitable for shield a substrate support in a physical vapor deposition chamber is provided. In one embodiment, the shutter disk includes a disk-shaped body having an outer diameter disposed between a top surface and a bottom surface. The disk-shape body includes a double step connecting the bottom surface to the outer diameter.
In another embodiment, the shutter disk includes a disk-shaped body. The body has an outer diameter disposed between a top surface and a bottom surface. An outer step and an inner step are formed on the bottom surface, the outer step extending further into the body than the inner step. An outer wall substantially parallel to a centerline of the body connects the outer step to the inner step. An annular groove is formed in the bottom surface disposed radially inward of the inner step.
In another embodiment, a shutter disk having a tuned coefficient of thermal expansion is provided. In some embodiments, a shutter disk having a tuned coefficient of thermal expansion may include a body formed from a first material comprising at least two components, wherein a ratio of each of the at least two components to one another is selected to provide a coefficient of thermal expansion of the body that is substantially similar to a coefficient of thermal expansion of a second material to be deposited atop the body.
In some embodiments, a process chamber may include a chamber body defining an inner volume having a target comprising materials to be deposited atop a substrate disposed therein; a substrate support disposed within the chamber body for supporting the substrate; a shutter disk for protecting the substrate support, the shutter disk comprising a body formed from a composite material having at least two components, wherein a ratio of each of the at least two components to one another is selected to provide a coefficient of thermal expansion of the body that is substantially similar to a coefficient of thermal expansion of materials to be deposited on the shutter disk; and a transfer robot movably coupled to the chamber body for transferring the shutter disk to the substrate support.
In some embodiments, a shutter disk having a tuned coefficient of thermal expansion may include a body having a top surface, bottom surface and a peripheral surface coupling the top surface to the bottom surface, wherein the body comprises aluminum and silicon provided in a ratio of aluminum to silicon of about 1:4 to about 7:3 and wherein the body has a coefficient of thermal expansion that is substantially similar to a coefficient of thermal expansion of a material to be deposited atop the body.
Embodiments of the present invention, briefly summarized above and discussed in greater detail below, can be understood by reference to the illustrative embodiments of the invention depicted in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the present invention generally relate to semiconductor manufacturing processing chambers, and more particularly, to shutter disks. The inventive apparatus includes a shutter disk for use in conditioning operations of process chambers. The inventive apparatus may advantageously provide a light weight, cost effective shutter disk that is resistant to deformation and provides a tuned coefficient of thermal expansion and improved adhesive properties.
The shutter disk 100 generally comprises a body 102 an outer surface 128. The outer surface 128 includes at least a top surface 104 and bottom surface 106 and an outer diameter 108. Although discussed in terms of an outer diameter and referred to as a disk, the shutter disk 100 is not limited to round shapes and may have any shape suitable for use in a process chamber as disclosed herein. The bottom surface 106 may comprise at least one feature 107 to interface with the components of a transfer robot (not shown) to facilitate stable and precise movement. In one embodiment, the feature 107 formed on the bottom surface 106 of the body 102 is an annular groove 120 and/or a blind hole 140 (shown in phantom). The annular groove 120 and the blind hole 140 are aligned with a centerline 109 of the body 102 to provide a known reference location for interfacing with the robot (not shown).
The top surface 104 is generally planar and has an orientation substantially perpendicular to the centerline 109 of the body 102. The bottom surface 106 is also generally planar and has an orientation substantially perpendicular to the centerline 109 of the body 102. In some embodiments, the body 102 has an outer diameter 108 of about 6 to about 12 inches, for example about 6, 8, or 11.85 inches, and a thickness between the top surface 104 and bottom surface 106 of about 0.1 to about 0.25 inches, for example, about 0.15 inches.
In some embodiments, a double step 110 may be formed in the outer portion of the bottom surface 106, as shown in
The groove 120 may be formed in the bottom surface 106 of the body 102 radially inward of the inner step 112. In some embodiments, the groove 120 includes an inner groove wall 122, an outer groove wall 124 and a groove bottom 126. The inner groove wall 122 and outer groove wall 124 are substantially parallel to the centerline 109 of the body 102. The groove bottom 126 is substantially perpendicular to the centerline 109 of the body 102. In some embodiments, the groove bottom 126 extends further into the body 102 than the outer step 114 as referenced from the bottom surface 106.
The body 102 may be constructed of any suitable material having a mechanical stiffness sufficient enough to resist deformation due to the additional weight of materials which may be deposited atop the shutter disk 100. In some embodiments, the material may also be lightweight so as to allow the shutter disk 100 to be easily maneuvered by a transfer robot. In some embodiments, the body 102 may be fabricated from aluminum, aluminum alloys, aluminum silicon alloy or other suitable material. In some embodiments, the body 102 may be fabricated from a metal composite, such as aluminum silicon (AlSi). The body 102 may be fabricated via any method suitable for forming the desired shape, for example, machining, extruding, stamping, mold casting, die casting, spray casting, spray deposition, or the like.
In some embodiments, the body 102 may comprise a first material having a coefficient of thermal expansion (CTE) substantially similar to a second material being deposited atop the shutter disk 100 to facilitate adequate adhesion between surface 128 of the shutter disk 100 and the material being deposited, thereby preventing the deposited material from flaking (e.g., falling off) and reducing particle generation. For example, in embodiments such where titanium (Ti) or titanium nitride (TiN) is to be deposited atop the shutter disk 100 (e.g., having a CTE of between about 9-11 ppm/° C.), the body 102 may comprise AlSi, having a CTE of about 9-11 ppm/° C., or about 11 ppm/° C. In some embodiments, a ratio of components of the material used to form the body 102 may be varied to provide a tunable CTE range. For example, in embodiments such as where the body 102 comprises AlSi, the ratio of aluminum to silicon may be from about 1:4 to about 7:3, resulting in a CTE of about 5 to about 17 ppm/° C. For example, in embodiments where the ratio of aluminum to silicon is about 1:3.5 to 1:4.5, and most preferably 1:4, the CTE may be about 5 ppm/° C. In embodiments where the ratio of aluminum to silicon is about 3:6.5 to 3:7.5 and most preferably 3:7, the CTE may be about 7 ppm/° C. In embodiments where the ratio of aluminum to silicon is about 1:0.75 to 1:1.25 and most preferably 1:1, the CTE may be about 11 ppm/° C. In embodiments where the ratio of aluminum to silicon is about 7:2.5 to 7:3.5 and most preferably 7:3, the CTE may be about 17 ppm/° C.
In some embodiments, the surface 128 of the body 102 may be textured to facilitate improve adhesion with a material deposited thereon, thereby preventing the deposited materials from falling off the shutter disk 100. The surface 128 of the body 102 may be textured by any process suitable to adequately texture or roughen the surface 128 of the body 102, for example, an abrasive blasting process, such as grit blasting, sand blasting, bead blasting, or the like. In some embodiments, such as where the body 102 comprises AlSi, the surface 128 of the body 102 may be textured to a roughness average of up to between about 600 to about 800 Ra, by a suitable process, for example, via a grit blasting process.
In some embodiments, at least a portion of the surface 128 of the body 102 may be covered with a coating 142. The coating 142 may be a twin-arc-spray aluminum deposition or other suitable coating. The surfaces receiving the coating 142 may be textured as described above. In one embodiment, the coating 142 is disposed on the top surface 104 and the outer diameter 108 of the body 102.
In some embodiments, a method of forming a shutter disk having a tuned CTE is also provided. For example, in some embodiments, the body 102 may be formed from a first material comprising at least two components, wherein a ratio of each of the at least two components with respect to one another is selected to provide a coefficient of thermal expansion of the body 102 that is substantially similar to a coefficient of thermal expansion of a second material to be deposited atop the body. In some embodiments the components of the first material may be aluminum and silicon. The ratio of aluminum to silicon may be selected to provide a desired coefficient of thermal expansion as discussed above (e.g., the ratio of aluminum to silicon may be from about 1:4 to about 7:3, resulting in a CTE of about 5 to about 17 ppm/° C.). The CTE of the second material may be determined and the ratio of the components of the first material may be selected to provide a CTE that substantially matches the CTE of the second material. For example, in some embodiments, titanium (Ti) or titanium nitride (TiN) is to be deposited atop the shutter disk 100. The CTE of titanium (Ti) or titanium nitride (TiN) is between about 9-11 ppm/° C. As such, the body 102 may comprise aluminum and silicon, having a controlled ratio of aluminum to silicon to provide a CTE of between about 9-11 ppm/° C., or about 11 ppm/° C.
In one embodiment, the shutter disk 300 includes a body 302 having a top surface 304, an outer diameter 332 and a bottom surface 306. In one embodiment, the outside diameter 332 may be curved, such as having a full radius. In one embodiment, the intersection between the outside diameter 332 and the top surface 304 is a sloped surface 320. The sloped surface 320 may define an angle 334 of between about 30 to 60 degrees, such as about 45 degrees. The top surface 304 is generally perpendicular to a centerline 109 of the body 302. The outside diameter 332 may include an outside diameter wall 324 disposed inward of the outside diameter 332 and the bottom surface 306. In one embodiment, the outside diameter wall 324 is oriented substantially parallel to the centerline 109 of the body 302.
The bottom surface 306 includes at least two pads, shown in
The bottom surface 306 of the body 302 may include an optional blind hole 140 for receiving a center locating pin 442 of the robot end effector (as shown in
A double step 308 is formed between the support pads (support surfaces 316, 318) and the bottom surface 306 of the body 302. The double step 308 has two outer steps 310, 312, with the outer step 312 being located outward of and substantially larger than the outer step 310. An inner step 314 is formed between the outer steps 310, 312 and intends further into the body 302 then the outer steps 310, 312.
In one embodiment, at least a portion of the body 102 may be covered with a coating 142. Portions of the body 102 that may receive the coating 142 include the top surface 304, the outer diameter 332 and the sloped surface 320. The coating 142 may be a twin-arc-spray aluminum deposition or other suitable coating as described above. The surfaces receiving the coating 142 may be textured also as described above.
The process chamber 400 includes a chamber body 402 and a lid assembly 404 that defines an evacuable process volume 406. The chamber body 402 generally includes sidewalls 408 and a bottom 410. The sidewalls generally contain a plurality of apertures that include an access port, pumping port and a shutter disk port 412 (access and pumping ports not shown). A sealable access port (not shown) provides for entrance and egress of the substrate (not shown) from the process chamber 400. The pumping port is coupled to a pumping system (not shown) that evacuates and controls the pressure within the process volume 406. The shutter disk port 412 is configured to allow at least a portion of a shutter disk 100/300 therethrough when the shutter disk 100/300 is in the cleared position as shown in
The lid assembly 404 of the chamber body 402 generally supports an annular shield 418 suspended therefrom that supports a shadow ring 420. The shadow ring 420 is generally configured to confine deposition to a portion of the substrate exposed through the center of the shadow ring 420. The lid assembly 404 generally comprises a target 422 and a magnetron 424.
The target 422 provides material that is deposited on the substrate during the deposition process while the magnetron 424 enhances uniform consumption of the target material during processing. The target 422 and substrate support 426 are biased relative each other by a power source 428. An inert gas, for example, argon, is supplied to the process volume 406 from a gas source 430. A plasma is formed between the substrate and the target 422 from the gas. Ions within the plasma are accelerated toward the target 422 and cause material to become dislodged from the target 422. The dislodged target material is attracted towards the substrate and deposits a film of material thereon.
The substrate support 426 is generally disposed on the bottom 410 of the chamber body 402 and supports the substrate during processing. A shutter disk mechanism 432 is generally disposed proximate the substrate support 426. The shutter disk mechanism 432 generally includes a blade 434 that supports the shutter disk 100 and an actuator 436 coupled to the blade 434 by a shaft 438.
The blade 434 may be moved between the cleared position shown in
The blade 434 may optionally include a center locating pin 442 sized to mate with the blind hole 140 formed in the center of the bottom of the shutter disk 100/300. The center locating pin 442 locates the shutter disk 100/300 in a predefined position on the blade 434 to facilitate more accurate substrate transfer.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 15/245,004, filed Aug. 23, 2016, which is a continuation of U.S. patent application Ser. No. 12/563,531, filed Sep. 21, 2009, which claims the benefit of U.S. Provisional Patent Application No. 61/099,090, filed Sep. 22, 2008, all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2694589 | Dayley | Nov 1954 | A |
3381660 | Bassan | May 1968 | A |
3592353 | Bowen | Jul 1971 | A |
5140482 | Kimura et al. | Aug 1992 | A |
5223112 | Tepman | Jun 1993 | A |
6136106 | Commandeur et al. | Oct 2000 | A |
6153022 | Yoshida et al. | Nov 2000 | A |
6162297 | Mintz et al. | Dec 2000 | A |
6190513 | Forster et al. | Feb 2001 | B1 |
6221504 | Pfeffinger et al. | Apr 2001 | B1 |
6669825 | Ohmi et al. | Dec 2003 | B2 |
6736946 | Hixson et al. | May 2004 | B2 |
6827825 | Feltsman et al. | Dec 2004 | B2 |
6847057 | Gardner et al. | Jan 2005 | B1 |
7008517 | Feltsman | Mar 2006 | B2 |
20020046944 | Geva | Apr 2002 | A1 |
20020090464 | Jiang et al. | Jul 2002 | A1 |
20030094366 | Inaba et al. | May 2003 | A1 |
20040182698 | Feltsman | Sep 2004 | A1 |
20050005859 | Koshiishi | Jan 2005 | A1 |
20050048876 | West et al. | Mar 2005 | A1 |
20050051517 | Oehrlein et al. | Mar 2005 | A1 |
20050064247 | Sane et al. | Mar 2005 | A1 |
20050271984 | Brueckner et al. | Dec 2005 | A1 |
20060169900 | Noji et al. | Aug 2006 | A1 |
20070095651 | Ye et al. | May 2007 | A1 |
20070258075 | Kim et al. | Nov 2007 | A1 |
20080135859 | Cho et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
10117900 | May 2008 | CN |
101179005 | May 2008 | CN |
200530287 | Oct 2005 | JP |
2005302875 | Oct 2005 | JP |
10-0240196 | Jan 2000 | KR |
10-2007-0107515 | Nov 2007 | KR |
Entry |
---|
Chinese Search Report for Application No. 2009801380005 filed Sep. 21, 2009, 2 pages. |
Final Office Action for U.S. Appl. No. 12/542,501 dated Sep. 7, 2012. |
Chinese Search Report for Application No. 2009801380005 filed Sep. 21, 2009. |
Prosecution history of U.S. Appl. No. 12/542,501 as of May 24, 2012. |
PCT international search report and written opinion of PCT/US2009/057663 dated Apr. 30, 2010. |
Number | Date | Country | |
---|---|---|---|
20200075392 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
61099090 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15245004 | Aug 2016 | US |
Child | 16673894 | US | |
Parent | 12563531 | Sep 2009 | US |
Child | 15245004 | US |