Embodiments of the present invention generally relate to methods for depositing materials on substrates, and more specifically, to methods for depositing and stabilizing dielectric materials.
In the field of semiconductor processing, flat-panel display processing or other electronic device processing, chemical vapor deposition has played an important role in forming films on substrates. As the geometries of electronic devices continue to shrink and the density of devices continues to increase, the size and aspect ratio of the features are becoming more aggressive, e.g., feature sizes of 0.07 microns and aspect ratios of 10 or greater are being considered. Accordingly, conformal deposition of materials to form these devices is becoming increasingly important.
While conventional chemical vapor deposition has proved successful for device geometries and aspect ratios down to 0.15 microns, the more aggressive device geometries require new, innovative deposition techniques. One technique that is receiving considerable attention is atomic layer deposition (ALD). In the scheme, reactants are sequentially introduced into a processing chamber where each reactant chemisorbs onto the substrate surface and a reaction occurs. A purge step is typically carried out between the delivery of each reactant gas. The purge step may be a continuous purge with the carrier gas or a pulse purge between the delivery of the reactant gases.
ALD processes have been successfully implemented to deposit films, such as dielectric layers, barrier layers and conductive layers. High-k dielectric materials deposited by ALD processes have been used extensively for gate applications and capacitor application. Some of the common high-k materials produced by ALD processes include hafnium oxide, hafnium silicate, zirconium oxide and tantalum oxide, among others.
Dielectric materials, such as high-k dielectric materials, may experience morphological changes when exposed to high temperatures (>500° C.) during subsequent fabrication processes. For example, titanium nitride is often deposited on hafnium oxide or zirconium oxide by a chemical vapor deposition (CVD) technique at about 600° C. However, the amorphous films of hafnium oxide or zirconium oxide may crystallize and lose their low leakage properties. Also, even if full crystallization of the high-k material is not encountered, exposure to high temperatures may form grain growth and/or phase separation resulting in poor device performance due to high current leakage.
Therefore, there is a need for a process to form dielectric materials, especially high-k dielectric materials, which are morphologically stable during exposure to high temperatures during subsequent fabrication processes.
In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process.
In another embodiment, a method for forming a dielectric stack on a substrate is provided which includes a) depositing a dielectric material layer with a thickness in a range from about 5 Å to about 20 Å on a substrate surface, b) exposing the dielectric material layer to a nitridation process, c) optionally exposing the substrate to an anneal process, and d) repeating a process cycle of at least steps a-b to form the dielectric stack with a predetermined thickness.
In another embodiment, a method for forming a dielectric stack on a substrate is provided which includes a) depositing a dielectric material layer on the substrate, b) exposing the dielectric material layer to a nitridation process, c) exposing the substrate to an anneal process, and d) repeating a process cycle of steps a-c to form the dielectric stack with a predetermined thickness.
In another embodiment, a method for forming a dielectric stack on a substrate is provided which includes a) depositing a dielectric material layer on the substrate, b) exposing the dielectric material layer to a nitridation process, and c) repeating a process cycle of steps a-b to form the dielectric stack with a predetermined thickness.
In another embodiment, a method for forming a dielectric nitride material on a substrate is provided which includes depositing a dielectric layer on a substrate surface, exposing the dielectric layer to a nitridation process, and exposing the dielectric layer to an anneal process.
In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The present invention provides methods for preparing dielectric materials used in a variety of applications, especially for high-k dielectric materials used in transistor and/or capacitor fabrication. Some of the methods use atomic layer deposition (ALD) to have elemental control of the composition of the dielectric compounds. In one embodiment, a dielectric material is formed by conducting multiple cycles of a deposition process that include depositing a dielectric layer, exposing the dielectric layer to a nitridation process and optionally exposing the dielectric layer to an anneal process. The deposition process is repeated until the dielectric material has a desired thickness. In another embodiment, a dielectric material is formed by depositing a dielectric film and subsequently exposing the dielectric film to a nitridation process and an anneal process. The dielectric film is usually a metal oxide and substantially silicon-free.
A “substrate surface” as used herein refers to any substrate or material surface formed on a substrate upon which film processing is performed. For example, a substrate surface on which processing may be performed include materials such as dielectric materials, silicon, silicon oxide, strained silicon, silicon on insulator (SOI), carbon doped silicon oxides, silicon nitride, doped silicon, germanium, gallium arsenide, glass, sapphire, and any other materials such as metals, metal nitrides, metal alloys, and other conductive materials, depending on the application. Barrier layers, metals or metal nitrides on a substrate surface include titanium, titanium nitride, tungsten nitride, tantalum and tantalum nitride. Substrates may have various dimensions, such as 200 mm or 300 mm diameter wafers, as well as, rectangular or square panes. Embodiments of the processes described herein deposit silicon-containing compounds on many substrates and surfaces, especially, high-k dielectric materials. Substrates on which embodiments of the invention may be useful include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, strained silicon, SOI, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers silicon nitride and patterned or non-patterned wafers. Surfaces include bare silicon wafers, films, layers and materials with dielectric, conductive and barrier properties and include aluminum oxide and polysilicon. Pretreatment of surfaces includes polishing, etching, reduction, oxidation, hydroxylation, annealing and/or baking.
“Atomic layer deposition” or “cyclical deposition” as used herein refers to the sequential introduction of two or more reactive compounds to deposit a layer of material on a substrate surface. The two, three or more reactive compounds may alternatively be introduced into a reaction zone of a processing chamber. Usually, each reactive compound is separated by a time delay to allow each compound to adhere and/or react on the substrate surface. In one aspect, a first precursor or compound A is pulsed into the reaction zone followed by a first time delay. Next, a second precursor or compound B is pulsed into the reaction zone followed by a second delay. During each time delay a purge gas, such as nitrogen, is introduced into the processing chamber to purge the reaction zone or otherwise remove any residual reactive compound or by-products from the reaction zone. Alternatively, the purge gas may flow continuously throughout the deposition process so that only the purge gas flows during the time delay between pulses of reactive compounds. The reactive compounds are alternatively pulsed until a desired film or film thickness is formed on the substrate surface. In either scenario, the ALD process of pulsing compound A, purge gas, pulsing compound B and purge gas is a cycle. A cycle can start with either compound A or compound B and continue the respective order of the cycle until achieving a film with the desired thickness.
A “pulse” as used herein is intended to refer to a quantity of a particular compound that is intermittently or non-continuously introduced into a reaction zone of a processing chamber. The quantity of a particular compound within each pulse may vary over time, depending on the duration of the pulse. The duration of each pulse is variable depending upon a number of factors such as, for example, the volume capacity of the process chamber employed, the vacuum system coupled thereto, and the volatility/reactivity of the particular compound itself. A “half-reaction” as used herein is intended to refer to a pulse of precursor step followed by a purge step.
Nitrogen Stabilization of Multi-Layered Dielectric Material
In
In one embodiment of process 100, a dielectric layer 202 is deposited on a substrate 200, in step 102, by conventional deposition techniques, such as ALD, chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal techniques and combinations thereof, as depicted in
A substrate may be pretreated before depositing dielectric layer 202 in order to have termination with a variety of functional groups such as hydroxyls (OH), alkoxy (OR, where R=Me, Et, Pr or Bu), haloxyls (OX, where X═F, Cl, Br or I), halides (F, Cl, Br or I), oxygen radicals, aminos (NH or NH2) and amidos (NR or NR2, where R═H, Me, Et, Pr or Bu). A pretreatment is especially useful prior to depositing dielectric layer 202 with an ALD process or a CVD process. A pretreatment may be effected by administering a reagent, such as NH3, B2H6, SiH4, Si2H6, H2O, HF, HCl, O2, O3, H2O, H2O/O2, H2O/H2, H2O2, H2, atomic-H, atomic-N, atomic-O, alcohols or amines. Once the surface of the substrate is pretreated, an ALD cycle is started. For many of the high-k dielectric materials, the precursor adsorption is self-limiting under certain process conditions, and generally is at low temperatures (<300° C.) to exhibit this behavior. In one embodiment, the pretreatment may involve a presoak with a reagent prior to depositing a hafnium compound. The presoak may involve exposing the substrate surface to the reagent for a period of time from about 5 seconds to about 120 seconds, preferably from about 5 seconds to about 30 seconds. In one example, the substrate surface is exposed to water vapor for about 15 seconds prior to starting an ALD process to deposit dielectric layer 202.
Dielectric layer 202 is generally a high-k dielectric material and includes combinations of hafnium, zirconium, titanium, tantalum, lanthanum, aluminum, silicon, oxygen and/or nitrogen. Dielectric layer 202 may have a composition that includes hafnium-containing materials, such as hafnium oxides (HfOx or HfO2), hafnium silicates (HfSixOy or HfSiO4), hafnium silicon oxynitrides (HfSixOyNz), hafnium oxynitrides (HfOxNy), hafnium aluminates (HfAlxOy), hafnium aluminum silicates (HfAlxSiyOz), hafnium aluminum silicon oxynitrides (HfAlwSixOyNz), hafnium lanthanum oxides (HfLaxOy), zirconium-containing materials, such as zirconium oxides (ZrOx or ZrO2), zirconium silicates (ZrSixOy or ZrSiO4), zirconium silicon oxynitrides (ZrSixOyNz), zirconium oxynitrides (ZrOxNy), zirconium aluminates (ZrAlxOy), zirconium aluminum silicates (ZrAlxSiyOz), zirconium aluminum silicon oxynitrides (ZrAlwSixOyNz), zirconium lanthanum oxides (ZrLaxOy), other aluminum-containing materials or lanthanum-containing materials, such as aluminum oxides (Al2O3 or AlOx), aluminum oxynitrides (AlOxNy), aluminum silicates (AlSixOy), aluminum silicon oxynitrides (AlSixOyNz), lanthanum aluminum oxides (LaAlxOy), lanthanum oxides (LaOx or La2O3), derivatives thereof and combinations thereof. Other dielectric materials useful for dielectric layer 202 may include titanium oxides (TiOx or TiO2), titanium oxynitrides (TiOxNy), tantalum oxides (TaOx or Ta2O5) and tantalum oxynitrides (TaOxNy).
In step 104, the dielectric layer 202 is exposed to a nitridation process that physically incorporates nitrogen atoms into the dielectric material to form nitrogen-containing dielectric layer 204, as depicted in
In one embodiment, the substrate is transferred to a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. In one aspect, the DPN chamber is on the same cluster tool as the ALD chamber used to deposit the dielectric layer 202. Therefore, the substrate may be exposed to a nitridation process without being exposed to the ambient environment. During a DPN process, the dielectric layer 202 is bombarded with atomic-N formed by co-flowing N2 and a noble gas plasma, such as argon. Besides N2, other nitrogen-containing gases may be used to form the nitrogen plasma, such as NH3, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), and azides (e.g., MeN3 or Me3SiN3). Other noble gases that may be used in a plasma process include helium, neon and xenon. The nitridation process proceeds at a time period from about 10 seconds to about 120 seconds, preferably from about 15 seconds to about 60 seconds, for example, about 30 seconds. Also, the nitridation process is conducted at a plasma power setting from about 900 watts to about 2,700 watts and a pressure at about 10 mTorr to about 100 mTorr. The nitrogen has a flow from about 0.1 slm to about 1.0 slm, while the noble gas has a flow from about 0.1 slm to about 1.0 slm. In a preferred embodiment, the nitridation process is a DPN process and includes a plasma by co-flowing Ar and N2.
In another embodiment, instead of transferring the substrate to the DPN chamber, a nitridation process may include exposing the dielectric layer 202 to nitrogen plasma in the same deposition chamber that dielectric layer 202 is deposited. For example, a nitridizing remote-plasma is exposed to dielectric layer 202 to form nitrogen-containing dielectric layer 204 directly in process chamber configured with a remote-plasma device, such as an ALD chamber or a CVD chamber. Radical nitrogen compounds may also be produced by heat or hot-wires and used during nitridation processes. Other nitridation processes to form nitrogen-containing dielectric layer 204 are contemplated, such as annealing the substrate in a nitrogen-containing environment, and/or including a nitrogen precursor into an additional half reaction within the ALD cycle while forming the nitrogen-containing dielectric layer 204. For example, an additional half reaction during an ALD cycle to form hafnium silicate may include a pulse of NH3 followed by a pulse of purge gas.
In one embodiment depicted in
In
The anneal process converts stack 260 to the dielectric material or stack 270, which contains dielectric nitride material layers 206, 216, 226, 236, 246 and 256, as depicted in
In another embodiment of process 100, a dielectric layer 302 is deposited on a substrate 300, in step 102, by conventional deposition techniques, such as ALD, chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal techniques and combinations thereof, as depicted in
In step 104, the dielectric layer 302 is exposed to a nitridation process that physically incorporates nitrogen atoms into dielectric film to form nitrogen-containing dielectric layer 304, as depicted in
In one embodiment, the substrate is transferred to a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. In one aspect, the DPN chamber is on the same cluster tool as the ALD chamber used to deposit the dielectric layer 302. Therefore, the substrate may be exposed to a nitridation process without being exposed to the ambient environment. During a DPN process, the dielectric layer 302 is bombarded with atomic-N formed by co-flowing N2 and a noble gas plasma, such as argon. Besides N2, other nitrogen-containing gases may be used to form the nitrogen plasma, such as NH3, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), and azides (e.g., MeN3 or Me3SiN3). Other noble gases that may be used in a plasma process include helium, neon and xenon. The nitridation process proceeds at a time period from about 10 seconds to about 120 seconds, preferably from about 15 seconds to about 60 seconds, for example, about 30 seconds. Also, the nitridation process is conducted at a plasma power setting from about 900 watts to about 2,700 watts and a pressure at about 10 mTorr to about 100 mTorr. The nitrogen has a flow from about 0.1 slm to about 1.0 slm, while the noble gas has a flow from about 0.1 slm to about 1.0 slm. In a preferred embodiment, the nitridation process is a DPN process and includes a plasma by co-flowing Ar and N2.
In another embodiment, instead of transferring the substrate to the DPN chamber, a nitridation process may include exposing the dielectric layer 302 to nitrogen plasma in the same deposition chamber that dielectric layer 302 is deposited. For example, a nitrogen remote-plasma is exposed to dielectric layer 302 to form nitrogen-containing dielectric layer 304 directly in process chamber configured with a remote-plasma device, such as an ALD chamber or a CVD chamber. Radical nitrogen compounds may also be produced by heat or hot-wires and used during nitridation processes. Other nitridation processes to form nitrogen-containing dielectric layer 304 are contemplated, such as annealing the substrate in a nitrogen-containing environment, and/or including a nitrogen precursor into an additional half reaction within the ALD cycle while forming the nitrogen-containing dielectric layer 304. For example, an additional half reaction during an ALD cycle to form hafnium silicate may include a pulse of NH3 followed by a pulse of purge gas.
In one embodiment depicted in
The anneal process converts nitrogen-containing dielectric layer 304 to dielectric nitride material layers 306, as depicted in
In
Although
As described above, dielectric material or stack 270 is formed by annealing the substrate after the desired number of dielectric layers is deposited or after the predetermined film thickness is achieved. Alternatively, dielectric material or stack 370 is formed by annealing the substrate after each nitridation of the dielectric layers. In another embodiment, the optional anneal process of step 106 may be applied during a cycle of steps 102-106 and omitted during another cycle of steps 102-106 during the formation of a dielectric material. Routine experimentation may be conducted to determine the correct intervals of exposing the substrate to the anneal process. Some variables that direct the annealing intervals include the specific nitridation technique used during the nitridation process, thickness and composition of dielectric layers and desired characteristics of the final dielectric material.
Nitrogen Stabilization of Dielectric Material
In
In one embodiment of process 400, a dielectric layer 502 is deposited on a substrate 500, during step 402, by conventional deposition techniques, such as ALD, CVD, PVD, thermal techniques and combinations thereof, as depicted in
A substrate may be pretreated before depositing dielectric layer 502 in order to have termination with a variety of functional groups such as hydroxyls (OH), alkoxy (OR, where R=Me, Et, Pr or Bu), haloxyls (OX, where X═F, Cl, Br or I), halides (F, Cl, Br or I), oxygen radicals, aminos (NH or NH2) and amidos (NR or NR2, where R═H, Me, Et, Pr or Bu). A pretreatment is especially useful prior to depositing dielectric layer 502 with an ALD process or a CVD process. A pretreatment may be effected by administering a reagent, such as NH3, B2H6, SiH4, Si2H6, H2O, HF, HCl, O2, O3, H2O, H2O/O2, H2O/H2, H2O2, H2, atomic-H, atomic-N, atomic-O, alcohols or amines. Once the surface of the substrate is pretreated, an ALD cycle is started. For many of the high-k dielectric materials, the precursor adsorption is self-limiting under certain process conditions, and generally is at low temperatures (<300° C.) to exhibit this behavior. In one embodiment, the pretreatment may involve a presoak with a reagent prior to depositing a hafnium compound. The presoak may involve exposing the substrate surface to the reagent for a period of time from about 5 seconds to about 120 seconds, preferably from about 5 seconds to about 30 seconds. In one example, the substrate surface is exposed to water for about 15 seconds prior to starting an ALD process to deposit dielectric layer 502.
Dielectric layer 502 is deposited on the substrate surface and may have a variety of compositions that are homogenous, heterogeneous, graded and/or multiple layered stacks or laminates. Dielectric layer 502 is generally a high-k dielectric material and includes combinations of hafnium, zirconium, titanium, tantalum, lanthanum, aluminum, oxygen and/or nitrogen. Often a metal oxide or a metal oxynitride is used as dielectric layer 502. Although some silicon diffusion into dielectric layer 502 may occur from the substrate, dielectric layer 502 is usually substantially free of silicon. Dielectric layer 502 may have a composition that includes hafnium-containing materials, such as hafnium oxides (HfOx or HfO2), hafnium oxynitrides (HfOxNy), hafnium aluminates (HfAlxOy), hafnium lanthanum oxides (HfLaxOy), zirconium-containing materials, such as zirconium oxides (ZrOx or ZrO2), zirconium oxynitrides (ZrOxNy), zirconium aluminates (ZrAlxOy), zirconium lanthanum oxides (ZrLaxOy), other aluminum-containing materials or lanthanum-containing materials, such as aluminum oxides (Al2O3 or AlOx), aluminum oxynitrides (AlOxNy), lanthanum aluminum oxides (LaAlxOy), lanthanum oxides (LaOx or La2O3), derivatives thereof and combinations thereof. Other dielectric materials useful for dielectric layer 502 may include titanium oxides (TiOx or TiO2), titanium oxynitrides (TiOxNy), tantalum oxides (TaOx or Ta2O5) and tantalum oxynitrides (TaOxNy). Laminate films that are useful dielectric materials for dielectric layer 502 include HfO2/Al2O3, La2O3Al2O3 and HfO2/La2O3/Al2O3.
In step 404, the dielectric layer 502 is exposed to a nitridation process that physically incorporates nitrogen atoms into the dielectric to form nitrogen-containing dielectric layer 504, as depicted in
In one embodiment, the substrate is transferred to a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. In one aspect, the DPN chamber is on the same cluster tool as the ALD chamber used to deposit the dielectric layer 502. Therefore, the substrate may be exposed to a nitridation process without being exposed to the ambient environment. During a DPN process, the dielectric layer 502 is bombarded with atomic-N formed by co-flowing N2 and a noble gas plasma, such as argon. Besides N2, other nitrogen-containing gases may be used to form the nitrogen plasma, such as NH3, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), and azides (e.g., MeN3 or Me3SiN3). Other noble gases that may be used in a plasma process include helium, neon and xenon. The nitridation process proceeds at a time period from about 10 seconds to about 120 seconds, preferably from about 15 seconds to about 60 seconds, for example, about 30 seconds. Also, the nitridation process is conducted at a plasma power setting from about 900 watts to about 2,700 watts and a pressure at about 10 mTorr to about 100 mTorr. The nitrogen has a flow from about 0.1 slm to about 1.0 slm, while the noble gas has a flow from about 0.1 slm to about 1.0 slm. In a preferred embodiment, the nitridation process is a DPN process and includes a plasma by co-flowing Ar and N2.
In another embodiment, instead of transferring the substrate to the DPN chamber, a nitridation process may include exposing the dielectric layer 502 to nitrogen plasma in the same deposition chamber that dielectric layer 502 is deposited. For example, a nitrogen remote-plasma is exposed to dielectric layer 502 to form nitrogen-containing dielectric layer 504 directly in process chamber configured with a remote-plasma device, such as an ALD chamber or a CVD chamber. Radical nitrogen compounds may also be produced by heat or hot-wires and used during nitridation processes. Other nitridation processes to form nitrogen-containing dielectric layer 504 are contemplated, such as annealing the substrate in a nitrogen-containing environment, and/or including a nitrogen precursor into an additional half reaction within the ALD cycle while forming the nitrogen-containing dielectric layer 504. For example, an additional half reaction during an ALD cycle to form hafnium oxide may include a pulse of NH3 followed by a pulse of purge gas.
In step 406, the substrate is exposed to an anneal process. In one embodiment, the substrate is transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The anneal chamber may be on the same cluster tool as the deposition chamber and/or the nitridation chamber. Therefore, the substrate may be annealed without being exposed to the ambient environment. The substrate is maintained at a temperature from about 600° C. to about 1,200° C. for a time period from about 1 second to about 120 seconds, for example, at about 1,000° C. for about 60 seconds. Generally, the process chamber atmosphere contains at least one anneal gas, such as O2, N2, NH3, N2H4, NO, N2O, or combinations thereof. The chamber is maintained at a pressure from about 5 Torr to about 100 Torr, for example, at about 5 Torr.
The anneal process converts nitrogen-containing dielectric layer 504 to the dielectric material or dielectric nitride layer 506, as depicted in
A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium silicate layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (HfCl4), the silicon precursor (TDMAS), and in-situ water vapor produced by a water vapor generator (WVG) system, available from Fujikin of America, Inc., located in Santa Clara, Calif. The ALD cycle includes sequentially pulsing HfCl4, water vapor, TDMAS and water vapor, with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated ten times to form a hafnium silicate layer with a thickness of about 4 Å.
The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the hafnium silicate layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium silicate to produce hafnium silicon oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated fifteen times to form a hafnium silicon oxynitride layer with a thickness of about 60 Å.
A substrate is placed into an ALD chamber equipped with a remote plasma generator and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium silicate layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (TDEAH), the silicon precursor (Tris-DMAS), and in-situ water vapor produced by a water vapor generator (WVG) system, available from Fujikin of America, Inc., located in Santa Clara, Calif. The ALD cycle includes co-flowing TDEAH and Tris-DMAS in a first half reaction and sequentially pulsing water vapor in a second half reaction, with each half reaction separated by an argon purge. The hafnium silicate layer is formed by repeating the cycle ten times until the film has a thickness of about 4 Å.
The ALD process is stopped and the substrate is kept in the ALD chamber equipped with a remote plasma generator. The substrate surface is exposed to a remote plasma nitridation process for about 10 seconds to incorporate nitrogen atoms within the hafnium silicate layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium silicate to produce hafnium silicon oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated fifteen times to form a hafnium silicon oxynitride layer with a thickness of about 60 Å.
A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated eight times to form a tantalum oxide layer with a thickness of about 5 Å.
The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated twenty times to form a tantalum oxynitride layer with a thickness of about 100 Å.
A substrate is placed into an ALD chamber equipped with a remote plasma generator and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated eight times to form a tantalum oxide layer with a thickness of about 5 Å.
The ALD process is stopped and the substrate is kept in the ALD chamber equipped with a remote plasma generator. The substrate surface is exposed to a remote plasma nitridation process for about 10 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated ten times to form a tantalum oxynitride layer with a thickness of about 50 Å.
A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium silicate layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (HfCl4), the silicon precursor (TDMAS), and in-situ water vapor produced by a water vapor generator (WVG) system, available from Fujikin of America, Inc., located in Santa Clara, Calif. The ALD cycle includes sequentially pulsing HfCl4, water vapor, TDMAS and water vapor, with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated ten times to form a hafnium silicate layer with a thickness of about 4 Å.
The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the hafnium silicate layer. The process cycle containing the ALD process and the nitridation process is repeated fifteen times to form a nitrated hafnium silicate layer with a thickness of about 60 Å.
The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 60 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium silicate to produce hafnium silicon oxynitride.
A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated eight times to form a tantalum oxide layer with a thickness of about 12 Å.
The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The process cycle containing the ALD process and the nitridation process is repeated ten times to form a nitrided tantalum oxide layer with a thickness of about 120 Å.
The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif. and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 60 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride.
A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium oxide layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (HfCl4) and water. The ALD cycle includes sequentially pulsing HfCl4 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated until a hafnium oxide layer was deposited with a thickness of about 75 Å.
The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 30 seconds to incorporate nitrogen atoms within the hafnium oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 45 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium oxide to produce hafnium oxynitride.
A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated until a tantalum oxide layer was deposited with a thickness of about 85 Å.
The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 30 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif. and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 45 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride.
Hafnium oxide was deposited on Substrates A and B under the identical process conditions. Substrate A was placed into a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to a nitridation process. Subsequently, Substrate A was placed into an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. Substrate B was not exposed to a nitridation process or an anneal process. Current leakage was measured on both surfaces to reveal Substrate A had a current density a magnitude lower than Substrate B, although both substrates had similar EOTs (effective oxide thickness). Furthermore, Substrate A, having already been annealed, is thermal more stable than Substrate B, which will crystallize upon exposure to elevated temperatures experienced in subsequent fabrication processes.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4058430 | Suntola et al. | Nov 1977 | A |
4128670 | Gaensslen | Dec 1978 | A |
4237973 | Todd | Dec 1980 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4415275 | Dietrich | Nov 1983 | A |
4486487 | Skarp | Dec 1984 | A |
4693208 | Sakai | Sep 1987 | A |
4761269 | Conger et al. | Aug 1988 | A |
4834831 | Nishizawa et al. | May 1989 | A |
4975252 | Nishizawa et al. | Dec 1990 | A |
4993357 | Scholz | Feb 1991 | A |
5027746 | Frijlink | Jul 1991 | A |
5173327 | Sandhu et al. | Dec 1992 | A |
5178681 | Moore et al. | Jan 1993 | A |
5225366 | Yoder | Jul 1993 | A |
5261959 | Gasworth | Nov 1993 | A |
5281274 | Yoder | Jan 1994 | A |
5290609 | Horiike et al. | Mar 1994 | A |
5294286 | Nishizawa et al. | Mar 1994 | A |
5306666 | Izumi | Apr 1994 | A |
5338362 | Imahashi | Aug 1994 | A |
5374570 | Nasu et al. | Dec 1994 | A |
5441703 | Jurgensen | Aug 1995 | A |
5443647 | Aucoin et al. | Aug 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5483919 | Yokoyama et al. | Jan 1996 | A |
5503875 | Imai et al. | Apr 1996 | A |
5521126 | Okamura et al. | May 1996 | A |
5526244 | Bishop | Jun 1996 | A |
5674786 | Turner et al. | Oct 1997 | A |
5711811 | Suntola et al. | Jan 1998 | A |
5730802 | Ishizumi et al. | Mar 1998 | A |
5796116 | Nakata et al. | Aug 1998 | A |
5807792 | Ilg et al. | Sep 1998 | A |
5835677 | Li et al. | Nov 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
5972430 | DiMeo, Jr. et al. | Oct 1999 | A |
5994240 | Thakur | Nov 1999 | A |
6013553 | Wallace et al. | Jan 2000 | A |
6015590 | Suntola et al. | Jan 2000 | A |
6015917 | Bhandari et al. | Jan 2000 | A |
6020243 | Wallace et al. | Feb 2000 | A |
6025627 | Forbes et al. | Feb 2000 | A |
6037273 | Gronet et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6043177 | Falconer et al. | Mar 2000 | A |
6060755 | Ma et al. | May 2000 | A |
6071572 | Mosely et al. | Jun 2000 | A |
6084302 | Sandhu | Jul 2000 | A |
6124158 | Dautartas et al. | Sep 2000 | A |
6136654 | Kraft et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6143659 | Leem | Nov 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6183563 | Choi et al. | Feb 2001 | B1 |
6197683 | Kang et al. | Mar 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6207302 | Sugiura et al. | Mar 2001 | B1 |
6207487 | Kim et al. | Mar 2001 | B1 |
6231672 | Choi et al. | May 2001 | B1 |
6238734 | Senzaki et al. | May 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6284646 | Leem | Sep 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6291283 | Wilk | Sep 2001 | B1 |
6291867 | Wallace et al. | Sep 2001 | B1 |
6297539 | Ma et al. | Oct 2001 | B1 |
6299294 | Regan | Oct 2001 | B1 |
6302965 | Umotoy et al. | Oct 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6306216 | Kim et al. | Oct 2001 | B1 |
6335240 | Kim et al. | Jan 2002 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6348376 | Lim et al. | Feb 2002 | B2 |
6348386 | Gilmer | Feb 2002 | B1 |
6358829 | Yoon et al. | Mar 2002 | B2 |
6372598 | Kang et al. | Apr 2002 | B2 |
6379748 | Bhandari et al. | Apr 2002 | B1 |
6391785 | Satta et al. | May 2002 | B1 |
6391803 | Kim et al. | May 2002 | B1 |
6395650 | Callegari et al. | May 2002 | B1 |
6399208 | Baum et al. | Jun 2002 | B1 |
6399491 | Jeon et al. | Jun 2002 | B2 |
6416577 | Suntoloa et al. | Jul 2002 | B1 |
6416822 | Chiang et al. | Jul 2002 | B1 |
6420279 | Ono et al. | Jul 2002 | B1 |
6423619 | Grant et al. | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6444592 | Ballantine et al. | Sep 2002 | B1 |
6447607 | Soininen et al. | Sep 2002 | B2 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6451695 | Sneh | Sep 2002 | B2 |
6452229 | Krivokapic | Sep 2002 | B1 |
6458701 | Chae et al. | Oct 2002 | B1 |
6462367 | Marsh et al. | Oct 2002 | B2 |
6468924 | Lee et al. | Oct 2002 | B2 |
6475276 | Elers et al. | Nov 2002 | B1 |
6475910 | Sneh | Nov 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6481945 | Hasper et al. | Nov 2002 | B1 |
6482262 | Elers et al. | Nov 2002 | B1 |
6482733 | Raaijmakers et al. | Nov 2002 | B2 |
6489214 | Kim et al. | Dec 2002 | B2 |
6492283 | Raaijmakers et al. | Dec 2002 | B2 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6524934 | Lorimer | Feb 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6548424 | Putkonen | Apr 2003 | B2 |
6551406 | Kilpi | Apr 2003 | B2 |
6551929 | Kori et al. | Apr 2003 | B1 |
6569501 | Chiang et al. | May 2003 | B2 |
6572705 | Suntola et al. | Jun 2003 | B1 |
6578287 | Aswad | Jun 2003 | B2 |
6579372 | Park | Jun 2003 | B2 |
6585823 | Van Wijck | Jul 2003 | B1 |
6593484 | Yasuhara et al. | Jul 2003 | B2 |
6599572 | Saanila et al. | Jul 2003 | B2 |
6607973 | Jeon | Aug 2003 | B1 |
6607976 | Chen et al. | Aug 2003 | B2 |
6613695 | Pomarede et al. | Sep 2003 | B2 |
6620670 | Song et al. | Sep 2003 | B2 |
6620723 | Byun et al. | Sep 2003 | B1 |
6630030 | Suntola et al. | Oct 2003 | B1 |
6630201 | Chiang et al. | Oct 2003 | B2 |
6630413 | Todd | Oct 2003 | B2 |
6632279 | Ritala et al. | Oct 2003 | B1 |
6632747 | Niimi et al. | Oct 2003 | B2 |
6660126 | Nguyen et al. | Dec 2003 | B2 |
6660660 | Haukka et al. | Dec 2003 | B2 |
6674138 | Halliyal et al. | Jan 2004 | B1 |
6686271 | Raaijmakers et al. | Feb 2004 | B2 |
6716287 | Santiago et al. | Apr 2004 | B1 |
6718126 | Lei | Apr 2004 | B2 |
6734020 | Yang et al. | May 2004 | B2 |
6772072 | Ganguli et al. | Aug 2004 | B2 |
6773507 | Jallepally et al. | Aug 2004 | B2 |
6777352 | Tepman et al. | Aug 2004 | B2 |
6778762 | Shareef et al. | Aug 2004 | B1 |
6803272 | Halliyal et al. | Oct 2004 | B1 |
6809370 | Colombo et al. | Oct 2004 | B1 |
6815285 | Choi et al. | Nov 2004 | B2 |
6818094 | Yudovsky | Nov 2004 | B2 |
6821563 | Yudovsky | Nov 2004 | B2 |
6866746 | Lei et al. | Mar 2005 | B2 |
6868859 | Yudovsky | Mar 2005 | B2 |
6881437 | Ivanov et al. | Apr 2005 | B2 |
6884719 | Chang et al. | Apr 2005 | B2 |
6902624 | Seidel et al. | Jun 2005 | B2 |
6921062 | Gregg et al. | Jul 2005 | B2 |
7037816 | Lin et al. | May 2006 | B2 |
7037863 | Doh et al. | May 2006 | B2 |
7151039 | Lee et al. | Dec 2006 | B2 |
20010000866 | Sneh et al. | May 2001 | A1 |
20010002280 | Sneh | May 2001 | A1 |
20010009140 | Bondestam et al. | Jul 2001 | A1 |
20010009695 | Saanila et al. | Jul 2001 | A1 |
20010011526 | Doering et al. | Aug 2001 | A1 |
20010013312 | Soininen et al. | Aug 2001 | A1 |
20010014371 | Kilpi | Aug 2001 | A1 |
20010021589 | Wilk | Sep 2001 | A1 |
20010024387 | Raaijmakers et al. | Sep 2001 | A1 |
20010024871 | Yagi | Sep 2001 | A1 |
20010025979 | Kim et al. | Oct 2001 | A1 |
20010028924 | Sherman | Oct 2001 | A1 |
20010029092 | Park et al. | Oct 2001 | A1 |
20010029891 | Oh et al. | Oct 2001 | A1 |
20010034123 | Jeon et al. | Oct 2001 | A1 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
20010042523 | Kesala | Nov 2001 | A1 |
20010042799 | Kim et al. | Nov 2001 | A1 |
20010048907 | Ohmi et al. | Dec 2001 | A1 |
20010050039 | Park | Dec 2001 | A1 |
20010054377 | Lindfors et al. | Dec 2001 | A1 |
20010054730 | Kim et al. | Dec 2001 | A1 |
20010054769 | Raaijmakers et al. | Dec 2001 | A1 |
20020000196 | Park | Jan 2002 | A1 |
20020000598 | Kang et al. | Jan 2002 | A1 |
20020005556 | Cartier et al. | Jan 2002 | A1 |
20020007790 | Park et al. | Jan 2002 | A1 |
20020008297 | Park et al. | Jan 2002 | A1 |
20020009544 | McFeely et al. | Jan 2002 | A1 |
20020009896 | Sandhu et al. | Jan 2002 | A1 |
20020014647 | Seidl et al. | Feb 2002 | A1 |
20020015790 | Baum et al. | Feb 2002 | A1 |
20020016084 | Todd et al. | Feb 2002 | A1 |
20020017242 | Hamaguchi et al. | Feb 2002 | A1 |
20020020869 | Park et al. | Feb 2002 | A1 |
20020021544 | Cho et al. | Feb 2002 | A1 |
20020029092 | Gass | Mar 2002 | A1 |
20020031618 | Sherman | Mar 2002 | A1 |
20020041931 | Suntola et al. | Apr 2002 | A1 |
20020043666 | Parsons et al. | Apr 2002 | A1 |
20020047151 | Kim et al. | Apr 2002 | A1 |
20020048635 | Kim et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020055270 | Narwankar et al. | May 2002 | A1 |
20020064970 | Chooi et al. | May 2002 | A1 |
20020066411 | Chiang et al. | Jun 2002 | A1 |
20020068458 | Chiang et al. | Jun 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020074588 | Lee | Jun 2002 | A1 |
20020076481 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020076837 | Hujanen et al. | Jun 2002 | A1 |
20020081826 | Rotondaro et al. | Jun 2002 | A1 |
20020081844 | Jeon et al. | Jun 2002 | A1 |
20020086106 | Park et al. | Jul 2002 | A1 |
20020086111 | Byun et al. | Jul 2002 | A1 |
20020092471 | Kang et al. | Jul 2002 | A1 |
20020093046 | Moriya et al. | Jul 2002 | A1 |
20020093781 | Bachhofer et al. | Jul 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020106451 | Skarp et al. | Aug 2002 | A1 |
20020106536 | Lee et al. | Aug 2002 | A1 |
20020106846 | Seutter et al. | Aug 2002 | A1 |
20020108570 | Lindfors | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020115886 | Yasuhara et al. | Aug 2002 | A1 |
20020117399 | Chen et al. | Aug 2002 | A1 |
20020121241 | Nguyen et al. | Sep 2002 | A1 |
20020121342 | Lu et al. | Sep 2002 | A1 |
20020127745 | Lu et al. | Sep 2002 | A1 |
20020134307 | Choi | Sep 2002 | A1 |
20020135071 | Kang et al. | Sep 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020144657 | Chiang et al. | Oct 2002 | A1 |
20020146511 | Chiang et al. | Oct 2002 | A1 |
20020146895 | Ramdani et al. | Oct 2002 | A1 |
20020151152 | Shimamoto et al. | Oct 2002 | A1 |
20020151154 | Yamazaki et al. | Oct 2002 | A1 |
20020153579 | Yamamoto | Oct 2002 | A1 |
20020155722 | Satta et al. | Oct 2002 | A1 |
20020162506 | Sneh et al. | Nov 2002 | A1 |
20020164421 | Chiang et al. | Nov 2002 | A1 |
20020164423 | Chiang et al. | Nov 2002 | A1 |
20020172768 | Endo et al. | Nov 2002 | A1 |
20020173130 | Pomarede et al. | Nov 2002 | A1 |
20020175393 | Baum et al. | Nov 2002 | A1 |
20020177282 | Song | Nov 2002 | A1 |
20020182320 | Leskela et al. | Dec 2002 | A1 |
20020187256 | Elers et al. | Dec 2002 | A1 |
20020187631 | Kim et al. | Dec 2002 | A1 |
20020195643 | Harada | Dec 2002 | A1 |
20020196591 | Hujanen et al. | Dec 2002 | A1 |
20020197402 | Chiang et al. | Dec 2002 | A1 |
20020197863 | Mak et al. | Dec 2002 | A1 |
20020197881 | Ramdani et al. | Dec 2002 | A1 |
20020197883 | Niimi et al. | Dec 2002 | A1 |
20030004723 | Chihara | Jan 2003 | A1 |
20030010451 | Tzu et al. | Jan 2003 | A1 |
20030013300 | Byun | Jan 2003 | A1 |
20030013320 | Kim et al. | Jan 2003 | A1 |
20030015764 | Raaijmakers et al. | Jan 2003 | A1 |
20030017697 | Choi et al. | Jan 2003 | A1 |
20030022338 | Ruben et al. | Jan 2003 | A1 |
20030031807 | Elers et al. | Feb 2003 | A1 |
20030032281 | Werkhoven et al. | Feb 2003 | A1 |
20030042630 | Babcoke et al. | Mar 2003 | A1 |
20030049931 | Disney | Mar 2003 | A1 |
20030049942 | Byun et al. | Mar 2003 | A1 |
20030053799 | Lei | Mar 2003 | A1 |
20030054631 | Raaijmakers et al. | Mar 2003 | A1 |
20030057526 | Chung et al. | Mar 2003 | A1 |
20030057527 | Chung et al. | Mar 2003 | A1 |
20030059538 | Chung et al. | Mar 2003 | A1 |
20030060057 | Raaijmakers et al. | Mar 2003 | A1 |
20030068437 | Nakamura et al. | Apr 2003 | A1 |
20030072884 | Zhan et al. | Apr 2003 | A1 |
20030072913 | Chou et al. | Apr 2003 | A1 |
20030072975 | Shero et al. | Apr 2003 | A1 |
20030075273 | Kilpela et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030082296 | Elers et al. | May 2003 | A1 |
20030082300 | Todd et al. | May 2003 | A1 |
20030082301 | Chen et al. | May 2003 | A1 |
20030082307 | Chung et al. | May 2003 | A1 |
20030089308 | Raaijmakers et al. | May 2003 | A1 |
20030089942 | Bhattacharyya | May 2003 | A1 |
20030096473 | Shih et al. | May 2003 | A1 |
20030101927 | Raaijmakers et al. | Jun 2003 | A1 |
20030101938 | Ronsse et al. | Jun 2003 | A1 |
20030104710 | Visokay et al. | Jun 2003 | A1 |
20030106490 | Jallepally et al. | Jun 2003 | A1 |
20030108674 | Chung et al. | Jun 2003 | A1 |
20030109114 | Niwa | Jun 2003 | A1 |
20030113187 | Lei et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116804 | Visokay et al. | Jun 2003 | A1 |
20030121469 | Lindfors et al. | Jul 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030124262 | Chen et al. | Jul 2003 | A1 |
20030129826 | Werkhoven et al. | Jul 2003 | A1 |
20030133861 | Bowen et al. | Jul 2003 | A1 |
20030134508 | Raaijmakers et al. | Jul 2003 | A1 |
20030140854 | Kilpi | Jul 2003 | A1 |
20030143328 | Chen et al. | Jul 2003 | A1 |
20030143747 | Bondestam et al. | Jul 2003 | A1 |
20030143839 | Raaijmakers et al. | Jul 2003 | A1 |
20030143841 | Yang et al. | Jul 2003 | A1 |
20030160277 | Bhattacharyya | Aug 2003 | A1 |
20030165615 | Aaltonen et al. | Sep 2003 | A1 |
20030168750 | Basceri et al. | Sep 2003 | A1 |
20030172872 | Thakur et al. | Sep 2003 | A1 |
20030173586 | Moriwaki et al. | Sep 2003 | A1 |
20030185980 | Endo | Oct 2003 | A1 |
20030186495 | Saanila et al. | Oct 2003 | A1 |
20030186561 | Law et al. | Oct 2003 | A1 |
20030188682 | Tois et al. | Oct 2003 | A1 |
20030189232 | Law et al. | Oct 2003 | A1 |
20030190423 | Yang et al. | Oct 2003 | A1 |
20030190497 | Yang et al. | Oct 2003 | A1 |
20030190804 | Glenn et al. | Oct 2003 | A1 |
20030194493 | Chang et al. | Oct 2003 | A1 |
20030194853 | Jeon | Oct 2003 | A1 |
20030198754 | Xi et al. | Oct 2003 | A1 |
20030205729 | Basceri et al. | Nov 2003 | A1 |
20030213560 | Wang et al. | Nov 2003 | A1 |
20030213987 | Basceri et al. | Nov 2003 | A1 |
20030215570 | Seutter et al. | Nov 2003 | A1 |
20030216981 | Tillman | Nov 2003 | A1 |
20030219942 | Choi et al. | Nov 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224107 | Lindfors et al. | Dec 2003 | A1 |
20030224578 | Chung et al. | Dec 2003 | A1 |
20030224600 | Cao et al. | Dec 2003 | A1 |
20030227033 | Ahn et al. | Dec 2003 | A1 |
20030232501 | Kher et al. | Dec 2003 | A1 |
20030232506 | Metzner et al. | Dec 2003 | A1 |
20030232511 | Metzner et al. | Dec 2003 | A1 |
20030232554 | Blum et al. | Dec 2003 | A1 |
20030234417 | Raaijmakers et al. | Dec 2003 | A1 |
20030235961 | Metzner et al. | Dec 2003 | A1 |
20040005749 | Choi et al. | Jan 2004 | A1 |
20040007747 | Visokay et al. | Jan 2004 | A1 |
20040009307 | Koh et al. | Jan 2004 | A1 |
20040009675 | Eissa et al. | Jan 2004 | A1 |
20040011404 | Ku et al. | Jan 2004 | A1 |
20040011504 | Ku et al. | Jan 2004 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040013803 | Chung et al. | Jan 2004 | A1 |
20040014320 | Chen et al. | Jan 2004 | A1 |
20040015300 | Ganguli et al. | Jan 2004 | A1 |
20040016404 | Gregg et al. | Jan 2004 | A1 |
20040016973 | Rotondaro et al. | Jan 2004 | A1 |
20040018304 | Chung et al. | Jan 2004 | A1 |
20040018723 | Byun et al. | Jan 2004 | A1 |
20040018747 | Lee et al. | Jan 2004 | A1 |
20040023461 | Ahn et al. | Feb 2004 | A1 |
20040023462 | Rotondaro et al. | Feb 2004 | A1 |
20040025370 | Guenther | Feb 2004 | A1 |
20040028952 | Cartier et al. | Feb 2004 | A1 |
20040029321 | Ang et al. | Feb 2004 | A1 |
20040033698 | Lee et al. | Feb 2004 | A1 |
20040036111 | Nishikawa et al. | Feb 2004 | A1 |
20040036150 | Smith et al. | Feb 2004 | A1 |
20040038554 | Ahn et al. | Feb 2004 | A1 |
20040040501 | Vaartstra | Mar 2004 | A1 |
20040043149 | Gordon et al. | Mar 2004 | A1 |
20040043569 | Ahn et al. | Mar 2004 | A1 |
20040043630 | Vaartstra et al. | Mar 2004 | A1 |
20040046197 | Basceri et al. | Mar 2004 | A1 |
20040048491 | Jung et al. | Mar 2004 | A1 |
20040051152 | Nakajima | Mar 2004 | A1 |
20040053484 | Nakaya et al. | Mar 2004 | A1 |
20040065255 | Yang et al. | Apr 2004 | A1 |
20040069227 | Ku et al. | Apr 2004 | A1 |
20040071897 | Verplancken et al. | Apr 2004 | A1 |
20040077182 | Lim et al. | Apr 2004 | A1 |
20040144308 | Yudovsky | Jul 2004 | A1 |
20040144311 | Chen et al. | Jul 2004 | A1 |
20040168627 | Conley, Jr. et al. | Sep 2004 | A1 |
20040203254 | Conley, Jr. et al. | Oct 2004 | A1 |
20040216670 | Gutsche et al. | Nov 2004 | A1 |
20040219784 | Kang et al. | Nov 2004 | A1 |
20040224506 | Choi et al. | Nov 2004 | A1 |
20040229475 | Bevan et al. | Nov 2004 | A1 |
20040235285 | Kang et al. | Nov 2004 | A1 |
20050006799 | Gregg et al. | Jan 2005 | A1 |
20050059240 | Choi et al. | Mar 2005 | A1 |
20050064207 | Senzaki et al. | Mar 2005 | A1 |
20050070126 | Senzaki | Mar 2005 | A1 |
20050095859 | Chen et al. | May 2005 | A1 |
20050104142 | Narayanan et al. | May 2005 | A1 |
20050124109 | Quevedo-Lopez et al. | Jun 2005 | A1 |
20050130442 | Visokay et al. | Jun 2005 | A1 |
20050153571 | Senzaki | Jul 2005 | A1 |
20050233156 | Senzaki et al. | Oct 2005 | A1 |
20050255243 | Senzaki | Nov 2005 | A1 |
20060121744 | Quevedo-Lopez et al. | Jun 2006 | A1 |
20060273408 | Kamiyama et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
0 464 515 | Jan 1992 | EP |
0 497 267 | Aug 1992 | EP |
0 973 189 | Jan 2000 | EP |
0 973 191 | Jan 2000 | EP |
1 146 141 | Oct 2001 | EP |
1146141 | Oct 2001 | EP |
1167569 | Jan 2002 | EP |
1170804 | Jan 2002 | EP |
1 321 973 | Jun 2003 | EP |
1321973 | Jun 2003 | EP |
2 355 727 | Oct 2000 | GB |
58-098917 | Jun 1983 | JP |
64-082671 | Mar 1989 | JP |
01-143221 | Jun 1989 | JP |
02-014513 | Jan 1990 | JP |
02-230690 | Sep 1990 | JP |
02-246161 | Sep 1990 | JP |
03-234025 | Oct 1991 | JP |
04-291916 | Oct 1992 | JP |
05-029228 | Feb 1993 | JP |
05-047666 | Feb 1993 | JP |
05-074724 | Mar 1993 | JP |
05-206036 | Aug 1993 | JP |
05-234899 | Sep 1993 | JP |
05-251339 | Sep 1993 | JP |
05-270997 | Oct 1993 | JP |
06-177381 | Jun 1994 | JP |
06-196809 | Jul 1994 | JP |
06-224138 | Aug 1994 | JP |
06-230421 | Aug 1994 | JP |
07-086269 | Mar 1995 | JP |
07-300649 | Nov 1995 | JP |
11-269652 | Oct 1999 | JP |
2000-031387 | Jan 2000 | JP |
2000-058777 | Feb 2000 | JP |
2000-212752 | Aug 2000 | JP |
2000-319772 | Nov 2000 | JP |
2001-020075 | Jan 2001 | JP |
10-308283 | Mar 2001 | JP |
2001-220294 | Aug 2001 | JP |
2001-254181 | Sep 2001 | JP |
2001-328900 | Nov 2001 | JP |
2002-060944 | Feb 2002 | JP |
2002-69641 | Mar 2002 | JP |
2002-93804 | Mar 2002 | JP |
2002-167672 | Jun 2002 | JP |
2002-172767 | Jun 2002 | JP |
2001-111000 | Dec 2002 | JP |
2001-172767 | Oct 2003 | JP |
WO 9617107 | Jun 1996 | WO |
WO 9901595 | Jan 1999 | WO |
WO 9929924 | Jun 1999 | WO |
WO 9965064 | Dec 1999 | WO |
WO 0013235 | Mar 2000 | WO |
WO 0015865 | Mar 2000 | WO |
WO 0016377 | Mar 2000 | WO |
WO 0054320 | Sep 2000 | WO |
WO 0063957 | Oct 2000 | WO |
WO 0070674 | Nov 2000 | WO |
WO 0079576 | Dec 2000 | WO |
WO 0115220 | Mar 2001 | WO |
WO 0117692 | Mar 2001 | WO |
WO 0125502 | Apr 2001 | WO |
WO 0127346 | Apr 2001 | WO |
WO 0127347 | Apr 2001 | WO |
WO 0129280 | Apr 2001 | WO |
WO 0129891 | Apr 2001 | WO |
WO 0129893 | Apr 2001 | WO |
WO 0136702 | May 2001 | WO |
WO 0140541 | Jun 2001 | WO |
WO 0166832 | Sep 2001 | WO |
WO 0182390 | Nov 2001 | WO |
WO 0199166 | Dec 2001 | WO |
WO 0201628 | Jan 2002 | WO |
WO 0208485 | Jan 2002 | WO |
WO 0208488 | Jan 2002 | WO |
WO 0209167 | Jan 2002 | WO |
WO 0227063 | Apr 2002 | WO |
WO 0231875 | Apr 2002 | WO |
WO 0243115 | May 2002 | WO |
WO 0245167 | Jun 2002 | WO |
WO 0245871 | Jun 2002 | WO |
WO 02065525 | Aug 2002 | WO |
WO 02067319 | Aug 2002 | WO |
WO 03023835 | Mar 2003 | WO |
WO 2005117086 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050260357 A1 | Nov 2005 | US |