Stabilization of high-k dielectric materials

Abstract
In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Embodiments of the present invention generally relate to methods for depositing materials on substrates, and more specifically, to methods for depositing and stabilizing dielectric materials.


In the field of semiconductor processing, flat-panel display processing or other electronic device processing, chemical vapor deposition has played an important role in forming films on substrates. As the geometries of electronic devices continue to shrink and the density of devices continues to increase, the size and aspect ratio of the features are becoming more aggressive, e.g., feature sizes of 0.07 microns and aspect ratios of 10 or greater are being considered. Accordingly, conformal deposition of materials to form these devices is becoming increasingly important.


While conventional chemical vapor deposition has proved successful for device geometries and aspect ratios down to 0.15 microns, the more aggressive device geometries require new, innovative deposition techniques. One technique that is receiving considerable attention is atomic layer deposition (ALD). In the scheme, reactants are sequentially introduced into a processing chamber where each reactant chemisorbs onto the substrate surface and a reaction occurs. A purge step is typically carried out between the delivery of each reactant gas. The purge step may be a continuous purge with the carrier gas or a pulse purge between the delivery of the reactant gases.


ALD processes have been successfully implemented to deposit films, such as dielectric layers, barrier layers and conductive layers. High-k dielectric materials deposited by ALD processes have been used extensively for gate applications and capacitor application. Some of the common high-k materials produced by ALD processes include hafnium oxide, hafnium silicate, zirconium oxide and tantalum oxide, among others.


Dielectric materials, such as high-k dielectric materials, may experience morphological changes when exposed to high temperatures (>500° C.) during subsequent fabrication processes. For example, titanium nitride is often deposited on hafnium oxide or zirconium oxide by a chemical vapor deposition (CVD) technique at about 600° C. However, the amorphous films of hafnium oxide or zirconium oxide may crystallize and lose their low leakage properties. Also, even if full crystallization of the high-k material is not encountered, exposure to high temperatures may form grain growth and/or phase separation resulting in poor device performance due to high current leakage.


Therefore, there is a need for a process to form dielectric materials, especially high-k dielectric materials, which are morphologically stable during exposure to high temperatures during subsequent fabrication processes.


SUMMARY OF THE INVENTION

In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process.


In another embodiment, a method for forming a dielectric stack on a substrate is provided which includes a) depositing a dielectric material layer with a thickness in a range from about 5 Å to about 20 Å on a substrate surface, b) exposing the dielectric material layer to a nitridation process, c) optionally exposing the substrate to an anneal process, and d) repeating a process cycle of at least steps a-b to form the dielectric stack with a predetermined thickness.


In another embodiment, a method for forming a dielectric stack on a substrate is provided which includes a) depositing a dielectric material layer on the substrate, b) exposing the dielectric material layer to a nitridation process, c) exposing the substrate to an anneal process, and d) repeating a process cycle of steps a-c to form the dielectric stack with a predetermined thickness.


In another embodiment, a method for forming a dielectric stack on a substrate is provided which includes a) depositing a dielectric material layer on the substrate, b) exposing the dielectric material layer to a nitridation process, and c) repeating a process cycle of steps a-b to form the dielectric stack with a predetermined thickness.


In another embodiment, a method for forming a dielectric nitride material on a substrate is provided which includes depositing a dielectric layer on a substrate surface, exposing the dielectric layer to a nitridation process, and exposing the dielectric layer to an anneal process.


In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 illustrates a process sequence for forming a dielectric material according to one embodiment described herein;



FIGS. 2A-2I illustrate a process sequence for depositing multiple layers on a substrate surface according to another embodiment described herein;



FIGS. 3A-3K illustrate another process sequence for depositing multiple layers on a substrate surface according to another embodiment described herein;



FIG. 4 illustrates a process sequence for forming a dielectric material according to another embodiment described herein; and



FIGS. 5A-5D illustrate a process sequence for forming multiple layers on a substrate surface according to another embodiment described herein.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides methods for preparing dielectric materials used in a variety of applications, especially for high-k dielectric materials used in transistor and/or capacitor fabrication. Some of the methods use atomic layer deposition (ALD) to have elemental control of the composition of the dielectric compounds. In one embodiment, a dielectric material is formed by conducting multiple cycles of a deposition process that include depositing a dielectric layer, exposing the dielectric layer to a nitridation process and optionally exposing the dielectric layer to an anneal process. The deposition process is repeated until the dielectric material has a desired thickness. In another embodiment, a dielectric material is formed by depositing a dielectric film and subsequently exposing the dielectric film to a nitridation process and an anneal process. The dielectric film is usually a metal oxide and substantially silicon-free.


A “substrate surface” as used herein refers to any substrate or material surface formed on a substrate upon which film processing is performed. For example, a substrate surface on which processing may be performed include materials such as dielectric materials, silicon, silicon oxide, strained silicon, silicon on insulator (SOI), carbon doped silicon oxides, silicon nitride, doped silicon, germanium, gallium arsenide, glass, sapphire, and any other materials such as metals, metal nitrides, metal alloys, and other conductive materials, depending on the application. Barrier layers, metals or metal nitrides on a substrate surface include titanium, titanium nitride, tungsten nitride, tantalum and tantalum nitride. Substrates may have various dimensions, such as 200 mm or 300 mm diameter wafers, as well as, rectangular or square panes. Embodiments of the processes described herein deposit silicon-containing compounds on many substrates and surfaces, especially, high-k dielectric materials. Substrates on which embodiments of the invention may be useful include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, strained silicon, SOI, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers silicon nitride and patterned or non-patterned wafers. Surfaces include bare silicon wafers, films, layers and materials with dielectric, conductive and barrier properties and include aluminum oxide and polysilicon. Pretreatment of surfaces includes polishing, etching, reduction, oxidation, hydroxylation, annealing and/or baking.


“Atomic layer deposition” or “cyclical deposition” as used herein refers to the sequential introduction of two or more reactive compounds to deposit a layer of material on a substrate surface. The two, three or more reactive compounds may alternatively be introduced into a reaction zone of a processing chamber. Usually, each reactive compound is separated by a time delay to allow each compound to adhere and/or react on the substrate surface. In one aspect, a first precursor or compound A is pulsed into the reaction zone followed by a first time delay. Next, a second precursor or compound B is pulsed into the reaction zone followed by a second delay. During each time delay a purge gas, such as nitrogen, is introduced into the processing chamber to purge the reaction zone or otherwise remove any residual reactive compound or by-products from the reaction zone. Alternatively, the purge gas may flow continuously throughout the deposition process so that only the purge gas flows during the time delay between pulses of reactive compounds. The reactive compounds are alternatively pulsed until a desired film or film thickness is formed on the substrate surface. In either scenario, the ALD process of pulsing compound A, purge gas, pulsing compound B and purge gas is a cycle. A cycle can start with either compound A or compound B and continue the respective order of the cycle until achieving a film with the desired thickness.


A “pulse” as used herein is intended to refer to a quantity of a particular compound that is intermittently or non-continuously introduced into a reaction zone of a processing chamber. The quantity of a particular compound within each pulse may vary over time, depending on the duration of the pulse. The duration of each pulse is variable depending upon a number of factors such as, for example, the volume capacity of the process chamber employed, the vacuum system coupled thereto, and the volatility/reactivity of the particular compound itself. A “half-reaction” as used herein is intended to refer to a pulse of precursor step followed by a purge step.


Nitrogen Stabilization of Multi-Layered Dielectric Material


In FIG. 1, illustrates an exemplary process 100 for forming a dielectric material, such as a hafnium silicon oxynitride material. FIGS. 2A-3K correspond to process 100 to illustrate the formation of a dielectric material used in a semiconductor device, such as a transistor and/or capacitor. Multiple dielectric layers of the same or similar composition are deposited sequentially to form a dielectric material. Each dielectric layer is deposited with morphology of either an amorphous layer or a layer containing nanocrystalline material. The morphology depends on the thickness of each individual layer since the layer thickness essentially results in dimensional confinement of the material. If the confinement is small, that is, if the layer thickness is thin enough, then the layer may be forced to remain amorphous.


In one embodiment of process 100, a dielectric layer 202 is deposited on a substrate 200, in step 102, by conventional deposition techniques, such as ALD, chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal techniques and combinations thereof, as depicted in FIGS. 2A-2B. In a preferred embodiment, dielectric layer 202 is deposited by an ALD process and apparatus, such as described in co-pending United States Provisional Patent Application Serial No. unknown, filed May 12, 2004, entitled, “Atomic Layer Deposition of Hafnium-containing High-K Materials,” assigned to Applied Materials, Inc., and is herein incorporated by reference. Dielectric layer 202 is generally deposited with a film thickness from about 1 Å to about 50 Å, preferably from about 5 Å to about 30 Å and more preferably from about 5 Å to about 20 Å, for example, about 15 Å.


A substrate may be pretreated before depositing dielectric layer 202 in order to have termination with a variety of functional groups such as hydroxyls (OH), alkoxy (OR, where R=Me, Et, Pr or Bu), haloxyls (OX, where X═F, Cl, Br or I), halides (F, Cl, Br or I), oxygen radicals, aminos (NH or NH2) and amidos (NR or NR2, where R═H, Me, Et, Pr or Bu). A pretreatment is especially useful prior to depositing dielectric layer 202 with an ALD process or a CVD process. A pretreatment may be effected by administering a reagent, such as NH3, B2H6, SiH4, Si2H6, H2O, HF, HCl, O2, O3, H2O, H2O/O2, H2O/H2, H2O2, H2, atomic-H, atomic-N, atomic-O, alcohols or amines. Once the surface of the substrate is pretreated, an ALD cycle is started. For many of the high-k dielectric materials, the precursor adsorption is self-limiting under certain process conditions, and generally is at low temperatures (<300° C.) to exhibit this behavior. In one embodiment, the pretreatment may involve a presoak with a reagent prior to depositing a hafnium compound. The presoak may involve exposing the substrate surface to the reagent for a period of time from about 5 seconds to about 120 seconds, preferably from about 5 seconds to about 30 seconds. In one example, the substrate surface is exposed to water vapor for about 15 seconds prior to starting an ALD process to deposit dielectric layer 202.


Dielectric layer 202 is generally a high-k dielectric material and includes combinations of hafnium, zirconium, titanium, tantalum, lanthanum, aluminum, silicon, oxygen and/or nitrogen. Dielectric layer 202 may have a composition that includes hafnium-containing materials, such as hafnium oxides (HfOx or HfO2), hafnium silicates (HfSixOy or HfSiO4), hafnium silicon oxynitrides (HfSixOyNz), hafnium oxynitrides (HfOxNy), hafnium aluminates (HfAlxOy), hafnium aluminum silicates (HfAlxSiyOz), hafnium aluminum silicon oxynitrides (HfAlwSixOyNz), hafnium lanthanum oxides (HfLaxOy), zirconium-containing materials, such as zirconium oxides (ZrOx or ZrO2), zirconium silicates (ZrSixOy or ZrSiO4), zirconium silicon oxynitrides (ZrSixOyNz), zirconium oxynitrides (ZrOxNy), zirconium aluminates (ZrAlxOy), zirconium aluminum silicates (ZrAlxSiyOz), zirconium aluminum silicon oxynitrides (ZrAlwSixOyNz), zirconium lanthanum oxides (ZrLaxOy), other aluminum-containing materials or lanthanum-containing materials, such as aluminum oxides (Al2O3 or AlOx), aluminum oxynitrides (AlOxNy), aluminum silicates (AlSixOy), aluminum silicon oxynitrides (AlSixOyNz), lanthanum aluminum oxides (LaAlxOy), lanthanum oxides (LaOx or La2O3), derivatives thereof and combinations thereof. Other dielectric materials useful for dielectric layer 202 may include titanium oxides (TiOx or TiO2), titanium oxynitrides (TiOxNy), tantalum oxides (TaOx or Ta2O5) and tantalum oxynitrides (TaOxNy).


In step 104, the dielectric layer 202 is exposed to a nitridation process that physically incorporates nitrogen atoms into the dielectric material to form nitrogen-containing dielectric layer 204, as depicted in FIG. 2C. The nitridation process may include decoupled plasma nitridation (DPN), remote plasma nitridation, hot-wired induced atomic-N, and nitrogen incorporation during the dielectric layer deposition (e.g., during ALD or CVD processes). The nitrogen-containing dielectric layer 204 is usually nitrogen-rich at the surface. The nitrogen concentration of nitrogen-containing dielectric layer 204 may be in the range from about 5 atomic percent (at %) to about 40 at %, preferably from about 10 at % to about 25 at %. Preferably, the nitridation process exposes the dielectric layer 202 to nitrogen plasma, such as a DPN process.


In one embodiment, the substrate is transferred to a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. In one aspect, the DPN chamber is on the same cluster tool as the ALD chamber used to deposit the dielectric layer 202. Therefore, the substrate may be exposed to a nitridation process without being exposed to the ambient environment. During a DPN process, the dielectric layer 202 is bombarded with atomic-N formed by co-flowing N2 and a noble gas plasma, such as argon. Besides N2, other nitrogen-containing gases may be used to form the nitrogen plasma, such as NH3, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), and azides (e.g., MeN3 or Me3SiN3). Other noble gases that may be used in a plasma process include helium, neon and xenon. The nitridation process proceeds at a time period from about 10 seconds to about 120 seconds, preferably from about 15 seconds to about 60 seconds, for example, about 30 seconds. Also, the nitridation process is conducted at a plasma power setting from about 900 watts to about 2,700 watts and a pressure at about 10 mTorr to about 100 mTorr. The nitrogen has a flow from about 0.1 slm to about 1.0 slm, while the noble gas has a flow from about 0.1 slm to about 1.0 slm. In a preferred embodiment, the nitridation process is a DPN process and includes a plasma by co-flowing Ar and N2.


In another embodiment, instead of transferring the substrate to the DPN chamber, a nitridation process may include exposing the dielectric layer 202 to nitrogen plasma in the same deposition chamber that dielectric layer 202 is deposited. For example, a nitridizing remote-plasma is exposed to dielectric layer 202 to form nitrogen-containing dielectric layer 204 directly in process chamber configured with a remote-plasma device, such as an ALD chamber or a CVD chamber. Radical nitrogen compounds may also be produced by heat or hot-wires and used during nitridation processes. Other nitridation processes to form nitrogen-containing dielectric layer 204 are contemplated, such as annealing the substrate in a nitrogen-containing environment, and/or including a nitrogen precursor into an additional half reaction within the ALD cycle while forming the nitrogen-containing dielectric layer 204. For example, an additional half reaction during an ALD cycle to form hafnium silicate may include a pulse of NH3 followed by a pulse of purge gas.


In one embodiment depicted in FIGS. 2A-2I, the optional anneal process is omitted during step 106. In step 108, the predetermined thickness of dielectric material is decided. If, after one cycle of steps 102-106, the predetermined thickness of dielectric material is achieved, then process 100 may endure an optional anneal process at step 110 and process 100 is ended at step 112. However, in the preferred embodiment, the dielectric material thickness is not achieved after only one cycle of steps 102-106 and therefore is repeated by starting over at step 102.


In FIG. 2D, dielectric layer 212 is deposited on nitrogen-containing dielectric layer 204 by the same process as discussed in step 102. The layer thickness of dielectric layer 212 does not have to be the same thickness as dielectric layer 202, but generally have similar thicknesses. In FIG. 2E, dielectric layer 212 is exposed to a nitridation process as discussed in step 104 to form nitrogen-containing dielectric layer 214. In FIG. 2F, dielectric layer 222 is deposited on nitrogen-containing dielectric layer 214 by the same process as discussed in step 102. In FIG. 2E, dielectric layer 222 is exposed to a nitridation process as discussed in step 104 to form nitrogen-containing dielectric layer 224. Steps 102-106 may be repeated to form the predetermined thickness of the dielectric material.



FIG. 2H depicts a stack 260 of nitrogen-containing dielectric layers 204, 214, 224, 234, 244 and 254 after steps 102-106 have been performed six times. Thereafter, if the predetermined thickness of dielectric material is achieved during step 108, the substrate is exposed to the optional anneal process during step 110. The substrate is transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The anneal chamber may be on the same cluster tool as the deposition chamber and/or the nitridation chamber. Therefore, the substrate may be annealed without being exposed to the ambient environment. The substrate is maintained at a temperature from about 600° C. to about 1,200° C. for a time period from about 1 second to about 120 seconds, for example, at about 1,000° C. for about 15 seconds. Generally, the process chamber atmosphere contains at least one anneal gas, such as O2, N2, NH3, N2H4, NO, N2O, or combinations thereof. The chamber is maintained at a pressure from about 1 Torr to about 100 Torr, for example, at about 5 Torr.


The anneal process converts stack 260 to the dielectric material or stack 270, which contains dielectric nitride material layers 206, 216, 226, 236, 246 and 256, as depicted in FIG. 2I. The anneal process repairs any damage caused by plasma bombardment during step 104 and reduces the fixed charge of the dielectric nitride layers. Each of the dielectric nitride material layers 206, 216, 226, 236, 246 and 256 may have a film thickness from about 1 Å to about 50 Å, preferably from about 5 Å to about 30 Å and more preferably from about 5 Å to about 20 Å, for example, about 15 Å. Dielectric material or stack 270 generally has a thickness from about 10 Å to about 250 Å, preferably from about 20 Å to about 100 Å, for example, 60 Å. In one embodiment, dielectric material or stack 270 has a thickness of 60 Å or less.


In another embodiment of process 100, a dielectric layer 302 is deposited on a substrate 300, in step 102, by conventional deposition techniques, such as ALD, chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal techniques and combinations thereof, as depicted in FIGS. 3A-3B. In a preferred embodiment, dielectric layer 302 is deposited by an ALD process, as discussed above for dielectric layer 202. Dielectric layer 302 is generally a high-k dielectric material and includes combinations of hafnium, zirconium, titanium, tantalum, lanthanum, aluminum, silicon, oxygen and/or nitrogen. Dielectric layer 302 may have the composition as dielectric layer 202, as discussed above. Dielectric layer 302 is generally deposited with a film thickness from about 1 Å to about 50 Å, preferably from about 5 Å to about 30 Å and more preferably from about 5 Å to about 20 Å, for example, about 15 Å.


In step 104, the dielectric layer 302 is exposed to a nitridation process that physically incorporates nitrogen atoms into dielectric film to form nitrogen-containing dielectric layer 304, as depicted in FIG. 3C. The nitridation process may include decoupled plasma nitridation (DPN), remote plasma nitridation, hot-wired induced atomic-N, and nitrogen incorporation during dielectric deposition (e.g., during ALD or CVD processes). The nitrogen-containing dielectric layer 304 is usually nitrogen-rich at the surface. The nitrogen concentration of nitrogen-containing dielectric layer 304 may be in the range from about 5 at % to about 40 at %, preferably from about 10 at % to about 25 at %. Preferably, the nitridation process exposes the dielectric layer 302 to nitrogen plasma, such as a DPN process.


In one embodiment, the substrate is transferred to a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. In one aspect, the DPN chamber is on the same cluster tool as the ALD chamber used to deposit the dielectric layer 302. Therefore, the substrate may be exposed to a nitridation process without being exposed to the ambient environment. During a DPN process, the dielectric layer 302 is bombarded with atomic-N formed by co-flowing N2 and a noble gas plasma, such as argon. Besides N2, other nitrogen-containing gases may be used to form the nitrogen plasma, such as NH3, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), and azides (e.g., MeN3 or Me3SiN3). Other noble gases that may be used in a plasma process include helium, neon and xenon. The nitridation process proceeds at a time period from about 10 seconds to about 120 seconds, preferably from about 15 seconds to about 60 seconds, for example, about 30 seconds. Also, the nitridation process is conducted at a plasma power setting from about 900 watts to about 2,700 watts and a pressure at about 10 mTorr to about 100 mTorr. The nitrogen has a flow from about 0.1 slm to about 1.0 slm, while the noble gas has a flow from about 0.1 slm to about 1.0 slm. In a preferred embodiment, the nitridation process is a DPN process and includes a plasma by co-flowing Ar and N2.


In another embodiment, instead of transferring the substrate to the DPN chamber, a nitridation process may include exposing the dielectric layer 302 to nitrogen plasma in the same deposition chamber that dielectric layer 302 is deposited. For example, a nitrogen remote-plasma is exposed to dielectric layer 302 to form nitrogen-containing dielectric layer 304 directly in process chamber configured with a remote-plasma device, such as an ALD chamber or a CVD chamber. Radical nitrogen compounds may also be produced by heat or hot-wires and used during nitridation processes. Other nitridation processes to form nitrogen-containing dielectric layer 304 are contemplated, such as annealing the substrate in a nitrogen-containing environment, and/or including a nitrogen precursor into an additional half reaction within the ALD cycle while forming the nitrogen-containing dielectric layer 304. For example, an additional half reaction during an ALD cycle to form hafnium silicate may include a pulse of NH3 followed by a pulse of purge gas.


In one embodiment depicted in FIGS. 3A-3K, the optional anneal process is executed during step 106. The substrate is transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The anneal chamber may be on the same cluster tool as the deposition chamber and/or the nitridation chamber. Therefore, the substrate may be annealed without being exposed to the ambient environment The substrate is maintained at a temperature from about 600° C. to about 1,200° C. for a time period from about 1 second to about 120 seconds, for example, at about 1,000° C. for about 15 seconds. Generally, the process chamber atmosphere contains at least one anneal gas, such as O2, N2, NH3, N2H4, NO, N2O, or combinations thereof. The chamber is maintained at a pressure from about 1 Torr to about 100 Torr, for example, about 5 Torr.


The anneal process converts nitrogen-containing dielectric layer 304 to dielectric nitride material layers 306, as depicted in FIG. 3D. The anneal process repairs any damage caused by plasma bombardment during step 104 and reduces the fixed charge of nitrogen-containing dielectric layer 304. In step 108, the predetermined thickness of dielectric material is decided. If, after one cycle of steps 102-106, the predetermined layer thickness of the dielectric material is achieved, then process 100 skips the optional anneal process during step 110 and is ended during step 112. However, in the preferred embodiment, the dielectric material thickness is not achieved after only one cycle of steps 102-106 and therefore is repeated.


In FIG. 3E, dielectric layer 312 is deposited on dielectric nitride layer 306 by the same process as discussed in step 102. The layer thickness of dielectric layer 312 does not have to be the same thickness as dielectric layer 302, but generally have similar thicknesses. In FIG. 3F, dielectric layer 312 is exposed to a nitridation process as discussed in step 104 to form nitrogen-containing dielectric layer 314. In FIG. 3G, the substrate is exposed to an anneal process as discussed in step 106 to convert nitrogen-containing dielectric layer 314 to dielectric nitride layer 316. In FIG. 3H, dielectric layer 322 is deposited on dielectric nitride layer 316 by the same process as discussed in step 102. In FIG. 3I, dielectric layer 322 is exposed to a nitridation process as discussed in step 104 to form nitrogen-containing dielectric layer 324. In FIG. 3J, the substrate is exposed to an anneal process in step 106 to convert nitrogen-containing dielectric layer 324 to dielectric nitride layer 326. Steps 102-106 may be repeated to form the predetermined thickness of the dielectric material.



FIG. 3K depicts dielectric material or stack 370 of dielectric nitride material layers 306, 316, 326, 336, 346 and 356 after steps 102-106 have been performed six times. Each of the dielectric nitride material layers 306, 316, 326, 336, 346 and 356 may have a film thickness from about 1 Å to about 50 Å, preferably from about 5 Å to about 30 Å and more preferably from about 5 Å to about 20 Å, for example, about 15 Å. Dielectric material or stack 370 generally has a thickness from about 10 Å to about 250 Å, preferably from about 20 Å to about 100 Å, for example, 60 Å. In one embodiment, dielectric material or stack 370 has a thickness 60 Å or less.


Although FIGS. 2I and 3k depict stacks 270 and 370 containing six dielectric nitride material layers, numerous layers may be deposited in order to form a dielectric material. A dielectric material may have as few as two layers or hundreds of layers. For example, a dielectric material formed with an overall thickness of about 60 Å may include twelve 5 Å dielectric layers, six 10 Å dielectric layers, four 15 Å dielectric layers, three 20 Å dielectric layers or two 30 Å dielectric layers, among others. In another example, a dielectric material formed with an overall thickness of about 100 Å may include twenty 5 Å dielectric layers, ten 10 Å dielectric layers, five 20 Å dielectric layers, four 25 Å dielectric layers or two 50 Å dielectric layers, among others. Dielectric material remains amorphous and may have a nitrogen concentration in the range from about 5 at % to about 25 at %, preferably from about 10 at % to about 20 at %, for example, about 15 at %.


As described above, dielectric material or stack 270 is formed by annealing the substrate after the desired number of dielectric layers is deposited or after the predetermined film thickness is achieved. Alternatively, dielectric material or stack 370 is formed by annealing the substrate after each nitridation of the dielectric layers. In another embodiment, the optional anneal process of step 106 may be applied during a cycle of steps 102-106 and omitted during another cycle of steps 102-106 during the formation of a dielectric material. Routine experimentation may be conducted to determine the correct intervals of exposing the substrate to the anneal process. Some variables that direct the annealing intervals include the specific nitridation technique used during the nitridation process, thickness and composition of dielectric layers and desired characteristics of the final dielectric material.


Nitrogen Stabilization of Dielectric Material


In FIG. 4, illustrates an exemplary process 400 for forming a dielectric material, such as a hafnium oxynitride material or a tantalum oxynitride material. FIGS. 5A-5D correspond to process 400 to illustrate the formation of a dielectric material used in of a semiconductor device, such as a transistor and/or capacitor. Dielectric layer 502, disposed on substrate 500, is exposed to a nitridation process to form nitrogen-containing dielectric layer 504. Subsequently, nitrogen-containing dielectric layer 504 is converted to dielectric nitride dielectric layer 506 by exposure to an anneal process.


In one embodiment of process 400, a dielectric layer 502 is deposited on a substrate 500, during step 402, by conventional deposition techniques, such as ALD, CVD, PVD, thermal techniques and combinations thereof, as depicted in FIGS. 5A-5B. In a preferred embodiment, dielectric layer 502 is deposited by an ALD process and apparatus, such as described in co-pending United States Provisional Patent Application Serial No. unknown, filed May 12, 2004, entitled, “Atomic Layer Deposition of Hafnium-containing High-K Materials,” assigned to Applied Materials, Inc., and is herein incorporated by reference. Dielectric layer 502 is generally deposited with a film thickness from about 5 Å to about 300 Å, preferably from about 10 Å to about 200 Å and more preferably from about 10 Å to about 100 Å, for example, about 50 Å.


A substrate may be pretreated before depositing dielectric layer 502 in order to have termination with a variety of functional groups such as hydroxyls (OH), alkoxy (OR, where R=Me, Et, Pr or Bu), haloxyls (OX, where X═F, Cl, Br or I), halides (F, Cl, Br or I), oxygen radicals, aminos (NH or NH2) and amidos (NR or NR2, where R═H, Me, Et, Pr or Bu). A pretreatment is especially useful prior to depositing dielectric layer 502 with an ALD process or a CVD process. A pretreatment may be effected by administering a reagent, such as NH3, B2H6, SiH4, Si2H6, H2O, HF, HCl, O2, O3, H2O, H2O/O2, H2O/H2, H2O2, H2, atomic-H, atomic-N, atomic-O, alcohols or amines. Once the surface of the substrate is pretreated, an ALD cycle is started. For many of the high-k dielectric materials, the precursor adsorption is self-limiting under certain process conditions, and generally is at low temperatures (<300° C.) to exhibit this behavior. In one embodiment, the pretreatment may involve a presoak with a reagent prior to depositing a hafnium compound. The presoak may involve exposing the substrate surface to the reagent for a period of time from about 5 seconds to about 120 seconds, preferably from about 5 seconds to about 30 seconds. In one example, the substrate surface is exposed to water for about 15 seconds prior to starting an ALD process to deposit dielectric layer 502.


Dielectric layer 502 is deposited on the substrate surface and may have a variety of compositions that are homogenous, heterogeneous, graded and/or multiple layered stacks or laminates. Dielectric layer 502 is generally a high-k dielectric material and includes combinations of hafnium, zirconium, titanium, tantalum, lanthanum, aluminum, oxygen and/or nitrogen. Often a metal oxide or a metal oxynitride is used as dielectric layer 502. Although some silicon diffusion into dielectric layer 502 may occur from the substrate, dielectric layer 502 is usually substantially free of silicon. Dielectric layer 502 may have a composition that includes hafnium-containing materials, such as hafnium oxides (HfOx or HfO2), hafnium oxynitrides (HfOxNy), hafnium aluminates (HfAlxOy), hafnium lanthanum oxides (HfLaxOy), zirconium-containing materials, such as zirconium oxides (ZrOx or ZrO2), zirconium oxynitrides (ZrOxNy), zirconium aluminates (ZrAlxOy), zirconium lanthanum oxides (ZrLaxOy), other aluminum-containing materials or lanthanum-containing materials, such as aluminum oxides (Al2O3 or AlOx), aluminum oxynitrides (AlOxNy), lanthanum aluminum oxides (LaAlxOy), lanthanum oxides (LaOx or La2O3), derivatives thereof and combinations thereof. Other dielectric materials useful for dielectric layer 502 may include titanium oxides (TiOx or TiO2), titanium oxynitrides (TiOxNy), tantalum oxides (TaOx or Ta2O5) and tantalum oxynitrides (TaOxNy). Laminate films that are useful dielectric materials for dielectric layer 502 include HfO2/Al2O3, La2O3Al2O3 and HfO2/La2O3/Al2O3.


In step 404, the dielectric layer 502 is exposed to a nitridation process that physically incorporates nitrogen atoms into the dielectric to form nitrogen-containing dielectric layer 504, as depicted in FIG. 5C. The nitridation process may include decoupled plasma nitridation (DPN), remote plasma nitridation, hot-wired induced atomic-N, and nitrogen incorporation during dielectric deposition (e.g., during ALD or CVD processes). The nitrogen-containing dielectric layer 504 is usually nitrogen-rich at the surface. The nitrogen concentration of nitrogen-containing dielectric layer 504 may be in the range from about 5 at % to about 40 at %, preferably from about 10 at % to about 25 at %. Preferably, the nitridation process exposes the dielectric layer 502 to nitrogen plasma, such as a DPN process.


In one embodiment, the substrate is transferred to a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. In one aspect, the DPN chamber is on the same cluster tool as the ALD chamber used to deposit the dielectric layer 502. Therefore, the substrate may be exposed to a nitridation process without being exposed to the ambient environment. During a DPN process, the dielectric layer 502 is bombarded with atomic-N formed by co-flowing N2 and a noble gas plasma, such as argon. Besides N2, other nitrogen-containing gases may be used to form the nitrogen plasma, such as NH3, hydrazines (e.g., N2H4 or MeN2H3), amines (e.g., Me3N, Me2NH or MeNH2), anilines (e.g., C6H5NH2), and azides (e.g., MeN3 or Me3SiN3). Other noble gases that may be used in a plasma process include helium, neon and xenon. The nitridation process proceeds at a time period from about 10 seconds to about 120 seconds, preferably from about 15 seconds to about 60 seconds, for example, about 30 seconds. Also, the nitridation process is conducted at a plasma power setting from about 900 watts to about 2,700 watts and a pressure at about 10 mTorr to about 100 mTorr. The nitrogen has a flow from about 0.1 slm to about 1.0 slm, while the noble gas has a flow from about 0.1 slm to about 1.0 slm. In a preferred embodiment, the nitridation process is a DPN process and includes a plasma by co-flowing Ar and N2.


In another embodiment, instead of transferring the substrate to the DPN chamber, a nitridation process may include exposing the dielectric layer 502 to nitrogen plasma in the same deposition chamber that dielectric layer 502 is deposited. For example, a nitrogen remote-plasma is exposed to dielectric layer 502 to form nitrogen-containing dielectric layer 504 directly in process chamber configured with a remote-plasma device, such as an ALD chamber or a CVD chamber. Radical nitrogen compounds may also be produced by heat or hot-wires and used during nitridation processes. Other nitridation processes to form nitrogen-containing dielectric layer 504 are contemplated, such as annealing the substrate in a nitrogen-containing environment, and/or including a nitrogen precursor into an additional half reaction within the ALD cycle while forming the nitrogen-containing dielectric layer 504. For example, an additional half reaction during an ALD cycle to form hafnium oxide may include a pulse of NH3 followed by a pulse of purge gas.


In step 406, the substrate is exposed to an anneal process. In one embodiment, the substrate is transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The anneal chamber may be on the same cluster tool as the deposition chamber and/or the nitridation chamber. Therefore, the substrate may be annealed without being exposed to the ambient environment. The substrate is maintained at a temperature from about 600° C. to about 1,200° C. for a time period from about 1 second to about 120 seconds, for example, at about 1,000° C. for about 60 seconds. Generally, the process chamber atmosphere contains at least one anneal gas, such as O2, N2, NH3, N2H4, NO, N2O, or combinations thereof. The chamber is maintained at a pressure from about 5 Torr to about 100 Torr, for example, at about 5 Torr.


The anneal process converts nitrogen-containing dielectric layer 504 to the dielectric material or dielectric nitride layer 506, as depicted in FIG. 5D. The anneal process repairs any damage caused by plasma bombardment during step 404 and reduces the fixed charge of dielectric nitride layer 506. Dielectric material remains amorphous and may have a nitrogen concentration in the range from about 5 at % to about 25 at %, preferably from about 10 at % to about 20 at %, for example, about 15 at %. Dielectric nitride layer 506 has a film thickness from about 5 Å to about 300 Å, preferably from about 10 Å to about 200 Å and more preferably from about 10 Å to about 100 Å, for example, about 50 Å.


EXAMPLES
Example 1

A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium silicate layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (HfCl4), the silicon precursor (TDMAS), and in-situ water vapor produced by a water vapor generator (WVG) system, available from Fujikin of America, Inc., located in Santa Clara, Calif. The ALD cycle includes sequentially pulsing HfCl4, water vapor, TDMAS and water vapor, with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated ten times to form a hafnium silicate layer with a thickness of about 4 Å.


The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the hafnium silicate layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium silicate to produce hafnium silicon oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated fifteen times to form a hafnium silicon oxynitride layer with a thickness of about 60 Å.


Example 2

A substrate is placed into an ALD chamber equipped with a remote plasma generator and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium silicate layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (TDEAH), the silicon precursor (Tris-DMAS), and in-situ water vapor produced by a water vapor generator (WVG) system, available from Fujikin of America, Inc., located in Santa Clara, Calif. The ALD cycle includes co-flowing TDEAH and Tris-DMAS in a first half reaction and sequentially pulsing water vapor in a second half reaction, with each half reaction separated by an argon purge. The hafnium silicate layer is formed by repeating the cycle ten times until the film has a thickness of about 4 Å.


The ALD process is stopped and the substrate is kept in the ALD chamber equipped with a remote plasma generator. The substrate surface is exposed to a remote plasma nitridation process for about 10 seconds to incorporate nitrogen atoms within the hafnium silicate layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium silicate to produce hafnium silicon oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated fifteen times to form a hafnium silicon oxynitride layer with a thickness of about 60 Å.


Example 3

A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated eight times to form a tantalum oxide layer with a thickness of about 5 Å.


The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated twenty times to form a tantalum oxynitride layer with a thickness of about 100 Å.


Example 4

A substrate is placed into an ALD chamber equipped with a remote plasma generator and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated eight times to form a tantalum oxide layer with a thickness of about 5 Å.


The ALD process is stopped and the substrate is kept in the ALD chamber equipped with a remote plasma generator. The substrate surface is exposed to a remote plasma nitridation process for about 10 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 15 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride. The process cycle containing the ALD process, the nitridation process and the anneal process is repeated ten times to form a tantalum oxynitride layer with a thickness of about 50 Å.


Example 5

A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium silicate layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (HfCl4), the silicon precursor (TDMAS), and in-situ water vapor produced by a water vapor generator (WVG) system, available from Fujikin of America, Inc., located in Santa Clara, Calif. The ALD cycle includes sequentially pulsing HfCl4, water vapor, TDMAS and water vapor, with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated ten times to form a hafnium silicate layer with a thickness of about 4 Å.


The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the hafnium silicate layer. The process cycle containing the ALD process and the nitridation process is repeated fifteen times to form a nitrated hafnium silicate layer with a thickness of about 60 Å.


The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 60 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium silicate to produce hafnium silicon oxynitride.


Example 6

A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated eight times to form a tantalum oxide layer with a thickness of about 12 Å.


The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 10 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The process cycle containing the ALD process and the nitridation process is repeated ten times to form a nitrided tantalum oxide layer with a thickness of about 120 Å.


The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif. and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 60 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride.


Example 7

A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A hafnium oxide layer is deposited on the substrate surface by performing an ALD process using the hafnium precursor (HfCl4) and water. The ALD cycle includes sequentially pulsing HfCl4 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated until a hafnium oxide layer was deposited with a thickness of about 75 Å.


The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 30 seconds to incorporate nitrogen atoms within the hafnium oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 45 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the hafnium oxide to produce hafnium oxynitride.


Example 8

A substrate is placed into an ALD chamber and the substrate surface is exposed to a pretreatment to form hydroxyl groups. A tantalum oxide layer is deposited on the substrate surface by performing an ALD process using the tantalum precursor (TaCl5) and water. The ALD cycle includes sequentially pulsing TaCl5 and water vapor with each precursor separated by a nitrogen purge cycle. The ALD cycle is repeated until a tantalum oxide layer was deposited with a thickness of about 85 Å.


The substrate is transferred to a decoupled plasma nitridation (DPN) chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif. The substrate surface is exposed to a nitridation process by co-flowing N2 with an argon plasma. The nitridation process proceeds for about 30 seconds to incorporate nitrogen atoms within the tantalum oxide layer. The substrate is subsequently transferred to an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif. and exposed to an anneal process. The substrate is maintained at about 1,000° C. for about 45 seconds in an O2 atmosphere maintained at about 15 Torr. The incorporated nitrogen atoms form bonds with the tantalum oxide to produce tantalum oxynitride.


Example 9
Comparison Example

Hafnium oxide was deposited on Substrates A and B under the identical process conditions. Substrate A was placed into a DPN chamber, such as the CENTURA™ DPN chamber, available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to a nitridation process. Subsequently, Substrate A was placed into an anneal chamber, such as the CENTURA™ RADIANCE™ RTP chamber available from Applied Materials, Inc., located in Santa Clara, Calif., and exposed to an anneal process. Substrate B was not exposed to a nitridation process or an anneal process. Current leakage was measured on both surfaces to reveal Substrate A had a current density a magnitude lower than Substrate B, although both substrates had similar EOTs (effective oxide thickness). Furthermore, Substrate A, having already been annealed, is thermal more stable than Substrate B, which will crystallize upon exposure to elevated temperatures experienced in subsequent fabrication processes.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method for forming a dielectric stack on a substrate, comprising: depositing a first dielectric layer of hafnium silicate on a substrate by an atomic layer deposition process, wherein the substrate is exposed to precursors of an alkylamino hafnium compound, water vapor, and an alkylamino silane compound during the atomic layer deposition process;exposing the first dielectric layer to a plasma nitridation process to form a first nitride layer comprising a nitrogen concentration within a range from about 5 at % to about 25 at %;depositing a second dielectric layer on the first nitride layer, wherein the second dielectric layer comprises a material selected from the group consisting of hafnium silicate, zirconium silicate, aluminum silicate, derivatives thereof, and combinations thereof;exposing the second dielectric layer to the plasma nitridation process to form a second nitride layer comprising a nitrogen concentration within a range from about 5 at % to about 25 at %; andexposing the substrate to an annealing process, wherein the depositing the first dielectric layer of hafnium silicate further comprises co-flowing the alkylamino hafnium compound and the alkylamino silane compound in a first half reaction and sequentially pulsing the water vapor in a second half reaction, with each half reaction separated by an argon purge.
  • 2. A method for forming a dielectric stack on a substrate, comprising: a) depositing a dielectric layer having a thickness within a range from about 5 Å to about 50 Å on a substrate by an atomic layer deposition process, wherein the dielectric layer comprises a dielectric material consisting of hafnium silicate from precursors of an alkylamino hafnium compound, water vapor, and an alkylamino silane compound;b) exposing the dielectric layer to a plasma nitridation process to form a nitride layer thereon, wherein the dielectric layer comprises a nitrogen concentration within a range from about 5 at % to about 25 at %;c) optionally exposing the substrate to an annealing process; andd) repeating a process cycle of at least a)-b) to form the dielectric stack, wherein the depositing the dielectric layer further comprises co-flowing the alkylamino hafnium compound and the alkylamino silane compound in a first half reaction and sequentially pulsing the water vapor in a second half reaction, with each half reaction separated by an argon purge.
  • 3. A method for forming a dielectric stack on a substrate, comprising: a) depositing a dielectric layer of hafnium silicate on the substrate by an atomic layer deposition process, wherein the substrate is exposed to an alkylamino hafnium compound, water vapor, and alkylamino silane compound during the atomic layer deposition process;b) exposing the dielectric layer to a plasma nitridation process;c) exposing the substrate to an annealing process; andd) repeating a process cycle of steps a-c to form the dielectric stack, wherein the depositing the dielectric layer of hafnium silicate further comprises co-flowing the alkylamino hafnium compound and the alkylamino silane compound in a first half reaction and sequentially pulsing the water vapor in a second half reaction, with each half reaction separated by an argon purge.
  • 4. A method for forming a dielectric stack on a substrate, comprising: a) depositing a dielectric layer of hafnium silicate on the substrate by an atomic layer deposition process, wherein the hafnium silicate is formed from precursors of alkylamino hafnium, water vapor, and alkylamino silane;b) exposing the dielectric layer to a plasma nitridation process; andc) repeating a process cycle of steps a-b to form the dielectric stack, wherein the dielectric stack comprises a nitrogen concentration within a range from about 5 at % to about 25 at %, wherein the depositing the dielectric layer of hafnium silicate further comprises co-flowing the alkylamino hafnium compound and the alkylamino silane compound in a first half reaction and sequentially pulsing the water vapor in a second half reaction, with each half reaction separated by an argon purge.
  • 5. A method for forming a dielectric nitride material on a substrate, comprising: depositing a dielectric layer of hafnium silicate on a substrate by an atomic layer deposition process, wherein the substrate is exposed to an alkylamino hafnium compound, water vapor, and an alkylamino silane compound during the atomic layer deposition process;exposing the dielectric layer to a plasma nitridation process to form a nitride layer thereon, wherein the nitride layer comprises a nitrogen concentration within a range from about 5 at % to about 25 at %; andexposing the nitride layer to an annealing process, wherein the depositing the dielectric layer of hafnium silicate further comprises co-flowing the alkylamino hafnium compound and the alkylamino silane compound in a first half reaction and sequentially pulsing the water vapor in a second half reaction, with each half reaction separated by an argon purge.
  • 6. A method for forming a dielectric material on a substrate, comprising: depositing a metal oxide layer on a substrate during an atomic layer deposition process, wherein the metal oxide layer comprises hafnium silicate, wherein the substrate is exposed to an alkylamino hafnium compound, water vapor, and an alkylamino silane compound during the atomic layer deposition process;exposing the metal oxide layer to a plasma nitridation process to form a nitride layer thereon; andexposing the substrate sequentially to the deposition and nitridation processes while periodically exposing the substrate to an annealing process to form a dielectric stack having a predetermined thickness, wherein the depositing the metal oxide layer further comprises co-flowing the alkylamino hafnium compound and the alkylamino silane compound in a first half reaction and sequentially pulsing the water vapor in a second half reaction, with each half reaction separated by an argon purge.
US Referenced Citations (402)
Number Name Date Kind
4058430 Suntola et al. Nov 1977 A
4128670 Gaensslen Dec 1978 A
4237973 Todd Dec 1980 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4415275 Dietrich Nov 1983 A
4486487 Skarp Dec 1984 A
4693208 Sakai Sep 1987 A
4761269 Conger et al. Aug 1988 A
4834831 Nishizawa et al. May 1989 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5027746 Frijlink Jul 1991 A
5173327 Sandhu et al. Dec 1992 A
5178681 Moore et al. Jan 1993 A
5225366 Yoder Jul 1993 A
5261959 Gasworth Nov 1993 A
5281274 Yoder Jan 1994 A
5290609 Horiike et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5306666 Izumi Apr 1994 A
5338362 Imahashi Aug 1994 A
5374570 Nasu et al. Dec 1994 A
5441703 Jurgensen Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5526244 Bishop Jun 1996 A
5674786 Turner et al. Oct 1997 A
5711811 Suntola et al. Jan 1998 A
5730802 Ishizumi et al. Mar 1998 A
5796116 Nakata et al. Aug 1998 A
5807792 Ilg et al. Sep 1998 A
5835677 Li et al. Nov 1998 A
5855680 Soininen et al. Jan 1999 A
5879459 Gadgil et al. Mar 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5994240 Thakur Nov 1999 A
6013553 Wallace et al. Jan 2000 A
6015590 Suntola et al. Jan 2000 A
6015917 Bhandari et al. Jan 2000 A
6020243 Wallace et al. Feb 2000 A
6025627 Forbes et al. Feb 2000 A
6037273 Gronet et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6060755 Ma et al. May 2000 A
6071572 Mosely et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6124158 Dautartas et al. Sep 2000 A
6136654 Kraft et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6231672 Choi et al. May 2001 B1
6238734 Senzaki et al. May 2001 B1
6270572 Kim et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291283 Wilk Sep 2001 B1
6291867 Wallace et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6299294 Regan Oct 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6335240 Kim et al. Jan 2002 B1
6342277 Sherman Jan 2002 B1
6348376 Lim et al. Feb 2002 B2
6348386 Gilmer Feb 2002 B1
6358829 Yoon et al. Mar 2002 B2
6372598 Kang et al. Apr 2002 B2
6379748 Bhandari et al. Apr 2002 B1
6391785 Satta et al. May 2002 B1
6391803 Kim et al. May 2002 B1
6395650 Callegari et al. May 2002 B1
6399208 Baum et al. Jun 2002 B1
6399491 Jeon et al. Jun 2002 B2
6416577 Suntoloa et al. Jul 2002 B1
6416822 Chiang et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6444592 Ballantine et al. Sep 2002 B1
6447607 Soininen et al. Sep 2002 B2
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6452229 Krivokapic Sep 2002 B1
6458701 Chae et al. Oct 2002 B1
6462367 Marsh et al. Oct 2002 B2
6468924 Lee et al. Oct 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B2
6489214 Kim et al. Dec 2002 B2
6492283 Raaijmakers et al. Dec 2002 B2
6511539 Raaijmakers Jan 2003 B1
6524934 Lorimer Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6548424 Putkonen Apr 2003 B2
6551406 Kilpi Apr 2003 B2
6551929 Kori et al. Apr 2003 B1
6569501 Chiang et al. May 2003 B2
6572705 Suntola et al. Jun 2003 B1
6578287 Aswad Jun 2003 B2
6579372 Park Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6593484 Yasuhara et al. Jul 2003 B2
6599572 Saanila et al. Jul 2003 B2
6607973 Jeon Aug 2003 B1
6607976 Chen et al. Aug 2003 B2
6613695 Pomarede et al. Sep 2003 B2
6620670 Song et al. Sep 2003 B2
6620723 Byun et al. Sep 2003 B1
6630030 Suntola et al. Oct 2003 B1
6630201 Chiang et al. Oct 2003 B2
6630413 Todd Oct 2003 B2
6632279 Ritala et al. Oct 2003 B1
6632747 Niimi et al. Oct 2003 B2
6660126 Nguyen et al. Dec 2003 B2
6660660 Haukka et al. Dec 2003 B2
6674138 Halliyal et al. Jan 2004 B1
6686271 Raaijmakers et al. Feb 2004 B2
6716287 Santiago et al. Apr 2004 B1
6718126 Lei Apr 2004 B2
6734020 Yang et al. May 2004 B2
6772072 Ganguli et al. Aug 2004 B2
6773507 Jallepally et al. Aug 2004 B2
6777352 Tepman et al. Aug 2004 B2
6778762 Shareef et al. Aug 2004 B1
6803272 Halliyal et al. Oct 2004 B1
6809370 Colombo et al. Oct 2004 B1
6815285 Choi et al. Nov 2004 B2
6818094 Yudovsky Nov 2004 B2
6821563 Yudovsky Nov 2004 B2
6866746 Lei et al. Mar 2005 B2
6868859 Yudovsky Mar 2005 B2
6881437 Ivanov et al. Apr 2005 B2
6884719 Chang et al. Apr 2005 B2
6902624 Seidel et al. Jun 2005 B2
6921062 Gregg et al. Jul 2005 B2
7037816 Lin et al. May 2006 B2
7037863 Doh et al. May 2006 B2
7151039 Lee et al. Dec 2006 B2
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010021589 Wilk Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010024871 Yagi Sep 2001 A1
20010025979 Kim et al. Oct 2001 A1
20010028924 Sherman Oct 2001 A1
20010029092 Park et al. Oct 2001 A1
20010029891 Oh et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042523 Kesala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010048907 Ohmi et al. Dec 2001 A1
20010050039 Park Dec 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020000598 Kang et al. Jan 2002 A1
20020005556 Cartier et al. Jan 2002 A1
20020007790 Park et al. Jan 2002 A1
20020008297 Park et al. Jan 2002 A1
20020009544 McFeely et al. Jan 2002 A1
20020009896 Sandhu et al. Jan 2002 A1
20020014647 Seidl et al. Feb 2002 A1
20020015790 Baum et al. Feb 2002 A1
20020016084 Todd et al. Feb 2002 A1
20020017242 Hamaguchi et al. Feb 2002 A1
20020020869 Park et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020029092 Gass Mar 2002 A1
20020031618 Sherman Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020043666 Parsons et al. Apr 2002 A1
20020047151 Kim et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020052097 Park May 2002 A1
20020055270 Narwankar et al. May 2002 A1
20020064970 Chooi et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020074588 Lee Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081826 Rotondaro et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086106 Park et al. Jul 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020093046 Moriya et al. Jul 2002 A1
20020093781 Bachhofer et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020106451 Skarp et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020108570 Lindfors Aug 2002 A1
20020110991 Li Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020115886 Yasuhara et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Lu et al. Sep 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020134307 Choi Sep 2002 A1
20020135071 Kang et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020146895 Ramdani et al. Oct 2002 A1
20020151152 Shimamoto et al. Oct 2002 A1
20020151154 Yamazaki et al. Oct 2002 A1
20020153579 Yamamoto Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164421 Chiang et al. Nov 2002 A1
20020164423 Chiang et al. Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020173130 Pomarede et al. Nov 2002 A1
20020175393 Baum et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020187631 Kim et al. Dec 2002 A1
20020195643 Harada Dec 2002 A1
20020196591 Hujanen et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20020197863 Mak et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20020197883 Niimi et al. Dec 2002 A1
20030004723 Chihara Jan 2003 A1
20030010451 Tzu et al. Jan 2003 A1
20030013300 Byun Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030017697 Choi et al. Jan 2003 A1
20030022338 Ruben et al. Jan 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030042630 Babcoke et al. Mar 2003 A1
20030049931 Disney Mar 2003 A1
20030049942 Byun et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030054631 Raaijmakers et al. Mar 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030060057 Raaijmakers et al. Mar 2003 A1
20030068437 Nakamura et al. Apr 2003 A1
20030072884 Zhan et al. Apr 2003 A1
20030072913 Chou et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082300 Todd et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030089308 Raaijmakers et al. May 2003 A1
20030089942 Bhattacharyya May 2003 A1
20030096473 Shih et al. May 2003 A1
20030101927 Raaijmakers et al. Jun 2003 A1
20030101938 Ronsse et al. Jun 2003 A1
20030104710 Visokay et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030109114 Niwa Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030121469 Lindfors et al. Jul 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030133861 Bowen et al. Jul 2003 A1
20030134508 Raaijmakers et al. Jul 2003 A1
20030140854 Kilpi Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143747 Bondestam et al. Jul 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030165615 Aaltonen et al. Sep 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030186561 Law et al. Oct 2003 A1
20030188682 Tois et al. Oct 2003 A1
20030189232 Law et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190497 Yang et al. Oct 2003 A1
20030190804 Glenn et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030194853 Jeon Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030205729 Basceri et al. Nov 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030215570 Seutter et al. Nov 2003 A1
20030216981 Tillman Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224107 Lindfors et al. Dec 2003 A1
20030224578 Chung et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20030227033 Ahn et al. Dec 2003 A1
20030232501 Kher et al. Dec 2003 A1
20030232506 Metzner et al. Dec 2003 A1
20030232511 Metzner et al. Dec 2003 A1
20030232554 Blum et al. Dec 2003 A1
20030234417 Raaijmakers et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040007747 Visokay et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009675 Eissa et al. Jan 2004 A1
20040011404 Ku et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013803 Chung et al. Jan 2004 A1
20040014320 Chen et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040016404 Gregg et al. Jan 2004 A1
20040016973 Rotondaro et al. Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040023461 Ahn et al. Feb 2004 A1
20040023462 Rotondaro et al. Feb 2004 A1
20040025370 Guenther Feb 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040029321 Ang et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040036111 Nishikawa et al. Feb 2004 A1
20040036150 Smith et al. Feb 2004 A1
20040038554 Ahn et al. Feb 2004 A1
20040040501 Vaartstra Mar 2004 A1
20040043149 Gordon et al. Mar 2004 A1
20040043569 Ahn et al. Mar 2004 A1
20040043630 Vaartstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajima Mar 2004 A1
20040053484 Nakaya et al. Mar 2004 A1
20040065255 Yang et al. Apr 2004 A1
20040069227 Ku et al. Apr 2004 A1
20040071897 Verplancken et al. Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040144308 Yudovsky Jul 2004 A1
20040144311 Chen et al. Jul 2004 A1
20040168627 Conley, Jr. et al. Sep 2004 A1
20040203254 Conley, Jr. et al. Oct 2004 A1
20040216670 Gutsche et al. Nov 2004 A1
20040219784 Kang et al. Nov 2004 A1
20040224506 Choi et al. Nov 2004 A1
20040229475 Bevan et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20050006799 Gregg et al. Jan 2005 A1
20050059240 Choi et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050095859 Chen et al. May 2005 A1
20050104142 Narayanan et al. May 2005 A1
20050124109 Quevedo-Lopez et al. Jun 2005 A1
20050130442 Visokay et al. Jun 2005 A1
20050153571 Senzaki Jul 2005 A1
20050233156 Senzaki et al. Oct 2005 A1
20050255243 Senzaki Nov 2005 A1
20060121744 Quevedo-Lopez et al. Jun 2006 A1
20060273408 Kamiyama et al. Dec 2006 A1
Foreign Referenced Citations (86)
Number Date Country
0 464 515 Jan 1992 EP
0 497 267 Aug 1992 EP
0 973 189 Jan 2000 EP
0 973 191 Jan 2000 EP
1 146 141 Oct 2001 EP
1146141 Oct 2001 EP
1167569 Jan 2002 EP
1170804 Jan 2002 EP
1 321 973 Jun 2003 EP
1321973 Jun 2003 EP
2 355 727 Oct 2000 GB
58-098917 Jun 1983 JP
64-082671 Mar 1989 JP
01-143221 Jun 1989 JP
02-014513 Jan 1990 JP
02-230690 Sep 1990 JP
02-246161 Sep 1990 JP
03-234025 Oct 1991 JP
04-291916 Oct 1992 JP
05-029228 Feb 1993 JP
05-047666 Feb 1993 JP
05-074724 Mar 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-224138 Aug 1994 JP
06-230421 Aug 1994 JP
07-086269 Mar 1995 JP
07-300649 Nov 1995 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-212752 Aug 2000 JP
2000-319772 Nov 2000 JP
2001-020075 Jan 2001 JP
10-308283 Mar 2001 JP
2001-220294 Aug 2001 JP
2001-254181 Sep 2001 JP
2001-328900 Nov 2001 JP
2002-060944 Feb 2002 JP
2002-69641 Mar 2002 JP
2002-93804 Mar 2002 JP
2002-167672 Jun 2002 JP
2002-172767 Jun 2002 JP
2001-111000 Dec 2002 JP
2001-172767 Oct 2003 JP
WO 9617107 Jun 1996 WO
WO 9901595 Jan 1999 WO
WO 9929924 Jun 1999 WO
WO 9965064 Dec 1999 WO
WO 0013235 Mar 2000 WO
WO 0015865 Mar 2000 WO
WO 0016377 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 0063957 Oct 2000 WO
WO 0070674 Nov 2000 WO
WO 0079576 Dec 2000 WO
WO 0115220 Mar 2001 WO
WO 0117692 Mar 2001 WO
WO 0125502 Apr 2001 WO
WO 0127346 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 0136702 May 2001 WO
WO 0140541 Jun 2001 WO
WO 0166832 Sep 2001 WO
WO 0182390 Nov 2001 WO
WO 0199166 Dec 2001 WO
WO 0201628 Jan 2002 WO
WO 0208485 Jan 2002 WO
WO 0208488 Jan 2002 WO
WO 0209167 Jan 2002 WO
WO 0227063 Apr 2002 WO
WO 0231875 Apr 2002 WO
WO 0243115 May 2002 WO
WO 0245167 Jun 2002 WO
WO 0245871 Jun 2002 WO
WO 02065525 Aug 2002 WO
WO 02067319 Aug 2002 WO
WO 03023835 Mar 2003 WO
WO 2005117086 Dec 2005 WO
Related Publications (1)
Number Date Country
20050260357 A1 Nov 2005 US