Stacked field-effect transistor switch

Information

  • Patent Grant
  • 10749518
  • Patent Number
    10,749,518
  • Date Filed
    Friday, November 17, 2017
    7 years ago
  • Date Issued
    Tuesday, August 18, 2020
    4 years ago
Abstract
A stacked field-effect transistor (FET) switch is disclosed. The stacked FET switch has a first FET device stack that is operable in an on-state and in an off-state and is made up of a first plurality of FET devices coupled in series between a first port and a second port, wherein the first FET device stack has a conductance that decreases with increasing voltage between the first port and the second port. The stacked FET switch also includes a second FET device stack that is operable in the on-state and in the off-state and is made up of a second plurality of FET devices coupled in series between the first port and the second port, wherein the second FET device stack has a conductance that increases with increasing voltage between the first port and the second port.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to reducing noise generated by a radio frequency (RF) switch that is in an on-state while passing an applied RF signal through the RF switch.


BACKGROUND

An important electronic component of a radio frequency (RF) transceiver is a field-effect transistor (FET) that makes up stacked FET-type RF switches. An RF switch that is FET based typically needs linearity compensation to prevent generation of harmonic distortion when transmit signals are applied to the RF switch while the RF switch is in an on-state. The RF switch is effectively closed while in the on-state, and the transmit signals pass through the RF switch. However, while the RF switch is closed, undesirable harmonics are generated from the transmit signals in part due to non-linear conductance inherent to the RF switch. The undesirable harmonics pass from the RF switch and interfere with the RF transceiver's receiver circuitry. What is needed is an RF switch that limits undesirable harmonics due to non-linear conductance.


SUMMARY

A stacked field-effect transistor (FET) switch is disclosed. The stacked FET switch has a first FET device stack that is operable in an on-state and in an off-state and is made up of a first plurality of FET devices coupled in series between a first port and a second port, wherein the first FET device stack has a conductance that decreases with increasing voltage between the first port and the second port between 10% and 99% of a first breakdown voltage of the first FET device stack. The stacked FET switch also includes a second FET device stack that is operable in the on-state and in the off-state and is made up of a second plurality of FET devices coupled in series between the first port and the second port, wherein the second FET device stack has a conductance that increases with increasing voltage between the first port and the second port between 10% and 99% of a second breakdown voltage of the second FET device stack.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure and, together with the description, serve to explain the principles of the disclosure.



FIG. 1 is a schematic of a stacked field-effect transistor (FET) switch that is structured in accordance with the present disclosure.



FIG. 2 is a schematic of an embodiment of the stacked FET switch of FIG. 1 that employs N-channel FET devices for a first plurality of FET devices and P-channel FET devices for a second plurality of FET devices that are coupled in parallel with the first plurality of FET devices.



FIG. 3 is a schematic of an embodiment of the stacked FET switch of FIG. 1 that employs N-channel FET devices for both the first plurality of FET devices and the second plurality of FET devices that are coupled in parallel with the first plurality of FET devices.



FIG. 4 is a schematic of another embodiment of a stacked FET switch that in accordance with the present disclosure includes at least a third FET device stack added to a structure in common with the stacked FET switch of FIGS. 1-3.



FIG. 5 is a schematic of an embodiment of a stacked FET switch that in accordance with the present disclosure includes a second FET device stack having fewer FET devices added to a structure in common with the stacked FET switch of FIGS. 1-3.



FIG. 6 is a schematic of an embodiment of a stacked FET switch that in accordance with the present disclosure includes a third FET device stack with a third plurality of FET devices having an equal number of FET devices as the second plurality of FET devices.



FIG. 7 is a schematic of an embodiment of the stacked FET switch of FIG. 1 that employs a plurality of capacitors wherein each of the plurality of capacitors is coupled in parallel with a corresponding one of the second plurality of FET devices.



FIG. 8 is a graph of relative magnitude for on-state conductance for drift FETs, ballistic FETs, and stacked drift FETs coupled in parallel with ballistic FETs to illustrate linearization of the on-state conductance for the stacked FET switches of the present disclosure.



FIG. 9 is a graph depicting a well-compensated drift FET- and ballistic FET-based stacked FET switch such as realized by any of the exemplary stacked FET switches of the present disclosure in comparison to a traditional drift FET-based stacked FET switch.



FIG. 10 is a plot of harmonic distortion versus signal voltage for a drift FET-only-based stacked FET switch and a well-compensated drift FET—and ballistic FET-based stacked FET switch such as the exemplary embodiment of the FET-based switch of FIG. 2.



FIG. 11 is a cross-sectional view of the stacked FET switch 10 showing a device layer in which the first FET stack 16 (FIG. 1) is formed over a substrate.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


For the purpose of this disclosure, a ballistic field-effect transistor (FET) is a semiconductor device having a gate, a source, a drain, and a channel between the source and the drain in which the length L of the channel is less than a mean-free-path λ that is the average distance between electron scattering events within the channel. Due to the relatively short channel length L compared with the mean-free-path λ, the ballistic FET has a characteristic of electron propagation between the source and the drain with practically no electron scattering due to collisions with phonons and/or channel defects while in a current-conducting state controlled by a control voltage applied to the gate. Further still, in accordance with the present disclosure, a ballistic FET has conductance within the channel that increases with increasing voltage between the source and the drain between 10% and 99% of a breakdown voltage of the ballistic FET. Moreover, a ballistic FET is a device in which at least 70% of carriers are transported ballistically. Further still, ballistic transport occurs when carriers have enough speed to generate a transition from the indirect band to the direct band. A new schematic symbol is used to identify ballistic FETs in the Figures of the present disclosure. The new symbol has an arrow pointing between the source and drain of a traditional FET symbol. The arrow denotes the ballistic carrier transport between the source and drain of the ballistic FET.


Also for the purpose of this disclosure, a drift FET is a traditional semiconductor device having a gate, a source, a drain, and a channel between the source and the drain in which the length L of the channel is greater than the mean-free-path λ that is the average distance between electron scattering events within the channel. Moreover, a drift FET is a device in which at least 50% of carriers are transported by drift.



FIG. 1 is a schematic of a stacked FET switch 10 that is structured in accordance with the present disclosure. The stacked FET switch 10 has a first port 12 and a second port 14. When in a closed state, the stacked FET switch 10 allows passing of radio frequency (RF) signals between the first port 12 and the second port 14. When in an open state, the stacked FET switch 10 prevents RF signals from passing between the first port 12 and the second port 14. In the exemplary embodiment of FIG. 1, the first port 12 is an RF input RFIN and the second port 14 is an RF output RFOUT. However, it is to be understood that either of the first port 12 or second port 14 may be considered an RF input or an RF output depending on which direction an RF signal is passing through the stacked FET switch 10.


The stacked FET switch 10 has a first FET device stack 16 that is operable in an on-state when the stacked FET switch 10 is in the closed state and in an off-state when the stacked FET switch 10 is in the open state. The first device FET stack 16 is made up of a first plurality of FET devices 18 coupled in series between the first port 12 and the second port 14. Each of the first plurality of FET devices 18 has a first current terminal 20, a second current terminal 22, and a control terminal 24. The first current terminal 20 and the second current terminal 22 are typically a drain terminal and a source terminal, respectively, and the control terminal 24 is typically a gate terminal. In the exemplary embodiment of FIG. 1, the drain terminal and the source terminal are interchangeable; hence the first current terminal 20 and the second current terminal 22 are not specifically designated as source and drain.


The first FET device stack 16 has an on-state conductance GON that decreases with increasing voltage between the first port 12 and the second port 14 between 10% and 99% of a first breakdown voltage of the first FET device stack 16. In other words, an on-state resistance typically referred to as RON increases for each of the first plurality of FET devices 18 with increasing voltage between the first port 12 and the second port 14.


At some point between 10% and 99% of the first breakdown voltage of the first FET device stack 16, the on-state conductance GON decreases non-linearly, which results in non-linear harmonic distortion. To limit the non-linear harmonic distortion, the stacked FET switch 10 includes a second FET device stack 26 that is operable in the on-state and in the off-state, the second FET device stack comprising a second plurality of FET devices 28 coupled in series between the first port and the second port and having a conductance that increases with increasing voltage between the first port and the second port between 10% and 99% of a second breakdown voltage of the second FET device stack 26.


The second FET device stack 26 is made up of a second plurality of FET devices 28 coupled in series between the first port 12 and the second port 14. Each of the second plurality of FET devices 28 has a third current terminal 30, a fourth current terminal 32, and a second control terminal 34. The third current terminal 30 and the fourth current terminal 32 are typically a drain terminal and a source terminal, respectively, and the second control terminal 34 is typically a gate terminal. Similar to the plurality of FET devices 18, the drain terminal and the source terminal are interchangeable; hence the third current terminal 30 and the fourth current terminal 32 are not specifically designated as source and drain in this exemplary embodiment. Also, in this exemplary embodiment, each of the first plurality of FET devices 18 is coupled in parallel with a corresponding one of the second plurality of FET devices 28. Specifically, first current terminal 20 and third current terminal 30 of opposing ones of the first plurality of FET devices 18 and the second plurality of FET devices 28 are coupled together. Moreover, the second current terminal 22 and the fourth current terminal 32 of opposing ones of the first plurality of FET devices 18 and the second plurality of FET devices 28 are coupled together.


The second FET device stack 26 has a compensating on-state conductance GON_COMP that increases with increasing voltage between the first port 12 and the second port 14 between 10% and 99% of the second breakdown voltage of the second FET device stack 26. In other words, the on-state resistance typically referred to as RON decreases for each of the second plurality of FET devices 28 with increasing voltage between the first port 12 and the second port 14. The compensating on-state conductance GON_COMP of the second FET device stack 26 counteracts the on-state conductance GON of the first FET device stack 16, which in turn limits generation of harmonic distortion with the stacked FET switch 10.


The compensating on-state conductance GON_COMP of the second FET device stack 26 is effective at limiting generation of harmonic distortion over design corners of process, supply voltage, and temperature. A maximum limitation of harmonic distortion may be achieved by providing appropriate values of direct current (DC) bias voltages to the gates of the first plurality of FET devices 18 and/or the second plurality of FET devices 28.


In this regard, a first bias circuitry 35 provides a DC bias voltage to the control terminals 24 of the first plurality of FET devices 18 through resistors R1 coupled between a first bias output terminal 36 and individual ones of the control terminals 24. There is one each of the resistors R1 for each of the control terminals 24. The resistors R1 typically have mega-ohm resistance values. A first gate control voltage VGATE1 for turning the first plurality of FET devices 18 from the off-state to the on-state may be applied to the first bias output terminal 36. Also included is a second bias circuitry 38 that provides a DC bias voltage to the second control terminals 34 of the second plurality of FET devices 28 through resistors R2 coupled between a second bias output terminal 40 and individual ones of the second control terminals 34. There is one each of the resistors R2 for each of the control terminals 24. The resistors R2 typically have mega-ohm resistance values. A second gate control voltage VGATE2 for turning the second plurality of FET devices 28 from the off-state to the on-state may be applied to the second bias output terminal 40. In some embodiments, the first bias circuitry 35 and/or the second bias circuitry 38 are configured to automatically adjust bias voltage level to track with changes in process, supply voltage, and temperature. In some embodiments, the first bias circuitry 35 is configured to generate a first bias voltage level that is different from a second bias voltage level generated by the second bias circuitry 38 in order to appropriately bias the first plurality of FET devices 18 and the second plurality of FET devices 28, which have different electrical characteristics that require different bias voltage levels for proper operation.


Maximum limiting of harmonic distortion may also be achieved by changing the device sizes of the second plurality of FET devices 28 relative to the device sizes of first plurality of FET devices 18. Effective device size may be adjusted by controlling how many transistor fingers of the second plurality of FET devices 28 are active. Alternatively, fixed device sizes for the second plurality of FET devices 28 relative to the device sizes of first plurality of FET devices 18 may be selected to maximize the limitation of harmonic distortion over an expected range of process, supply voltage, and temperature changes.


To achieve opposing on-state conductance GON and compensating on-state conductance GON_COMP, FET devices having opposing conductance characteristics are selected for the first plurality of FET devices 18 and the second plurality of FET devices 28, respectively. For the exemplary embodiments of the present disclosure, traditional drift FETs are selected for the first plurality of FET devices 18, and ballistic FET devices are selected for the second plurality of FET devices 28. At least 50% carrier transport of the first plurality of FET devices is drift transport, and at least 70% of carrier transport of the second plurality of FET devices is ballistic transport. As a result, ballistic FET devices have increasing conductance as voltage increases from source to drain between 10% and 99% of the breakdown voltage for individual ballistic FET devices. Exemplary channel lengths L for N-channel ballistic FET devices are between 22 nm and 3 nm, whereas N-channel drift FET devices have channel lengths L that are greater than 22 nm. In general P-channel FET devices are the first FET devices to exhibit ballistic transport of carriers with decreasing gate length. P-channel FET devices typically begin to exhibit quasi-ballistic transport at 45 nm due to crystal strain that influences hole mobility greater than electron mobility. It is to be understood that while the present disclosure employs ballistic FET devices in exemplary embodiments, it is envisioned that other types of FET devices having increasing conductance as voltage increases across source and drain between 10% and 99% of the breakdown voltage for individual FET devices may also be employable to compensate for the opposing conductance characteristic of traditional drift FET devices.



FIG. 2 is a schematic of an embodiment of the stacked FET switch 10 of FIG. 1 that employs N-channel FET devices for the first plurality of FET devices 18 and P-channel FET devices for the second plurality of FET devices 28. P-channel FET devices typically begin to exhibit quasi-ballistic transport at 45 nm due to crystal strain that influences hole mobility greater than electron mobility. In at least one embodiment, the P-channel FET devices are germanium doped to enhance carrier mobility in comparison to P-channel silicon metal oxide semiconductor FETs. In some embodiments, the P-channel FET devices have a germanium-strained silicon structure. It is to be understood that drift-mode P-channel FET devices may be used for the first plurality of FET devices 18 while ballistic-mode N-channel FET devices are used for the second plurality of FET devices 28.



FIG. 3 is a schematic of an embodiment of the stacked FET switch 10 of FIG. 1 that employs N-channel FET devices for both the first plurality of FET devices 18 and the second plurality of FET devices 28. However, the N-channel FET devices making up the first plurality of FET devices 18 have channel lengths that are long enough to operate in the drift mode, whereas the N-channel FET devices making up the second plurality of FET devices 28 have channel lengths short enough to operate in the ballistic mode.



FIG. 4 is a schematic of an embodiment of a stacked FET switch 42 that in accordance with the present disclosure includes at least a third FET device stack 44 added to a structure in common with the stacked FET switch 10 of FIGS. 1-3. The third FET device stack 44 is made up of a third plurality of FET devices 46 coupled in series between the first port 12 and the second port 14. Each of the third plurality of FET devices 46 has a fifth current terminal 48, a sixth current terminal 50, and a third control terminal 52. The fifth current terminal 48 and the sixth current terminal 50 are typically a drain terminal and a source terminal, respectively, and the third control terminal 52 is typically a gate terminal. Also, in this exemplary embodiment of FIG. 4, each of the first plurality of FET devices 18 is coupled in parallel with a corresponding one of the second plurality of FET devices 28 and a corresponding one of the third plurality of FET devices 46. Specifically, first current terminal 20, the third current terminal 30, and the fifth current terminal 48 of opposing ones of the first plurality of FET devices 18, the second plurality of FET devices 28, and the third plurality of FET devices 46, respectively, are coupled together. Moreover, the second current terminal 22, the fourth current terminal 32, and the sixth current terminal 50 of opposing ones of the first plurality of FET devices 18, the second plurality of FET devices 28, and the third plurality of FET devices 46, respectively, are coupled together.


The addition of the third FET device stack 44 provides piecewise linearization compensation of the non-linear conduction characteristic of the first FET device stack 16. Moreover, additional FET stacks coupled in parallel with the third FET stack 44 may provide more degrees of freedom for piecewise linearization compensation of the non-linear conduction characteristic of the first FET device stack 16.


The second bias circuitry 38 provides a DC bias voltage to the third control terminals 52 of the third plurality of FET devices 46 through resistors R3 coupled between the second bias output terminal 40 and individual ones of the third control terminals 52. There is one each of the resistors R3 for each of the third control terminals 52. The resistors R3 typically have mega-ohm resistance values. The second gate control voltage VGATE2 is also for turning the second plurality of FET devices 28 from the off-state to the on-state. As with the stacked FET switch 10, in some embodiments, the first bias circuitry 35 and/or the second bias circuitry 38 are configured to automatically adjust bias voltage to track with changes in process, supply voltage, and temperature for the stacked FET switch 42. While the third plurality of FET devices 46 is depicted as comprising N-channel ballistic FETs, the third plurality of FET devices 46 may also comprise P-channel ballistic FETs.



FIG. 5 is a schematic of an embodiment of a stacked FET switch 54 that in accordance with the present disclosure includes a second FET device stack 56 added to a structure in common with the stacked FET switch 10 of FIGS. 1-3. In this exemplary embodiment, the second FET device stack 56 has a second plurality of FET devices 58 that has half as many FETs as the first plurality of FET devices 18. The second plurality of FET devices 58 is coupled in series between the first port 12 and the second port 14. Each of the second plurality of FET devices 58 has a third current terminal 60, a fourth current terminal 62, and a second control terminal 64. In this exemplary embodiment, there is one of the second plurality of FET devices 58 coupled in parallel across for every two of the first plurality of FET devices 18. Specifically, the first current terminal 20 and third current terminal 60 of every other opposing ones of the first plurality of FET devices 18 and the second plurality of FET devices 58 are coupled together. Moreover, the second current terminal 22 and the fourth current terminal 62 of every other opposing ones of the first plurality of FET devices 18 and the second plurality of FET devices 58 are coupled together. A benefit of having fewer FET devices in the second FET device stack 56 is that a larger voltage across each of the second plurality of FET devices 58 results in a carrier mobility increase.



FIG. 6 is a schematic of an embodiment of a stacked FET switch 66 that in accordance with the present disclosure includes a third FET device stack 68 with a third plurality of FET devices 70 having an equal number of FET devices as the second plurality of FET devices 58. In this exemplary embodiment, there is one of the third plurality of FET devices coupled in parallel across for every two of the first plurality of FET devices 18 beginning with two of the first plurality of FET devices 18 closest to the second port 14. As alluded to in the description of the embodiment of FIG. 5, a benefit of having fewer FET devices in the third FET device stack 68 is that a larger voltage across each of the third plurality of FET devices 70 results in a carrier mobility increase. However, the stacked FET switch 66 has an additional benefit of increased current handling due to the addition of the third FET device stack 68.



FIG. 7 is a schematic of an embodiment of the stacked FET switch 10 of FIG. 1 that employs a plurality of capacitors C1 wherein each of the plurality of capacitors C1 is coupled in parallel with a corresponding one of the second plurality of FET devices 28. The plurality of capacitors C1 stabilize the parasitic capacitances of the first plurality of FET devices 18 and the second plurality of FET devices 28 such that a total capacitance value for the stacked FET switch 10 deviates by no more ±5% while the stacked FET switch 10 is in an open state. In at least one embodiment, each of the plurality of capacitors C1 is a metal-insulator-metal type capacitor or a metal-oxide-metal type capacitor.



FIG. 8 is a graph of relative magnitude for on-state conductance for drift FETs, ballistic FETs, and stacked drift FETs coupled in parallel with ballistic FETs to illustrate linearization of the on-state conductance for the stacked FET switches of the present disclosure. The next-to-bottom curve depicted in medium dashed line depicts on-state conductance for a ballistic FET biased at a first bias voltage VG1. The bottom curve depicted in short dashed line depicts on-state conductance for a ballistic FET biased at a second bias voltage VG2. Notice that the on-state conductance increases as RF signal voltage VRF increases. This increase is opposed to the on-state conductance decrease with increasing RF signal voltage. Notice that the top curve depicted in long dashed line has decreasing conductance with increasing RF signal voltage. A curve second from the top depicted in thick dot-dash line represents an undercompensated result for a drift FET- and ballistic FET-based stacked FET switch. The compensation is improved by adjusting the bias voltage to the ballistic FETs making up the stacked FET switch. The solid curve depicts a well-compensated drift FET- and ballistic FET-based stacked FET switch such as that realized by any of the exemplary stacked FET switches of the present disclosure. The thinner dot-dashed line just below the solid curve depicts drain-to-source conductance GDS for a drift FET.



FIG. 9 is a graph depicting a well-compensated drift FET- and ballistic FET-based stacked FET switch such as that realized by any of the exemplary stacked FET switches of the present disclosure in comparison to a traditional drift FET-based stacked FET switch. In this particular case, the well-compensated drift FET- and ballistic FET-based stacked FET switch is made up of N-channel FETs and P-channel FETs, and the traditional drift FET-based stacked FET switch is made up of only N-channel FETs.



FIG. 10 is a plot of harmonic distortion versus signal voltage for a drift FET-only-based stacked FET switch and a well-compensated drift FET- and ballistic FET-based stacked FET switch such as the exemplary embodiment of the stacked FET switch 10 of FIG. 2. In this case, linearization provided by the stacked FET switch 10 of FIG. 2 decreases harmonic distortion by 24 dB. Harmonic distortion can even be further reduced by substrate selection for the stacked FET switch 10.


In this regard, FIG. 11 is a cross-sectional view of the stacked FET switch 10 showing a device layer 78 in which the first FET device stack 16 (FIG. 1) and the second FET device stack 26 reside. A substrate 80 supports the device layer 78. A buried oxide layer 82 may be an etch stop layer that is interfaced directly with and between both the device layer 78 and the substrate 80. In some embodiments, the substrate 80 is made of a polymeric material such as thermoplastic or epoxy. However, it is to be understood that other embodiments of the present disclosure remain functional on typical high-resistance semiconductor substrates such as silicon. Thus, in at least some embodiments, the stacked FET switch 10 is of the silicon-on-insulator type in which high-resistance silicon substrates are employed. Nevertheless, there are benefits to replacing the typical high-resistance semiconductor substrates with a substrate made of polymeric material. For example, polymeric material has electrical properties that provide superior isolation during operation and prevent harmonics from being generated within the substrate 80. Moreover, additives such as nanopowders may be included in the polymeric material to increase thermal conductivity of the stacked FET switch 10.


Semiconductor substrates may be replaced with polymeric substrates using techniques disclosed in U.S. Patent Publication Nos. 20140252566 A1, 20140306324 A1, 20150255368 A1, now issued as U.S. Pat. No. 9,812,350, 20160079137 A1, now issued as U.S. Pat. No. 9,824,951, 20160100489 A1 now issued as U.S. Pat. No. 10,085,352, 20160126196 A1 now issued as U.S. Pat. No. 10,121,718, 20160343604 A1, 20160343592 A1 now issued as U.S. Pat. No. 9,860,145, 20170032957 A1 now issued as U.S. Pat. No. 10,062,637, 20170098587 A1 now issued as U.S. Pat. No. 10,199,301, 20170271200 A1 now issued as U.S. Pat. No. 10,134,627, and 20170309709 A1 now issued as U.S. Pat. No. 10,038,055; U.S. Pat. Nos. 9,214,337, 9,583,414, and 9,613,831; and U.S. patent application Ser. No. 15/353,346, filed Nov. 16, 2016, now issued as U.S. Pat. No. 10,103,080, titled THERMALLY ENHANCED SEMICONDUCTOR PACKAGE WITH THERMAL ADDITIVE AND PROCESS FOR MAKING THE SAME; U.S. patent application Ser. No. 15/491,064, filed Apr. 19, 2017, now issued as U.S. Pat. No. 10,068,831, titled THERMALLY ENHANCED SEMICONDUCTOR PACKAGE AND PROCESS FOR MAKING THE SAME; U.S. patent application Ser. No. 15/498,040, filed Apr. 26, 2017, now issued as U.S. Pat. No. 10,109,502titled SEMICONDUCTOR PACKAGE WITH REDUCED PARASITIC COUPLING EFFECTS AND PROCESS FOR MAKING THE SAME; U.S. patent application Ser. No. 15/601,858, filed May 22, 2017, titled WAFER-LEVEL PACKAGE WITH ENHANCED PERFORMANCE; U.S. patent application Ser. No. 15/695,579, filed Sep. 5, 2017, titled MICROELECTRONICS PACKAGE WITH SELF-ALIGNED STACKED-DIE ASSEMBLY; and U.S. patent application Ser. No. 15/695,629, filed Sep. 5, 2017, now issued as U.S. Pat. No. 10,366,972, titled MICROELECTRONICS PACKAGE WITH SELF-ALIGNED STACKED-DIE ASSEMBLY, which are hereby incorporated by reference in their entireties. Some of the disclosed substrate replacement techniques are applied at a die-level process, whereas others are applied during a wafer-level process.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A stacked field-effect transistor (FET) switch comprising: a first FET device stack that is operable in an on-state and in an off-state, the first FET device stack comprising a first plurality of FET devices coupled in series between a first port and a second port and having a first on-state conductance that decreases with increasing voltage between the first port and the second port between 10% and 99% of a first breakdown voltage of the first FET device stack when the first FET device stack is in the on-state; anda second FET device stack that is operable in the on-state and in the off-state, the second FET device stack comprising a second plurality of FET devices coupled in series between the first port and the second port, wherein the second FET device stack is configured to have a second on-state conductance that increases with increasing voltage between the first port and the second port between 10% and 99% of a second breakdown voltage of the second FET device stack to compensate for decreasing of the first on-state conductance when both the first FET device stack and the second FET device stack are in the on-state.
  • 2. The stacked FET switch of claim 1 wherein the second plurality of FET devices comprises ballistic FET devices.
  • 3. The stacked FET switch of claim 1 wherein the first plurality of FET devices comprises N-channel FET devices and the second plurality of FET devices comprises P-channel FET devices.
  • 4. The stacked FET switch of claim 3 wherein the P-channel FET devices are germanium doped to enhance carrier mobility.
  • 5. The stacked FET switch of claim 1 wherein the first plurality of FET devices comprises N-channel FET devices and the second plurality of FET devices comprises N-channel FET devices.
  • 6. The stacked FET switch of claim 1 wherein each of the first plurality of FET devices is coupled in parallel with a corresponding one of the second plurality of FET devices.
  • 7. The stacked FET switch of claim 1 further comprising a plurality of capacitors wherein each of the plurality of capacitors is coupled in parallel with a corresponding one of the second plurality of FET devices such that parasitic capacitances of the first plurality of FET devices and the second plurality of FET devices cause a total capacitance of the stacked FET switch to deviate by no more ±5% while the stacked FET switch is in an open state.
  • 8. The stacked FET switch of claim 7 wherein the plurality of capacitors comprises metal-insulator-metal type capacitors.
  • 9. The stacked FET switch of claim 1 further comprising a first bias circuitry having a first output coupled to first control terminals of the first plurality of FET devices and a second bias circuitry having a second bias output coupled to second control terminals of the second plurality of FET devices.
  • 10. The stacked FET switch of claim 9 wherein the first bias circuitry and the second bias circuitry are each configured to automatically adjust bias voltage level to track with changes in supply voltage.
  • 11. The stacked FET switch of claim 9 wherein the first bias circuitry and the second bias circuitry are each configured to automatically adjust bias voltage level to track with changes in temperature.
  • 12. The stacked FET switch of claim 9 wherein the first bias circuitry and the second bias circuitry are each configured to automatically adjust bias voltage level to track with changes in supply voltage and changes in temperature.
  • 13. The stacked FET switch of claim 9 wherein the first bias circuitry is configured to generate a first bias voltage level that is different from a second bias voltage level generated by the second bias circuitry.
  • 14. The stacked FET switch of claim 1 wherein the second plurality of FET devices comprises fewer FET devices than the first plurality of FET devices.
  • 15. The stacked FET switch of claim 14 wherein there is one FET device of the second plurality of FET devices coupled in parallel across for every two FET devices of the first plurality of FET devices beginning with two FET devices of the first plurality of FET devices closest to the first port.
  • 16. The stacked FET switch of claim 15 further including a third plurality of FET devices having an equal number of FET devices as the second plurality of FET devices, wherein there is one FET device of the third plurality of FET devices coupled in parallel across for every two FET devices of the first plurality of FET devices beginning with two FET devices of the first plurality of FET devices closest to the second port.
  • 17. The stacked FET switch of claim 1 wherein the first plurality of FET devices and the second plurality of FET devices are of the silicon-on-insulator type.
  • 18. The stacked FET switch of claim 1 further comprising: a polymeric substrate; anda device layer within which the first FET device stack and the second FET stack reside, wherein the device layer is directly supported by the polymeric substrate.
  • 19. The stacked FET switch of claim 1, wherein at least 50% carrier transport of the first plurality of FET devices is drift transport and at least 70% of carrier transport of the second plurality of FET devices is ballistic transport.
  • 20. The stacked FET switch of claim 1 wherein the physical size of the second plurality of FET devices is different from the physical size of the first plurality of FET devices.
  • 21. The stacked FET switch of claim 1 wherein each of the first plurality of FET devices has a first number of gate fingers and each of the second plurality of FET devices has a second number of gate fingers that is different in number from the first number of gate fingers.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 62/423,815, filed Nov. 18, 2016, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (256)
Number Name Date Kind
4093562 Kishimoto Jun 1978 A
4366202 Borovsky Dec 1982 A
5013681 Godbey et al. May 1991 A
5061663 Bolt et al. Oct 1991 A
5069626 Patterson et al. Dec 1991 A
5362972 Yazawa Nov 1994 A
5391257 Sullivan et al. Feb 1995 A
5459368 Onishi et al. Oct 1995 A
5646432 Iwaki et al. Jul 1997 A
5648013 Uchida et al. Jul 1997 A
5699027 Tsuji et al. Dec 1997 A
5709960 Mays et al. Jan 1998 A
5729075 Strain Mar 1998 A
5831369 Fürbacher et al. Nov 1998 A
5920142 Onishi et al. Jul 1999 A
6072557 Kishimoto Jun 2000 A
6084284 Adamic, Jr. Jul 2000 A
6154366 Ma et al. Nov 2000 A
6154372 Kalivas et al. Nov 2000 A
6235554 Akram et al. May 2001 B1
6236061 Walpita May 2001 B1
6268654 Glenn et al. Jul 2001 B1
6271469 Ma et al. Aug 2001 B1
6377112 Rozsypal Apr 2002 B1
6423570 Ma et al. Jul 2002 B1
6426559 Bryan et al. Jul 2002 B1
6441498 Song Aug 2002 B1
6446316 Fürbacher et al. Sep 2002 B1
6578458 Akram et al. Jun 2003 B1
6649012 Masayuki et al. Nov 2003 B2
6713859 Ma Mar 2004 B1
6841413 Liu et al. Jan 2005 B2
6864156 Conn Mar 2005 B1
6902950 Ma et al. Jun 2005 B2
6943429 Glenn et al. Sep 2005 B1
6964889 Ma et al. Nov 2005 B2
6992400 Tikka et al. Jan 2006 B2
7042072 Kim et al. May 2006 B1
7049692 Nishimura et al. May 2006 B2
7109635 McClure et al. Sep 2006 B1
7183172 Lee et al. Feb 2007 B2
7238560 Sheppard et al. Jul 2007 B2
7279750 Jobetto Oct 2007 B2
7288435 Aigner et al. Oct 2007 B2
7307003 Reif et al. Dec 2007 B2
7393770 Wood et al. Jul 2008 B2
7402901 Hatano et al. Jul 2008 B2
7427824 Iwamoto et al. Sep 2008 B2
7489032 Jobetto Feb 2009 B2
7596849 Carpenter et al. Oct 2009 B1
7619347 Bhattacharjee Nov 2009 B1
7635636 McClure et al. Dec 2009 B2
7714535 Yamazaki et al. May 2010 B2
7749882 Kweon et al. Jul 2010 B2
7790543 Abadeer et al. Sep 2010 B2
7843072 Park et al. Nov 2010 B1
7855101 Furman et al. Dec 2010 B2
7868419 Kerr et al. Jan 2011 B1
7910405 Okada et al. Mar 2011 B2
7960218 Ma et al. Jun 2011 B2
8004089 Jobetto Aug 2011 B2
8183151 Lake May 2012 B2
8420447 Tay et al. Apr 2013 B2
8503186 Lin et al. Aug 2013 B2
8643148 Lin et al. Feb 2014 B2
8658475 Kerr Feb 2014 B1
8664044 Jin et al. Mar 2014 B2
8772853 Hong et al. Jul 2014 B2
8791532 Graf et al. Jul 2014 B2
8802495 Kim et al. Aug 2014 B2
8803242 Marino Aug 2014 B2
8816407 Kim et al. Aug 2014 B2
8835978 Mauder et al. Sep 2014 B2
8906755 Hekmatshoartabari et al. Dec 2014 B1
8921990 Park et al. Dec 2014 B2
8927968 Cohen et al. Jan 2015 B2
8941248 Lin et al. Jan 2015 B2
8963321 Lenniger et al. Feb 2015 B2
8983399 Kawamura et al. Mar 2015 B2
9165793 Wang et al. Oct 2015 B1
9214337 Carroll et al. Dec 2015 B2
9349700 Hsieh et al. May 2016 B2
9368429 Ma et al. Jun 2016 B2
9461001 Tsai et al. Oct 2016 B1
9520428 Fujimori Dec 2016 B2
9530709 Leipold et al. Dec 2016 B2
9613831 Morris et al. Apr 2017 B2
9646856 Meyer et al. May 2017 B2
9653428 Hiner et al. May 2017 B1
9786586 Shih Oct 2017 B1
9812350 Costa Nov 2017 B2
9824951 Leipold et al. Nov 2017 B2
9824974 Gao et al. Nov 2017 B2
9859254 Yu et al. Jan 2018 B1
9875971 Bhushan et al. Jan 2018 B2
9941245 Skeete et al. Apr 2018 B2
10134837 Fanelli et al. Nov 2018 B1
20010004131 Masayuki et al. Jun 2001 A1
20020070443 Mu et al. Jun 2002 A1
20020074641 Towle et al. Jun 2002 A1
20020127769 Ma et al. Sep 2002 A1
20020127780 Ma et al. Sep 2002 A1
20020137263 Towle et al. Sep 2002 A1
20020185675 Furukawa Dec 2002 A1
20030207515 Tan et al. Nov 2003 A1
20040021152 Nguyen et al. Feb 2004 A1
20040164367 Park Aug 2004 A1
20040166642 Chen et al. Aug 2004 A1
20040219765 Reif et al. Nov 2004 A1
20050037595 Nakahata Feb 2005 A1
20050077511 Fitzergald Apr 2005 A1
20050079686 Aigner et al. Apr 2005 A1
20050212419 Vazan et al. Sep 2005 A1
20060057782 Gardes et al. Mar 2006 A1
20060099781 Beaumont et al. May 2006 A1
20060105496 Chen et al. May 2006 A1
20060108585 Gan et al. May 2006 A1
20060228074 Lipson et al. Oct 2006 A1
20060261446 Wood et al. Nov 2006 A1
20070020807 Geefay et al. Jan 2007 A1
20070045738 Jones et al. Mar 2007 A1
20070069393 Asahi et al. Mar 2007 A1
20070075317 Kato et al. Apr 2007 A1
20070121326 Nall et al. May 2007 A1
20070158746 Ohguro Jul 2007 A1
20070181992 Lake Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070194342 Kinzer Aug 2007 A1
20070252481 Iwamoto et al. Nov 2007 A1
20070276092 Kanae et al. Nov 2007 A1
20080050852 Hwang et al. Feb 2008 A1
20080050901 Kweon et al. Feb 2008 A1
20080164528 Cohen et al. Jul 2008 A1
20080265978 Englekirk Oct 2008 A1
20080272497 Lake Nov 2008 A1
20080315372 Kuan et al. Dec 2008 A1
20090008714 Chae Jan 2009 A1
20090010056 Kuo et al. Jan 2009 A1
20090014856 Knickerbocker Jan 2009 A1
20090090979 Zhu et al. Apr 2009 A1
20090179266 Abadeer et al. Jul 2009 A1
20090261460 Kuan et al. Oct 2009 A1
20090302484 Lee et al. Dec 2009 A1
20100003803 Oka et al. Jan 2010 A1
20100012354 Hedin et al. Jan 2010 A1
20100029045 Ramanathan et al. Feb 2010 A1
20100045145 Tsuda Feb 2010 A1
20100081232 Furman et al. Apr 2010 A1
20100081237 Wong et al. Apr 2010 A1
20100109122 Ding et al. May 2010 A1
20100120204 Kunimoto May 2010 A1
20100127340 Sugizaki May 2010 A1
20100173436 Ouellet et al. Jul 2010 A1
20100200919 Kikuchi Aug 2010 A1
20100314637 Kim et al. Dec 2010 A1
20110003433 Harayama et al. Jan 2011 A1
20110026232 Lin et al. Feb 2011 A1
20110036400 Murphy et al. Feb 2011 A1
20110062549 Lin Mar 2011 A1
20110068433 Kim et al. Mar 2011 A1
20110102002 Riehl et al. May 2011 A1
20110171792 Chang et al. Jul 2011 A1
20110272800 Chino Nov 2011 A1
20110272824 Pagaila Nov 2011 A1
20110294244 Hattori et al. Dec 2011 A1
20120003813 Chuang et al. Jan 2012 A1
20120045871 Lee et al. Feb 2012 A1
20120068276 Lin et al. Mar 2012 A1
20120094418 Grama et al. Apr 2012 A1
20120098074 Lin et al. Apr 2012 A1
20120104495 Zhu et al. May 2012 A1
20120119346 Im et al. May 2012 A1
20120153393 Liang et al. Jun 2012 A1
20120168863 Zhu et al. Jul 2012 A1
20120256260 Cheng et al. Oct 2012 A1
20120292700 Khakifirooz et al. Nov 2012 A1
20120299105 Cai et al. Nov 2012 A1
20130001665 Zhu et al. Jan 2013 A1
20130015429 Hong et al. Jan 2013 A1
20130049205 Meyer et al. Feb 2013 A1
20130099315 Zhu et al. Apr 2013 A1
20130105966 Kelkar et al. May 2013 A1
20130147009 Kim Jun 2013 A1
20130155681 Nall et al. Jun 2013 A1
20130196483 Dennard et al. Aug 2013 A1
20130200456 Zhu et al. Aug 2013 A1
20130280826 Scanlan et al. Oct 2013 A1
20130299871 Mauder et al. Nov 2013 A1
20140015131 Meyer et al. Jan 2014 A1
20140035129 Stuber et al. Feb 2014 A1
20140134803 Kelly et al. May 2014 A1
20140168014 Chih et al. Jun 2014 A1
20140197530 Meyer et al. Jul 2014 A1
20140210314 Bhattacharjee et al. Jul 2014 A1
20140219604 Hackler, Sr. et al. Aug 2014 A1
20140252566 Kerr et al. Sep 2014 A1
20140252567 Carroll et al. Sep 2014 A1
20140264813 Lin et al. Sep 2014 A1
20140264818 Lowe, Jr. et al. Sep 2014 A1
20140306324 Costa et al. Oct 2014 A1
20140327003 Fuergut et al. Nov 2014 A1
20140327150 Jung et al. Nov 2014 A1
20140346573 Adam et al. Nov 2014 A1
20140356602 Oh Dec 2014 A1
20150015321 Dribinsky Jan 2015 A1
20150108666 Engelhardt et al. Apr 2015 A1
20150115416 Costa et al. Apr 2015 A1
20150130045 Tseng et al. May 2015 A1
20150136858 Finn et al. May 2015 A1
20150197419 Cheng et al. Jul 2015 A1
20150235990 Cheng et al. Aug 2015 A1
20150235993 Cheng et al. Aug 2015 A1
20150243881 Sankman et al. Aug 2015 A1
20150255368 Costa Sep 2015 A1
20150262844 Meyer et al. Sep 2015 A1
20150279789 Mahajan et al. Oct 2015 A1
20150311132 Kuo et al. Oct 2015 A1
20150364344 Yu et al. Dec 2015 A1
20150380394 Jang et al. Dec 2015 A1
20150380523 Hekmatshoartabari et al. Dec 2015 A1
20160002510 Champagne et al. Jan 2016 A1
20160079137 Leipold et al. Mar 2016 A1
20160093580 Scanlan et al. Mar 2016 A1
20160100489 Costa et al. Apr 2016 A1
20160126111 Leipold et al. May 2016 A1
20160126196 Leipold et al. May 2016 A1
20160133591 Hong et al. May 2016 A1
20160155706 Yoneyama et al. Jun 2016 A1
20160284568 Morris et al. Sep 2016 A1
20160284570 Morris et al. Sep 2016 A1
20160343592 Costa et al. Nov 2016 A1
20160343604 Costa et al. Nov 2016 A1
20160347609 Yu et al. Dec 2016 A1
20160362292 Chang et al. Dec 2016 A1
20170024503 Connelly Jan 2017 A1
20170032957 Costa et al. Feb 2017 A1
20170033026 Ho et al. Feb 2017 A1
20170053938 Whitefield Feb 2017 A1
20170077028 Maxim et al. Mar 2017 A1
20170098587 Leipold et al. Apr 2017 A1
20170190572 Pan et al. Jul 2017 A1
20170200648 Lee et al. Jul 2017 A1
20170263539 Gowda et al. Sep 2017 A1
20170271200 Costa Sep 2017 A1
20170323804 Costa et al. Nov 2017 A1
20170323860 Costa et al. Nov 2017 A1
20170334710 Costa et al. Nov 2017 A1
20170358511 Costa et al. Dec 2017 A1
20180019184 Costa et al. Jan 2018 A1
20180019185 Costa et al. Jan 2018 A1
20180269188 Yu et al. Sep 2018 A1
20190172842 Whitefield Jun 2019 A1
20190189599 Baloglu et al. Jun 2019 A1
20190287953 Moon et al. Sep 2019 A1
20190304910 Fillion Oct 2019 A1
20200058541 Konishi et al. Feb 2020 A1
Foreign Referenced Citations (17)
Number Date Country
103811474 May 2014 CN
103872012 Jun 2014 CN
2996143 Mar 2016 EP
S505733 Feb 1975 JP
H11-220077 Aug 1999 JP
200293957 Mar 2002 JP
2002252376 Sep 2002 JP
2006005025 Jan 2006 JP
2007227439 Sep 2007 JP
2008235490 Oct 2008 JP
2008279567 Nov 2008 JP
2009026880 Feb 2009 JP
2009530823 Aug 2009 JP
2011243596 Dec 2011 JP
2007074651 Jul 2007 WO
2018083961 May 2018 WO
2018125242 Jul 2018 WO
Non-Patent Literature Citations (261)
Entry
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Apr. 17, 2019, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages.
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/992,639, dated May 9, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/873,152, dated May 24, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages.
Lin, Yueh, Chin, et al., “Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application,” IEEE Electronic Device Letters, vol. 38, Issue 8, 2017, 4 pages.
Shukla, Shishir, et al., “GaN—On—Si Switched Mode RF Power Amplifiers for Non-Constant Envelope Signals,” IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, 2017, pp. 88-91.
Tsai, Szu-Ping., et al., “Performance Enhancement of Flip-Chip Packaged AIGAaN/GaN HEMTs by Strain Engineering Design,” IEEE Transcations on Electron Devices, vol. 63, Issue 10, Oct. 2016, pp. 3876-3881.
Tsai, Chun-Lin, et al., “Smart GaN platform; Performance & Challenges,” IEEE International Electron Devices Meeting, 2017, 4 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages.
Notice of Allowance for U.S. Appl. No. 15/601,858, dated Aug. 16, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages.
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages.
Final Office Action for U.S. Appl. No. 15/873,152, dated Aug. 8, 2019, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages.
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 16/038,879, ated Jan. 9, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages.
Final Office Action for U.S. Appl. No. 15/601,858, dated Nov. 26, 2018, 16 pages.
Advisory Action for U.S. Appl. No. 15/601,858, dated Jan. 22, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages.
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages.
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Jun. 26, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages.
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages.
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages.
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2252-2261.
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178.
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages.
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869.
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages.
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages.
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages.
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages.
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages.
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages.
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages.
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages.
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages.
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages.
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages.
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages.
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages.
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages.
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages.
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages.
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages.
Search Report for Japanese Patent Application No. 2011-229152, created on Feb. 22, 2013, 58 pages.
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages.
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages.
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages.
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1.
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages.
Henawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8.
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages.
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages.
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages.
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages.
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages.
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages.
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2018, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 page.
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages.
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages.
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690.
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheet.aspx?MatGUID=3996a734395a4870a9739076918c4297&ckck=1.
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages.
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages.
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page.
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e2.pdf, 1 page.
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 4, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf.
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf.
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 1 page, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf.
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, 1 page, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, 2 pages, http://www.coolpolymers.com/heatplate.asp.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page.
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page.
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages.
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages.
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/datasheettext.aspx? matguid=89754e8bb26148d083c5ebb05a0cbff1.
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page.
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, 28 slides, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal_pdf.
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, 4 pages, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/.
Author Unknown, “The Technology: AKHAN's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages.
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101.
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4.
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4.
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129.
Costa, J. et al., “Integrated MEMS Switch Technology on SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 900-903.
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207.
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages.
Esfeh, Babak Kazemi et al., “RF Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Apr. 2-4, 2014, IEEE, 3 pages.
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of The Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970.
Gamble, H. S. et al., “Low-Loss Cpw Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397.
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical Insulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16.
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages.
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304.
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154.
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807.
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936.
Lee, Kwang Hong et al., “Integration of III-V materials and Si-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5.
Lee, Tzung-Yin, et al., “Modeling of SOI FET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482.
Lu, J.Q et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76.
Mamunya, Yep., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897.
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56.
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111.
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229.
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages.
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages.
Parthasarathy, S., et al., “RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199.
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63.
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages.
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages.
U.S. Appl. No. 14/261,029, filed Apr. 24, 2014; now U.S. Pat. No. 9,214,337.
U.S. Appl. No. 14/529,870, filed Oct. 31, 2014; now U.S. Pat. No. 9,583,414.
U.S. Appl. No. 15/293,947, filed Oct. 14, 2016.
U.S. Appl. No. 14/715,830, filed May 19, 2015; now U.S. Pat. No. 9,812,350.
U.S. Appl. No. 15/616,109, filed Jun. 7, 2017.
U.S. Appl. No. 14/851,652, filed Sep. 11, 2015; now U.S. Pat. No. 9,824,951.
U.S. Appl. No. 14/872,910, filed Oct. 1, 2015.
U.S. Appl. No. 14/885,202, filed Oct. 16, 2015.
U.S. Appl. No. 14/885,243, filed Oct. 16, 2915; now U.S. Pat. No. 9,530,709.
U.S. Appl. No. 15/387,855, filed Dec. 22, 2016.
U.S. Appl. No. 14/959,129, filed Dec. 4, 2015, now U.S. Pat. No. 9,613,831.
U.S. Appl. No. 15/173,037, filed Jun. 3, 2016.
U.S. Appl. No. 15/648,082, filed Jul. 12, 2017.
U.S. Appl. No. 15/229,780, filed Aug. 5, 2016.
U.S. Appl. No. 15/262,457, filed Sep. 12, 2016.
U.S. Appl. No. 15/408,560, filed Jan. 18, 2017.
U.S. Appl. No. 15/287,202, filed Oct. 6, 2016.
U.S. Appl. No. 15/601,858, filed May 22, 2017.
U.S. Appl. No. 15/353,346, filed Nov. 16, 2016.
U.S. Appl. No. 15/652,826, filed Jul. 18, 2017.
U.S. Appl. No. 15/287,273, filed Oct. 6, 2016.
U.S. Appl. No. 15/676,415, filed Aug. 14, 2017.
U.S. Appl. No. 15/676,621, filed Aug. 14, 2017.
U.S. Appl. No. 15/676,693, filed Aug. 14, 2017.
U.S. Appl. No. 15/498,040, filed Apr. 26, 2017.
U.S. Appl. No. 15/652,867, filed Jul. 18, 2017.
U.S. Appl. No. 15/789,107, filed Oct. 20, 2017.
U.S. Appl. No. 15/491,064, filed Apr. 19, 2017.
U.S. Appl. No. 15/695,579, filed Sep. 5, 2017.
U.S. Appl. No. 15/695,629, filed Sep. 5, 2017.
Notice of Allowance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 page.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages.
Advisory Action for U.S. Appl. No. 15/873,152, dated Oct. 11, 2019, 3 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034699, dated Oct. 29, 2019, 13 pages.
Office Action for Japanese Patent Application No. 2018-526613, dated Nov. 5, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated Dec. 10, 2019, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/527,702, dated Jan. 10, 2020, 10 pages.
Fiorenza, et al., “Detailed Simulation Study of a Reverse Embedded-SiGE Strained-Silicon MOSFET,” IEEE Transactions on Electron Devices, vol. 55, Issue 2, Feb. 2008, pp. 640-648.
Fiorenza, et al., “Systematic study of thick strained silicon NMOSFETs for digital applications,” International SiGE Technology and Device Meeting, May 2006, IEEE, 2 pages.
Huang, et al., “Carrier Mobility Enhancement in Strained Si-On-Insulator Fabricated by Wafer Bonding,” Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 57-58.
Nan, et al., “Effect of Germanium content on mobility enhancement for strained silicon FET,” Student Conference on Research and Development, Dec. 2017, IEEE, pp. 154-157.
Sugii, Nobuyuki, et al., “Performance Enhancement of Strained-Si MOSFETs Fabricated on a Chemical-Mechanical-Polished SiGE Substrate,” IEEE Transactions on Electron Devices, vol. 49, Issue 12, Dec. 2002, pp. 2237-2243.
Yin, Haizhou, et al., “Fully-depleted Strained-Si on Insulator NMOSFETs without Relaxed SiGe Buffers,” International Electron Devices Meeting, Dec. 2003, San Francisco, California, IEEE, 4 pages.
Decision of Rejection for Japanese Patent Application No. 2015-180657, dated Mar. 17, 2020, 4 pages.
Intention to Grant for European Patent Application No. 17757646.9, dated Feb. 27, 2020, 55 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/063460, dated Feb. 25, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055317, dated Feb. 6, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055321, dated Jan. 27, 2020, 23 pages.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Apr. 15, 2020, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Feb. 5, 2020, 5 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Apr. 1, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Apr. 9, 2020, 8 pages.
Final Office Action for U.S. Appl. No. 16/204,214, dated Mar. 6, 2020, 14 pages.
Advisory Action for U.S. Appl. No. 16/204,214, dated Apr. 15, 2020, 3 pages.
Nelser, J. et al., “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Device Letters, vol. 15, No. 3, Mar. 1994, IEEE, pp. 100-102.
Examination Report for European Patent Application No. 16751791.1, dated Apr. 30, 2020, 15 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2018-526613, dated May 11, 2020, 6 pages.
Examination Report for Singapore Patent Application No. 11201901193U, dated May 26, 2020, 6 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014665, dated May 13, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014666, dated Jun. 4, 2020, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014667, dated May 18, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014669, dated Jun. 4, 2020, 15 pages.
Quayle Action for U.S. Appl. No. 16/703,251, dated Jun. 26, 2020, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated May 11, 2020, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated May 20, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Apr. 30, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/368,210, dated Jun. 17, 2020, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/374,125, dated Jun. 26, 2020, 12 pages.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated May 19, 2020, 15 pages.
Non-Final Office Action for U.S. Appl. No. 16/454,687, dated May 15, 2020, 14 pages.
Non-Final Office Action for U.S. Appl. No. 16/454,809, dated May 15, 2020, 12 pages.
Related Publications (1)
Number Date Country
20180145678 A1 May 2018 US
Provisional Applications (1)
Number Date Country
62423815 Nov 2016 US