Fast growth of the pervasive computing and handheld/communication industry has generated exploding demand for high capacity nonvolatile solid-state data storage devices. Current technology like flash memory has several drawbacks such as slow access speed, limited endurance, and the integration difficulty. Flash memory (NAND or NOR) also faces significant scaling problems.
Resistive sense memories are promising candidates for future nonvolatile and universal memory by storing data bits as either a high or low resistance state. One such memory, MRAM, features non-volatility, fast writing/reading speed, almost unlimited programming endurance and zero standby power. The basic component of MRAM is a magnetic tunneling junction (MTJ). MRAM switches the MTJ resistance by using a current induced magnetic field to switch the magnetization of MTJ. As the MTJ size shrinks, the switching magnetic field amplitude increases and the switching variation becomes more severe.
A write mechanism, which is based upon spin polarization current induced magnetization switching, has been introduced to the MRAM design. Spin-Transfer Torque RAM (STRAM), uses a (bidirectional) current through the MTJ to realize the resistance switching. Therefore, the switching mechanism of STRAM is constrained locally and STRAM is believed to have a better scaling property than the conventional MRAM.
However, a number of yield-limiting factors must be overcome before STRAM enters the production stage. One concern in traditional STRAM design is the thickness tradeoff between of the free layer of the STRAM cell. A thicker free layer improves the thermal stability and data retention but also increases the switching current requirement since it is proportional to the thickness of the free layer. Thus, the amount of current required to switch the STRAM cell between resistance data states is large.
The present disclosure relates to a spin-transfer torque memory unit that includes a composite free magnetic element. In particular, the present disclosure relates to a spin-transfer torque memory unit that includes a free magnetic element having a hard magnetic layer exchanged coupled to a soft magnetic layer.
In one particular embodiment, a spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
These and various other features and advantages will be apparent from a reading of the following detailed description.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments of the disclosure in connection with the accompanying drawings, in which:
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
In the following description, reference is made to the accompanying set of drawings that form a part hereof and in which are shown by way of illustration several specific embodiments. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The present disclosure relates to a spin-transfer torque memory (STRAM) that includes a composite free magnetic element. In particular, the present disclosure relates to a spin-transfer torque memory unit that includes a free magnetic element having a hard magnetic layer exchanged coupled to a soft magnetic layer. The hard magnetic layer can be a continuous magnetic layer or a non-continuous magnetic layer. The non-continuous hard magnetic layer can be a plurality of hard magnetic particles in a matrix of non-magnetic material. The composite free magnetic element has a reduced in-plane anisotropy, which leads to a large reduction in the switching current of the spin-transfer torque memory. The hard magnetic layer of the composite free magnetic element has a high intrinsic anisotropic energy and uniaxial magnetic anisotropy which allows the spin-transfer torque memory cells to scale down to 10 nanometers or below and is robust against shape variability. While the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the examples provided below.
The MTJ cell 10 includes a ferromagnetic free layer 12 (i.e., free magnetic layer) and a ferromagnetic reference or pinned layer 14 (i.e., free magnetic layer). The ferromagnetic free layer 12 and a ferromagnetic reference layer 14 are separated by an oxide barrier layer 13 or tunneling barrier layer. A first electrode 15 is in electrical contact with the ferromagnetic free layer 12 and a second electrode 16 is in electrical contact with the ferromagnetic reference layer 14. The ferromagnetic layers 12, 14 may be made of any useful ferromagnetic (FM) alloys such as, for example, Fe, Co, Ni and the insulating tunneling barrier layer 13 may be made of an electrically insulating material such as, for example an oxide material (e.g., Al2O3 or MgO). Other suitable materials may also be used.
The electrodes 15, 16 electrically connect the ferromagnetic layers 12, 14 to a control circuit providing read and write currents through the ferromagnetic layers 12, 14. The resistance across the MTJ cell 10 is determined by the relative orientation of the magnetization vectors or magnetization orientations of the ferromagnetic layers 12, 14. The magnetization direction of the ferromagnetic reference layer 14 is pinned in a predetermined direction while the magnetization direction of the ferromagnetic free layer 12 is free to rotate under the influence of a spin torque. Pinning of the ferromagnetic reference layer 14 may be achieved through, e.g., the use of exchange bias with an antiferromagnetically ordered material such as PtMn, IrMn and others.
Switching the resistance state and hence the data state of the MTJ cell 10 via spin-transfer occurs when a current, passing through a magnetic layer of the MTJ cell 10, becomes spin polarized and imparts a spin torque on the free layer 12 of the MTJ cell 10. When a sufficient spin torque is applied to the free layer 12, the magnetization orientation of the free layer 12 can be switched between two opposite directions and accordingly the MTJ cell 10 can be switched between the parallel state (i.e., low resistance state or “0” data state) and anti-parallel state (i.e., high resistance state or “1” data state) depending on the direction of the current.
The illustrative spin-transfer torque MTJ cell 10 may be used to construct a memory device that includes multiple variable resistive memory cells where a data bit is stored in magnetic tunnel junction cell by changing the relative magnetization state of the free magnetic layer 12 with respect to the reference or pinned magnetic layer 14. The stored data bit can be read out by measuring the resistance of the cell which changes with the magnetization direction of the free layer relative to the pinned magnetic layer. In order for the spin-transfer torque MTJ cell 10 to have the characteristics of a non-volatile random access memory, the free layer exhibits thermal stability against random fluctuations so that the orientation of the free layer is changed only when it is controlled to make such a change.
The spin-transfer torque memory unit 20 includes a composite free magnetic element FME, a reference magnetic element or layer RL, and an electrically insulating and non-magnetic tunneling barrier layer TB separating the multilayer free magnetic layer FL from the reference magnetic layer RL. The reference magnetic layer RL can be a single ferromagnetic layer, or may include multiple layers, for example, a pair of ferromagnetically coupled ferromagnetic layers, an antiferromagnetic pinning layer and a ferromagnetic pinned layer, a synthetic antiferromagnetic, or a synthetic antiferromagnetic with an antiferromagnetic layer.
The composite free magnetic element FME includes a hard magnetic layer HML exchanged coupled to a soft magnetic layer SML. In many embodiments the hard magnetic layer HML is disposed on the soft magnetic layer SML. The composite free magnetic element FME has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit 20 between the first electrode E1 and the second electrode E2.
The hard magnetic layer HML has uniaxial magnetic anisotropy and a low saturation magnetization. In many embodiments, the saturation magnetization of the hard magnetic layer HML is less than 1000 emu/cm3, or less than 500 emu/cm3, or in a range from 200 to 1000 emu/cm3, or in a range from 250 to 750 emu/cm3. In many embodiments, the hard magnetic layer HML has a coercivity value that is equal to or greater than 1000 Oersteds. The hard magnetic layer HML can be formed of any useful material having the above properties such as, alloys of Co, Ni, Fe, Cr, Dy, Sm, Pt, Pd, and the like. The hard magnetic layer HML can have any useful thickness such as from 20 to 100 Angstroms, or from 20 to 50 Angstroms.
The soft magnetic layer SML has a spin polarization value equal to or greater than 0.5. The soft magnetic layer SML can create a large spin polarization in the electrical current used to switch the spin-transfer torque memory unit 20. In many embodiments, the soft magnetic layer SML has a coercivity value that is equal to or less than 500 Oersteds. The soft magnetic layer SML can be formed of any useful ferromagnetic material having the above properties. The soft magnetic layer SML can have any useful thickness such as from 5 to 20 Angstroms.
The composite free magnetic element FME and the spin-transfer torque memory unit 30 can have an aspect ratio (length/width) of approximately 1, as illustrated as a circular shape in
The spin-transfer torque memory unit 30 includes a composite free magnetic element FME, a reference magnetic element or layer RL, and an electrically insulating and non-magnetic tunneling barrier layer TB separating the multilayer free magnetic layer FL from the reference magnetic layer RL. The reference magnetic layer RL can be a single ferromagnetic layer, or may include multiple layers, for example, a pair of ferromagnetically coupled ferromagnetic layers, an antiferromagnetic pinning layer and a ferromagnetic pinned layer, a synthetic antiferromagnetic, or a synthetic antiferromagnetic with an antiferromagnetic layer.
The composite free magnetic element FME includes a granular hard magnetic layer HML exchanged coupled to a soft magnetic layer SML. In many embodiments the granular hard magnetic layer HML is disposed on the soft magnetic layer SML. The composite free magnetic element FME has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit 30 between the first electrode E1 and the second electrode E2.
The granular hard magnetic layer HML is a non-continuous magnetic layer of hard magnetic clusters or particles that are separated by non-magnetic material. The granular hard magnetic layer HML includes a plurality of hard magnetic particles 34 that are in a matrix of non-magnetic material 32. In many embodiments, the matrix of non-magnetic material 32 is an electrically insulating material such as, SiO2, HfO, AlO and the like. In some embodiments, the matrix of non-magnetic material 32 is an electrically conducting material such as, Cu, Ag, Au, Al and the like. The granular hard magnetic layer HML can be formed by co-sputtering the hard magnetic particles 34 with the non-magnetic material 32.
The hard magnetic particles 34 have uniaxial magnetic anisotropy and a low saturation magnetization. In many embodiments, the saturation magnetization of the hard magnetic particles 34 is less than 1000 emu/cm3, or less than 500 emu/cm3, or in a range from 200 to 1000 emu/cm3, or in a range from 250 to 750 emu/cm3. In many embodiments, the hard magnetic particles 34 have a coercivity value that is equal to or greater than 1000 Oersteds. The hard magnetic particles 34 can be formed of any useful material having the above properties such as, alloys of Co, Ni, Fe, Cr, Dy, Sm, Pt, Pd, and the like. The magnetic properties of the hard magnetic particles 34 establish the net magnetization properties of the hard magnetic layer HML. The hard magnetic layer HML can have any useful thickness such as from 20 to 100 Angstroms, or from 20 to 50 Angstroms.
The soft magnetic layer SML has a spin polarization value equal to or greater than 0.5. The soft magnetic layer SML can create a large spin polarization in the electrical current used to switch the spin-transfer torque memory unit 30. In many embodiments, the soft magnetic layer SML has a coercivity value that is equal to or less than 500 Oersteds. The soft magnetic layer SML can be formed of any useful ferromagnetic material having the above properties. The soft magnetic layer SML can have any useful thickness such as from 5 to 20 Angstroms.
The composite free magnetic element FME and the spin-transfer torque memory unit 50 can have an aspect ratio (length/width) of approximately 1, as illustrated as a circular shape in
The spin-transfer torque memory unit 50 includes a composite free magnetic element FME, a reference magnetic element or layer RL, and an electrically insulating and non-magnetic tunneling barrier layer TB separating the multilayer free magnetic layer FL from the reference magnetic layer RL. The reference magnetic layer RL can be a single ferromagnetic layer, or may include multiple layers, for example, a pair of ferromagnetically coupled ferromagnetic layers, an antiferromagnetic pinning layer and a ferromagnetic pinned layer, a synthetic antiferromagnetic, or a synthetic antiferromagnetic with an antiferromagnetic layer.
The composite free magnetic element FME includes a hard magnetic layer HML exchanged coupled to a soft magnetic layer SML. In many embodiments the hard magnetic layer HML is disposed on the soft magnetic layer SML. The composite free magnetic element FME has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit 50 between the first electrode E1 and the second electrode E2.
The spin-transfer torque memory unit 50 further includes a compensation layer CL and a non-magnetic layer NM separating the compensation layer CL from the composite free magnetic element FME. The magnetic compensation layer CL is a ferromagnetic material that can have a hard magnetic property that can be set following deposition of the magnetic compensation layer CL. While the reference magnetic layer RL is illustrated as a single layer, it is understood that the reference magnetic layer RL can be multilayer structure, such as a synthetic antiferromagnetic reference magnetic element, as described above.
The non-magnetic layer NM can be electrically conductive or electrically insulating. An electrically insulating and non-magnetic layer NM can be formed of any useful electrically insulating non-magnetic material such as Al2O3 or MgO. An electrically conducting and non-magnetic layer NM can be formed of any useful electrically conducting non-magnetic material such as Ru, Os, Ti, Cr, Rh, Cu, Pd, or combinations thereof. This non-magnetic layer NM can have a thickness in a range from 1 to 10 nanometers or from 3 to 7 nanometers.
The magnetic compensation element CL applies a bias field on the magnetization orientation of the composite free magnetic element FME.
The bias field generated by the magnetic compensation element CL is a result of a magnetic moment vector 53 or magnetization orientation 53 (that is set following deposition of the magnetic compensation element CL) of the magnetic compensation element CL. The magnetic moment vector 53 is the vector sum of a first vector component 52 that is parallel to the free magnetic layer easy axis EA and a second vector component 51 that is orthogonal to the free magnetic layer easy axis (thus parallel to the free magnetic layer hard axis HA).
The first vector component 52 that is parallel to the free magnetic layer easy axis EA can shift a resistance-current hysteresis loop magnetic property of the spin-torque transfer memory unit. A direction of the first vector component 52 determines the direction of the resistance-current hysteresis loop magnetic property shift. The magnitude of the shift can be altered by increasing or decreasing a thickness of the magnetic compensation element CL. The resistance-current hysteresis loop magnetic property of the spin-transfer torque memory unit can be measured and then the direction and amount of first vector component 52 can be set as desired. In many embodiments, the first vector component 52 is set to shift the resistance-current hysteresis loop magnetic property to that the switching field/current is more symmetric than what was measured.
The second vector component 51 that is perpendicular to the free magnetic layer easy axis EA can reduce a write current magnitude required to switch the direction of the magnetization orientation of the free magnetic layer. The write current magnitude required to switch the direction of the magnetization orientation of the free magnetic layer can be measured and then the direction and amount of second vector component 51 can be set as desired. In many embodiments, the second vector component 51 is set to reduce the write current magnitude required to switch the direction of the magnetization orientation of the free magnetic layer. from what was measured.
Thus, embodiments of the STRAM WITH COMPOSITE FREE MAGNETIC ELEMENT are disclosed. The implementations described above and other implementations are within the scope of the following claims. One skilled in the art will appreciate that the present disclosure can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.
This application is a continuation application of U.S. Pat. No. 8,045,366 filed Mar. 3, 2009 which claims the benefit of U.S. Provisional Application No. 61/111,351 filed Nov. 5, 2008, the contents of both are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4733371 | Terada | Mar 1988 | A |
5191223 | Munekata | Mar 1993 | A |
5646419 | McCaldin | Jul 1997 | A |
5673225 | Jeong | Sep 1997 | A |
5761115 | Kozicki | Jun 1998 | A |
5920446 | Gill | Jul 1999 | A |
5982670 | Yamashita | Nov 1999 | A |
6072718 | Abraham | Jun 2000 | A |
6178136 | Lin | Jan 2001 | B1 |
6226197 | Nishimura | May 2001 | B1 |
6252796 | Lenssen | Jun 2001 | B1 |
6381106 | Pinarbasi | Apr 2002 | B1 |
6469926 | Chen | Oct 2002 | B1 |
6532164 | Redon | Mar 2003 | B2 |
6542000 | Black | Apr 2003 | B1 |
6569745 | Hsu | May 2003 | B2 |
6584016 | Park | Jun 2003 | B2 |
6603634 | Wood | Aug 2003 | B1 |
6633498 | Engel | Oct 2003 | B1 |
6639830 | Heide | Oct 2003 | B1 |
6643168 | Okazawa | Nov 2003 | B2 |
6700753 | Singleton | Mar 2004 | B2 |
6703645 | Ohno | Mar 2004 | B2 |
6711051 | Poplevine | Mar 2004 | B1 |
6711067 | Kablanian | Mar 2004 | B1 |
6741492 | Nii | May 2004 | B2 |
6744086 | Daughton | Jun 2004 | B2 |
6759263 | Ying | Jul 2004 | B2 |
6765819 | Bhatacharyya | Jul 2004 | B1 |
6774391 | Cowburn | Aug 2004 | B1 |
6781867 | Kurth | Aug 2004 | B2 |
6781871 | Park | Aug 2004 | B2 |
6801415 | Slaughter | Oct 2004 | B2 |
6818961 | Rizzo | Nov 2004 | B1 |
6831312 | Slaughter | Dec 2004 | B2 |
6834005 | Parkin | Dec 2004 | B1 |
6835423 | Chen | Dec 2004 | B2 |
6842317 | Sugita | Jan 2005 | B2 |
6842368 | Hayakawa | Jan 2005 | B2 |
6845038 | Shukh | Jan 2005 | B1 |
6850433 | Sharma | Feb 2005 | B2 |
6864551 | Tsang | Mar 2005 | B2 |
6888709 | Princinsky | May 2005 | B2 |
6909633 | Tsang | Jun 2005 | B2 |
6914807 | Nakamura | Jul 2005 | B2 |
6920063 | Huai | Jul 2005 | B2 |
6930910 | Oh | Aug 2005 | B2 |
6943040 | Min | Sep 2005 | B2 |
6950335 | Dieny | Sep 2005 | B2 |
6963500 | Tsang | Nov 2005 | B2 |
6965522 | Lung | Nov 2005 | B2 |
6979586 | Guo | Dec 2005 | B2 |
6985378 | Kozicki | Jan 2006 | B2 |
6992359 | Nguyen | Jan 2006 | B2 |
6998150 | Li | Feb 2006 | B2 |
7009877 | Huai | Mar 2006 | B1 |
7020024 | Sim | Mar 2006 | B2 |
7067330 | Min | Jun 2006 | B2 |
7067866 | Shi | Jun 2006 | B2 |
7088624 | Daniel | Aug 2006 | B2 |
7092279 | Sheppard | Aug 2006 | B1 |
7093347 | Nowak | Aug 2006 | B2 |
7098494 | Pakala | Aug 2006 | B2 |
7098495 | Sun | Aug 2006 | B2 |
7099186 | Braun | Aug 2006 | B1 |
7105372 | Min | Sep 2006 | B2 |
7110284 | Hayakawa | Sep 2006 | B2 |
7137192 | Sakaguchi | Nov 2006 | B2 |
7138648 | Kneissl | Nov 2006 | B2 |
7187577 | Wang | Mar 2007 | B1 |
7189435 | Tuominen | Mar 2007 | B2 |
7196882 | Deak | Mar 2007 | B2 |
7224601 | Panchula | May 2007 | B2 |
7230265 | Kaiser | Jun 2007 | B2 |
7241632 | Vang | Jul 2007 | B2 |
7242045 | Nguyen | Jul 2007 | B2 |
7272034 | Chen | Sep 2007 | B1 |
7272035 | Chen | Sep 2007 | B1 |
7274057 | Worledge | Sep 2007 | B2 |
7282755 | Pakala | Oct 2007 | B2 |
7285836 | Ju | Oct 2007 | B2 |
7286395 | Chen | Oct 2007 | B2 |
7289356 | Diao | Oct 2007 | B2 |
7345912 | Luo | Mar 2008 | B2 |
7379280 | Fukumoto et al. | May 2008 | B2 |
7379327 | Chen | May 2008 | B2 |
7385842 | Deak | Jun 2008 | B2 |
7403418 | Lin | Jul 2008 | B2 |
7408806 | Park | Aug 2008 | B2 |
7411815 | Gogl | Aug 2008 | B2 |
7436638 | Pan | Oct 2008 | B1 |
7477491 | Li | Jan 2009 | B2 |
7480173 | Guo | Jan 2009 | B2 |
7485503 | Brask | Feb 2009 | B2 |
7495867 | Sbiaa | Feb 2009 | B2 |
7502249 | Ding | Mar 2009 | B1 |
7515457 | Chen | Apr 2009 | B2 |
7539047 | Katti | May 2009 | B2 |
7572645 | Sun | Aug 2009 | B2 |
7573736 | Wang | Aug 2009 | B2 |
7727642 | Fujita | Jun 2010 | B2 |
7764537 | Jung | Jul 2010 | B2 |
7781080 | Takenoiri | Aug 2010 | B2 |
7782661 | Yang | Aug 2010 | B2 |
7881095 | Lu | Feb 2011 | B2 |
7894246 | Ueda et al. | Feb 2011 | B2 |
7935435 | Gao | May 2011 | B2 |
20030011945 | Yuasa | Jan 2003 | A1 |
20030137864 | Holden | Jul 2003 | A1 |
20040008537 | Sharma | Jan 2004 | A1 |
20040084702 | Jeong | May 2004 | A1 |
20040090809 | Tran | May 2004 | A1 |
20040170055 | Albert | Sep 2004 | A1 |
20040179311 | Li | Sep 2004 | A1 |
20040197579 | Chen | Oct 2004 | A1 |
20040257721 | Furukawa et al. | Dec 2004 | A1 |
20050048674 | Shi | Mar 2005 | A1 |
20050068684 | Gill | Mar 2005 | A1 |
20050117391 | Yoda | Jun 2005 | A1 |
20050139883 | Sharma | Jun 2005 | A1 |
20050150535 | Samavedam | Jul 2005 | A1 |
20050150537 | Ghoshal | Jul 2005 | A1 |
20050184839 | Nguyen | Aug 2005 | A1 |
20050185459 | Fukuzumi | Aug 2005 | A1 |
20050237787 | Huai | Oct 2005 | A1 |
20050254286 | Valet | Nov 2005 | A1 |
20050269612 | Torok | Dec 2005 | A1 |
20050275003 | Shinmura | Dec 2005 | A1 |
20050282379 | Saito | Dec 2005 | A1 |
20060049472 | Diao | Mar 2006 | A1 |
20060060832 | Symanczyk | Mar 2006 | A1 |
20060061919 | Li | Mar 2006 | A1 |
20060083047 | Fujita | Apr 2006 | A1 |
20060141640 | Huai | Jun 2006 | A1 |
20060171199 | Ju | Aug 2006 | A1 |
20060233017 | Hosotami | Oct 2006 | A1 |
20060245117 | Nowak | Nov 2006 | A1 |
20070002504 | Huai et al. | Jan 2007 | A1 |
20070007609 | Saito | Jan 2007 | A1 |
20070008661 | Min | Jan 2007 | A1 |
20070025164 | Kim | Feb 2007 | A1 |
20070029630 | Seyyedy | Feb 2007 | A1 |
20070035890 | Sbiaa | Feb 2007 | A1 |
20070047294 | Panchula | Mar 2007 | A1 |
20070054450 | Hong | Mar 2007 | A1 |
20070063237 | Huai | Mar 2007 | A1 |
20070064352 | Gill | Mar 2007 | A1 |
20070069314 | Wilson | Mar 2007 | A1 |
20070085068 | Apalkov | Apr 2007 | A1 |
20070096229 | Yoshikawa | May 2007 | A1 |
20070097730 | Chen | May 2007 | A1 |
20070120210 | Yuan | May 2007 | A1 |
20070132049 | Stipe | Jun 2007 | A1 |
20070164380 | Min | Jul 2007 | A1 |
20070171694 | Huai | Jul 2007 | A1 |
20070230233 | Takahashi | Oct 2007 | A1 |
20070241392 | Lin | Oct 2007 | A1 |
20070246787 | Wang | Oct 2007 | A1 |
20070279968 | Luo | Dec 2007 | A1 |
20070297220 | Yoshikawa | Dec 2007 | A1 |
20070297223 | Chen | Dec 2007 | A1 |
20080026253 | Yuasa | Jan 2008 | A1 |
20080061388 | Diao | Mar 2008 | A1 |
20080130354 | Ho | Jun 2008 | A1 |
20080179699 | Horng | Jul 2008 | A1 |
20080180991 | Wang | Jul 2008 | A1 |
20080191251 | Ranjan | Aug 2008 | A1 |
20080205121 | Chen | Aug 2008 | A1 |
20080258247 | Mancoff | Oct 2008 | A1 |
20080265347 | Iwayama | Oct 2008 | A1 |
20080273380 | Diao | Nov 2008 | A1 |
20080277703 | Iwayama | Nov 2008 | A1 |
20080291721 | Apalkov | Nov 2008 | A1 |
20080310213 | Chen | Dec 2008 | A1 |
20090027810 | Horng | Jan 2009 | A1 |
20090040855 | Luo | Feb 2009 | A1 |
20090073756 | Yang | Mar 2009 | A1 |
20090185410 | Huai | Jul 2009 | A1 |
20090218645 | Ranjan | Sep 2009 | A1 |
20090257154 | Carey | Oct 2009 | A1 |
20090296454 | Honda | Dec 2009 | A1 |
20100034009 | Lu | Feb 2010 | A1 |
20100118600 | Nagasi | May 2010 | A1 |
20100176471 | Zhu | Jul 2010 | A1 |
20100177558 | Sakimura | Jul 2010 | A1 |
20110006385 | Zheng | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
2 422 735 | Aug 2006 | GB |
WO 2008100868 | Aug 2008 | WO |
Entry |
---|
U.S. Appl. No. 12/396,905, filed Mar. 3, 2009, Gao. |
Baek et al., Tech. Dig. IEDM (2004) 587. |
Berger, Emission of Spin Waves by Magnetic Multilayer Traversed by a Current, Physic. Review B 54, 9353 (1996). |
Black et al., Programmable Logic Using Giant Magnetoresistance and Spin-Dependent Tunneling Devices (Invited), J. Appl. Phys. 87, 6674 (2000). |
Chu et al., Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High-Field Anodization, Adv. Mater. 2005, 17, 2115-2119. |
Cowburn et al., Room Temperature Magnetic Quantum Cellular Automata, Science 287, 1466 (2000). |
de Groot et al., New Class of Materials: Half-Metallic Ferromagnets, Physics Review Letters, 50, 2024 (1983). |
Egelhoff et al., Oxygen as a Surfactant in the Growth of Giant Magnetoresistance Spin Valves, Journal of Applied Physics 82 (12), Dec. 15, 1997. |
Emley, N.C., et al., Reduction of Spin Transfer by Synthetic Antiferromagnets, Applied Physics Letters, May 24, 2004, pp. 4257-4259, vol. 84, No. 21. |
Folk et al., A Gate-Controlled Bidirectional Spin Filter Using Quantum Coherence, Science, vol. 299, Jan. 31, 2003, pp. 679-682. |
Hayakawa et al., Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free layer, Japanese Journal of Applied Physics, vol. 45, No. 40, 2006, pp. L1057-L1060. |
Huczko, Template-Based Synthesis of Nanomaterials, Appl. Phys. A 70, 365-376 (2000). |
Kawahara et al., 2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read, ISSCC 2007, Section 26, Non-Volatile Memories/26.5. |
Korenivski, et al., Thermally Activiated Switching in Spin-Flop Tunnel Junctions, Applied Physics Letters 86, 252506 (2005). |
Li et al., Role of Oxygen Exposure in Different Positions in the Synthetic Spin Valves, Journal of Applied Physics, vol. 93, No. 10, May 15, 2003. |
Macak et al., High-Aspect-Ratio TiO2, Nanotubes by Anodization of Titanium, Angew. Chem. Int. Ed. 2005, 44, 2100-2102. |
Masuda and Kenji Fukuda, Science, 268, 1466 91995). |
Masuda et al., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, OI. 268, Jun. 9, 1995. |
Meng et al., A Spintronics Full Adder for Magnetic CPU, IEEE Elec. Dev. Lett. 26, 360 (2005). |
Miura et al., A Novel SPRAM (Spin Transfer Torque RAM) with a Synthetic Ferrimagnetic Free Layer . . . , VLSI Symposium on VLSI Tech. Digest of Technical Papers (2007). |
Ney et al., Programmable Computing with a Single Magnetoresistance Element, Nature 425, 485 (2003). |
PCT Search Report and Written Opinion dated Oct. 4, 2010. |
PCT Search Report and Written Opinion dated Mar. 10, 2010. |
PCT Search Report and Written Opinion dated Mar. 22, 2010. |
Sharrock, Time Dependence of Switching Fields in Magnetic Recording Media (Invited), J. Appl. Phys. 76 (10), Nov. 15, 1994. |
Sun, Current-Driven Magnetic Switching in Manganite Trilayer Junctions, Journal of Magnetism and Magnetic Materials 202 (1999) 157-162. |
Thurn-Albrecht et al., Science, 290, 2126 (2000). |
U.S. Appl. No. 12/416,976, filed Apr. 2, 2009, Inventor: Zheng. |
U.S. Appl. No. 12/106,382, filed Apr. 21, 2008, Inventors: Xi et al. |
U.S. Appl. No. 12/125,975, filed May 23, 2008, Inventor: Xi. |
U.S. Appl. No. 12/126,014, filed May 23, 2008, Inventor: Xiaohua Lou. |
U.S. Appl. No. 12/170,519, filed Jul. 10, 2008, Inventors: Xi et al. |
U.S. Appl. No. 12/175,545, filed Jul. 18, 2008, Inventor: Lou. |
U.S. Appl. No. 12/239,882, filed Sep. 29, 2008, Inventor: Zheng et al. |
U.S. Appl. No. 12/239,887, filed Sep. 29, 2008; Inventor: Zheng. |
U.S. Appl. No. 12/258,476, filed Oct. 27, 2008, Inventor: Lou. |
U.S. Appl. No. 12/258,491, filed Oct. 27, 2008, Inventor: Lou. |
U.S. Appl. No. 12/258,492, filed Oct. 27, 2008, Inventor: Lou. |
U.S. Appl. No. 12/269,507, filed Nov. 12, 2008, Inventor: Tian. |
U.S. Appl. No. 12/269,514, filed Nov. 12, 2008, Inventor: Venkatasamy. |
U.S. Appl. No. 12/269,537, filed Nov. 12, 2008, Inventor: Tang et al. |
U.S. Appl. No. 12/398,214, filed Mar. 5, 2009, Inventor: Wang et al. |
U.S. Appl. No. 12/425,457, filed Apr. 17, 2009, Inventor: Gao. |
Vurgaftman et al., Spin-Polarizing Properties of the InAs/(AlSb)/GaMnSb/(AlSb/InAs Ferromagnetic Resonant Interband Tunneling Diode, Physical Review B 67, 12509 (2003). |
Wendt et al., Electronic and Vibrational Properties of Ultrathin SiO2 Films Grown on Mo(112), 2005, Phys. Rev. vol. B72, pp. 1150409-1-115409.0. |
Yan et al., Magnesium Oxide as a Candidate High-k Gate Dielelectric, 2006, Applied Physics Lett. vol. 88, pp. 142901-1-142901-3. |
Yen et al., Reduction in Critical Current Density for Spin Torque Transfer Switching with Composite Free Layer, Applied Physics Letters 93, 092504 (2008). |
Zheng et al., Low Switching Current Flux-Closed Magnetoresistive Random Access Memory, Journal of Applied Physics, May 15, 2003. |
Zhuang et al., Tech Dig. IEDM (2002) 193. |
Meng et al., Spin Transfer in Nanomagnetic Devices with Perpendicular Anistropy, Applied Physics Letters 88, 172506 (2006). |
Sek et al., Spin-Polarized Current-Induced Magnetization Reversal in Perpendicularly Magnetized L1o-FePt Layers, Applied Physics Letters 88, 172504 (2006). |
Zheng et al., Magnetic Random Access Memory (MRAM), Journal of Nanoscience and Nanotechnology, vol. 7, 117-137 (2007). |
I L. Prejbeanu et al., Thermally Assisted MRAM, Journal of Physics Condensed Matter 19 (2007) 165218 (23 pp). |
Slonczewski et al., Current-Driven Excitation of Magnetic Multilayers, Journal of Magnetism and Magnetic Materials 159 (1996) L1-L7. |
Sun, Spin-Current Interaction with Monodomain Magnetic Body: A Model Study, Physical Review B, vol. 62, No. 1, Jul. 2000. |
Sun, J.Z., Spin Angular Momentum Transfer in Current-Perpendicular Nanomagnetic Junctions, IBM J. Res & Dev., vol. 50, No. 1, Jan. 2006, pp. 81-100. |
Number | Date | Country | |
---|---|---|---|
20120039115 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61111351 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12396868 | Mar 2009 | US |
Child | 13278247 | US |