Structures and methods of fabricating dual gate devices

Information

  • Patent Grant
  • 10453953
  • Patent Number
    10,453,953
  • Date Filed
    Wednesday, December 21, 2016
    8 years ago
  • Date Issued
    Tuesday, October 22, 2019
    5 years ago
Abstract
First polysilicon (poly-1) is deposited into deep trenches that have been formed in a substrate. A first polysilicon polishing process is performed to planarize the exposed surfaces of the poly-1 so that the surfaces are flush with adjacent surfaces. Then, shallow trenches are formed in the substrate between the deep trenches, and second polysilicon (poly-2) is deposited into the shallow trenches. A second polysilicon polishing process is performed to planarize the exposed surface of the poly-2 so that the surface is flush with adjacent surfaces. Metal contacts to the poly-1 and the poly-2 are then formed.
Description
BACKGROUND

To conserve power, it is important to reduce power losses in transistors. In a metal oxide semiconductor field effect transistor (MOSFET) device, power losses can be reduced by reducing the device's drain-to-source on-resistance.


In order to achieve a high breakdown voltage in a MOS device, the epitaxial (epi) layer and/or resistivity can be increased, but this can detrimentally affect on-resistance. To alleviate that problem, a modulated electric field that is vertical to the direction of the current when the device is off can be introduced. A modulated electric field in the drift region increases the breakdown voltage and allows for higher doping concentration for a given breakdown voltage relative to a more conventional MOS device. One way to generate such an electric field is to include a “split gate” alongside the drift region. In a split gate structure, a MOS structure (e.g., trench) is created alongside the drift region. A shielded polysilicon (poly) region, which is connected to the source, is placed under the gate poly inside the trench, and the gate structure is built on top of the trench. Split gate structures offer a number of advantages, including better switching and breakdown voltage and lower on-resistance, but are difficult to manufacture.


SUMMARY

Accordingly, an improved fabrication method, and a device that lends itself to the improved method and provides advantages such as those associated with split gate devices, would be valuable.


In one embodiment according to the invention, first polysilicon (poly-1) is deposited into deep trenches that have been formed in a substrate. A first polysilicon polishing process is performed to planarize the exposed surfaces of the poly-1 so that the surfaces are flush with adjacent surfaces. Then, shallow trenches are formed in the substrate between the deep trenches, and second polysilicon (poly-2) is deposited into the shallow trenches. A second polysilicon polishing process is performed to planarize the exposed surface of the poly-2 so that the surface is flush with adjacent surfaces.


More specifically, in one embodiment, a first oxide layer is formed inside the deep trenches and over the mesas between the deep trenches, and then poly-1 is deposited into the deep trenches. A first polysilicon polishing process is performed to remove at least some of the poly-1, and an oxide polishing process is also performed to remove at least some of the first oxide layer from over the mesa, to form an even surface. After the first polysilicon polishing and oxide polishing processes, shallow trenches are formed in the mesa between the deep trenches. A second oxide layer is formed inside the shallow trenches and over the mesas between the deep and shallow trenches. Poly-2 is then deposited into the shallow trenches. A second polysilicon polishing process is performed to remove at least some of the poly-2.


A first metal contact to the poly-1 and a second metal contact to the poly-2 can then be formed. The first metal contact is directly over and in contact with the poly-1, and the second metal contact is directly over and in contact with the poly-2. In one embodiment, the first metal contact is part of a first metal layer and the second metal contact is part of a second metal layer, where the first and second metal layers are in the same surface plane but are physically isolated from one another.


Accordingly, in one embodiment, a semiconductor device—e.g., a dual gate structure—is formed. Such a device includes source trenches and gate trenches formed parallel to one another in alternating fashion in a substrate. The gate trenches are shallower than the source trenches. A source contact is coupled to poly-1 in the source trenches at one end of the source trenches. The source contact is directly over and in contact with the surfaces of the poly-1. A gate contact is coupled to poly-2 in the gate trenches at one end of the gate trenches (the source and gate contacts are formed at opposite ends of the trenches). The gate contact is directly over and in contact with the surfaces of the poly-2. As a result of the first and second polysilicon polishing processes, the surfaces of the poly-1 and poly-2 are flush with adjacent surfaces (e.g., flush with the mesas formed by the gate and source trenches). The source contact is part of a first metal layer and the gate contact is part of a second metal layer. The first and second metal layers are physically isolated from one another and in the same surface plane.


In one embodiment, the first and second polysilicon polishing processes and the oxide polishing process are chemical mechanical polishing (CMP) processes. The use of CMP facilitates the manufacture of devices such as dual gate structures. The use of CMP allows for planarization of the polysilicon inside the source and gate trenches and the oxide at the top of each source trench, which results in better control over the structure and improved process margins, thereby improving performance. For example, planarization improves the depth of focus during photolithography. As a result, material can be deposited more accurately and uniformly, and shallower trenches can be formed. Consequently, device features can be scaled to smaller dimensions.


These and other objects and advantages of the present invention will be recognized by one skilled in the art after having read the following detailed description, which are illustrated in the various drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. Like numbers denote like elements throughout the drawings and specification.



FIG. 1 is a top-down view of one embodiment of a semiconductor device in accordance with the present invention.



FIGS. 2, 3, 4, 5, and 6 are cross-sectional views along various axes showing elements of a semiconductor device according to embodiments of the present invention.



FIGS. 7A and 7B illustrate a flowchart of a process that is used to fabricate semiconductor devices according to embodiments of the present invention.



FIGS. 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 are cross-sectional views showing selected stages in the fabrication of a semiconductor device according to embodiments of the present invention.





DETAILED DESCRIPTION

In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one skilled in the art that the present invention may be practiced without these specific details or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.


Some portions of the detailed descriptions that follow are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations for fabricating semiconductor devices. These descriptions and representations are the means used by those skilled in the art of semiconductor device fabrication to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing terms such as “forming,” “performing,” “producing,” “depositing,” “growing,” “etching” or the like, refer to actions and processes of semiconductor device fabrication.


The figures are not drawn to scale, and only portions of the structures, as well as the various layers that form those structures, may be shown in the figures. Furthermore, fabrication processes and steps may be performed along with the processes and steps discussed herein; that is, there may be a number of process steps before, in between and/or after the steps shown and described herein. Importantly, embodiments in accordance with the present invention can be implemented in conjunction with these other (perhaps conventional) processes and steps without significantly perturbing them. Generally speaking, embodiments in accordance with the present invention can replace portions of a conventional process without significantly affecting peripheral processes and steps.


As used herein, the letter “n” refers to an n-type dopant and the letter “p” refers to a p-type dopant. A plus sign “+” or a minus sign “−” may be used to represent, respectively, a relatively high or relatively low concentration of the dopant.


Some of the figures are discussed in the context of one type of device; however, embodiments according to the present invention are not so limited. That is, the features described herein can be utilized in either an n-channel device or a p-channel device. The discussion of one type of device can be readily mapped to another type of device by substituting p-type dopant and materials for corresponding n-type dopant and materials, and vice versa.



FIG. 1 is a top-down view of one embodiment of a semiconductor device 100 in accordance with the present invention. The semiconductor device 100 may be generally referred to as a dual gate structure. The semiconductor device 100 may be implemented as a metal-insulator-semiconductor (MIS) device.


In FIG. 1, multiple levels or layers of the semiconductor device 100 are illustrated. The structure illustrated in FIG. 1 includes a number of parallel trenches exemplified by the first trench 111 and the second trench 112, known as source trenches. A third trench 113, known as a gate trench, is between and parallel to the first and second trenches. There may be any number of source trenches, with a gate trench between each pair of source trenches. As described below, the trenches 111, 112, and 113 may be lined with an oxide and then filled with, for example, polysilicon.


A first metal layer 121 is formed over one end of the trenches, and a second metal layer 122 is formed over the other end of the trenches, as shown in FIG. 1. The first and second metal layers are in the same surface plane but are physically isolated from one another.


The first metal layer 121 is known as the source metal layer. The source metal layer 121 is in contact with the polysilicon in the source trenches 111 and 112 at the locations identified as 131 and 132. Contact between the source metal layer 121 is directly over the polysilicon in the source trenches.


The second metal layer 122 is known as the gate metal layer. The gate metal layer 122 is in contact with the polysilicon in the gate trench 113 at the location identified as 133. Contact between the gate metal layer 122 is directly over the polysilicon in the gate trenches. In one embodiment, the widths of the gate trenches are greater at the ends of the trenches that are under the second metal layer 122. That is, the gate trenches flare outward where they make contact with the gate metal layer. The gate trenches are wider than the gate contact, as shown in FIG. 1.



FIG. 2 is a cross-sectional view along the cut line A-A shown in FIG. 1. The portion of the structure 100 shown in FIG. 2 includes source trenches 111 and 112, as well as additional source trenches (not labeled), and gate trench 113, as well as additional gate trenches (not labeled).


In the FIG. 2 embodiment, the source and gate trenches are formed in a laminate or substrate that includes an n+ region 210 and an n-doped epitaxial region 220. The source trenches are deeper than the gate trenches; the source trenches extend through the epitaxial region 220 and into the n+ region 210, while the gate trenches do not.


The source and gate trenches may be lined with an oxide layer 230. P-body regions, such as p-body region 240, may also be formed in the substrate between the source and gate trenches. Source regions, such as source region 250, may also be formed in the substrate between the source and gate trenches. A drain region (not shown) may be implemented as a layer below the n+ region 210.


In the example of FIG. 2, the source regions are continuous n+ regions. However, in one embodiment, the n+ source regions are separated by p+ regions 350, as shown in FIG. 3. The n+ source regions 250 and p+ regions 350 alternate with one another as shown in FIG. 3. That is, n+ source regions 250 are located between p+ regions 350, and p+ regions are located between n+ source regions. The p+ regions 350 are used to provide electrical contact to the p-body regions 240. Accordingly, the same source metal layer can be in electrical contact with both the p+ body regions 240 (via the p+ regions 350) and the n+ source regions 250.


As will be discussed in more detail below, the top surfaces of the polysilicon 260 (FIG. 2) in the source and gate trenches, and the exposed surfaces of the oxide layers 230 at the top of the source trenches, are flush with the mesas that are between the trenches. This provides a number of benefits, also discussed below.


At the end of the structure 100 shown in FIG. 2 (that is, in the region that is under the gate metal layer 122; see FIG. 1), oxide regions 270 are formed over the source trenches and over the mesas between the source trenches and the gate trenches, but not over the gate trenches, leaving the polysilicon 260 in the gate trenches exposed to the gate metal layer 122. Accordingly, the gate metal layer 122 can make physical and electrical contact with the polysilicon in the gate trenches, as exemplified by the gate metal contact at 133.



FIG. 4 is a cross-sectional view along the cut line B-B shown in FIG. 1. The portion of the structure 100 shown in FIG. 4 includes the gate trench 113, source metal layer 121, gate metal layer 122, epitaxial region 220, and n+ region 210. The source and gate metal layers are in the same surface plane.


An oxide layer 410 covers the gate trenches except for a portion of the gate trenches that is under the gate metal layer 122, leaving the polysilicon 260 in the gate trenches exposed to the gate metal layer. Accordingly, the gate metal layer 122 can make physical and electrical contact with the polysilicon 260 in the gate trenches, as exemplified by the gate metal contact at 133.



FIG. 5 is a cross-sectional view along the cut line C-C shown in FIG. 1. The portion of the structure 100 shown in FIG. 5 includes source trenches 111 and 112, as well as additional source trenches (not labeled), and gate trench 113, as well as additional gate trenches (not labeled).


As will be discussed in more detail below, the top surfaces of the polysilicon 260 in the source and gate trenches, and the exposed surfaces of the oxide layers 230, are flush with the mesas that are between the trenches. This provides a number of benefits, also discussed below.


At the end of the structure 100 shown in FIG. 5 (that is, in the region that is under the source metal layer 121; see FIG. 1), oxide regions 570 are formed over the gate trenches but not over the source trenches. Also, the oxide regions 570 are formed over the n+ source regions in the termination regions, but not over the n+ source regions in the active region. As a result, the polysilicon 260 in the source trenches, and the n+ source regions (e.g., n+ source region 250) in the active region, are exposed to the source metal layer 121. Accordingly, the source metal layer 121 can make physical and electrical contact with the polysilicon in the source trenches and with the n+ source regions, as exemplified by the source metal contact at 131 and 132.



FIG. 6 is a cross-sectional view along the cut line D-D shown in FIG. 1. The portion of the structure 100 shown in FIG. 6 includes the source trench 111, source metal layer 121, gate metal layer 122, and n+ region 210. The source and gate metal layers are in the same surface plane.


An oxide layer 610 covers the source trenches except for a portion of the trenches that is under the source metal layer 121, leaving the polysilicon 260 in the source trenches exposed to the source metal layer. Accordingly, the source metal layer 121 can make physical and electrical contact with the polysilicon 260 in the source trenches, as exemplified by the source metal contact at 131.



FIGS. 7A and 7B illustrate a flowchart 700 of one embodiment of a process that is used in the fabrication of semiconductor devices such as the device partially illustrated in FIG. 1. Although specific steps are disclosed in the flowchart 700, such steps are exemplary. That is, embodiments according to the present invention are well suited to performing various other steps or variations of the steps recited in the flowchart 700. The flowchart 700 is discussed in conjunction with FIGS. 8-17, which are cross-sectional views showing selected stages in the fabrication of a semiconductor device according to an embodiment of the present invention. Certain well-known stages are left out of the following discussion. For example, operations associated with the formation and removal of masks are not described.


In block 702 of FIG. 7, with reference also to FIG. 8, trenches 802 are formed in a substrate/laminate that includes n+ region 210 and epitaxial region 220. An etching process may be used to form the trenches 802. The trenches 802 are used as source trenches.


In block 704, with reference also to FIG. 9, an oxide layer 904 is deposited along the sidewalls and bottoms of the trenches 802, and also over the mesas 906 between those trenches.


In block 706, with reference also to FIG. 10, polysilicon 1008 (poly-1) is deposited into the trenches 802. Each trench may be overfilled with poly-1. In one embodiment, a first polysilicon polishing process (e.g., CMP) is used to polish the poly-1 to form a flat surface. The poly-1 can then be etched back (e.g., in plasma) so that it is recessed relative to the adjacent oxide layer 904.


In block 708, with reference also to FIG. 11, an oxide polishing process (e.g., CMP) is used to form an even (flat and smooth) surface 1110. Specifically, the oxide layer 904 over the mesas is removed, so that exposed surfaces of the oxide layer (the ends of the remainder of the oxide layer 904, along the sidewalls of the trenches 802) are flush with the adjacent surfaces/mesas. Also, any portions of the poly-1 protruding from the trenches 802 are removed, so that the exposed surfaces of the poly-1 are also flush with the adjacent surfaces/mesas.


During the oxide polishing (e.g., CMP) process, additional oxide may be added by deposition and removed during the oxide CMP process to achieve a surface 1110 that is both flat and smooth. It is beneficial for the surface 1110 to be free from imperfections (e.g., dips, pits, and scratches) to the extent practical. In a later process stage (block 712), polysilicon (poly-2) is deposited into the trenches used as gate trenches; that poly-2 may be captured in an imperfection, potentially forming stringers, if the surface 1110 is not as flat and smooth as practical.


In block 710, with reference to FIG. 12, trenches 1202 are formed in the substrate. An etching process may be used to form the trenches 1202. The trenches 1202 are used as gate trenches and are shallower than the source trenches (trenches 802). At one end of the trenches 1202—at the end of the trenches at which the gate metal contacts are formed—the trenches 1202 are widened, as shown in FIG. 1.


In block 712, with reference also to FIG. 12, a thin gate oxide layer 1204 is grown along the sidewalls and bottoms of the trenches 1202, and also over the mesas between the trenches 1202 and the trenches 802.


In block 714, with reference to FIG. 13, polysilicon 1308 (poly-2) is deposited into the trenches 1202. Each trench may be overfilled with poly-2, in which case a second polysilicon polishing process (e.g., CMP) is used to again generate a flat surface. The poly-2 can then be etched back (e.g., in plasma) so that it is recessed relative to the adjacent oxide layer.


With reference still to FIG. 13, in one embodiment, p-body regions 240 can be formed in the regions between the trenches 802 and 1202.


In block 716, with reference also to FIG. 14, regions 1450 are formed in the regions between the trenches 802 and 1202. As described above in conjunction with FIG. 3, the regions 1450 include alternating n+ source regions 250 and p+ regions 350. That is, the n+ source regions 250 and the p+ regions 350 alternate with one another as shown in FIG. 3.


In block 718, with reference also to FIG. 15, oxide 570 is deposited in selected locations in the source metal region. Specifically, an oxide layer is deposited, then selectively removed so that, in the source metal region, the oxide 570 remains in the termination regions and over the gate trenches 1202, leaving the regions 1450 (e.g., the alternating n+ source regions 250 and p+ regions 350) exposed in the active region and the source trenches 802 exposed in the termination and active regions.


Consequently, when the source metal layer 121 is subsequently deposited, physical and electrical contact to the source trenches 111 and 112 and to the n+ source regions 250 is made, as shown in FIG. 5. Also, when the source metal layer 121 is subsequently deposited, electrical and physical contact to the p+ regions 350, and hence electrical contact to the p-body regions 240, is made, as shown in FIG. 16. Thus, the same source metal layer makes electrical contact to both the n+ source regions 250 and the p-body regions 240.


Also, with reference to FIG. 17, oxide 270 is deposited in selected locations in the gate metal region. Specifically, an oxide layer is deposited, then selectively removed so that, in the gate metal region, the oxide 270 remains over the source trenches 802 and over the regions 1450 (n+ source regions 250 and p+ regions 350), leaving the gate trenches 1202 exposed. Consequently, when the gate metal layer 122 is subsequently deposited, physical and electrical contact to the gate trenches is made, as shown in FIG. 2. The width of the gate trench (measured in the direction ‘W’) is less than the width of the contact of the gate trench with the gate metal layer 122.


In summary, embodiments in accordance with the present invention pertain to structures of, and methods of fabricating, trench-gated devices (e.g., MIS devices) incorporating dual gate structures that have separated polysilicon layers inside independent gate and source trenches that are respectively coupled. The dual gate structures are implemented with a gate contact connecting the gate polysilicon (poly-2) layer in the gate trench to a gate electrode, and a source contact connecting the source polysilicon (poly-1) layer in the source trench to a source electrode. The source contact and the gate contact are at the same surface plane.


CMP is used to facilitate the manufacture of such devices. The use of CMP allows for planarization of the polysilicon inside the source and gate trenches and the oxide at the top of each source trench, which results in better control over the structure and improved process margins, thereby improving performance. For example, planarization improves the depth of focus during photolithography. As a result, material can be deposited more accurately and uniformly, and shallower trenches can be formed. Consequently, device features can be scaled to smaller dimensions.


Embodiments in accordance with the invention can be used with medium voltage rating (60-150 volts) trench power MOS devices and high voltage rating (150-300 volts) trench power MOS devices.


In summary, embodiments of semiconductor devices, and embodiments of methods for fabricating such devices, are described. The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A semiconductor device comprising: a substrate;an epi region over said substrate;a source trench that extends through said epi region and into said substrate;a gate trench that extends into but not through said epi region, wherein sidewalls of said gate trench are parallel to sidewalls of said source trench;a source contact coupled to first polysilicon in said source trench at an end of said source trench, wherein said source contact is directly over and in contact with a first surface of said first polysilicon; anda gate contact coupled to second polysilicon in said gate trench at an end of said gate trench, wherein said gate contact is directly over and in contact with a second surface of said second polysilicon,wherein said first and second surfaces are both flush with a surface of a mesa that is between said gate and source trenches, wherein a first oxide layer lines said source trench and a second oxide layer lines said gate trench, wherein a surface of said first oxide layer is flush with both said first and second surfaces and wherein a surface of second oxide layer is flush with both said first and second surfaces, wherein said source contact is also in contact with said mesa, and wherein said source contact is isolated from said second polysilicon in said gate trench by an oxide region above said second surface.
  • 2. The semiconductor device of claim 1 wherein said source contact is part of a first metal layer and said gate contact is part of a second metal layer, wherein said first and second metal layers are physically isolated from one another and in the same surface plane.
  • 3. The semiconductor device of claim 1 wherein said gate trench is wider at said second end.
  • 4. The semiconductor device of claim 1 wherein said gate trench is wider than said gate contact.
  • 5. The semiconductor device of claim 1 further comprising a region of p-type dopant adjacent an upper surface of said mesa between said gate and source trenches, wherein said source contact is also in contact with said region of p-type dopant.
  • 6. A semiconductor device comprising: a substrate;an epi region over said substrate;a source trench that extends through said epi region and into said substrate;a gate trench that extends into but not through said epi region, wherein sidewalls of said gate trench are parallel to sidewalls of said source trench and wherein said source trench and said gate trench are separated by a mesa having an upper surface;a source contact of a source metal layer coupled to and in contact with a first surface of first polysilicon in said source trench at an end of said source trench and also coupled to and in contact with said mesa, wherein said source metal layer formed on said substrate extends over said source trench, said mesa and said gate trench; anda gate contact of a gate metal layer coupled to and in contact with a second surface of second polysilicon in said gate trench at an end of said gate trench, wherein said gate metal layer formed on said substrate extends over said source trench, said mesa and said gate trench and wherein said first surface and said second surface are each flush with said upper surface of said mesa on which said source metal layer and said gate metal layer are disposed, wherein a first oxide layer lines said source trench and wherein a second oxide layer lines said gate trench, wherein a surface of said first oxide layer is flush with both said first said surface and said second surface and wherein a surface of second oxide layer is flush with both said first surface and said second surface, and wherein said source metal layer is isolated from said second polysilicon in said gate trench by an oxide region above said second surface.
  • 7. The semiconductor device of claim 6 wherein said source and gate metal layers are physically isolated from one another and in the same surface plane.
  • 8. The semiconductor device of claim 6 wherein said gate trench is wider at said second end.
  • 9. The semiconductor device of claim 6 wherein said gate trench is wider than said gate contact.
  • 10. The semiconductor device of claim 6 further comprising a region of p-type dopant adjacent said upper surface of said mesa between said gate and source trenches, wherein said source contact is also in contact with said region of p-type dopant.
RELATED APPLICATIONS

This application is a continuation (divisional) application of U.S. patent application Ser. No. 13/039,089, filed Mar. 2, 2011, by K. Terrill et al., now U.S. Pat. No. 9,577,089, which claims priority to the U.S. Provisional Patent Application with Ser. No. 61/309,824, filed Mar. 2, 2010, entitled “Structures and Methods of Fabricating Dual Gate MIS Devices,” which are both hereby incorporated by reference in their entirety.

US Referenced Citations (111)
Number Name Date Kind
4710790 Okamoto et al. Dec 1987 A
4881105 Davari et al. Nov 1989 A
5283201 Tsang et al. Feb 1994 A
5321289 Baba et al. Jun 1994 A
5477071 Hamamoto et al. Dec 1995 A
5502320 Yamada Mar 1996 A
5614751 Yilmaz et al. Mar 1997 A
5637898 Baliga Jun 1997 A
5668026 Lin et al. Sep 1997 A
5726463 Brown et al. Mar 1998 A
5763915 Hshieh et al. Jun 1998 A
5831288 Singh et al. Nov 1998 A
5864159 Takahashi Jan 1999 A
5877528 So Mar 1999 A
5895951 So et al. Apr 1999 A
5914503 Iwamuro et al. Jun 1999 A
5998833 Baliga Dec 1999 A
6031265 Hshieh Feb 2000 A
6084264 Darwish Jul 2000 A
6211549 Funaki et al. Apr 2001 B1
6242775 Noble Jun 2001 B1
6255683 Radens et al. Jul 2001 B1
6281547 So Aug 2001 B1
6291298 Williams et al. Sep 2001 B1
6309929 Hsu et al. Oct 2001 B1
6404007 Mo et al. Jun 2002 B1
6413822 Williams et al. Jul 2002 B2
6462376 Wahl et al. Oct 2002 B1
6489204 Tsui Dec 2002 B1
6495884 Harada et al. Dec 2002 B2
6525373 Kim Feb 2003 B1
6545315 Hshieh et al. Apr 2003 B2
6548860 Hshieh et al. Apr 2003 B1
6621107 Blanchard et al. Sep 2003 B2
6653691 Baliga Nov 2003 B2
6683346 Zeng Jan 2004 B2
6707128 Moriguchi et al. Mar 2004 B2
6781199 Takahashi Aug 2004 B2
6838722 Bhalla et al. Jan 2005 B2
6882000 Darwish et al. Apr 2005 B2
6900100 Williams et al. May 2005 B2
6906380 Pattanayak et al. Jun 2005 B1
6921697 Darwish et al. Jul 2005 B2
7005347 Bhalla et al. Feb 2006 B1
7009247 Darwish Mar 2006 B2
7335946 Bhalla et al. Feb 2008 B1
7345342 Challa et al. Mar 2008 B2
7385248 Herrick et al. Jun 2008 B2
7393749 Yilmaz et al. Jul 2008 B2
7494876 Giles et al. Feb 2009 B1
7544571 Park Jun 2009 B2
7598143 Zundel et al. Oct 2009 B2
7868381 Bhalla et al. Jan 2011 B1
7936009 Pan et al. May 2011 B2
8247865 Hirler Aug 2012 B2
8629505 Nishiwaki Jan 2014 B2
8686493 Thorup et al. Apr 2014 B2
20020036319 Baliga Mar 2002 A1
20020056884 Baliga May 2002 A1
20030086296 Wu et al. May 2003 A1
20030178673 Bhalla et al. Sep 2003 A1
20030178676 Henninger et al. Sep 2003 A1
20030201502 Hsieh Oct 2003 A1
20040021173 Sapp Feb 2004 A1
20040038479 Hsieh Feb 2004 A1
20040084721 Kocon et al. May 2004 A1
20040113202 Kocon et al. Jun 2004 A1
20050001268 Baliga Jan 2005 A1
20050079676 Mo et al. Apr 2005 A1
20050082591 Hirler et al. Apr 2005 A1
20050151190 Kotek et al. Jul 2005 A1
20050167742 Challa et al. Aug 2005 A1
20060017056 Hirler Jan 2006 A1
20060113577 Ohtani Jun 2006 A1
20060209887 Bhalla et al. Sep 2006 A1
20060214221 Challa et al. Sep 2006 A1
20060273386 Yilmaz et al. Dec 2006 A1
20060281249 Yilmaz et al. Dec 2006 A1
20070004116 Hshieh Jan 2007 A1
20070037327 Herrick et al. Feb 2007 A1
20070108511 Hirler May 2007 A1
20070108515 Hueting et al. May 2007 A1
20070132014 Hueting Jun 2007 A1
20070155104 Marchant et al. Jul 2007 A1
20070221952 Thorup et al. Sep 2007 A1
20080019997 Shaish et al. Jan 2008 A1
20080073707 Darwish Mar 2008 A1
20080076222 Zundel et al. Mar 2008 A1
20080135889 Session Jun 2008 A1
20080166845 Darwish Jul 2008 A1
20080197407 Challa et al. Aug 2008 A1
20080199997 Grebs Aug 2008 A1
20080265289 Bhalla et al. Oct 2008 A1
20090035900 Thorup et al. Feb 2009 A1
20090050959 Madson Feb 2009 A1
20090057756 Hshieh Mar 2009 A1
20090072301 Bhalla et al. Mar 2009 A1
20090140327 Hirao et al. Jun 2009 A1
20090162989 Cho et al. Jun 2009 A1
20090200578 Xu Aug 2009 A1
20090246923 Park Oct 2009 A1
20090273026 Wilson et al. Nov 2009 A1
20090309156 Darwish et al. Dec 2009 A1
20100006928 Pan et al. Jan 2010 A1
20110079843 Darwish et al. Apr 2011 A1
20110089485 Gao et al. Apr 2011 A1
20120043602 Zeng et al. Feb 2012 A1
20120061753 Nishiwaki Mar 2012 A1
20120267704 Siemieniec et al. Oct 2012 A1
20130049072 Heineck et al. Feb 2013 A1
20130221436 Hossain et al. Aug 2013 A1
Foreign Referenced Citations (43)
Number Date Country
102005041322 Mar 2007 DE
0717450 Jun 1996 EP
63296282 Feb 1988 JP
03211885 Sep 1991 JP
H03-211885 Sep 1991 JP
H07-045817 Feb 1995 JP
H07-235676 Sep 1995 JP
H08-167711 Jun 1996 JP
10173175 Jun 1998 JP
11068102 Mar 1999 JP
2001308327 Apr 2000 JP
2000223705 Aug 2000 JP
2002110984 Apr 2002 JP
2003282870 Oct 2003 JP
2003309263 Oct 2003 JP
2004241413 Aug 2004 JP
2005032941 Feb 2005 JP
200557050 Mar 2005 JP
2005191221 Jul 2005 JP
2006202931 Aug 2006 JP
2007529115 Oct 2007 JP
2008543046 Nov 2008 JP
2008546189 Dec 2008 JP
2008546216 Dec 2008 JP
2009505403 Feb 2009 JP
2009141005 Jun 2009 JP
2009542002 Nov 2009 JP
2010505270 Feb 2010 JP
2011258834 Dec 2011 JP
2012059943 Mar 2012 JP
2013508980 Mar 2013 JP
9403922 Feb 1994 WO
0025363 May 2000 WO
0025365 May 2000 WO
0051167 Aug 2000 WO
0065646 Nov 2000 WO
02099909 Dec 2002 WO
2005065385 Jul 2005 WO
2006127914 Nov 2006 WO
2007021701 Feb 2007 WO
2007129261 Nov 2007 WO
2009026174 Feb 2009 WO
2011050115 Apr 2011 WO
Non-Patent Literature Citations (3)
Entry
Hsu et al., “A Novel Trench Termination Design for 100-V TMBS Diode Application”, IEEE Electron Device Letters, vol. 22 No. 11, Nov. 2001, pp. 551-552.
K. Imai et al., “Decrease in Trenched Surface Oxide Leakage Currents by Rounding Off Oxidation”, Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo 1986, pp. 303-306.
Y. Baba et al., “High Reliable UMOSFET with Oxide-Nitride Complex Gate Structure” 1997 IEEE, pp. 369-372.
Related Publications (1)
Number Date Country
20170104096 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
61309824 Mar 2010 US
Divisions (1)
Number Date Country
Parent 13039089 Mar 2011 US
Child 15387378 US