This description generally relates to medical systems, and particularly to a surgical or medical platform, table, or bed with adjustable arm supports.
Robotic technologies have a range of applications. In particular, robotic arms help complete tasks that a human would normally perform. For example, factories use robotic arms to manufacture automobiles and consumer electronics products. Additionally, scientific facilities use robotic arms to automate laboratory procedures such as transporting microplates. Recently, physicians have started using robotic arms to help perform surgical procedures. For instance, physicians use robotic arms to control surgical instruments inside a patient. However, existing medical systems including robotic arms have a high capital cost and are typically specialized to perform limited types of surgical procedures. Thus, physicians or their assistants may need to obtain multiple robotic arm systems to accommodate a range of surgical procedures. Manually reconfiguring a robotic arm system for each surgical procedure is also time-consuming and physically demanding for the physicians.
A surgical (or medical) robotics system with robotic arms is configurable to perform a variety of surgical (or medical) procedures. A robotic surgical system can include one or more adjustable arm supports that support one or more robotic arms. The adjustable arm supports can be configured to attach to either a table, a column support of the table, or a base of the table to deploy the adjustable arm supports and robotic arms from a position below the table. In some examples, the adjustable arm supports include at least four degrees of freedom that allow for adjustment of the position of a bar or rail to which the robotic arms are mounted. One of the degrees of freedom can allow the adjustable arm support to be adjusted vertically relative to the table. A robotic surgical system can include two adjustable arm supports, each supporting one or more robotic arms. The two adjustable arm supports can be independently adjusted. For example, each arm support can be adjusted to a different height relative to the table.
In a first aspect, a system can include a table configured to support a patient. The system can also include a column extending along a first axis between a first end and a second end. The first end can be coupled to the table. A base can be coupled to the second end of the column. The system can include a first arm support coupled to at least one of the table, column or the base by at least a first joint configured to allow adjustment along the first axis relative to the table. The first arm support can include a first bar having a proximal portion and a distal portion extending along a second axis different from the first axis. The first bar can be configured to support at least one robotic arm.
The system can include one or more of the following features in any combination: (a) wherein the first axis is a vertical axis and the first joint is configured to allow adjustment of the first bar in a vertical direction; (b) wherein the first joint comprises a motorized linear joint configured to move along the first axis; (c) a first robotic arm mounted to the first bar, the first robotic arm configured to translate along the second axis; (d) a second robotic arm mounted to the first bar, the second robotic arm configured to translate along the second axis; (e) wherein the second robotic arm is configured to translate along the second axis independently of the first robotic arm; (f) a third robotic arm mounted to the first bar; (g) wherein at least one of the first robotic arm, second robotic arm or third robotic arm holds a camera; (h) wherein at least one of the first robotic arm, second robotic arm or third robotic arm can be stowed under the table; (i) wherein the first arm support comprises a second joint configured to adjust a tilt angle of the first bar; (j) wherein the second joint comprises a motorized rotational joint configured to rotate around a third axis that is different than the first axis; (k) wherein the first arm support comprises a third joint and a bar connector, the bar connector mechanically coupling the first bar with the third joint; (l) wherein the third joint comprises a motorized rotational joint configured to pivot the bar connector about a fourth axis that is different than the first axis; (m) wherein the third joint is configured to pivot the bar connector to adjust a positioning of the first bar relative to the column; (n) wherein: the third joint is positioned at a first end of the bar connector, the first end of the bar connector coupled to the column, an additional joint is positioned at a second end of the bar connector, the second end of the bar connector coupled to the first bar, and the additional joint is mechanically constrained to the third joint such that the additional joint and the third joint rotate together; (o) wherein the additional joint is mechanically constrained to the third joint via a four-bar linkage; (p) wherein the additional joint is mechanically constrained to the third joint such that an orientation of the first bar does not change as the bar connector pivots; (q) wherein the first bar is capable of translation along a length of the table such that the first bar can extend beyond an end of the table; (r) wherein the first bar is further coupled to the column by at least one fourth joint configured to allow translation of the first bar relative to the column along the second axis; (s) wherein the first arm support is configured to be positioned on a first side of the table, and wherein the system further comprises a second arm support coupled to at least one of the table, column or base and configured to be positioned on a second side of the table; (t) wherein the second side is opposite the first side; (u) wherein the second arm support comprises a second bar extending along a fifth axis by at least a first joint configured to allow adjustment of the second along the first axis; (v) wherein the first arm support and the second arm support are configured to be independently adjustable, such that the first arm support can be moved to a first height and the second arm support can be independently moved to a second height different than the first height; (x) wherein the first arm support is configured to be stored below the table; and/or (y) wherein the base comprises one or more wheels configured such that the system is mobile.
In another aspect, a system can include a table configured to support a patient. The system can include a column extending along a first axis between a first end and a second end. The first end can be coupled to the table. A base can be coupled to the second end of the column. The system can include a first arm support comprising a first bar having a proximal portion and a distal portion extending along a second axis, the first bar coupled to at least one of the table, column or base by at least a first joint configured to allow adjustment of the first bar along the first axis, the first arm support configured to support at least one robotic arm. The system can also include a second arm support comprising a second bar having a proximal portion and a distal portion extending along a third axis coupled to the column by at least a second joint configured to allow adjustment of the second bar along the first axis, the second arm support configured to support at least another robotic arm. In some embodiments, the first arm support and the second arm support are configured such that the position of the first bar and the second bar along the first axis can be adjusted independently.
The system can include one or more of the following features in any combination: (a) wherein the first axis is a vertical axis, the first joint is configured to allow adjustment of the first bar in a vertical direction, the second joint is configured to allow adjustment of the second bar in the vertical direction, and wherein the first bar and the second bar can be adjusted to different heights; (b) wherein the first arm support is configured to be positioned on a first side of the table, and the second arm support is configured to be positioned on a second side of the table; (c) wherein the second side is opposite the first side; (d) wherein: the first arm support comprises a third joint configured to adjust a tilt angle of the second axis of the first bar relative to the surface of the table, and the second arm support comprises a fourth joint configured to adjust a tilt angle of the third axis of the second bar relative to the surface of the table; (e) wherein the tilt angle of the first bar axis and the tilt angle of the second bar axis can be adjusted independently; (f) wherein the first arm support further comprises a first bar connector that is pivotally coupled to the column by at least a fifth joint, and the second arm support further comprises a second bar connector that is pivotally coupled to the column by at least a sixth joint; (g) wherein the first bar connector and the second bar connector can be pivoted independently; (h) wherein the first further comprises a seventh joint configured to allow translation of the first bar relative to the column along the second axis, and the second arm support further comprises an eighth joint configured to allow translation of the second bar relative to the column along the third axis; (i) wherein the translation of the first bar along the first bar axis and the translation of the second bar along the second bar axis can be adjusted independently; (j) wherein the first and second arm supports are configured to be stored below the table; (k) wherein one or more of the first joint and the second joint are motorized or controlled by hydraulics; (l) wherein the first arm supports at least two robotic arms that are linearly translatable relative to one another; and/or (m) multiple robotic arms on the first arm support and multiple robotic arms on the second arm support, wherein the number of arms on the first arm support is equal to the number of arms on the second arm support.
In another aspect, an arm support is disclosed. The arm support can include a bar extending along a first axis. The bar can be configured to support at least one robotic arm such that the at least one robotic arm can translate along the first axis. The bar can be configured to couple to a column supporting a table. The arm support can include a first joint configured to facilitate adjusting a vertical position of the bar along a second axis of the column, a second joint configured to facilitate adjusting a tilt angle of the first axis relative to a surface of the table, a bar connector configured to pivotally couple to the column by at least a third joint, and a fourth joint configured to facilitate translation of the bar along the first axis.
The arm support can include one or more of the following features in any combination: (a) wherein one or more of the first joint, second joint, third joint and fourth joint are motorized or controlled by hydraulics; (b) wherein the second axis is a vertical axis and the first joint is configured to allow adjustment of the bar in a vertical direction; (c) wherein the first joint comprises a linear joint configured to move along the second axis; (d) wherein the second joint comprises a rotational joint configured to rotate around a third axis that is different than the second axis; (e) wherein the third joint comprises a rotational joint configured to pivot the bar connector about a fourth axis that is different than the first axis; (f) wherein the third joint is configured to pivot the bar connector to adjust a positioning of the bar relative to the column; (g) wherein the third joint is positioned at a first end of the bar connector, the first end of the bar connector configured to couple to the column, and wherein an additional joint is positioned at a second end of the bar connector, the second end of the bar connector coupled to the bar, and wherein the additional joint is mechanically constrained to the third joint such that the additional joint and the third joint rotate together; (h) wherein the additional joint is mechanically constrained to the third motorized joint via a four-bar linkage; (i) wherein the additional joint is mechanically constrained to the third motorized joint such that an orientation of the bar does not change as the bar connector pivots; and/or (j) wherein the fourth joint comprises a linear joint.
In another aspect, disclosed is a system that can include a table configured to support a patient positioned on a surface of the table. The system can include a column extending along a first axis between a first end and a second end. The first end can be coupled to the table. A base can be coupled to the second end of the column. The system can include an arm support comprising a bar extending along a second axis. The bar can be coupled to at least one of the table, column, or base by a first joint configured to allow adjustment of the bar along the first axis. The arm support can be configured to support at least one robotic arm. The system can also include at least one computer-readable memory having stored thereon executable instructions, and at least one processor in communication with the at least one computer-readable memory and configured to execute the instructions to cause the system to at least adjust a position of the bar along the first axis in response to receiving a command.
The system can include one or more of the following features in any combination: (a) wherein the command comprises a command to adjust a position of a robotic medical tool coupled to a robotic arm coupled to the arm support; (b) wherein the at least one processor is further configured to execute the instructions to cause the system to at least adjust a position of the bar in response to a clinician selected procedure; (c) wherein the at least one processor is further configured to execute the instructions to cause the system to at least adjust a position of the bar to avoid a collision between the robotic arm and at least one of: the table, a patient, an additional robotic arm, and a medical imaging device; and/or (d) one or more of: a second joint configured to allow the bar to tilt to adjust an angle of the bar axis relative to a surface of the table, a bar connector configured to pivotally couple to the column by at least a third joint, a fourth joint configured to allow translation of the bar relative to the column along the bar axis, and wherein the least one processor is further configured to execute the instructions to cause the system to at least control at least one of the second joint, the third joint, and the fourth joint to adjust the position of the bar.
In another aspect, disclosed is a method that can include providing a table configured to support a patient positioned on a surface of the table; providing a column extending along a first axis between a first end and a second end, the first end coupled to the table; providing a base coupled to the second end of the column; providing an arm support comprising a bar extending along a bar axis coupled to at least one of the table, column or base by at least a first joint configured to allow adjustment of the bar along the first axis, the arm support configured to support at least one robotic arm; and actuating the first joint to adjust a position of the bar along the first axis.
The method can include one or more of the following features in any combination: (a) providing a first robotic arm mounted to the first bar; and translating the first robotic arm the second axis; (b) providing a second robotic arm mounted to the first bar, and translating the second robotic arm the second axis; (c) wherein the second robotic arm is configured to translate along the second axis independently of the first robotic arm; (d) providing a third robotic arm mounted to the first bar; (e) wherein at least one of the first robotic arm, second robotic arm or third robotic arm holds a camera; (f) wherein at least one of the first robotic arm, the second robotic arm, or the third robotic arm can be stowed under the table; (g) wherein the first arm support comprises a second joint configured to adjust a tilt angle of the first bar, and wherein the method further comprises adjusting the tilt angle of the bar by actuating the second joint; (h) wherein the second joint comprises a motorized rotational joint configured to rotate around a third axis that is different than the first axis; (i) wherein the first arm support comprises a third joint and a bar connector, the bar connector mechanically coupling the first bar with the third joint; (j) actuating the third joint to pivot the bar connector to adjust a positioning of the first bar relative to the column; (k) wherein the first bar is capable of translation along a length of the table such that the first bar can extend beyond an end of the table; (l) wherein the first bar is further coupled to the column by at least one fourth joint configured to allow translation of the first bar relative to the column along the second axis, and wherein the method further comprise translating the first bar relative to the column along the second axis; (m) providing a second arm support coupled to at least one of the table, column or base and configured to be positioned on a second side of the table; and/or (n) moving the first arm support to a first height, and moving the second arm support to a second height different than the first height.
In another aspect, disclosed is a method that includes: receiving a command regarding positioning of at least one of: a first robotic arm; a medical instrument coupled to an end effector of the robotic first arm; and an arm support coupled to a base of the first robotic arm and to a column supporting a patient-support table, wherein the arm support comprises at least one joint and a bar configured to support the first robotic arm; and actuating, based on the received command, the at least one joint to adjust a position of the arm support along a vertical axis of the column.
The method may include one or more of the following features in any combination: (a) wherein a first command actuates the at least one joint to adjust the position of the arm support along a vertical axis of the column, a second command actuates a second joint for pivoting up the arm support, a third command actuates a third joint for tilting the arm support and a fourth command causes longitudinal translation of the arm support; (b) wherein a second robotic arm is coupled to the bar of the arm support; (c) raising the arm support, the first robotic arm, and the second robotic arm from a stowed position below the table; positioning the arm support, the first robotic arm and the second robotic arm adjacent the table; adjusting a position of the arm support relative to the table via at least one of the first command, second command, third command, or fourth command; and adjusting a position of the first robotic arm relative to the second robotic arm along the bar of the support joint in preparation for a surgical procedure; (d) wherein the arm support is positioned below an upper surface of the table; and/or (e) a controller for executing one or more commands based on a kinematics model, wherein the one or more commands control the positioning of one or more of the first robotic arm; the medical instrument coupled to an end effector of the robotic first arm; and an arm support coupled to a base of the first robotic arm and to a column supporting a patient-support table, wherein the arm support comprises at least one joint and a bar configured to support the first robotic arm.
In another aspect, disclose is a system that can include a table configured to support a patient positioned on a surface of the table, one or more supports for the table, and an arm support for holding one or more arms adjustable relative to the table, wherein a height of the arm support is adjustable relative to the table.
Reference will now be made in detail to several embodiments, examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the described system (or method) for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.
The table 101 provides support for a patient undergoing surgery using the surgical robotics system 100. Generally, the table 101 is parallel to the ground, though the table 101 may change its orientation and configuration to facilitate a variety of surgical procedures. The table 101 is further described with reference to
The column 102 is coupled to the table 101 on one end and coupled to the base 103 on the other end. Generally, the column 102 is cylindrically shaped to accommodate column rings coupled to the column 102, which are further described with reference to
The base 103 is parallel to the ground and provides support for the column 102 and the table 101. The base 103 may include wheels, treads, or other means of positioning or transporting the surgical robotics system 100. The base 103 is further described with reference to
Alternative views and embodiments of the surgical robotics system 100 including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015 and U.S. Provisional Application No. 62/162,467 filed May 15, 2015.
An advantage of configuring the set of segments of the table 201A is that a configured table 201A may provide greater access to a patient on the table 201A. For instance, the surgical robotics system 100 performs a surgical procedure on the patient that requires access to the groin area of the patient. When a patient is laying face-up on a typical surgical bed, there is more access to the patient's head, arms, and legs than to the patient's groin area. Since the groin area is located toward the center of the patient's body, the legs often obstruct access to the groin area. The detachable segment 216 is detachable from the table 201A. The table 201A without the detachable segment 216 provides greater access to the groin area of a patient lying on the table 201A with the patient's head toward the side of the table 201A with the swivel segment 210. In particular, removing the detachable segment 216 opens more space, for example, to insert a surgical instrument into the groin area. If additional space is required to access the groin area, the foldable segment 214 may be folded down, away from the patient (further described in
The swivel segment 210 pivots laterally relative to the table 201A. The swivel segment 210 includes an arcuate edge 222 and the center segment 212 also includes in arcuate edge 224. Due to the arcuate edges, there is minimal gap between the swivel segment 210 and the center segment 212 as the swivel segment 210 pivots away from or toward the table 201A. A configuration of the table 201A with the swivel segment 210 pivoted away from the table 201A provides greater access to the groin area because the other segments of the table 201A are not obstructing the groin area. An example of this configuration is further described with respect to
The harmonic drive motor 280 includes a driving axle 294 coupled to a driving face 296 such that the driving axle 294 and driving face 296 rotate together. The driving face 296 is coupled to the drive plate 290. The drive plate 290 is coupled to the inner bearing race support 286. The inner bearing race support 286 is coupled to the swivel insert 292 and the inner bearing race cleat 283. The inner bearing race support 286 is movably coupled to the table base 218A by the bearing 284 (e.g., a cross roller bearing). The swivel insert 292 is coupled to the swivel segment 210A such that rotating the driving axle 294 and driving face 296 causes the swivel segment 210A to rotate in the same direction. Though not shown in
The swivel mechanism 278 allows the harmonic drive motor 280 to rotate the swivel segment 210A with precise control, while supporting a load of up to 500 pounds, e.g., from a patient lying on the swivel segment 210A. In particular, the harmonic drive motor 280 may rotate the swivel segment 210A up to a rotational velocity of 10 degrees per second, and up to 45 degrees in either direction about the axis 248. Further, the swivel segment 210A is rotated such that the maximum velocity of the center of mass of the patient is 100 millimeters per second, and the time to the maximum velocity is 0.5 seconds. In some embodiments, one of the bearings of the swivel mechanism is a cross roller bearing—e.g., with ball bearings with a bearing friction coefficient of approximately 0.0025—that helps further provide stability to allow the precise rotation of the swivel segment 210A, while maintaining cantilever loads from the patient's weight. The harmonic drive motor 280 can generate up to 33 Newton meters of torque to rotate the swivel segment 210A with the weight of the patient. In some embodiments, the harmonic drive motor 280 includes an internal brake with a holding torque of at least 40 Newton meters.
Alternative views and embodiments of the table 201A including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/235,394 filed Sep. 30, 2015.
The surgical robotics system 100 rotates the table 101 about the axis of pitch 264 (also illustrated previously in
The surgical robotics system 100 translates the table vertically using the column telescoping mechanism 320. The column telescoping mechanism 320 includes a column telescoping motor 322, column telescoping lead screw 324, and column telescoping rail 326. The column telescoping motor 322 is coupled to the column telescoping lead screw 324. The column telescoping motor 322 and the column telescoping lead screw 324 are stationary relative to the base 103. The column telescoping lead screw 324 is engaged with the column telescoping rail 326. Output rotation of the column telescoping motor 322 causes the column telescoping rail 326 to translate along a vertical axis 321 along the column telescoping lead screw 324. As the column telescoping rail 326 translates in the positive direction along the vertical axis 321, the height of the column 102 and the table 101 increases.
The column 102 also includes a lower column segment 350, middle column segment 352, and upper column segment 354. The lower column segment 350 is coupled to the base 103 and stationary relative to the base 103. The middle column segment 352 is movably coupled to the lower column segment 350. The upper column segment 354 is movably coupled to the middle column segment 352. In other embodiments, a column 102 may include additional or fewer column segments.
The upper column segment 354 and/or the middle column segment 352 also translate along the vertical axis 321 to extend the height of the column 102. Similarly, as the column telescoping rail 326 translates in the negative direction along the vertical axis 321, the height of the column 102 and the table 101 decreases. Further, the upper column segment 354 and/or the middle column segment 352 also translate along the vertical axis 321, collapsing over the lower column segment 350. A table 101 with adjustable height is advantageous because the table 101 facilitates a variety of surgical procedures. Specifically, one surgical procedure requires a patient lying on the table 101 to be positioned at a height lower than the height of a patient lying on the table 101 for a different surgical procedure. In some embodiments, the column telescoping mechanism 320 uses other means of actuation such as hydraulics or pneumatics instead of—or in addition to—motors.
The surgical robotics system 100 translates column rings 305A and 305B vertically using the ring telescoping mechanisms 330A and 330B. The ring telescoping mechanism 330A includes a ring telescoping motor 332, ring telescoping lead screw 334, and ring telescoping rail 336. Column rings are further described with reference to
The surgical robotics system 100 rotates column rings 305A and 305B using the ring rotation mechanisms 340A and 340B, respectively. The ring telescoping rail 336 is coupled to the ring rotation motor 342 by a ring rotation bracket 344. The ring rotation motor 342 is coupled to a set of gears 346. The set of gears 346 includes a driving gear 346G. The driving gear 346G is engaged with a column ring rail 348 of the column ring 305A. Output rotation of the ring rotation motor 342 causes the set of gears 346 and the driving gear 346G to rotate. Accordingly, the rotation of the driving gear 346G causes the column ring 305A to rotate about a vertical axis 341 concentric to the column 102. The column 102 includes another ring rotation mechanism 340B corresponding to the column ring 305B. Generally, both ring rotation mechanisms 340A and 340B and column rings 305A and 305B will be substantially the same, however in other implementations they may be constructed using different mechanisms.
Alternative views and embodiments of the column 103 including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015 and U.S. Provisional Application No. 62/162,467 filed May 15, 2015.
Alternative views and embodiments of the surgical robotics system 400B including the above mentioned components with column-mounted robotic arms are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015 and U.S. Provisional Application No. 62/162,467 filed May 15, 2015.
The column ring 505 includes a column ring rail 510, arm mount pivot 512, arm mount base 514, and a set of arm mounts. The set of arm mounts includes one or more arm mounts. Specifically, the set of arm mounts in
The first arm mount 506A and the second arm mount 506B are movably coupled the arm mount base 514. The first arm mount 506A and the second arm 506B mount may rotate—together or independently—about the axis 511 concentric to the arm mount base 514. For example, the surgical robotics system 400B rotates the first arm mount 506A and the second arm mount 506B using a motor or other means of actuation (not shown) inside the arm mount base 514 or arm mounts. In some embodiments, the first arm mount 506A and the second arm mount 506B rotate at predetermined increments, e.g., increments of 15 degrees.
The arm mount base 514 is coupled to the arm mount pivot 512. The arm mount pivot 512 uses a motor or other means of actuation (not shown) inside the arm mount pivot 512 to rotate the arm mount base 514 about the axis 521 orthogonal to the axis 511. The arm mount pivot 512 is coupled to, and stationary relative to, the column ring rail 510. Rotating the arm mount base 514 is advantageous because robotic arms (and arm mounts) coupled to the arm mount base 514 may be reoriented in response to rotation of the table 401B. Accordingly, robotic arms coupled to the arm mounts of the arm mount base 514 have greater access to a patient lying on the table 401B.
The surgical robotics system 400B translates the arm mount 506C along an axis 531 using the arm mount telescoping mechanism 520. In
Alternative views and embodiments of the column ring 505 including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015 and U.S. Provisional Application No. 62/162,467 filed May 15, 2015.
The robotic arm 670 receives control signals from a robotic arm control system, for example, housed in the column 402B in
Alternative views and embodiments of the robotic arm 670 including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015 and U.S. Provisional Application No. 62/162,467 filed May 15, 2015.
The surgical robotics system 400B in
The surgical robotics system 400B automatically reconfigures the column-mounted robotic arms, column rings, column, and table to perform different surgical procedures. The features of each subsystem and component of the surgical robotics system 400B enable the same set of robotics arms to access a large working volume, and multiple working volumes (based on the configuration), to perform a variety of surgical procedures on the patient. In particular, as mentioned above, the robotic arms may be configured in a first configuration to access the patients' groin area, in a second configuration to access the patients' abdomen area, and in a third configuration to access the patients' head area, in addition to other possible configurations. The degrees of freedom provided by the arm segments of the robotic arms, column rings, column, and table contribute to the wide range of configurations. The surgical robotics system 400B includes a computer system that stores computer program instructions, for example within a non-transitory computer-readable storage medium such as a persistent magnetic storage drive, solid state drive, etc. When executed by a processor of the computer system, the instructions cause the components of the surgical robotics system 400B to automatically reconfigure without the need for intervention, or with minimal intervention, from a user, e.g., a physician. For example, based on the instructions, the computer system sends an electronic control signal to motors of the robotics arms. In response to receiving the control signal, the motors rotate arm segments of the robotics arms into a certain position. The physician or another user may design a configuration of the surgical robotics system by creating the instructions and providing the instructions to the computer system. For example, the instructions are uploaded to a database of the computer system. The automatic configurability of the surgical robotics system 400B is an advantage because the automatic configurability saves resources. Specifically, the surgical robotics system 400B reduces the amount of time taken by users to setup the surgical robotics system 400B for a surgical procedure. Further, by using the surgical robotics system 400B for a variety of surgical procedures, users reduce the amount of surgical equipment that they need to purchase, maintain, store, and learn to operate.
Alternative views and embodiments of use cases of the surgical robotics system 400B with column-mounted robotic arms including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015 and U.S. Provisional Application No. 62/162,467 filed May 15, 2015.
The surgical robotics system 700A configures the set of robotic arms to perform a surgical procedure on the lower body area of the patient 708. Specifically, the surgical robotics system 700A configures the set of robotic arms to manipulate a surgical instrument 710.
In one embodiment, the surgical robotics system 700A configures the set of robotic arms to perform an endoscopy surgical procedure on the patient 708. The set of robotic arms hold an endoscope, e.g., the surgical instrument 710. The set of robotic arms insert the endoscope into the patient's body via an opening in the groin area of the patient 708. The endoscope is a flexible, slender, and tubular instrument with optical components such as a camera and optical cable. The optical components collect data representing images of portions inside the patient's body. A user of the surgical robotics system 700A uses the data to assist with performing the endoscopy.
The surgical robotics system 700B uses a set of column-mounted robotic arms to manipulate a surgical instrument 710. Each of the robotic arms is coupled to, e.g., holding, the surgical instrument 710. The surgical robotics system 700B uses the robotic arms to insert the surgical instrument 710 into the groin area of the patient along a virtual rail 790.
The first panel 820A and a second panel 820B translate laterally to provide access for the robotic arms and column rings into the base 403B.
Alternative views and embodiments of the base 403B including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/203,530 filed Aug. 11, 2015.
In other embodiments, the surgical robotics system 900B may include additional or fewer robotic arms and/or base rails. Further, the robotic arms may be coupled to base rails in various configurations. For example, three robotic arms may be coupled to a base rail. Additionally, the surgical robotics system 900B may include three base rails each coupled to a robotic arm.
The surgical robotics system 900B may translate robotic arms mounted to a base rail by translating the base rails relative to the base 103. Base rails may translate beyond the starting footprint of the base 103, which allows the robotic arms to operate in a larger volume of space. Further, the surgical robotics system 900B may translate robotic arms mounted to a base rail independently from each other by translating the robotic arms relative to the base rail. This is advantageous, for example, because the surgical robotics system 900B may position the robotic arms in different configurations to perform a variety of surgical procedures.
Alternative views and embodiments of the surgical robotics system 900B with rail-mounted robotic arms including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/193,604 filed Jul. 17, 2015 and U.S. Provisional Application No. 62/201,518 filed Aug. 5, 2015.
The surgical robotics system 1000 translates arm mounts—and thus, robotic arms mounted to the arm mounts—along base rails using the belt and pinion assemblies. Specifically, the arm mount 1006A is movably coupled to a channel 1020 of the base rail 980B by the bracket 1012. The bracket 1012 is coupled to motor 1014, belt 1016, and pinion 1018. The motor 1014 is coupled to the pinion 1018 by the belt 1016. Thus, output rotation of the motor 1014 causes the pinion 1018 to rotate. The pinion 1018 is engaged with a rail lead screw 1010 of the base rail 980B. Rotation of the pinion 1018 causes the arm mount 1006A to translate along the base rail 980B parallel to the rail lead screw 1010.
Alternative views and embodiments of the base rails 980A, 980B, and 980C including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/193,604 filed Jul. 17, 2015 and U.S. Provisional Application No. 62/201,518 filed Aug. 5, 2015.
Alternative views and embodiments of the surgical robotics system 1100, the surgical robotics system 1200, and other surgical robotics systems including the above mentioned components are further illustrated and described at least in U.S. Provisional Application No. 62/162,486 filed May 15, 2015, U.S. Provisional Application No. 62/162,467 filed May 15, 2015, U.S. Provisional Application No. 62/193,604 filed Jul. 17, 2015, U.S. Provisional Application No. 62/201,518 filed Aug. 5, 2015, U.S. Provisional Application No. 62/203,530 filed Aug. 11, 2015, and U.S. Provisional Application No. 62/235,394 filed Sep. 30, 2015.
Robotic surgical systems can include adjustable arm supports as described in this section for supporting one or more robotic arms. The adjustable arm supports can be configured to attach to either a table, a column support of the table, or a base of the table to deploy the adjustable arm supports and robotic arms from a position below the table. In some embodiments, the adjustable arm supports can be attached to a bed (or table) or a cart positioned adjacent to a bed. In some examples, the adjustable arm supports includes a bar, track, or rail on which one or more robotic arms are mounted. In some embodiments, the adjustable arm supports include at least four degrees of freedom that allow for adjustment of the position of the bar, track, or rail. One of the degrees of freedom can allow the adjustable arm supports to be adjusted vertically relative to the table. These and other features of the adjustable arm supports will be described in detail with reference to the examples of
Surgical robotics systems including adjustable arm supports 1305 as described in this section can be designed to address one or more issues of known surgical robotics systems. For example, one issue with some surgical robotics systems is that they may be bulky, occupying large amounts of room space. This is often because large and elaborate support structures have been necessary to position robotic arms to perform robotic surgical procedures. Some surgical robotics systems include robotic arm support structures that support a plurality of robotic arms above a table that supports a patient during the robotic surgical procedure. For example, common surgical robotics systems include support structures that suspend one or more robotic arms over a table. These support structures are quite large and bulky because, for example, they must extend over and above the table.
Another issue with some surgical robotics systems is that they can be overly cumbersome. Due to, for example, the large and bulky support structures required by some surgical robotics systems as described above, these systems are not easily moved, which can be disadvantageous. Before and after surgery, it can be desirable to quickly and smoothly clear the robotic arms from a surgical area to provide easy access for loading a patient onto or removing a patient from the table. This has proven to be difficult with some surgical robotics systems because of the large and bulky support structures and the cumbersome nature of these systems. Some surgical robotics systems are not easily stored or moved.
Further, some surgical robotics systems have limited flexibility or versatility. That is, some surgical robotics systems are designed for a particular surgical procedure, and accordingly, do not work well for other types of surgical procedures. For example, a surgical robotics system that is configured for laparoscopic surgery may not work well for endoscopic surgery, or vice versa. In some instances, this is because the robotic arms used during the procedures need to be positioned in different locations relative the patient and/or table during different types of surgical procedures, and the support structures of conventional surgical robotics systems are not capable of accommodating the different positions of the robotic arms. Further, as mentioned above, some surgical robotics systems include support structures that suspend one or more robotic arms above the patient and table. It may be difficult to perform certain medical procedures with robotic arms mounted in this position.
Finally, some surgical robotics systems include robotic arms that are fixedly mounted to their corresponding support structures, and/or support structures themselves that are fixedly mounted or positioned. These systems may rely on articulation of the robotic arms alone to adjust the position of the robotic arms and/or surgical tools mounted thereto. Because the arms and/or supports are fixed in position, this can greatly limit the overall flexibility of these systems. The fixed nature of the robotic arms and/or supports of some systems may further limit the ability of these systems to avoid collisions between the arms and/or other objects (e.g., the patient, the table, other equipment, etc.) during surgery.
The system 1300 of
In some embodiments, one or more of these advantages can be achieved by inclusion of one or more adjustable arm supports 1305 as described herein. As mentioned above, the adjustable arm supports 1305 can be configured so as to be able to move relative to the table 1301 to adjust and/or vary the position of the adjustable arm support 1305 and/or any robotic arms mounted to the adjustable arm support 1305 relative to the table 1301. For example, the adjustable arm supports 1305 can be capable of being stowed (for example, below the table 1301) and subsequently elevated for use. In some embodiments, the adjustable arm supports 1305 can be stowed in or near a base that supports the table 1301. In some embodiments, the adjustable arm supports 1305 can be stowed in one or more recesses formed along a central longitudinal axis of the base. In other embodiments, the adjustable arm supports 1305 can be stowed in one or more recesses offset from a central longitudinal axis of the base. Upon elevation, the adjustable arm supports 1305 can be positioned near the patient, but below the table 1301 (e.g., below the upper surface of the table 1301). In other embodiments, the arm supports 1305 can be raised above the table 1301 (e.g., above the upper surface of the table). Such a configuration can be useful, for example, when an adjustable arm support is positioned behind a patient lying on his side.
In some embodiments, the adjustable arm support 1305 is attached to the bed with a support structure that provides several degrees of freedom (e.g., lift, lateral translation, tilt, etc.). In the illustrated embodiment of
These degrees of freedom, as well as other features of the adjustable arm support 1305, will now be described in greater detail with reference to
The system 1300 can also include the adjustable arm support 1305. In the illustrated embodiment, the adjustable arm support 1305 is mounted to the column 1302. In other embodiments, the adjustable arm support 1305 can be mounted to the table 1301 or the base 1303. As mentioned above, the adjustable arm support 1305 is configured so that the position of the adjustable arm support 1305 can be adjusted relative to the table 1301. In some embodiments, the position of the adjustable arm support 1305 can also be adjusted relative to the column 1302 and/or base 1303.
The adjustable arm support 1305 can include a carriage 1309, a bar or rail connector 1311, and a bar or rail 1307. The bar or rail 1307 can comprise a proximal portion and a distal portion. One or more robotic arms can be mounted to the rail 1307, as shown, for example, in
The column 1302 can extend along a first axis 1323. In some embodiments, the first axis 1323 is parallel to the z-axis as illustrated. In some embodiments, the first axis 1323 is a vertical axis. For example, the first axis 1323 can be perpendicular to the support surface or floor on which the system 1300 rests.
The carriage 1309 can be attached to the column 1302 by a first joint 1313. The first joint 1313 can be configured to allow the carriage 1309 (and accordingly the adjustable arm support 1305) to move relative to the column 1302. In some embodiments, the first joint 1313 is configured to allow the carriage 1309 to move along the column 1302 (for example, up and down along the column 1302). In some embodiment, the first joint 1313 is configured to allow the carriage 1309 to move along the first axis 1323 (for example, back and forth along the first axis 1323). The first joint 1313 can comprise a linear or prismatic joint. The first joint 1313 can comprise a powered joint, such as a motorized or hydraulic joint. The first joint 1313 can be configured to provide the first degree of freedom (“Z-lift”) for the adjustable arm support 1305.
The adjustable arm support 1305 can include a second joint 1315 as shown. The second joint 1315 can be configured to provide the second degree of freedom (tilt) for the adjustable arm support 1305. The second joint 1315 can be configured to allow the adjustable arm support 1305 to rotate around a second axis 1325 that is different than the first axis 1323. In some embodiments, the second axis 1325 is perpendicular to the first axis 1323. In some embodiments, the second axis 1325 need not be perpendicular relative to the first axis 1323. For example, in some embodiments, the second axis 1325 is at an acute angle to the first axis 1323. In some embodiments, the second axis 1325 extends in the y-direction. In some embodiments, the second axis 1325 may lie in a plane that is parallel to the support surface or floor on which the system 1300 rests. The second joint 1315 can comprise a rotational joint. The second joint 1315 can comprise a powered joint, such as a motorized or hydraulic joint.
In the illustrated embodiment, the second joint 1315 is formed between the carriage 1309 and the column 1302, such that the carriage 1309 can rotate about the second axis 1325 relative to the column 1302. In other embodiments, the second joint 1315 can be positioned in other locations. For example, the second joint 1315 can be positioned between the carriage 1309 and the rail connector 1311, or between the rail connector 1311 and the rail 1307.
As noted above, the second joint 1315 can be configured to allow the adjustable arm support 1305 to rotate about the second axis 1325 to allow for the second degree of freedom (tilt) for the adjustable arm support 1305. As will be described in greater detail with reference to
The adjustable arm support 1305 can include a third joint 1317 as shown. The third joint 1317 can be configured to provide the third degree of freedom (pivot up) for the adjustable arm support 1305. The third joint 1317 can be configured as a rotational joint to allow the rail connector 1311 to rotate around a third axis 1327 that is different from the first axis 1323 and the second axis 1325. In some embodiments, the third axis 1327 can be perpendicular to the second axis 1325. In other embodiments, the third axis 1327 need not be parallel to the second axis 1325. For example, the third axis 1327 can be at an acute angle relative to the second axis 1325. In some embodiments, the third axis 1327 extends in the x-direction. In some embodiments, the third axis 1327 may lie in a plane that is parallel to the support surface or floor on which the system 1300 rests. The third axis 1327 may lie in the same plane or a different plane than the second axis 1325. When the adjustable arm support 1305 is positioned as shown in
When configured as a rotational joint, the third joint 1317 can allow the rail connector 1311 to rotate around the third axis 1327. As the rail connector 1311 rotates around the third axis 1327, a distance (for example, measured along the y-direction) between an edge of the table 1301 and the rail 1307 can be adjusted. For example, the distance between the edge of the table 1301 and the rail 1307 would increase as the rail connector 1311 is rotated downward from the position shown in
As best seen in
In some embodiments, the third joint 1317 can comprise a linear joint or prismatic joint (in place of the rotation joint described above and illustrated in the figures) configured to allow linear displacement of the rail 1307 toward and away from the column 1302 (for example, along the y-direction).
The third joint 1317 can comprise a powered joint. In some embodiments, the third joint 1317 can comprise a motorized or hydraulic joint.
The adjustable arm support 1305 can include a fourth joint 1321 as shown. The fourth joint 1321 can be configured to provide the fourth degree of freedom (translation) for the adjustable arm support 1305. For example, the fourth joint 1321 can be configured to allow the rail 1307 to translate back and forth relative to, for example, the table 1301, the column 1302, the carriage 1309, and/or the rail connector 1311. The rail 1307 can extend along a fourth axis 1329. The fourth joint 1321 can be configured to allow the rail 1307 to translate along the fourth axis 1329. In some embodiments, the fourth axis 1329 can be parallel to third axis 1327. In other embodiments, the fourth axis 1329 can be at a non-parallel (e.g., acute angle) to third axis 1327. In some embodiments, the fourth axis 1329 can be perpendicular to the second axis 1325. In other embodiments, the fourth axis 1329 can be at a non-perpendicular angle (e.g., acute angle) to the second axis 1325. When the adjustable arm support 1305 is positioned as shown in
The fourth joint 1321 can comprise a linear or prismatic joint. The fourth joint 1321 can comprise a powered joint, such as a motorized or hydraulic joint. In the illustrated embodiment, the fourth joint 1321 is positioned between the bar or rail connector 1311 and the rail 1307.
As will be described in greater detail below with reference to
In some embodiments, the adjustable arm support 1305 is configured to allow for variable positioning of the rail 1307 relative to the table 1301. In some embodiments, the position of the rail 1307 remains below a table support surface plane 1333 that is parallel with an upper surface of the table 1301. This may be advantageous as it may improve the ability to maintain a sterile field above the table support surface plane 1333 during a medical procedure. In the operating environment, medical personal may desire to maintain a sterile field above the surface of the table. As such, there may be heightened requirements or stricter procedures for equipment that is positioned above the surface of the table. For example, equipment positioned above the surface of the table may need to be draped. As such, it may be desirable, and some medical personal may prefer, that the arm support is maintained below the surface of the table. In some instances, when the arm support is maintained below the surface of the table, it may not need to be draped. In other embodiments, however, the adjustable arm support 1305 can adjust the position of the rail 1307 such that it is positioned above the table support surface plane 1333.
In some embodiments, the adjustable arm support 1305 is attached to the base 1303, the column 1302, or the table 1301 at a position below the table support surface plane 1333. As will be described below with reference to
Movement of the arm support 1305 (for example, movement of one or more of the first, second, third, or fourth joints 1313, 1315, 1317, 1321) may be controlled and/or commanded in several ways. For example, the system 1300 can include a controller (e.g., a pendant) either on the bed (patient side) or a surgeon console. As another example, buttons (or other actuation mechanisms) could be included on one or more of the components of the adjustable arm support 1305 (or on one or more of the connected robotic arms). As another example, movement of the adjustable arm support 1305 can be provided automatically by system software, for example, for adjustment within the robot's null space (while maintaining the tooltip position commanded by the surgeon). Additionally, movement of the adjustable arm support 1305 can be provided automatically by system software during setup, deployment, draping, or other workflow steps when tools are not inserted into the patient. Other examples are also possible.
Further, a first robotic arm 1402A is illustrated attached to the bar or rail 1307A of the first adjustable arm support 1305A, and a second robotic arm 1402B is illustrated attached to the bar or rail 1307B of the second adjustable arm support 1305B. As illustrated, the first robotic arm 1402A includes a base 1404A attached to the rail 1307A. The distal end of the first robotic arm 1402A includes an instrument drive mechanism 1406A. The instrument drive mechanism 1406A can be configured to attach to one or more robotic medical instruments or tools. Similarly, the second robotic arm 1402B includes a base 1404B attached to the rail 1307B. The distal end of the second robotic arm 1402B includes an instrument drive mechanism 1406B. The instrument drive mechanism 1406B can be configured to attach to one or more robotic medical instruments or tools. Example robotic arms configured for use with the adjustable arm supports 1305 are described below in greater detail in Section XIII (see
In the embodiment in
Further,
The first robotic arm 1402A can be configured to translate back and forth along the rail 1307A of the first adjustable arm support 1305A. That is, the first robotic arm 1402A can be configured to translate along the fourth axis 1329A. This can allow for adjustment of the first robotic arm 1402A relative to the rail 1307A. Similarly, the second robotic arm 1402B, the third robotic arm 1402C, and the fourth robotic arm 1402D can each be configured to translate back and forth along the rail 1307B of the second adjustable arm support 1305B. That is, the second robotic arm 1402B, the third robotic arm 1402C, and the fourth robotic arm 1402D can be configured to translate along the fourth axis 1329B of the second adjustable arm support 1305B. This can allow for adjustment of the second robotic arm 1402B, the third robotic arm 1402C, and the fourth robotic arm 1402D relative to the rail 1307B. Further, each of the second robotic arm 1402B, the third robotic arm 1402C, and the fourth robotic arm 1402D can be independently moved along the rail 1307B such that the spacing between each of the second robotic arm 1402B, the third robotic arm 1402C, and the fourth robotic arm 1402D can be adjusted. Among other things,
Further,
In some embodiments, one or more of the robotic arms 1402A, 1402B, 1402C, 1402D can operate laparoscopic surgical instruments or tools, and one or more of the other of the 1402A, 1402B, 1402C, 1402D can operate a camera laparoscopically inserted into the patient. In some embodiments, the one or more laparoscopic surgical instruments and the camera can be sized and configured to extend through one or more laparoscopic ports in a patient.
In the illustrated embodiment, the table 1301 supporting the patient 10 is positioned at an angle relative to the floor. That is, rather than being parallel, as illustrated for example, in
In other embodiments, rails 1307 are not configured to translate along the axis 1329. For example, in some embodiments, longer rails 1307 can be used in lieu of translating rails. In some embodiments, translation of the rails 1307 permits shorter rails 1307 to be used while still maintaining the overall versatility and flexibility of the system. In some embodiments, shorter rails 1307 (with or without translation) can improved the ability of system to be stowed below the table 1301 (see
In some embodiments, the second joint 1315 permits tilting of the rail relative to the table 1301. In some embodiments, the table 1301 can also pivot or tilt (for example to a Trendelenburg position), and the second joint 1315 can allow the adjustable arm support 1305 to follow the pivoting or tilting of the table 1301. This can allow surgical arms 1402 to remain in position a relative to the patient 10 and/or table 1301 as the table 1301 pivots or tilts. This may be advantageous as a surgeon or clinician may desire to pivot or tilt the table 1301 intraoperatively. In some embodiments, the second joint 1315 pivots or tilts to allow the rail 1307 to remain parallel with the table 1301 as the table tilts. In some embodiments, the rail 1307 need not remain parallel with the table 1301.
The adjustability of the adjustable arm supports 1305 can advantageously allow the systems to work with will other types of medical imaging devices as well.
In some embodiments, systems including adjustable arm supports 1305 can be configured to be mobile. For example, in some embodiments, the base 1301 can include wheels to allow the system to be easily repositioned (see, e.g.,
The method 1900 begins at block 1902 which involves receiving a command. In some embodiments, the command is received from a physician, nurse, physician assistant, surgeon staff, etc. The command may relate to the positioning of at least one of a first robotic arm, a medical instrument coupled to an end effector of the robotic first arm, and/or an arm support coupled to a base of the first robotic arm. In some embodiments, the command may be a command to stow or deploy the system.
In some embodiments, a first command actuates the at least one joint to adjust the position of the arm support along a vertical axis of the column, a second command actuates a second joint for pivoting up the arm support, a third command actuates a third joint for tilting the arm support and a fourth command causes longitudinal translation of the arm support.
At block 1904, the method 1900 involves actuating at least one joint of an adjustable arm support to adjust a position of a bar or rail of the arm support based on the received command. For example, the method 1900 may actuate one or more of the first joint, the second joint, the third joint, and/or the fourth joint. This may cause the arm support to move in one or more of its degrees of freedom.
The method 1900 may further include raising the arm support, the first robotic arm, and the second robotic arm from a stowed position below the table; positioning the arm support, the first robotic arm and the second robotic arm adjacent the table; adjusting a position of the arm support relative to the table via at least one of the first command, second command, third command, or fourth command, and adjusting a position of the first robotic arm relative to the second robotic arm along the rail of the support joint in preparation for a surgical procedure. In some embodiments, the arm support is positioned below an upper surface of the table.
In some embodiments, the method 1900 is executed by a controller for executing one or more commands based on a kinematics model, wherein the one or more commands control the positioning of one or more of the first robotic arm, the medical instrument coupled to an end effector of the robotic first arm; and an arm support coupled to a base of the first robotic arm and to a column supporting a patient-support table, wherein the arm support comprises at least one joint and a rail configured to support the first robotic arm.
The system also includes the table 1301. In the illustrated embodiments, two adjustable arm supports 1305A, 1305B are coupled to the table 1301. The adjustable arm supports 1305A, 1305B can be coupled to the table 1301, a column 1302 supporting a table, or a base 1303 supporting the column. Each of the adjustable arm supports 1305A, 1305B is in communication with the processor 2002 such that the process can adjust the position of the adjustable arm supports 1305A, 1305B.
In the illustrated embodiment, a set of robotic arms is attached to each of the adjustable arm supports 1305A, 1305B. For example, robotic arms 1402A, 1402B are coupled to adjustable arm support 1305A, and robotic arms 1402C, 1402D are coupled to adjustable arm support 1305B. In other embodiments, other numbers of robotic arms (e.g., one, three, four, etc.) can be coupled to each arm support 1305A, 1305B. Example robotic arms are described in section XIII below. In some embodiments, as the arm supports support multiple robotic arms, the stiffness of the arm supports can be increased. This increased stiffness provides an added benefit of stability when used with multiple arms, as this can reduce the shaking of the robotic arms during a surgical process.
In some embodiments, the processor 2002 is configured to execute instructions stored in the memory 2004 to adjust a position of the bar or rail along the first axis in response to receiving a command. The command can comprise a command to adjust a position of a robotic medical tool coupled to a robotic arm coupled to the arm support. In some embodiments, the processor 2002 is further configured to execute the instructions to cause the system to at least adjust a position of a rail or the arm supports 1305A, 1305B in response to a physician selected procedure. In some embodiments, the processor 2002 is further configured to execute the instructions to cause the system 2000 to at least adjust a position of the rail to avoid a collision between the robotic arm and at least one of: the table, a patient, an additional robotic arm, and a medical imaging device. The system 2000 may further be configured to avoid collision with other items in the environment of the system, such as, pendants, stirrups, things that clip onto the bed rail, a nurse, etc.). In addition to collision avoidance, the processor 2002 can further be configured to adjust the position of the arm supports 1305A, 1305B to optimize pose or improve manipulability of the robotic arms 1402A, 1402B, 1402C, 1402D.
The adjustable arm supports described above can be configured to mount to the table, the column, or the base, and are adjustable (moveable in various degrees of freedom) to support robotic arms positioned on the adjustable arm supports. As the adjustable arm supports can be configured to mount below the surface of the table in accordance with some embodiments, it can be advantageous to employ certain types of robotic arms with the adjustable arm supports. In particular, robot arms that have increased movement and flexibility may be desirable, as the robot arms may have to “work up” from a lower position and avoid collisions (e.g., with the table). This section outlines certain features of robotic arms configured for use with adjustable arm supports.
For example, in some embodiments, robotic arms configured for use with the adjustable arm supports differ from parallelogram remote center robotic arms. In one example, a robotic arm configured for use with the adjustable arm supports can comprise a shoulder with at least two degrees of freedom, an elbow with at least one degree of freedom, and a wrist with at least two degrees of freedom. The kinematics associated with such an arm allow the arm base to be positioned arbitrarily relative to the workspace, allowing for setups that would be challenging for a parallelogram remote center robot mounted alongside a bed.
Further, in some embodiments, a robotic arm configured for use with the adjustable arm supports may include a semi-spherical or spherical wrist configured with at least three degrees of freedom. Such a wrist can allow the robotic arm to roll its wrist joint such that an instrument drive mechanism positioned at the distal end of the robotic arm can be below the arm wrist. This can enable procedures where target workspaces are far above ports.
Some surgical robotic arms include a mechanically constrained remote center with no redundant degrees of freedom (e.g., parallelogram robotic arms). That is, for any remote center position, the distance to the base is mechanically constrained. Robotic arms coming from below the bed, as is the case with robotic arm mounted on the adjustable arm supports described above, can be limited by their mount structures and cannot reach the optimal configurations to make parallelogram robot arms excel. To address this issue, robotic arms configured for use with the adjustable arm supports described above can include one or more redundant degrees of freedom. The redundant degrees of freedom can allow the arms to be jogged within their null space without moving the tool tip, allowing for intraoperative collision avoidance that is not possible previously known surgical robotic arms.
In the illustrated example, the shoulder 2117 includes three joints, the elbow 2119 includes one joint, and the wrist 2121 includes two joints. Stated another way, in some embodiments, one or more of the shoulder 2117, the elbow 2119, or the wrist 2121 can provide more than one degree of freedom for the robotic arm 2100. In the illustrated embodiment, the shoulder 2117 is configured to provide three degrees of freedom, the elbow 2119 is configured to provide one degree of freedom, and the wrist 2121 is configured to provide two degrees of freedom. In other embodiments, the shoulder 2117, the elbow 2119, or the wrist 2121 can be configured with other numbers of joints and/or to provide other numbers of degrees of freedom.
The shoulder 2117 can be located generally at a proximal portion 2101 of the robotic arm 2100. The wrist 2121 can be located generally at a distal portion 2103 of the robotic arm 2100. The elbow 2119 can be located generally between the proximal portion 2101 and the distal portion 2103. In some embodiments, the elbow 2119 is located between a proximal link 2109 and a distal link 2111. In some embodiments, the robotic arm 2100 can include other joints or regions of joints than those illustrated in
The shoulder 2117, elbow 2119, and wrist 2121 (and/or other joints or components of or associated with the robotic arm) can provide various degrees of freedom. For the illustrated embodiment, the degrees of freedom are illustrated with arrows. The arrows are intended to indicate the motions provided by each degree of freedom. The illustrated embodiment includes the following degrees of freedom. Not all degrees of freedom need be included in all embodiments, and in some embodiments, additional degrees of freedom can be included. The joints providing the various degrees of freedom can be powered joints, such as motorized joints or hydraulically powered joints, for example.
As illustrated, the robotic arm 2100 includes a degree of freedom permitting shoulder translation. The robotic arm 2100 can also include a degree of freedom permitting shoulder yaw. The robotic arm 2100 can also include a degree of freedom permitting shoulder pitch. The robotic arm 2100 can also include a degree of freedom permitting elbow pitch. The robotic arm 2100 can also include a degree of freedom permitting wrist yaw. The robotic arm 2100 can also include a degree of freedom permitting wrist pitch. The robotic arm 2100 can also include a degree of freedom permitting instrument driver roll. This degree of freedom can be configured allow an instrument attached to the instrument driver (or the instrument driver itself) to be rolled around its axis.
An insertion degree of freedom can also be associated with the robotic arm 2100. The insertion degree of freedom can be configured to permit insertion (or retraction) of the instrument (or tool) attached to an instrument driver mechanism 2115 along an axis of the instrument or an axis of the instrument driver 2115.
These and other features of robotic arms configured for use with the adjustable arms supports 1305 described above are described in greater detail in the application entitled “Surgical Robotics System” filed on even date herewith.
In some embodiments, one or more aspects of a system including adjustable arm supports and corresponding robotic arms can be controlled via software. For example, the system can be designed so that all actuations are robotically controlled by the system, and the system knows the position of all end effectors relative to the tabletop. This may provide a unique advantage that existing robotic surgery systems do not have. Further, this may allow for advantageous workflows including: adjusting the table top intraoperatively (e.g., tilt, Trendelenburg, height, flexure, etc.) while arms and arm positioning platforms move in sync; moving the robotic arms can move away from the operative field for draping or patient loading; after a clinician tells the system the type of procedure, the robotic arms can move to approximate positions near where ports are typically placed (Surgeons could modify and set port selection “presets” for how they like to do surgery); and performing “last mile” docking with cameras on the end effectors and vision targets on cannulas (other non-optical sensors around the end effector could provide similar functionality).
Further, some incarnations of robotic arm joints may require applying high forces to the arm to back-drive the motors and transmissions. This can be reduced with torque sensors in arm joints or a force sensor or joystick at the end effector to allow the robot to know where the clinician is trying to push it and move accordingly (admittance control) to lower back-drive forces felt at the output. Such back-drive regulation can be accomplished in software in some embodiments.
Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs through the disclosed principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope defined in the appended claims.
As used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. For example, some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context unless otherwise explicitly stated.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
This is a continuation application of U.S. patent application Ser. No. 16/234,975, filed on Dec. 28, 2018, which claims priority to U.S. Provisional Application No. 62/618,489, filed Jan. 17, 2018, which is incorporated herein by reference. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Number | Name | Date | Kind |
---|---|---|---|
3997926 | England | Dec 1976 | A |
4878494 | Phillips et al. | Nov 1989 | A |
5013016 | Sicek | May 1991 | A |
5013018 | Sicek | May 1991 | A |
5160106 | Monick | Nov 1992 | A |
5199417 | Muller et al. | Apr 1993 | A |
5259365 | Nishikori | Nov 1993 | A |
5405604 | Has et al. | Apr 1995 | A |
5555897 | Lathrop, Jr. et al. | Sep 1996 | A |
5571072 | Kronner | Nov 1996 | A |
5597146 | Putman | Jan 1997 | A |
5762458 | Wang et al. | Jun 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5855583 | Wang | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5926875 | Okamoto et al. | Jul 1999 | A |
5944476 | Bacchi et al. | Aug 1999 | A |
6170102 | Kreuzer | Jan 2001 | B1 |
6202230 | Borders | Mar 2001 | B1 |
6351678 | Borders | Feb 2002 | B1 |
6620174 | Jensen et al. | Sep 2003 | B2 |
6640363 | Pallee et al. | Nov 2003 | B1 |
6676669 | Charles et al. | Jan 2004 | B2 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6804581 | Wang | Oct 2004 | B2 |
7025761 | Wang et al. | Apr 2006 | B2 |
7027892 | Wang | Apr 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7607440 | Coste-Maniere et al. | Oct 2009 | B2 |
7695481 | Wang et al. | Apr 2010 | B2 |
7763015 | Cooper et al. | Jul 2010 | B2 |
7789874 | Yu et al. | Sep 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7963288 | Rosenberg et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7974681 | Wallace et al. | Jul 2011 | B2 |
7976539 | Hlavka et al. | Jul 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7996110 | Lipow et al. | Aug 2011 | B2 |
8005537 | Hlavka et al. | Aug 2011 | B2 |
8021326 | Moll et al. | Sep 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8108069 | Stahler et al. | Jan 2012 | B2 |
8142420 | Schena | Mar 2012 | B2 |
8146874 | Yu | Apr 2012 | B2 |
8172747 | Wallace et al. | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8230863 | Ravikumar et al. | Jul 2012 | B2 |
8257303 | Moll et al. | Sep 2012 | B2 |
8311626 | Hlavka et al. | Nov 2012 | B2 |
8343096 | Kirschenman et al. | Jan 2013 | B2 |
8348931 | Cooper et al. | Jan 2013 | B2 |
8394054 | Wallace et al. | Mar 2013 | B2 |
8400094 | Schena | Mar 2013 | B2 |
8409136 | Wallace et al. | Apr 2013 | B2 |
8409172 | Moll et al. | Apr 2013 | B2 |
8414598 | Brock et al. | Apr 2013 | B2 |
8425404 | Wilson et al. | Apr 2013 | B2 |
8469945 | Schena | Jun 2013 | B2 |
8498691 | Moll et al. | Jul 2013 | B2 |
8506556 | Schena | Aug 2013 | B2 |
8512353 | Rosielle et al. | Aug 2013 | B2 |
8515576 | Lipow et al. | Aug 2013 | B2 |
8617102 | Moll et al. | Dec 2013 | B2 |
8641698 | Sanchez et al. | Feb 2014 | B2 |
8652030 | Matsuura et al. | Feb 2014 | B2 |
8801661 | Moll et al. | Aug 2014 | B2 |
8897920 | Wang et al. | Nov 2014 | B2 |
8911429 | Olds et al. | Dec 2014 | B2 |
8926603 | Hlavka et al. | Jan 2015 | B2 |
8960622 | von Pechmann et al. | Feb 2015 | B2 |
8968333 | Yu et al. | Mar 2015 | B2 |
8974408 | Wallace et al. | Mar 2015 | B2 |
9023060 | Cooper et al. | May 2015 | B2 |
9078686 | Schena | Jul 2015 | B2 |
9119653 | Amat Girbau | Sep 2015 | B2 |
9119655 | Bowling | Sep 2015 | B2 |
9259281 | Griffiths et al. | Feb 2016 | B2 |
9314306 | Yu | Apr 2016 | B2 |
9326822 | Lewis et al. | May 2016 | B2 |
9358076 | Moll et al. | Jun 2016 | B2 |
9406669 | Kokish et al. | Aug 2016 | B2 |
9452018 | Yu | Sep 2016 | B2 |
9457168 | Moll et al. | Oct 2016 | B2 |
9498601 | Tanner et al. | Nov 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9554865 | Olds et al. | Jan 2017 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9566201 | Yu | Feb 2017 | B2 |
9579088 | Farritor | Feb 2017 | B2 |
9615889 | Jensen | Apr 2017 | B2 |
9616689 | Jensen | Apr 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9629682 | Wallace et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9668768 | Piron et al. | Jun 2017 | B2 |
9713499 | Bar et al. | Jul 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9717563 | Tognaccini | Aug 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9795454 | Seeber et al. | Oct 2017 | B2 |
9820819 | Olson | Nov 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9850924 | Vogtherr et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9907458 | Schena | Mar 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
9999476 | Griffiths | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10080576 | Romo et al. | Sep 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni et al. | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10213264 | Tanner et al. | Feb 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10244926 | Noonan et al. | Apr 2019 | B2 |
10285574 | Landey et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10314463 | Agrawal et al. | Jun 2019 | B2 |
10350390 | Moll et al. | Jul 2019 | B2 |
10368951 | Moll et al. | Aug 2019 | B2 |
10376672 | Yu | Aug 2019 | B2 |
10383765 | Alvarez et al. | Aug 2019 | B2 |
10398518 | Yu et al. | Sep 2019 | B2 |
10405939 | Romo et al. | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426559 | Graetzel et al. | Oct 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Meyer | Oct 2019 | B2 |
10454347 | Covington et al. | Oct 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10493241 | Jiang | Dec 2019 | B2 |
10500001 | Yu et al. | Dec 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10539478 | Lin | Jan 2020 | B2 |
10543047 | Yu | Jan 2020 | B2 |
10543048 | Noonan | Jan 2020 | B2 |
10555778 | Ummalaneni et al. | Feb 2020 | B2 |
10556092 | Yu et al. | Feb 2020 | B2 |
10631949 | Schuh et al. | Apr 2020 | B2 |
10639108 | Romo et al. | May 2020 | B2 |
10639109 | Bovay et al. | May 2020 | B2 |
10639114 | Schuh | May 2020 | B2 |
10667871 | Romo et al. | Jun 2020 | B2 |
10667876 | DeFonzo | Jun 2020 | B2 |
10682189 | Schuh et al. | Jun 2020 | B2 |
10702348 | Moll et al. | Jul 2020 | B2 |
10716461 | Jenkins | Jul 2020 | B2 |
10743751 | Landey et al. | Aug 2020 | B2 |
10744035 | Alvarez et al. | Aug 2020 | B2 |
10765487 | Ho | Sep 2020 | B2 |
10814101 | Jiang | Oct 2020 | B2 |
10820947 | Julian | Nov 2020 | B2 |
10820954 | Marsot et al. | Nov 2020 | B2 |
10828118 | Schuh et al. | Nov 2020 | B2 |
10881280 | Baez | Jan 2021 | B2 |
20020082612 | Moll et al. | Jun 2002 | A1 |
20020162926 | Nguyen | Nov 2002 | A1 |
20020165524 | Sanchez et al. | Nov 2002 | A1 |
20020170116 | Borders | Nov 2002 | A1 |
20030181809 | Hall et al. | Sep 2003 | A1 |
20030191455 | Sanchez et al. | Oct 2003 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040261179 | Blumenkranz | Dec 2004 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20060069383 | Bogaerts | Mar 2006 | A1 |
20060149418 | Anvari | Jul 2006 | A1 |
20060161136 | Anderson | Jul 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060200026 | Wallace et al. | Sep 2006 | A1 |
20070137371 | Devengenzo | Jun 2007 | A1 |
20070293734 | Coste-Maniere | Dec 2007 | A1 |
20080027464 | Moll et al. | Jan 2008 | A1 |
20080039867 | Feussner | Feb 2008 | A1 |
20080082109 | Moll et al. | Apr 2008 | A1 |
20080147089 | Loh | Jun 2008 | A1 |
20080167750 | Stahler | Jul 2008 | A1 |
20080195081 | Moll et al. | Aug 2008 | A1 |
20080218770 | Moll et al. | Sep 2008 | A1 |
20080245946 | Yu | Oct 2008 | A1 |
20090005768 | Sharareh | Jan 2009 | A1 |
20090036900 | Moll | Feb 2009 | A1 |
20090041565 | Rodriguez Y Baena | Feb 2009 | A1 |
20090048611 | Funda | Feb 2009 | A1 |
20090062602 | Rosenberg et al. | Mar 2009 | A1 |
20090163928 | Schena | Jun 2009 | A1 |
20090326318 | Tognaccini | Dec 2009 | A1 |
20100100045 | Pravongviengkham et al. | Apr 2010 | A1 |
20100185211 | Herman | Jul 2010 | A1 |
20100204713 | Ruiz | Aug 2010 | A1 |
20100234857 | Itkowitz | Sep 2010 | A1 |
20100286712 | Won et al. | Nov 2010 | A1 |
20110028894 | Foley et al. | Feb 2011 | A1 |
20110238083 | Moll et al. | Sep 2011 | A1 |
20110257786 | Caron | Oct 2011 | A1 |
20110270273 | Moll et al. | Nov 2011 | A1 |
20110277775 | Holop et al. | Nov 2011 | A1 |
20110282359 | Duval | Nov 2011 | A1 |
20120136372 | Amat Girbau et al. | May 2012 | A1 |
20120191079 | Moll et al. | Jul 2012 | A1 |
20120191083 | Moll et al. | Jul 2012 | A1 |
20120191086 | Moll et al. | Jul 2012 | A1 |
20120241576 | Yu | Sep 2012 | A1 |
20120253332 | Moll | Oct 2012 | A1 |
20120266379 | Hushek | Oct 2012 | A1 |
20120277764 | Cooper | Nov 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20120296161 | Wallace et al. | Nov 2012 | A1 |
20120302869 | Koyrakh | Nov 2012 | A1 |
20130041219 | Hasegawa et al. | Feb 2013 | A1 |
20130053866 | Leung et al. | Feb 2013 | A1 |
20130096576 | Cooper | May 2013 | A1 |
20130131695 | Scarfogliero et al. | Jun 2013 | A1 |
20130190741 | Moll et al. | Jul 2013 | A1 |
20130204091 | Menendez et al. | Aug 2013 | A1 |
20130255425 | Schena | Oct 2013 | A1 |
20130310639 | Omori | Nov 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130338679 | Rosielle et al. | Dec 2013 | A1 |
20140018960 | Itkowitz | Jan 2014 | A1 |
20140051049 | Jarc | Feb 2014 | A1 |
20140051987 | Kowshik | Feb 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140180309 | Seeber et al. | Jun 2014 | A1 |
20140188132 | Kang | Jul 2014 | A1 |
20140243801 | Fanelli et al. | Aug 2014 | A1 |
20140249546 | Shvartsberg et al. | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140276647 | Yu | Sep 2014 | A1 |
20140276935 | Yu | Sep 2014 | A1 |
20140277333 | Lewis et al. | Sep 2014 | A1 |
20140277334 | Yu et al. | Sep 2014 | A1 |
20140316436 | Bar et al. | Oct 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150038981 | Kilroy et al. | Feb 2015 | A1 |
20150045675 | Chemomorsky | Feb 2015 | A1 |
20150119637 | Alvarez | Apr 2015 | A1 |
20150142013 | Tanner et al. | May 2015 | A1 |
20150239082 | Krouglicof | Aug 2015 | A1 |
20150297209 | Yeung | Oct 2015 | A1 |
20150305650 | Hunter | Oct 2015 | A1 |
20150335389 | Greenberg | Nov 2015 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160100896 | Yu | Apr 2016 | A1 |
20160157942 | Gombert | Jun 2016 | A1 |
20160220324 | Tesar | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160296294 | Moll et al. | Oct 2016 | A1 |
20160302871 | Gregerson | Oct 2016 | A1 |
20160331477 | Yu et al. | Nov 2016 | A1 |
20160338783 | Romo et al. | Nov 2016 | A1 |
20160338785 | Kokish et al. | Nov 2016 | A1 |
20160346052 | Rosielle et al. | Dec 2016 | A1 |
20160374590 | Wong et al. | Dec 2016 | A1 |
20160374771 | Mirbagheri | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170007343 | Yu | Jan 2017 | A1 |
20170045807 | Ye | Feb 2017 | A1 |
20170071456 | Ratnakar | Mar 2017 | A1 |
20170071692 | Taylor et al. | Mar 2017 | A1 |
20170071693 | Taylor et al. | Mar 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170135710 | Hasegawa et al. | May 2017 | A1 |
20170135771 | Auld et al. | May 2017 | A1 |
20170143442 | Tesar | May 2017 | A1 |
20170165011 | Bovay et al. | Jun 2017 | A1 |
20170172673 | Yu et al. | Jun 2017 | A1 |
20170189118 | Chopra | Jul 2017 | A1 |
20170189131 | Weir | Jul 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170209217 | Jensen | Jul 2017 | A1 |
20170215976 | Nowlin et al. | Aug 2017 | A1 |
20170215978 | Wallace et al. | Aug 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170304021 | Hathaway | Oct 2017 | A1 |
20170325906 | Piecuch et al. | Nov 2017 | A1 |
20170340353 | Ahluwalia et al. | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170367782 | Schuh et al. | Dec 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180065252 | Tabanden | Mar 2018 | A1 |
20180078439 | Cagle et al. | Mar 2018 | A1 |
20180078440 | Koenig et al. | Mar 2018 | A1 |
20180079090 | Koenig et al. | Mar 2018 | A1 |
20180098817 | Nichogi et al. | Apr 2018 | A1 |
20180116758 | Schlosser | May 2018 | A1 |
20180177470 | Suga | Jun 2018 | A1 |
20180177556 | Noonan et al. | Jun 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180289445 | Krinninger | Oct 2018 | A1 |
20180296285 | Simi et al. | Oct 2018 | A1 |
20180298285 | Simi et al. | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180338799 | Hladio et al. | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20180368920 | Ummalaneni | Dec 2018 | A1 |
20180369035 | Bhimavarapu | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190083183 | Rafii-Tari et al. | Feb 2019 | A1 |
20190107454 | Lin | Apr 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190110843 | Ummalaneni et al. | Apr 2019 | A1 |
20190151148 | Alvarez et al. | May 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Rafi-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafi-Tan et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190255359 | Benali | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190033623 | Yu | Nov 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365201 | Noonan et al. | Dec 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000530 | DeFonzo | Jan 2020 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200038123 | Graetzel | Feb 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200054405 | Schuh | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200085516 | DeFonzo | Mar 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100853 | Ho | Apr 2020 | A1 |
20200100855 | Leparmentier | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200146769 | Eyre | May 2020 | A1 |
20200170720 | Ummalaneni | Jun 2020 | A1 |
20200171660 | Ho | Jun 2020 | A1 |
20200188043 | Yu | Jun 2020 | A1 |
20200197112 | Chin | Jun 2020 | A1 |
20200206472 | Ma | Jul 2020 | A1 |
20200217733 | Lin | Jul 2020 | A1 |
20200222134 | Schuh | Jul 2020 | A1 |
20200237458 | DeFonzo | Jul 2020 | A1 |
20200261172 | Romo | Aug 2020 | A1 |
20200268459 | Noonan et al. | Aug 2020 | A1 |
20200268460 | Tse | Aug 2020 | A1 |
20200281787 | Ruiz | Sep 2020 | A1 |
20200297437 | Schuh | Sep 2020 | A1 |
20200297444 | Camarillo | Sep 2020 | A1 |
20200305983 | Yampolsky | Oct 2020 | A1 |
20200305989 | Schuh | Oct 2020 | A1 |
20200305992 | Schuh | Oct 2020 | A1 |
20200315717 | Bovay | Oct 2020 | A1 |
20200315723 | Hassan | Oct 2020 | A1 |
20200323596 | Moll | Oct 2020 | A1 |
20200330167 | Romo | Oct 2020 | A1 |
20200345216 | Jenkins | Nov 2020 | A1 |
20200352420 | Graetzel | Nov 2020 | A1 |
20200360183 | Alvarez | Nov 2020 | A1 |
20200367726 | Landey et al. | Nov 2020 | A1 |
20200367981 | Ho et al. | Nov 2020 | A1 |
20200375678 | Wallace | Dec 2020 | A1 |
20200405317 | Wallace | Dec 2020 | A1 |
20200405411 | Draper et al. | Dec 2020 | A1 |
20200405419 | Mao | Dec 2020 | A1 |
20200405420 | Purohit | Dec 2020 | A1 |
20200405423 | Schuh | Dec 2020 | A1 |
20200405424 | Schuh | Dec 2020 | A1 |
20200405434 | Schuh | Dec 2020 | A1 |
20200406002 | Romo | Dec 2020 | A1 |
20210007819 | Schuh | Jan 2021 | A1 |
20210008341 | Landey et al. | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
202314134 | Jul 2012 | CN |
104783900 | Jul 2015 | CN |
106456259 | Feb 2017 | CN |
810956 | Mar 1959 | GB |
2012-005557 | Jan 2012 | JP |
101448201 | Oct 2014 | KR |
WO 10068005 | Jun 2010 | WO |
WO 11005335 | Jan 2011 | WO |
WO 15010788 | Jan 2015 | WO |
Entry |
---|
Extended European Search Report from European Patent Application No. 18901740.3, dated Sep. 30, 2021, 8 pages. |
International search report and written opinion dated Mar. 4, 2019 for PCT/US2018/067984. |
International search report and written opinion dated Jul. 13, 2016 for PCT/US2016/026783. |
Darwiche, 2005, Operative technique and early experience for robotic assisted laparoscopic nephroureterectomy (RALNU) using da Vinci XI, SpringerPlus, 4,298. |
Sasaki, 2017, Laparoscopic hemicolectomy for a patient with sifus inversus lotalis, a case report, Int. J. Surg. Case Rep. 41:93-96. |
International Search Report and Written Opinion, Application No. PCT/US16/32505, dated Sep. 23, 2016, 10 pages. |
Invitation to Pay Additional Fees, Application No. PCT/US16/32505, dated Jul. 19, 2016, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20200146769 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62618489 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16234975 | Dec 2018 | US |
Child | 16730543 | US |