Embodiments of the present disclosure generally relate to electrostatically chucking substrates to carriers.
Organic vapor deposition is becoming increasingly relevant in building semiconductor devices and other optical devices. Vapor deposition processes, performed in evaporation chambers, generally include heating materials that are maintained at a desired pressure to a desired temperature such that the heated material is vaporized and then allowed to be transferred to a substrate where the vaporized material condenses onto a surface of the substrate. Organic vapor deposition is often used to form CMOS image sensors. However, organic vapor deposition can also be used to form organic light emitting diodes (OLEDs) organic photodetectors, solar cells, and other similar devices. These devices are used in the manufacture of television screens, computer monitors, mobile phones, and other hand-held devices for displaying information. The range of colors, brightness, and viewing angles possible with OLED displays are greater than that of traditional LED displays because OLED pixels directly emit light and do not require a back light, and thus lesson the energy consumption of the formed device. Further, OLEDs can be manufactured onto flexible substrates, resulting in further device applications as well.
The vapor deposition processes performed in the evaporation chambers are commonly used for the production of layers of a photodiode, and the photodiode may be used in CMOS image sensor (CIS) or organic light emitting diode (OLED) applications. As an example, different organic material can be selectively deposited for different, respective pixels in a CIS utilizing an organic photoconductive film (OPF). Certain pixels (e.g., for sensing red light) can utilize a first organic material, while other pixels (e.g., for sensing green or blue light) can utilize a second, different organic material. In addition to the deposition of organic layers, other processes may be performed, such as pre-clean or deposition of inorganic layers, may be performed to form the photodiode. During the deposition of the organic layers, and other processes, a substrate can be mounted on a carrier. Further, during processing, proper alignment between the substrate and the carrier is important to ensure proper deposition of the organic materials. However, current methods for mounting a substrate to a carrier are unable to ensure that that the substrate is properly aligned with the carrier.
Therefore, there is a need for an improved system and method for mounting a substrate on a carrier to mitigate movement of the substrate relative to the carrier during processing and maintain proper alignment.
In an example embodiment, a method for operating a chucking station comprises generating a vacuum between a carrier and a chuck of the chucking station, and generating a vacuum between a substrate and the chuck. Generating the vacuum between the substrate and the chuck causes the substrate to be urged against a surface of the carrier. The method further comprises applying a chucking voltage to a first electrode relative to a second electrode of the carrier to electrostatically chuck the substrate to the carrier. The chucking voltage is a positive voltage pulse having a first magnitude.
In an example embodiment, a chucking station comprises a chuck, a power supply, and one or more pumping elements. The chuck comprises a plurality of first vacuum ports configured to interface with a surface of a substrate when the substrate is positioned over a surface of the chuck and a plurality of second vacuum ports configured to interface with a surface of a carrier when the carrier is positioned on the surface of the chuck. The chuck further comprises a first electrical pin configured to be in electrical communication with a first electrode of the carrier when the carrier is positioned on the surface of the chuck, and a second electrical pin configured to be in electrical communication with a second electrode of the carrier when the carrier is positioned on the surface of the chuck. The power supply is configured to apply a chucking voltage and a de-chucking voltage to the first and second electrical pins. The one or more pumping elements is coupled to the first and second vacuum ports and configured to generate a vacuum between the substrate and the chuck and a vacuum between the carrier and the chuck.
In example embodiment, a processing system for processing a substrate comprises one or more processing chambers, a transfer chamber comprising a transfer chamber robot configured to transfer the substrate and a carrier to the one or more processing chambers, one or more load lock chambers connected to the transfer chamber, a chucking station, and a transfer robot configured to transfer wafers and carriers between the one or more load lock chambers and the chucking station. The chucking station comprises a chuck, a power supply, and one or more pumping elements. The chuck comprises a plurality of first vacuum ports configured to interface with a surface of a substrate when the substrate is positioned over a surface of the chuck, and a plurality of second vacuum ports configured to interface with a surface of a carrier when the carrier is positioned on the surface of the chuck. The chuck further comprises a first electrical pin configured to be in electrical communication with a first electrode of the carrier when the carrier is positioned on the surface of the chuck, and a second electrical pin configured to be in electrical communication with a second electrode of the carrier when the carrier is positioned on the surface of the chuck. The power supply is configured to apply a chucking voltage and a de-chucking voltage to the first and second electrical pins. The one or more pumping elements is coupled to the first and second vacuum ports and configured to generate a vacuum between the substrate and the chuck and a vacuum between the carrier and the chuck.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments, and are therefore not to be considered limiting of inventive scope, as the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation. The drawings referred to here should not be understood as being drawn to scale unless specifically noted. Also, the drawings are often simplified and details or components omitted for clarity of presentation and explanation. The drawings and discussion serve to explain principles discussed below, where like designations denote like elements.
Organic vapor deposition processes are becoming increasingly relevant in building many different types of electronic devices today. In some of these devices, one or more layers of organic and inorganic materials are disposed on a substrate to form at least part of an electronic device, such as a photodiode and the like. Due to attributes of the substrate and/or the need for deposition masks commonly used in the vapor deposition processes, before processing, the substrate is positioned on and electrostatically chucked to the carrier. To ensure proper alignment between the substrate and the carrier during the electrostatic chucking process, a vacuum is generated between the carrier and the substrate to inhibit and/or prevent the movement of the substrate relative to the carrier during the chucking process. Further, at the end of processing, the processed substrate is removed (electrostatically de-chucked) from the carrier. Accordingly, a chucking station that is configured to electrostatically chuck a substrate to a carrier may be also configured to electrostatically de-chuck the substrate from the carrier.
The processing system 100 includes a vacuum-tight processing platform 160, a factory interface 162, and a controller 150. Further, the processing system 100 may also be referred to as a cluster tool or multi-chamber processing system.
The processing platform 160 includes one or more processing chambers. For example, the processing platform 160 may include processing chambers 112, 114, 116, 118, 132, 134, 138, 136, and 140. Further, the processing platform 160 includes one or more transfer chambers. For example, as is illustrated in
The processing platform 160 may also include one or more load lock chambers. For example, as is illustrated in
The factory interface 162 includes one or more docking stations 183, one or more factory interface robots 185, and a chucking station (e.g., a substrate carrier chamber) 190. The docking stations 183 include one or more front opening unified pods (FOUPS) 187A-187D. The factory interface robot 185 may be capable of linear and rotational movement illustrated by arrows 182. Further, the factory interface robot 185 may transfer substrates between the FOUPS 187, the load lock chambers 102, 104 and the chucking station 190. The chucking station 190 is configured to mount (electrostatically chuck) a substrate on a carrier or remove a supported substrate from a carrier. A carrier may include one or more conductive elements (e.g., chucking electrodes) configured to electrostatically chuck the substrate against the carrier. The carrier and “chucked” substrate may be transferred by the factory interface robot 185 from the chucking station 190 to one or more of the load lock chambers 102, 104. Additionally, the carrier and a processed substrate may be transferred from the load lock chambers 102, 104 to the chucking station 190 such that the processed substrate may be removed from the carrier, and the processed substrate may be transferred from the chucking station 190 to one of the FOUPS 187 by the factory interface robot 185. The chucking station 190 and method for electrostatically chucking and de-chucking a substrate to and from a carrier are described in greater detail with regard to
The transfer chamber 110 includes a transfer robot 111. The transfer robot 111 transfers substrates to and from the load lock chambers 102, 104, to and from the processing chambers 112, 114, 116, and 118, and to and from pass through chambers 122, 124. The pass through chambers 122 and 124 may be utilized to maintain vacuum conditions while allowing substrates to be transferred within the processing system 100 between transfer chambers 110 and 130. The transfer robot 131 transfers substrates between the pass through chambers 122, 124 and the processing chambers 132, 134, 136, 138, and 140, and between the processing chambers 132, 134, 136, 138, and 140.
The processing chambers 112, 114, 116, 118, 132, 134, 138, 136, and 140 may be configured in any manner suitable to process a substrate. For example, the processing chambers 112, 114, 116, 118, 132, 134, 138, 136, and 140 may be configured to deposit one or more metal oxide layers, one or more organic films and apply one or more cleaning processes to a substrate to create a semiconductor device such as a photodetector (e.g., a photodiode or the like).
A first one or more of the processing chambers (e.g., the processing chambers 112, 114, 116, and 118) is configured to perform a pre-clean process to eliminate contaminants and/or degas volatile components from a substrate prior to transferring the substrate into another process chamber. The processing chamber 138 may be configured to deposit one or more layers on a substrate. The one or more layers may be fabricated from indium tin oxide (ITO), silicon oxide, silicon nitride, aluminum oxide, or any suitable material.
The processing chambers 132, 134, and 136 may be configured to deposit one or more organic films on a substrate. Further, the processing chamber 140 may be configured to position a mask (e.g., a shadow mask) on a substrate before the substrate is transferred to one or more the processing chambers 132, 134, 136 and 138 and unload a mask from a substrate after processing within one or more of the processing chambers 132, 134, 136, and 138. The processing chambers 132, 134, 138, and 136 may be configured to deposit materials (e.g., metal oxide layers or organic films) using a chemical deposition process such as chemical vapor deposition (CVD), atomic layer deposition (ALD), metalorganic chemical vapor deposition (MOCVD), plasma-enhanced chemical vapor deposition (PECVD), and physical vapor deposition (PVD) (e.g., sputtering process or evaporation process), among others.
The controller 150 is configured to control the components of the processing system 100. The controller 150 may be any suitable controller for controlling the operation of one or more of the processing chambers, the transfer chambers, pass through chambers, and the factory interface. For example, the controller 150 may be configured to control the operation of transfer robot 111 and/or the transfer robot 131. The controller 150 includes a central processing unit (CPU) 152, a memory 154, and support circuits 156. The CPU 152 may be any general purpose computer processor that may be utilized in an industrial environment. The support circuits 156 are coupled to the CPU 152 and may include cache, clock circuits, input/output subsystems, power supplies and the like. Software routines may be stored within the memory 154. The software routines may be executed by the CPU 152 and thus be adapted to cause various components within the processing system 100 to perform one or more of the methods described herein. Alternatively, or additionally, one or more of the software routines may be executed by a second CPU not illustrated. The second CPU may be part of the controller 150 or remote from the controller 150.
One or more processing chambers, one or more transfer chambers, one or more pass through chambers, and/or the factory interface may have a dedicated controller or controllers (not shown) configured to control at least a portion of the methods disclosed herein. The dedicated controllers may be configured similar to the controller 150 and may be coupled with the controller 150 to synchronize processing of a substrate within the processing system 100.
The chuck 210 is configured to support a carrier 220 and a substrate (or wafer) 230 within the interior region 204 of the chucking station 190. The substrate 230 and the carrier 220 may transferred into the interior region 204 by the factor interface robot 185 via opening 206 in the chamber body 202. While not illustrated, a valve assembly (e.g., slit valve or gate valve) may be disposed within the opening 206 to seal the interior region 204 from the area external to the chucking station 190.
Electrical components within the chuck 210 are coupled to the power supply 250 and various features, cavities and plenums formed in the chuck 210 are in fluid communication with the pumping devices 260, 262. The pumping devices 260, 262 are configured to generate a vacuum in a cavity formed between the substrate 230 and the carrier 220 and a vacuum in the cavity between the carrier 220 and the chuck 210 to mitigate and/or prevent movement of the substrate 230 relative to the carrier 220 during the chucking process. The power supply 250 provides chucking voltages to one or more electrodes disposed within the carrier 220 via electrical pins disposed within the chuck 210 to electrostatically chuck (e.g., electrostatically hold) the substrate 230 to the carrier 220. The pumping devices 260, 262 and the power supply 250 may be controlled by the controller 270. Alternatively, one or more of the pumping devices 260, 262 and the power supply 250 may be controlled by the controller 150.
The actuator assembly 240 includes pins 242 and pins 244. The actuator assembly 240 may separately move the pins 242 and 244 in a vertical direction (e.g., +Y and −Y direction) toward and away from the surface 241 of the actuator assembly by use of one or more actuators (not shown in
The pins 244 may be moved toward the surface 241 of actuator assembly 240 (e.g., −Y direction) to lower the substrate 230 onto the carrier 220 after the substrate 230 is transferred into the chucking station 190 by the factor interface robot 185. The pins 244 may be moved away from the actuator assembly 240 (e.g., +Y direction) and placed in an extended position (e.g., a loading position) to receive the substrate 230. Further, the pins 244 are moved away from the actuator assembly 240 (e.g., +Y direction) and placed in an unloading position to lift the substrate 230 off of the carrier 220 such that the substrate 230 may be removed from the chucking station 190.
The actuator assembly 240 may include one or more actuators (e.g., vertical actuators) configured to move the pins 242 and 244 toward and away from the surface 241 (e.g., a +Y and/or a −Y direction). The actuators of the actuator assembly 240 may be controlled by the controller 270. Alternatively, the actuators of the actuator assembly 240 may be controlled by the controller 150.
The chuck 210 includes vacuum ports 314 and 316. The vacuum ports 314 and 316 are connected to pumping devices 260, 262, respectively, such that a vacuum can be selectively formed in a cavity formed between the carrier 220 and the chuck 210 and a cavity formed between the substrate 230 an the chuck 210. As illustrated, the vacuum ports 314 are positioned underneath the substrate and aligned with the cutout regions 322 so that a vacuum generated in the vacuum ports 314 by the pumping device 260 is able to interact with the substrate 230. For example, the vacuum ports 314 may be utilized to generate a vacuum between the substrate 230 and the chuck 210. Alternatively, the vacuum ports 314 may be positioned in different locations such that vacuum ports 314 are able to interact with the substrate 230. For example, one or more of the vacuum ports 314 may be located outside the cutout regions 322. Further, the number of the vacuum ports 314 may differ from the number illustrated in
The vacuum ports 316 are configured to interact with portions of the carrier 220. For example, the vacuum ports may be utilized to generate a vacuum between the carrier 220 and the chuck 210. Further, as the vacuum ports 316 are obscured by the carrier 220, the vacuum ports 316 are shown in phantom. As illustrated, the chuck 210 includes six vacuum ports 316. Alternatively, the chuck 210 may include more than or less than six vacuum ports 316.
The chuck 210 further includes electrical pins 610 and 612. The electrical pins 610 and 612 are coupled to power supply 250. The power supply 250 may drive the electrical pins 610 and 612 such that the electrical pins 610 and 612 are electrically biased with relative to each other. For example, the electrical pin 610 may be driven with a positive voltage (e.g., at least about 1 KV) and the electrical pin 612 may be driven a corresponding negative voltage (e.g., at least about −1 KV). Driving the electrical pins 610 and 612 alters the charge on the electrodes 640 and 642 of the carrier 220, generating an electrostatic chucking force between the substrate 230 and the carrier 220. Further, the power supply 250 may drive the electrical pins 610 and 612 with other voltages to electrostatically de-chuck, or decouple, the substrate 230 from the carrier 220. For example, the power supply 250 may drive the electrical pins 610 and 612 with voltages of the opposite polarity as described above to electrostatically de-chuck the substrate 230 from the carrier 220.
At operation 820, a vacuum is generated between the carrier and chuck. For example, the pumping device 260 may remove air from a space (e.g., cavity) disposed between the carrier 220 and the chuck 210 via the vacuum ports 316 to generate a vacuum pressure between the carrier 220 and the chuck 210, which cause the external atmospheric pressure to urge the carrier against the chuck 210.
At operation 830, a substrate is received within a chucking station. For example, the substrate 230 may be transferred into the chucking station 190 by the factor interface robot 185 via the opening 206 and placed on the pins 244. Before the substrate 230 is transferred into the chucking station 190, the actuator assembly 240 extends the pins 244 into a loading position, such that the pins 244 are extended beyond the surface 221 of the carrier 220. The pins 244 may pass through cutout regions formed in the carrier 220. The substrate 230 may be positioned by the factor interface robot 185 over the carrier 220 such that the pins 244 are aligned relative to the substrate 230. The actuator assembly 240 lowers the pins 244 towards the surface 241 of the actuator assembly 240, and thus eventually positioning the substrate 230 onto a surface of the carrier 220.
At operation 840, a vacuum is generated between the substrate and chuck 210. For example, the pumping device 262 may remove air from the space (e.g., cavity) formed between the substrate 230 and the chuck 210 via the vacuum ports 314 to generate a vacuum between the substrate 230 and the chuck 210, which cause the external atmospheric pressure to urge the substrate 230 against the carrier 220. Generating the vacuum between the substrate 230 and the chuck 210 holds the substrate 230 to the carrier 220 and mitigates movement of the substrate 230 relative to the carrier 220.
At operation 850, the substrate is electrostatically chucked to the carrier. For example, the power supply 250 may drive chucking voltages onto the electrodes 640, 642 via the electrical pins 612, 614 generating an electrostatic chucking force between the carrier 220 and the substrate 230. Electrostatically chucking the substrate to the carrier may include operation 852, driving a first electrode, e.g., the electrode 642, with a first chucking voltage and biasing a second electrode, e.g., the electrode 640. The first chucking voltage may be a voltage pulse having a voltage magnitude of about 1 KV. Alternatively, the magnitude of the voltage of the first chucking voltage may be more than or less than about 1 KV. Further, the voltage pulse may be a square voltage pulse.
With reference to
At operation 860, the vacuum between the carrier and the chuck is released. For example, the pumping device 260 may release the vacuum between the chuck 210 and the carrier 220, such that the carrier 220 may be separated from the chuck 210.
At operation 870, the carrier and wafer are transferred from the chucking station. For example, the actuator assembly 240 may extend the pins 242 away from the surface 241 of the actuator assembly 240 such that the carrier 220 separates from the chuck 210. The factor interface robot 185 may enter the interior region 204 of the chucking station 190, pick-up the carrier 220 and the substrate 230, and transfer the carrier 220 and the substrate 230 from the chucking station 190. The carrier 220 and the substrate 230 may then be transferred to one or more of the processing chambers 112, 114, 116, 118, 132, 136, 138 and 140 for processing. Further, during processing the substrate 230 remains electrostatically chucked to the carrier 220.
At operation 920, a vacuum is generated between the carrier and chuck. For example, the pumping device 260 may remove air from the cavity between the carrier 220 and the chuck 210 via the vacuum ports 316 to generate a vacuum between the carrier 220 and the chuck 210.
At operation 930, the substrate is electrostatically de-chucked (e.g., separated) from the carrier. For example, the electrodes 640, 642 of the carrier 220 may be driven with de-chucking voltages such the substrate 230 may be removed from the carrier 220 (operation 932). The de-chucking voltages driven on the electrodes 640, 642 are opposite in polarity from the voltages driven on the electrodes 640, 642 to electrostatically chuck the substrate 230 to the carrier 220. Electrostatically de-chucking the substrate 230 from the carrier 220 may include driving the electrodes 642 and 640 with alternating positive and negative voltages, and decreasing magnitudes until the substrate 230 is de-chucked from the carrier 220.
For example, with reference to
Electrostatically de-chucking the substrate 230 from carrier 220 also includes, as indicated by time T3 to T4, driving the electrode 642 relative to electrode 640 with de-chucking voltage 1026 by the power supply 250. The magnitude of de-chucking voltage 1026 is less than that of the chucking voltage 1022. Further, the magnitude of the de-chucking voltage 2016 is less than the magnitude of the de-chucking voltage 1024. Additionally, the magnitude of de-chucking voltage 1026 may be about 500 V. However, other voltages may be utilized. Further, the de-chucking voltage 1026 may be a positive voltage pulse. Additionally, the de-chucking voltage 1026 may be a square-wave positive voltage pulse.
With further reference to
Further, at operation 934, a change in gas pressure between the chuck and the substrate is detected. For example, the chucking station 190 may pump or provide a high pressure gas through the ports 314 to generate a pressure between the chuck 210 and the substrate 230. For example, the pumping device 260 pumps a gas into the cavity between the substrate 230 and the chuck 210. Further, the pumping device 260 or pressure sensor (not shown) in the chuck 210, or in the plumbing line 651, monitors the pressure between the chuck 210 and the substrate 230 and when the pressure drops from an initial pressure level, the pumping device 260 and/or pressure sensor may provide an indication that the substrate 230 has electrostatically de-chucked from the carrier 220. For example, when the substrate 230 has electrostatically de-chucked from the carrier 220, the substrate 230 will be able to move relative to the carrier 220. Accordingly, the gas between the substrate 230 and the chuck 210 may escape, causing the corresponding pressure to drop. An indication provided by the pressure sensor or pumping device 260 that the substrate 230 has been de-chucked from the carrier 220 may be sent to the power supply 250. In response, the power supply 250 stops driving the electrodes 640 and 642 with the de-chucking voltages. Further, the power supply 250 may continue to drive the electrodes 640 and 642 with the de-chucking voltages of alternating polarities and decreasing magnitudes until an indication is provided by the pressure sensor or pumping device 260 that de-chucking has occurred. Additionally, during the de-chucking process, a vacuum may be generated between the carrier 220 and the chuck 210 to hold the carrier 220 place.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims priority to U.S. Provisional Patent Application, 62/879,350, filed on Jul. 26, 2019, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4071944 | Chuss et al. | Feb 1978 | A |
4915057 | Boudreau et al. | Apr 1990 | A |
4952420 | Walters | Aug 1990 | A |
4969168 | Sakamoto | Nov 1990 | A |
5354380 | Zejda | Oct 1994 | A |
5503675 | Zejda | Apr 1996 | A |
5818682 | Loo | Oct 1998 | A |
6126382 | Scales et al. | Oct 2000 | A |
6665053 | Korenaga | Dec 2003 | B2 |
6846213 | Sato | Jan 2005 | B2 |
7869185 | Park et al. | Jan 2011 | B2 |
8282089 | Heimel et al. | Oct 2012 | B2 |
8361230 | Manz | Jan 2013 | B2 |
8427253 | Satake et al. | Apr 2013 | B2 |
8686819 | Schuessler et al. | Apr 2014 | B2 |
8817376 | Lee et al. | Aug 2014 | B2 |
9013795 | Lee et al. | Apr 2015 | B2 |
9045818 | Gersdorff et al. | Jun 2015 | B2 |
9343347 | Haas et al. | May 2016 | B2 |
9463543 | White et al. | Oct 2016 | B2 |
9922854 | Kurita et al. | Mar 2018 | B2 |
10070520 | Tomita et al. | Sep 2018 | B2 |
10077207 | Lee et al. | Sep 2018 | B2 |
10115617 | Bluck et al. | Oct 2018 | B2 |
10297483 | White et al. | May 2019 | B2 |
20030219986 | Rattner et al. | Nov 2003 | A1 |
20040123952 | Hur et al. | Jul 2004 | A1 |
20070009671 | Manz | Jan 2007 | A1 |
20090103232 | Ito et al. | Apr 2009 | A1 |
20090109595 | Herchen et al. | Apr 2009 | A1 |
20100194012 | Tatsumi | Aug 2010 | A1 |
20120308341 | Ishizawa et al. | Dec 2012 | A1 |
20130129462 | Minami | May 2013 | A1 |
20130135741 | Lee et al. | May 2013 | A1 |
20140036404 | Prahlad | Feb 2014 | A1 |
20150228517 | Toc et al. | Aug 2015 | A1 |
20160196997 | White | Jul 2016 | A1 |
20180308710 | Chan et al. | Oct 2018 | A1 |
20180376591 | Tomita et al. | Dec 2018 | A1 |
20190010083 | Lee et al. | Jan 2019 | A1 |
20190111547 | Sekiya | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1244165 | Mar 2006 | CN |
200944704 | Sep 2007 | CN |
101604499 | Apr 2011 | CN |
102195588 | Sep 2011 | CN |
202189772 | Apr 2012 | CN |
102760679 | Oct 2012 | CN |
103572240 | Feb 2014 | CN |
204490492 | Jul 2015 | CN |
104820306 | Aug 2015 | CN |
106148908 | Nov 2016 | CN |
108165927 | Jun 2018 | CN |
208142163 | Nov 2018 | CN |
109561580 | Apr 2019 | CN |
29707686 | Jun 1997 | DE |
2494646 | Dec 2017 | EP |
2852469 | Apr 2019 | EP |
3158181 | Apr 2001 | JP |
2013245392 | Dec 2013 | JP |
101413206 | Jun 2014 | KR |
20180059804 | Jun 2018 | KR |
200730419 | Aug 2007 | TW |
1990004320 | Apr 1990 | WO |
2012053402 | Apr 2012 | WO |
2014114360 | Jul 2014 | WO |
2018153480 | Aug 2018 | WO |
2018153481 | Aug 2018 | WO |
2018166636 | Sep 2018 | WO |
2019020166 | Jan 2019 | WO |
2019091561 | May 2019 | WO |
2019101319 | May 2019 | WO |
2019114806 | Jun 2019 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2020/040431 dated Oct. 13, 2020. |
Number | Date | Country | |
---|---|---|---|
20210028726 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62879350 | Jul 2019 | US |