For forming advanced semiconductor devices, such as microprocessors and DRAMs (Dynamic Random Access Memories), it is often desired to form thin films on a silicon wafer or other substrate. Various techniques often used to deposit thin films onto a substrate include PVD (“Physical Vapor Deposition” or “sputtering”) and CVD (“Chemical Vapor Deposition”). Several types of CVD are often utilized, including APCVD (“Atmospheric Pressure CVD”), PECVD (“Plasma Enhanced CVD”), and LPCVD (“Low Pressure CVD”). LPCVD is typically a thermally activated chemical process (as distinguished from plasma-activated PECVD), and generally includes MOCVD (“Metal Organic CVD”) and ALD (“Atomic Layer Deposition”) as sub-categories.
One problem with many conventional films is that it is difficult to achieve the level of high capacitance or low leakage current desired for new advanced applications, such as memory cells, microprocessor gates, mobile phones, PDAs, and the like. As an example, silicon oxynitride (SiON) or a similar film is conventionally utilized as a dielectric for advanced gate applications. Silicon oxynitride has a dielectric constant “k” slightly above SiO2 (k=4), and is generally created by a thermal oxidation and nitridation processes. Nevertheless, because the dielectric constant is relatively low, the capacitance of such a device can only be increased by decreasing the film thickness. Unfortunately, such a reduction in film thickness causes an increase in film defects and quantum mechanical tunneling, thereby leading to a high leakage current.
Thus, in order to provide a device with a higher capacitance but low leakage current, the use of a higher dielectric constant material has been proposed. For instance, materials such as tantalum pentoxide (Ta2O5) and aluminum oxide (Al2O3) have been proposed for use in memory cells. Similarly, materials such as zirconium oxide (ZrO2) and hafnium oxide (HfO2) have been proposed to replace silicon oxide and silicon oxynitride as microprocessor gates. To form thin films of such materials, it has been proposed that the materials be deposited using the conventional PVD and LPCVD techniques mentioned above.
However, although thin, high-k films can be deposited using PVD, such techniques are generally undesired due to their high cost, low throughput, and poor step conformality. The most promising techniques include ALD and MOCVD. For instance, ALD generally involves the sequential cycling of a precursor and oxidizer to the wafer surface to form a partial monolayer of film during each cycle. For example, as shown in
The primary advantage of conventional ALD techniques is that the film growth is intrinsically self-limiting. In particular, only a fraction of a monolayer is deposited during each cycle with the fraction being determined by the inherent chemistry of the reaction (the amount of stearic hindrance), rather than by gas flow, wafer temperature, or other process conditions. Thus, uniform and repeatable films are generally expected for ALD.
Nevertheless, despites its advantages, conventional ALD techniques also possess a variety of problems. For instance, only a few precursors, generally metal halides, can be used in an ALD deposition process. Such precursors are generally solid at room temperature and thus difficult to deliver to the reactor. In fact, the precursor must often be heated to a high temperature and supplied in conjunction with a carrier gas to deliver sufficient precursor to the reactor. The use of a carrier gas method causes the deposition pressures to be generally high to ensure that the precursor concentration in the reactor is sufficient, which may limit the ability of the growing film to eject impurities during the purge or oxidation cycle steps. Also, a higher operating pressure may result in outgassing of precursor or oxidizer from walls and other surfaces during the “wrong” cycle step, resulting in less film control. Furthermore, flow repeatability can be a problem because the amount of precursor take-up depends sensitively on the precursor temperature and the amount of precursor remaining in the source bottle.
Another disadvantage of conventional ALD techniques is that metal halide precursors generally produce films with halide impurities, which may have a detrimental effect on the film properties. Also, some halides, such as chlorine, may create reactor or pump damage or environmental impacts. Still another disadvantage of conventional ALD techniques is that the deposition rate may be very low, because only a partial monolayer is deposited during each cycle, leading to low throughput and high cost of ownership. Finally, ALD metal precursors have a tendency to condense in the delivery lines and on reactor surfaces, leading to potential practical problems.
An alternative LPCVD deposition technique is MOCVD. In this method, an organic precursor, such as zirconium tert-butoxide (Zr[OC4H9]4), may be used to deposit ZrO2. This can be done by thermal decomposition of the zirconium tert-butoxide on the wafer surface, or oxygen may be added to ensure full oxidation of the precursor. One advantage of this method is that a wide variety of precursor choices are available. In fact, even traditional ALD precursors can be used. Some of these precursors are gases or liquids with vapor pressures that allow the precursors to be more easily delivered to the reactor. Another advantage of MOCVD is that the deposition is continuous (not cyclic), with higher deposition rates and lower cost of ownership.
However, a primary disadvantage of MOCVD is that deposition rate and film stoichiometry are not intrinsically self-limiting. In particular, film deposition rate is generally temperature and precursor flow rate dependent. Thus, wafer temperature must be very carefully controlled to achieve acceptable film thickness uniformity and repeatability. However, because MOCVD precursors are generally delivered by using a heated bubbler with a carrier gas, it is also usually difficult to control precursor flow with this technique. Another disadvantage of conventional MOCVD is that the process pressure is generally high, which may lead to potentially complex reactions with contaminants from reactor surfaces. Also, if the deposition rate is too high, impurities from the reactor or precursor (such as carbon) may be incorporated within the film.
As such, a need currently exists for an improved system of depositing a film onto a substrate.
In accordance with one embodiment of the present invention, a method for depositing a film onto a substrate (e.g., semiconductor wafer) is disclosed. The substrate may be contained within a reactor vessel at a pressure of from about 0.1 millitorr to about 100 millitorr, and in some embodiments, from about 0.1 millitorr to about 10 millitorr, and also at a temperature of from about 100° C. to about 500° C., and in some embodiments, from about 250° C. to about 450° C.
The method comprises subjecting the substrate to a reaction cycle that comprises supplying to the reactor vessel a gas precursor at a temperature of from about 20° C. to about 150° C. and a vapor pressure of from about 0.1 torr to about 100 torr. In some embodiments, the gas precursor vapor pressure is from about 0.1 torr to about 10 torr, and the gas precursor temperature is from about 20° C. to about 80° C. The gas precursor comprises at least one organo-metallic compound, and may be supplied without the use of a carrier gas or bubbler. If desired, the flow rate of the gas precursor may be controlled (e.g., using a pressure-based controller) to enhance process repeatability.
Besides a gas precursor, the reaction cycle may also include supplying to the reactor vessel a purge gas, an oxidizing gas, or combinations thereof. For example, the purge gas may be selected from the group consisting of nitrogen, helium, argon, and combinations thereof. In addition, the oxidizing gas may be selected from the group consisting of nitric oxide, oxygen, ozone, nitrous oxide, steam, and combinations thereof.
As a result of the reaction cycle, at least a partial monolayer of a film is formed. For example, the film can contain a metal oxide that includes, but not limited to, aluminum oxide (Al2O3), tantalum oxide (Ta2O5), titanium oxide (TiO2), zirconium oxide (ZrO2), hafnium oxide (HfO2), yttrium oxide (Y2O3), combinations thereof, and the like. In addition, the film can also contain a metal silicate, such as hafnium silicate or zirconium silicate. Additional reaction cycles may be used to achieve the target thickness (e.g., less than about 30 nanometers).
In accordance with another embodiment of the present invention, a low-pressure chemical vapor deposition system for depositing a film onto a substrate is disclosed. The system comprises a reactor vessel that includes a substrate holder for the substrate to be coated and a precursor oven adapted to supply a gas precursor to the reactor vessel at a temperature of from about 20° C. to about 150° C., and in some embodiments, from about 20° C. to about 80° C. The precursor oven may contain one or more heaters to heat the gas precursor to the desired temperature. The reactor vessel may contain multiple substrate holders for supporting multiple substrates.
The system further comprises a pressure-based controller capable of controlling the flow rate of the gas precursor supplied from the precursor oven so that it is supplied to the reactor vessel at a vapor pressure of from about 0.1 torr to about 100 torr, and in some embodiments, from about 0.1 torr to about 10 torr. The pressure-based controller may communicate with one or more valves. For instance, in one embodiment, the valves may be close-coupled to a reactor lid that separates the reactor vessel and precursor oven.
The system may also comprise a gas distribution assembly that receives the gas precursor from the precursor oven and delivers it to the reactor vessel. For example, the gas distribution assembly may include a showerhead that has a plenum. During a reaction cycle, the ratio defined by the pressure at the showerhead plenum divided by the pressure of the reactor vessel may be from about 1 to about 5, and in some embodiments, from about 2 to about 4.
Besides the components mentioned above, the system may also utilize various other components. For example, in one embodiment, the system may comprise a remote plasma generator in communication with the reactor vessel. In addition, the system may comprise an energy source capable of heating the substrate to a temperature of from about 100° C. to about 500° C., and in some embodiments, from about 250° C. to about 450° C.
Other features and aspects of the present invention are discussed in greater detail below.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, which makes reference to the appended figures in which:
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary construction.
The present invention is generally directed to a system and method for depositing a thin film onto a substrate. The film can generally have a thickness less than about 30 nanometers. For instance, when forming logic devices, such as MOSFET devices, the resulting thickness is typically from about 1 to about 8 nanometers, and in some embodiments, from about 1 to about 2 nanometers. Moreover, when forming memory devices, such as DRAMs, the resulting thickness is typically from about 2 to about 30 nanometers, and in some embodiments, from about 5 to about 10 nanometers. The dielectric constant of the film can also be relatively low (e.g., less than about 5) or high (greater than about 5) depending on the desired characteristics of the film. For instance, films formed according to the present invention might have a relatively high dielectric constant “k”, such as greater than about 8 (e.g., from about 8 to about 200), in some embodiments greater than about 10, and in some embodiments, greater than about 15.
The system of the present invention can be used to deposit a film that contains a metal oxide in which the metal is aluminum, hafnium, tantalum, titanium, zirconium, yttrium, silicon, combinations thereof, and the like. For instance, the system can be utilized to deposit a thin film of a metal oxide, such as aluminum oxide (Al2O3), tantalum oxide (Ta2O5), titanium oxide (TiO2), zirconium oxide (ZrO2), hafnium oxide (HfO2), yttrium oxide (Y2O3), and the like, onto a semiconductor wafer made from silicon. Tantalum oxide, for example, typically forms a film having a dielectric constant between about 15 to about 30. Likewise, a metal silicate or aluminate compound, such as zirconium silicate (SiZrO4), hafnium silicate (SiHfO4), zirconium aluminate (ZrAlO4), hafnium aluminate (HfAlO4), and the like, can be deposited. Further, a nitrogen-containing compound, such as zirconium oxynitride (ZrON), hafnium oxynitride (HfON), and the like, can also be deposited. Moreover, other thin films can also be formed, including, but not limited to, dielectrics for gate and capacitor applications, metallic electrodes for gate applications, ferroelectric and piezoelectric films, conductive barriers and etch stops, tungsten seed layers, copper seed layers, and shallow trench isolation dielectrics and low-k dielectrics.
To deposit the film, the substrate can be subjected to one or more reaction cycles using a system of the present invention. For instance, in a typical reaction cycle, the substrate is heated to a certain temperature (e.g., from about 20° C. to about 500° C.). Thereafter, one or more reactive gas precursors are supplied to the reactor vessel in a cyclic manner. Additional reaction cycles can then be utilized to deposit other layer(s) onto the substrate to achieve a film with a desired thickness. As a result, a film can be formed in a reaction cycle that has a thickness equal to at least a partial monolayer.
Referring to
The reactor vessel 1 may be provided with high vacuum (low pressure) during a reaction cycle. In the illustrated embodiment, the pressure within the reactor vessel 1 is monitored by a pressure gauge 10 and is controlled by a throttling gate valve 4. The low reactor vessel pressure can be achieved in a variety of ways. For example, in the illustrated embodiment, the low pressure is achieved using a vacuum pipe 30 and a turbomolecular pump 5 that communicates with a port 60 (see also
If desired, the temperature of the walls of the reactor vessel 1 may also be controlled during a reaction cycle (e.g., kept at a constant temperature) using a heating device 34 and/or a cooling passage 33. A temperature controller (not shown) can receive a temperature signal from a temperature-sensing device (e.g., thermocouple), and in response thereto, heat or cool the walls to the desired temperature if necessary.
The system 80 also includes two wafers 28 positioned on substrate holders 2. It should be understood, however, that any number of wafers 28 may be applied with a film using the system of the present invention. For instance, in one embodiment, a single wafer is supplied to the system 80 and applied with a film. In another embodiment, three or four wafers may be supplied to the system 80 and applied with a film. As shown, the wafers 28 can be loaded into the reactor vessel 1 through a reactor slit door 7 (see also
Once positioned on the substrate holders 2, the wafers 28 may be clamped thereto using well-known techniques (e.g., mechanical and/or electrostatic). During a reaction cycle, the wafers 28 can be heated by heating devices (not shown) embedded within the substrate holders 2. For example, referring to
To facilitate thermal conduction between the wafers 28 and the substrate holders 2, a backside gas (e.g., helium) can be delivered to the backside of the wafers 28 via a gas delivery line 29. In the embodiment shown in
Also positioned within the reactor vessel 1 are lift pins 3 that are configured to move the wafers 28 up from the substrate holders 2 so that a vacuum robot (not shown) can load and unload the wafers 28 into the reactor vessel 1 to begin a reaction cycle.
Besides the reactor vessel 1, the system 80 also includes a precursor oven 9 that is adapted to supply one or more gases to the reactor vessel 1 at a certain temperature and flow during a reaction cycle (see also
In one embodiment, the precursor oven 9 contains at least one precursor supply 11 that provides one or more precursor gases to the reaction vessel 1. In this embodiment, a valve 12 isolates the precursor supply 11 so that the precursor supply 11 may be filled before installation into the precursor oven 9. To install the precursor supply 11 within the precursor oven 9, the precursor supply 11 is connected to a precursor delivery line 14. Thereafter, the delivery line 14 is pumped out and/or purged using a valve 36, Prior to deposition onto a substrate, the gas precursor can be heated by the heater(s) 35 to attain a certain vapor pressure. In some embodiments, for example, the gas precursor is maintained at a temperature of from about 20° C. to about 150° C. using a temperature-sensing device (e.g., thermocouple) and a temperature controller (not shown). For instance, a typical setpoint temperature for zirconium t-butoxide is from about 50° C. to about 75° C.
Upon being heated to the desired temperature, the gas precursor contained within the supply 11 can then be delivered to the reactor vessel 1 through the delivery line 14. Control over the flow of the gas precursor into the reactor vessel 1 is provided by the use of a valve 13, a pressure-based flow controller 15, and a valve 16. The conductance of the precursor gas delivery path from the supply 11 to the reactor vessel 1 can be maximized so that the backpressure is minimized, thus allowing for a minimum temperature of the precursor oven 9. For example, in one embodiment, the pressure-based flow controller 15 can utilize a pressure drop on the magnitude of 2 to 3 times for adequate pressure control, although other pressure drops can certainly be utilized. By utilizing a pressure-based controller 15 to control the flow rate of the gas precursor, the temperature control need not be as precise as with carrier gas or bubbler-type configurations.
The delivery line 14 supplies the precursor gas to two showerheads 61 that contain showerhead plates 6 and plenums 8, although any number of showerheads 61 may certainly be used in the present invention. The showerhead plates 6 possess holes for dispensing a gas onto the surface of the wafers 28. Although not required, the showerheads 61 are typically positioned from about 0.3 to about 5 inches from the upper surface of the wafers 28. The configuration and design of the holes in the showerheads 61 may be varied to support different chamber configurations and applications. In some embodiments, numerous small holes may be arranged in straight rows or in a honeycomb pattern with equal sized holes and equal distance between holes. In other embodiments, the density and size of holes may be varied to promote more uniform deposition. In addition, the holes may be angled directionally, or the showerhead may be titled to compensate for the gas flow of the particular chamber. Generally, the sizes, pattern and direction of the holes are selected to promote uniform deposition across the substrate surface given the configuration of the reactor vessel and other components.
As indicated above, a reactor lid 37 separates the precursor oven 9 from the reactor vessel 1. The reactor lid 37 is generally formed from aluminum or stainless steel and can keep the reactor vessel 1 from being exposed to air from the surrounding environment. In some embodiments, one or more of the valves used to control the flow of gases within the system 80 can be close-coupled to the reactor lid 37. Close-coupling allows the length of the gas delivery lines to be minimized so that vacuum conductance of the lines can be relatively high. High conductance lines and valves result in reduced backpressure from the showerheads to the precursor source vessels. For example, in one embodiment, the valves 16, 18 (discussed in more detail below), 21, and 23 are close-coupled to the reactor lid 37 so that the volume of the showerhead plenum 8 is minimized. In this embodiment, the volume of the showerhead plenum 8 includes the volume behind the showerhead faceplate 6, as well as the volume of the connecting lines up to the valve seats for the valves 16, 18, 21, and 23.
To form a film on the wafers 28, one or more gases are supplied to the reactor vessel 1. The film can be formed directly on the wafers 28 or on a barrier layer, such as a silicon nitride layer, previously formed on the wafers 28. In this regard, referring to
As shown, a reaction cycle is initiated by first heating the wafers 28 to a certain temperature. The particular wafer temperature for a given reaction cycle can generally vary based on the wafer utilized, the gases utilized, and/or the desired characteristics of the deposited film, as will be explained in more detail below. For example, when depositing a dielectric layer onto a silicon wafer, the wafer temperature is typically maintained at from about 20° C. to about 500° C., in some embodiments, from about 100° C. to about 500° C., and in some embodiments, from about 250° C. to about 450° C. Moreover, the reactor vessel pressure during a reaction cycle can range from about 0.1 millitorr (“mtorr”) to about 100 mtorr, and in some embodiments, from about 0.1 mtorr to 10 mtorr. A low reactor vessel pressure can improve the removal of reaction impurities, such as hydrocarbon byproducts, from the deposited film and can help remove the precursor and oxidizing gas during the purge cycle(s). Typical ALD and MOCVD processes, on the other hand, usually operate at much higher pressures.
As illustrated by step “A” in
In general, a variety of gas precursors can be utilized in the present invention to form the film. For example, some suitable gas precursors can include, but are not limited to, those gases that contain aluminum, hafnium, tantalum, titanium, silicon, yttrium, zirconium, combinations thereof, and the like. In some instances, the vapor of an organo-metallic compound can be used as the precursor. Some examples of such organo-metallic gas precursors can include, but are not limited to, tri-i-butylaluminum, aluminum ethoxide, aluminum acetylacetonate, hafnium (IV) t-butoxide, hafnium (IV) ethoxide, tetrabutoxysilane, tetraethoxysilane, pentakis(dimethylamino)tantalum, tantalum ethoxide, tantalum methoxide, tantalum tetraethoxyacetylacetonate, tetrakis(diethylamino)titanium, titanium t-butoxide, titanium ethoxide, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)titanium, tris[N,N-bis(trimethylsilypamide]yttrium, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)yttrium, tetrakis(diethylamino)zirconium, zirconium t-butoxide, tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)zirconium, bis(cyclopentadienyl)dimethylzirconium, and the like. It should be understood, however, that inorganic metallic gas precursors may be utilized in conjunction with organic metallic precursors in the present invention. For example, in one embodiment, an organic metallic precursor (e.g., organo-silicon compound) is used during a first reaction cycle, while an inorganic metallic precursor (e.g., silicon-containing inorganic compound) is used during a second reaction cycle, or vice-versa.
It has been discovered that organo-metallic gas precursors, such as described above, can be supplied to the reactor vessel 1 at a relatively low vapor pressure. The vapor pressure of the gas precursor can generally vary based on the temperature of the gas and the particular gas selected. However, in most embodiments, the vapor pressure of the gas precursor ranges from about 0.1 torr to about 100 torr, and in some embodiments, from about 0.1 torr to about 10 torr. A low pressure enables the pressure-based flow controller 15 to sufficiently control the pressure during a reaction cycle. Furthermore, such a low vapor pressure is also typically achieved at a relatively low gas precursor temperature. In particular, the gas precursor temperature during a reaction cycle is generally from about 20° C. to about 150° C., and in some embodiments, from about 20° C. to about 80° C. In this manner, the system of the present invention can utilize gases at a low pressure and temperature to enhance process efficiency. For example,
After supplying the gas precursor (step “A” of
The time required to accomplish the “purging” of the gas precursor generally depends on the volume of the showerhead plenum 8 and the backpressure of the showerhead. Therefore, the plenum volume and showerhead backpressure are generally tuned for the specific flow rates used in cycle step. Typically, the showerhead backpressure is tuned by adjusting the number of showerhead holes, the hole length, and/or the hole diameter until achieving a “backpressure ratio” of from about 1 to about 5, in some embodiments from about 2 to about 4, and in one embodiment, about 2. The “backpressure ratio” is defined as the plenum pressure divided by the reactor vessel pressure. Smaller ratios may be acceptable if flow uniformity is not critical. Likewise, higher ratios may also be acceptable, although the purge time and consequently cycle time may be increased, thereby reducing throughput. For example,
After supplying the purge gas to the reactor vessel 1 for the desired amount of time (step “B” of
As described above, the showerhead plenum 8 and backpressure are generally tuned so that the oxidizing gas purges the previous gas from the plenum in a short time. To accomplish such purging, it is sometimes desired that the flow rate “FC” remain similar to the flow rates “FA” and/or “FB”. Likewise, the time period “TC” may also be similar to the time periods “TA” and/or “TB”. The time period “TC” may also be adjusted to achieve full oxidation of the growing film, but minimized to achieve best throughput. Suitable oxidizing gases can include, but are not limited to nitric oxide (NO2), oxygen, ozone, nitrous oxide (N2O), steam, combinations thereof, and the like.
During the time periods “TB” and/or “TC”, the wafers 28 can be maintained at a temperature that is the same or different than the temperature during gas precursor deposition. For example, the temperature utilized when applying the purge and/or oxidizing gases may be from about 20° C. to about 500° C., in some embodiments from about 100° C. to about 500° C., and in some embodiments, from about 250° C. to about 450° C. Further, as indicated above, the reactor vessel pressure is relatively low during the reaction cycle, such as from about 0.1 to about 100 millitorr, and from about 0.1 to about 10 millitorr.
Once the oxidizing gas has been supplied to the reactor vessel 1 (step “C” of
It should be noted that it is also possible to deliver atomic or excited states of the oxidizing and/or purge gases through the valves 21 and/or 23 and to the showerheads 61 for the purpose of assisting full oxidation of the growing film or for the purpose of doping the growing film with atoms. Referring to
The aforementioned process steps are collectively referred to as a “reaction cycle”, although one or more of such steps of the “reaction cycle” may be eliminated if desired. A single reaction cycle generally deposits a fraction of a monolayer of thin film, but the cycle thickness may be several monolayers thick, depending on process conditions, such as wafer temperature, process pressure, and gas flow rates.
To achieve a target thickness, additional reaction cycles can be performed. Such additional reaction cycles may operate at the same or different conditions than the reaction cycle described above. For example, referring again to
The reaction cycle for the second precursor may be similar to or different than the reaction cycle for the first precursor as described above. In one particular embodiment, for instance, additional steps “E-H” (
The deposition of laminate films, such as described above, can be subsequently followed by appropriate thermal processing such that a “new” film can be produced with properties different from either the laminate film or the laminate constituents themselves. For example, a “new” hafnium silicate film could be formed by thermally annealing a laminate of hafnium oxide and silicon oxide. Further, a laminate of HfO2 and HfON films could be formed by using hafnium (IV) t-butoxide and NH3, which after annealing, produces a hafnium oxynitride film. It is also noted that a laminate can be formed using a system of the present invention in conjunction with other conventional techniques, such as ALD, MOCVD, or other techniques.
In accordance with the present invention, various parameters of the method described above may be controlled in order to produce a film having certain preselected characteristics. For example, as indicated above, the gas precursor, purge, and/or oxidizing gases used in the reaction cycles may be selected to be the same or different. Moreover, in one embodiment, the “deposition conditions” (i.e., conditions for the time period in which a gas is allowed to contact the substrate) of one or more the reaction cycles can be controlled. In some embodiments, for instance, it may be desired to utilize a certain preselected pressure profile, deposition time period profile, and/or flow rate profile so that one reaction cycle operates at one set of deposition conditions, while another reaction cycle operates at another set of deposition conditions.
As a result of controlling various parameters of one or more of the reaction cycles, the present invention can achieve a variety of benefits. For instance, in contrast to conventional ALD techniques, the system of the present invention can have a higher yield and sufficiently inhibit leakage current. Moreover, by providing control of the cycle parameters, the resulting film can be more easily formed to have selected properties. These properties can be instantaneously adjusted when desired by simply altering one of the cycle parameters, such as the flow rate of a gas being supplied. Moreover, some layers of the film can be formed to have one characteristic, while other layers can be formed to have another characteristic. Therefore, in contrast to conventional deposition techniques, the system of the present invention provides control over the reaction cycle parameters so that the resulting film can be more readily formed to have specific, predetermined properties.
In addition, it has also been discovered that, in contrast to conventional traditional ALD techniques, the thickness obtained during a reaction cycle is not intrinsically limited by steric hindrance of the surface chemistry. Thus, the reaction cycle is not limited to a fixed fraction of a monolayer of film deposited for each cycle, but can be decreased for improved film control or increased for throughput improvement. For instance, the cycle thickness of a film can be adjusted by controlling various system conditions, such as wafer temperature, gas flow rates, reactor vessel pressure, and gas flow time periods. Adjustment of these parameters can also optimize the characteristics of the resulting film. As an example, the thickness deposited during each reaction cycle could be increased to a maximum value in order to achieve high wafer throughput, while simultaneously achieving acceptable film properties, such as stoichiometry, defect density, and impurity concentration.
Referring to
Thus, in contrast to conventional ALD techniques, the method of the present invention can be used to form multiple oxide monolayers in a single reaction cycle. Moreover, the layers formed in accordance with the present invention can be fully oxidized in incremental steps, i.e., between deposition of gas precursors in different reaction cycles. Also, in contrast to conventional ALD techniques, composite or laminate films can easily be deposited due to the wide availability of suitable MOCVD precursors.
Moreover, the cyclic nature of the system of the present invention can actually enhance the removal of impurities (e.g., hydrocarbon byproducts) formed during a reaction cycle. Specifically, by depositing only a small thickness of film during each cycle, the purging and oxidation steps can more easily remove impurities. Conventional MOCVD processes, on the other hand, grow films continuously, which makes impurity removal more difficult.
These and other modifications and variations of the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.
The present application claims is a divisional application of, claims priority to, and incorporates herein by reference U.S. patent application Ser. No. 10/413,507 filed on Apr. 14, 2003, which claims priority to Provisional Application Serial No. 60/374,218, filed on Apr. 19, 2002.
Number | Date | Country | |
---|---|---|---|
60374218 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10413507 | Apr 2003 | US |
Child | 12559928 | US |