Technologies to replace today's microprocessor and memory device for greater speed, higher density, higher efficiency and neuron-like capabilities are critically needed in the computing marketplace. The present invention generally relates to various system on chips (SoCs) based on a microprocessor and/or graphical processor/neural processor, electrically coupled with electronic memory devices and/or optically coupled with an optical switch, an optical memory device, along with embodiment(s) of building block (an element) of the microprocessor/neural processor (e.g., brain-inspired processor), electronic memory device and optical memory device.
A first system on chip-a microprocessor electrically coupling with electronic memory devices and various embodiments of an electronic memory device are disclosed.
A second system on chip-a microprocessor optically coupling with an optical memory device is disclosed.
A third system on chip-a microprocessor optically coupling with an optical memory device and also electrically coupling with electronic memory devices is disclosed.
A fourth system on chip-a neural processor optically coupling with an optical memory device is disclosed.
A fifth system on chip-a neural processor optically coupling with an optical memory device and also electrically coupling with electronic memory devices is disclosed.
A sixth system on chip-one or more microprocessors optically coupling with an optical switch, an optical memory device and also electrically coupling with electronic memory devices is disclosed.
A seventh system on chip-one or more neural processors optically coupling with an optical switch, an optical memory device and also electrically coupling with electronic memory devices is disclosed.
Furthermore, 120A-the microprocessor can also include a graphical processor. The building block (the element) of 140s-the electronic memory device are illustrated in
It should be noted that 140s-the electronic memory devices can integrate a combination of electronic memories as illustrated in
Many types of electronic memory devices (e.g., a dynamic random access memory (DRAM)NAND flash) are used in present computing systems. Dynamic random access memory is an electronic volatile memory device that stores each bit of data in a separate capacitor. The capacitor can be either charged or discharged. These two states can represent the two values of a bit, conventionally called 0 and 1. The capacitor will slowly discharge and the data eventually fades, unless the capacitor charge is refreshed periodically. NAND flash memory device is an electronic non-volatile memory device that can be electrically erased and reprogrammed. Present invention of an electronic memory device based on a phase change material which can replace dynamic random access electronic memory device.
Furthermore, nanoscaled Hf0.5Zr0.5O2 ferroelectric ultra thin-film (of about 15 nanometers to 30 nanometers in thickness) or nanoscaled amorphous boron nitride ultra thin-film (of about 2 nanometers to 10 nanometers in thickness) can replace both the nanoscaled phase transition material 440 and/or another silicon dioxide 280.
Furthermore, nanoscaled Ag4In3Sb67Te26 ultra thin-film (of about 15 nanometers to 30 nanometers thickness) can be also utilized as the selector device.
Additionally, nanoscaled Hf0.5Zr0.5O2 ferroelectric ultra thin-film (of about 15 nanometers to 30 nanometers in thickness) or nanoscaled amorphous boron nitride ultra thin-film (of about 2 nanometers to 10 nanometers in thickness) can replace the nanoscaled phase transition material 440 and/or another silicon dioxide 280.
460-the optical signal to electrical signal converter device can couple plasmons-polaritons through an interferometer. By applying a voltage on one arm of an interferometer, subsequently the refractive index and velocity of the plasmons in the one arm of the interferometer can be varied, which may change plasmons' amplitude of oscillation at an output exit. Then, plasmons are re-converted into light, which is coupled into 500-an optical waveguide.
Alternatively, 460-the optical signal to electrical signal converter device can include a metalized (e.g., tungsten) through-semiconductor via hole, a light source (e.g., a vertical cavity surface emitting laser), a photodetector and a microlens/microprism for optical waveguide-to-optical waveguide coupling. Furthermore, the light source may utilize one wavelength from 480-an optical module (OM)/device.
It should be noted that 140s-the electronic memory devices can integrate a combination of electronic memories as illustrated in
The optical module/device is denoted by 480, which provides many wavelengths of controlled intensities. 480-the optical module/device includes a light source of one or more wavelengths or light sources of one or more wavelengths.
460-the optical signal to electrical signal converter device, 480-the optical module/device and 520-the optical memory device are optically coupled by 500-an optical waveguide. In
It should be noted that 140s-the electronic memory devices can integrate a combination of electronic memories as illustrated in
It should be noted that 140s-the electronic memory devices can integrate a combination of electronic memories as illustrated in
It should be noted that 140s-the electronic memory devices can integrate a combination of electronic memories as illustrated in
Furthermore, 560-the patch of the phase change material (e.g., germanium-antimony-tellurium (GST) or Ag4In3Sb67Te26) can be replaced by a phase transition material (e.g., vanadium dioxide). Additionally, it should be noted that the phase change material or the phase transition material can be nanoscaled.
Additionally, the phase change material/phase transition material can be nanoscaled (wherein, the nanoscaled is defined as less than 1000 nanometers in any dimension).
640-the optical switch from any example can be combined in any arrangement with two or more microprocessors/graphical processors/neural processors. 640-the optical switch can be activated by an electrical (e.g., a voltage/current) pulse or an optical pulse or a pulse of terahertz (THz) frequency (of a suitable field strength). It should be noted that activation of 640-the optical switch by an optical pulse or a pulse of terahertz frequency (of a suitable field strength) can switch 640-the optical switch in a few nanoseconds.
Details of an optical switch have been described/disclosed in U.S. non-provisional patent application Ser. No. 16/501,191 and 16/501,189 entitled “FAST OPTICAL SWITCH AND ITS APPLICATIONS IN OPTICAL COMMUNICATION”, filed on Mar. 5, 2019 and in its related U.S. non-provisional patent applications (with all benefit provisional patent applications) are incorporated in its entirety herein with this application.
In summary, a system including 120B-the neural processor, wherein 120B-the neural processor includes memristors, wherein the memristors are arranged in three-dimension (
460-the optical signal to electrical signal converter device includes plasmons-polaritons, wherein the plasmons-polaritons are coupled with an interferometer.
Alternatively, 460-the optical signal to electrical signal converter device can include a metalized through-semiconductor via hole, a light source and a photodetector.
520-the optical memory device includes a phase change material or a phase transition material or alternatively, a phase change material of a nanoscaled dimension or a phase transition material of a nanoscaled dimension, wherein the nanoscaled dimension is less than 1000 nanometers in any dimension.
The above system includes 460-the electronic memory device of Ag4In3Sb67Te26 material of a nanoscaled dimension or Hf0.5Zr0.5O2 material of a nanoscaled dimension or boron nitride material of a nanoscaled dimension, wherein the nanoscaled dimension is less than 1000 nanometers in any dimension.
It should be noted that the more than one 120B-neural processor can be coupled with 640-the optical switch and 120B-the neural processor is electrically coupled with 140-the electronic memory.
A system including 120A-the microprocessor (and/or a graphical processor) which is electrically coupled with 140-the electronic memory device, which includes a selector device, (
460-the optical signal to electrical signal converter device includes plasmons-polaritons, wherein the plasmons-polaritons are coupled with an interferometer.
Alternatively, 460-the optical signal to electrical signal converter device includes a metalized through-semiconductor via hole, a light source and a photodetector.
It should be noted that more than one 120A-the microprocessor (and/or more than one graphical processor) can be coupled with 640-the optical switch and 120A-the microprocessor (and/or the graphical processor) is electrically coupled with 140-the electronic memory.
In the above disclosed specifications “/” has been used to indicate an “or”.
As used in this application and in the claims, the singular forms “a”, “an”, and “the” include also the plural forms, unless the context clearly dictates otherwise.
The term “includes” means “comprises”. The term “including” means “comprising”.
The term “couples” or “coupled” does not exclude the presence of an intermediate element(s) between the coupled items.
Any dimension in the above disclosed specifications is by way of an approximation only and not by way of any limitation.
Any example in the above disclosed specifications is by way of an example only and not by way of any limitation. Having described and illustrated the principles of the disclosed technology with reference to the illustrated embodiments, it will be recognized that the illustrated embodiments can be modified in any arrangement and detail with departing from such principles. The technologies from any example can be combined in any arrangement with the technologies described in any one or more of the other examples. Alternatives specifically addressed in this application are merely exemplary and do not constitute all possible examples. Claimed invention is disclosed as one of several possibilities or as useful separately or in various combinations. See Novozymes A/S v. DuPont Nutrition Biosciences APS, 723 F3d 1336,1347.
The best mode requirement “requires an inventor(s) to disclose the best mode contemplated by him/her, as of the time he/she executes the application, of carrying out the invention.” “ . . . [T]he existence of a best mode is a purely subjective matter depending upon what the inventor(s) actually believed at the time the application was filed.” See Bayer AG v. Schein Pharmaceuticals, Inc. The best mode requirement still exists under the America Invents Act (AIA). At the time of the invention, the inventor(s) described preferred best mode embodiments of the present invention. The sole purpose of the best mode requirement is to restrain the inventor(s) from applying for a patent, while at the same time concealing from the public preferred embodiments of their inventions, which they have in fact conceived. The best mode inquiry focuses on the inventor(s)' state of mind at the time he/she filed the patent application, raising a subjective factual question. The specificity of disclosure required to comply with the best mode requirement must be determined by the knowledge of facts within the possession of the inventor(s) at the time of filing the patent application. See Glaxo, Inc. v. Novopharm Ltd., 52 F.3d 1043, 1050 (Fed. Cir. 1995). The above disclosed specifications are the preferred best mode embodiments of the present invention. However, they are not intended to be limited only to the preferred best mode embodiments of the present invention.
Embodiment by definition is a manner in which an invention can be made or used or practiced or expressed. “A tangible form or representation of the invention” is an embodiment.
Numerous variations and/or modifications are possible within the scope of the present invention. Accordingly, the disclosed preferred best mode embodiments are to be construed as illustrative only. Those who are skilled in the art can make various variations and/or modifications without departing from the scope and spirit of this invention. It should be apparent that features of one embodiment can be combined with one or more features of another embodiment to form a plurality of embodiments. The inventor(s) of the present invention is not required to describe each and every conceivable and possible future embodiment in the preferred best mode embodiments of the present invention. See SRI Int'l v. Matsushita Elec. Corp. of America, 775F.2d 1107, 1121, 227 U.S.P.Q. (BNA) 577, 585 (Fed. Cir. 1985) (enbanc).
The scope and spirit of this invention shall be defined by the claims and the equivalents of the claims only. The exclusive use of all variations and/or modifications within the scope of the claims is reserved. The general presumption is that claim terms should be interpreted using their plain and ordinary meaning. See Oxford Immunotec Ltd. v. Qiagen, Inc. et al., Action No. 15-cv-13124-NMG. Unless a claim term is specifically defined in the preferred best mode embodiments, then a claim term has an ordinary meaning, as understood by a person with an ordinary skill in the art, at the time of the present invention. Plain claim language will not be narrowed, unless the inventor(s) of the present invention clearly and explicitly disclaims broader claim scope. See Sumitomo Dainippon Pharma Co. v. Emcure Pharm. Ltd., Case Nos. 17-1798; -1799; -1800 (Fed. Cir. Apr. 16, 2018) (Stoll, J). As noted long ago: “Specifications teach. Claims claim”. See Rexnord Corp. v. Laitram Corp., 274 F.3d 1336, 1344 (Fed. Cir. 2001). The rights of claims (and rights of the equivalents of the claims) under the Doctrine of Equivalents-meeting the “Triple Identity Test” (a) performing substantially the same function, (b) in substantially the same way and (c) yielding substantially the same result. See Crown Packaging Tech., Inc. v. Rexam Beverage Can Co., 559 F.3d 1308, 1312 (Fed. Cir. 2009)) of the present invention are not narrowed or limited by the selective imports of the specifications (of the preferred embodiments of the present invention) into the claims.
There are number of ways the written description requirement is satisfied. Applicant(s) does not need to describe every claim element exactly, because there is no such requirement (MPEP § 2163). Rather to satisfy the written description requirement, all that is required is “reasonable clarity” (MPEP § 2163.02). An adequate description may be made in anyway through express, implicit or even inherent disclosures in the application, including word, structures, figures, diagrams and/or equations (MPEP §§ 2163(I), 2163.02). The set of claims in this invention generally covers a set of sufficient number of embodiments to conform to written description and enablement doctrine. See Ariad Pharm., Inc. v. Eli Lilly & Co., 598 F.3d 1336, 1355 (Fed. Cir. 2010), Regents of the University of California v. Eli Lilly & Co., 119 F.3d 1559 (Fed. Cir. 1997) & Amgen Inc. v. Chugai Pharmaceutical Co. 927 F.2d 1200 (Fed. Cir. 1991).
Drawings under 37 C.F.R. § 1.83(a): In particular, as outlined in MPEP 608.02 Drawing [R-07.2015], the statutory requirement for showing the claimed invention only requires that the “applicant shall furnish a drawing where necessary for the understanding of the subject matter to be patented . . . ” (See 35 U.S.C. § 113, See also 37 CFR § 1.81(a), which states “[t]he applicant for a patent is required to furnish a drawing of the invention where necessary for the understanding of the subject matter sought to be patented . . . ”).
Furthermore, Amgen Inc. v. Chugai Pharmaceutical Co. exemplifies Federal Circuit's strict enablement requirements. Additionally, the set of claims in this invention is intended to inform the scope of this invention with “reasonable certainty”. See Interval Licensing, LLC v. AOL Inc. (Fed. Cir. Sep. 10, 2014). A key aspect of the enablement requirement is that it only requires that others will not have to perform “undue experimentation” to reproduce it. Enablement is not precluded by the necessity of some experimentation, “[t]he key word is ‘undue’, not experimentation.” Enablement is generally considered to be the most important factor for determining the scope of claim protection allowed. The scope of enablement must be commensurate with the scope of the claims. However, enablement does not require that an inventor disclose every possible embodiment of his invention. The scope of enablement must be commensurate with the scope of the claims. The scope of the claims must be less than or equal to the scope of enablement. See Promega v. Life Technologies Fed. Cir., December 2014, Magsil v. Hitachi Global Storage Fed. Cir. August 2012.
The term “means” was not used nor intended nor implied in the disclosed preferred best mode embodiments of the present invention. Thus, the inventor(s) has not limited the scope of the claims as mean plus function. The standard is “whether the words of the claim are understood by person of ordinary skill in the art to have a sufficiently definite meaning as the name for structure.” See Williamson v. Citrix Online, LLC, 792 F.3d 1339 (2015).
An apparatus claim with functional language is not an impermissible “hybrid” claim; instead, it is simply an apparatus claim including functional limitations. Additionally, “apparatus claims are not necessarily indefinite for using functional language . . . [f]unctional language may also be employed to limit the claims without using the means-plus-function format.” See National Presto Industries, Inc. v. The West Bend Co., 76 F. 3d 1185 (Fed. Cir. 1996), R.A.C.C. Indus. v. Stun-Tech, Inc., 178 F.3d 1309 (Fed. Cir. 1998) (unpublished), Microprocessor Enhancement Corp. v. Texas Instruments Inc. & Williamson v. Citrix Online, LLC, 792 F.3d 1339 (2015).
The present application is a continuation-in-part (CIP) of (a) U.S. Non-Provisional patent application Ser. No. 15/530,191 entitled “SYSTEM ON CHIP (SoC) BASED ON NEURAL PROCESSOR OR MICROPROCESSOR”, filed on Dec. 12, 2016,wherein (a) is a continuation-in-part (CIP) of (b) U.S. Non-Provisional patent application Ser. No. 14/757,373 entitled SYSTEM ON CHIP (SoC) BASED ON PHASE TRANSITION AND/OR PHASE CHANGE MATERIAL”, filed on Dec. 22, 2015,wherein (b) claims benefit of priority to (c) U.S. Provisional Patent Application No. 62/124,613 entitled, “VANADIUM OXIDE ELECTRONIC MEMORY DEVICE”, filed on Dec. 22, 2014. The entire contents of all (i) U.S. Non-Provisional Patent Applications, (ii) U.S. Provisional Patent Applications, as listed in the previous paragraph and (ii) the filed (Patent) Application Data Sheet (ADS) are hereby incorporated by reference, as if they are reproduced herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62124613 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15530191 | Dec 2016 | US |
Child | 16974032 | US | |
Parent | 14757373 | Dec 2015 | US |
Child | 15530191 | US |