Systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source

Abstract
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV metrology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
Description
FIELD OF THE INVENTION

The present invention relates to extreme ultraviolet (“EUV”) light generators providing EUV light from a plasma created from a source material and collected and directed to a focus for utilization outside of the EUV light source generation chamber, e.g., for semiconductor integrated circuit manufacturing photolithography e.g., at wavelengths of around 50 nm and below.


BACKGROUND OF THE INVENTION

Extreme ultraviolet (“EUV”) light, e.g., electromagnetic radiation having wavelengths of around 50 nm or less (also sometimes referred to a soft x-rays), and including light at a wavelength of about 13.5 nm, can be used in photolithography processes to produce extremely small features in substrates, e.g., silicon wafers.


Methods to produce EUV light include, but are not necessarily limited to, converting a material into a plasma state that has an element, e.g., xenon, lithium or tin, with an emission line in the EUV range. In one such method, often termed electric discharge produced plasma (“DPP”), the plasma may be produced by an electrical discharge between a pair of electrodes. In another method, the required plasma can be produced by irradiating a target material, such as a droplet, stream or cluster of material having the required line-emitting element, with a laser beam. This later process is referred to as laser produced plasma (“LPP”).


For each of these processes, the plasma is typically produced in a sealed vessel, e.g., vacuum chamber, and monitored using various types of metrology equipment. In addition to generating EUV radiation, these plasma processes also typically generate undesirable by-products in the plasma chamber which can include heat, high energy ions and scattered debris from the plasma formation, e.g., atoms and/or clumps of source material that is not fully ionized in the plasma formation process.


These plasma formation by-products can potentially damage or reduce the operational efficiency of the various plasma chamber optical elements including, but not limited to, collector mirrors including multi-layer mirrors (MLM's) capable of EUV reflection at normal incidence and grazing angle incident mirrors, the surfaces of metrology detectors, windows used to image the plasma formation process, and in the case of LPP, the laser input window. The heat, high energy ions and/or source material debris may be damaging to the optical elements in a number of ways, including heating them, coating them with materials which reduce light transmission, penetrating into them and, e.g., damaging structural integrity and/or optical properties, e.g., the ability of a mirror to reflect light at such short wavelengths, corroding or eroding them and/or diffusing into them. In addition, some optical elements, e.g., the laser input window, form a part of the vacuum chamber and are thus placed under a stress when a vacuum is present in the plasma chamber. For these elements, deposits and heat can combine to fracture (i.e., crack) the element resulting in a loss of vacuum and requiring a costly repair.


Accessing contaminated or damaged optical elements in the plasma chamber for the purpose of cleaning or replacing the elements can be expensive, labor intensive and time-consuming. In particular, these systems typically require a rather complicated and time consuming purging and vacuum pump-down of the plasma chamber prior to a re-start after the plasma chamber has been opened. This lengthy process can adversely affect production schedules and decrease the overall efficiency of light sources for which it is typically desirable to operate with little or no downtime.


With the above in mind, Applicants disclose systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source.


SUMMARY OF THE INVENTION

An EUV metrology monitor for an EUV light source which generates debris by plasma formation is disclosed. The monitor may comprise a radiation detector; an element for filtering radiation and directing filtered radiation to the detector, the element positioned at a location wherein debris generated by plasma formation is deposited on the element; and a heater to heat the element to a temperature sufficient to remove at least a portion the deposited debris.


In another aspect of an embodiment of the present invention, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror. For the device, the collector mirror may be positioned relative to a plasma formation site to cause a different debris deposition rate at different zones on the collector mirror. The device may comprise a first heating system for heating a first zone of the collector mirror to a first temperature, T1, to remove debris therefrom; and a second heating system for heating a second zone of the collector mirror to a second temperature, T2, to remove debris therefrom, with T1≠T2.


In yet another aspect of an embodiment of the present invention, a system is disclosed for protecting an EUV light source detector surface from plasma generated debris. The system may comprise at least one hollow tube having a tube wall that surrounds a tube lumen, the tube being interposed between a plasma formation site and the detector surface and oriented to prevent at least a portion of the debris directed toward the detector surface from reaching the surface and allowing at least a portion of light generated at the plasma formation site to pass through the lumen and reach the detector surface; and a heater for heating the tube wall to remove debris deposited thereon.


In one aspect of an embodiment of the present invention, a collector mirror system for use with an EUV light source that generates Li debris by plasma formation is. disclosed. The collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a surface of the collector; and a sputtering system for directing sputtering molecules toward the collector surface to sputter LiH from the collector surface.


In still another aspect of an embodiment of the present invention, an apparatus for etching debris from a surface of an EUV light source collector mirror with a controlled plasma etch rate is disclosed. The system may comprise a plasma etch system for etching debris with the etch system having at least one controllable parameter to vary a plasma etch rate; a reference material having a surface positioned to receive substantially the same amount of debris accumulation as at least one zone on the collector mirror surface; an instrument for analyzing etching plasma emission from the reference material surface to produce an output indicative of a debris accumulation amount on the reference material surface; and a controller responsive to the output to vary an etch rate parameter to control plasma etch rate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic view of an overall broad conception for a laser-produced plasma EUV light source according to an aspect of the present invention;



FIG. 2 shows a schematic, side view of an aspect of an embodiment of a shield system for protecting a plasma chamber optical element from plasma source material debris;



FIG. 3 shows a schematic, side view of a plurality of hollow tubes illustrating the path of an exemplary light ray through a hollow tube and the path of an exemplary debris particle being captured by a hollow tube;



FIG. 4 shows a schematic, sectional view of an aspect of an embodiment of the present invention wherein an EUV metrology monitor may comprise a heater to heat a filter foil to remove deposited plasma generated debris;



FIG. 5 shows a schematic, sectional view of another aspect of an embodiment of the present invention wherein an EUV metrology monitor may comprise a heater to heat a multi-layer mirror to remove deposited plasma generated debris;



FIG. 6 illustrates an aspect of an embodiment of the present invention in which different zones of a collector mirror are etched to remove plasma generated debris at different etch rates;



FIG. 7 illustrates another aspect of an embodiment of the present invention in which different zones of a collector mirror may be heated at different rates to remove plasma generated debris at different removal rates; and



FIG. 8 illustrates another aspect of an embodiment of the present invention in which an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate may be provided.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Turning now to FIG. 1 there is shown a schematic view of an exemplary production EUV light source, e.g., a laser produced plasma EUV light source 20 according to an aspect of the present invention. Although aspects of the present invention are illustrated with reference to a laser produced plasma (LPP), it is to be appreciated that the present invention is equally applicable to other types of light sources which produce a plasma including an electric discharge produced plasma (“DPP”), a representative construction of which is disclosed in co-owned U.S. Pat. No. 6,815,700, which is hereby incorporated by reference.


Continuing with FIG. 1, an LPP light source 20 may contain a pulsed laser system 22, e.g., a gas discharge excimer or molecular fluorine laser operating at high power and high pulse repetition rate and may be a MOPA configured laser system, e.g., as shown in U.S. Pat. Nos. 6,625,191, 6,549,551, and 6,567,450. The light source 20 may also include a target delivery system 24, e.g., delivering targets in the form of liquid droplets, a liquid stream, solid particles or clusters, solid particles contained within liquid droplets or solid particles contained within a liquid stream. The targets may be delivered by the target delivery system 24, e.g., into the interior of a chamber 26 to a plasma formation site 28.


Laser pulses may be delivered from the pulsed laser system 22 along a laser optical axis through a laser input window 57 and into the chamber 26 to the irradiation site, suitably focused, to create a plasma, having certain characteristics which depend on the source material of the target. These characteristics may include the wavelength of the EUV light produced and the type and amount of debris released from the plasma.


The light source may also include a collector 30, e.g., a reflector, e.g., in the form of a truncated ellipse, with an aperture to allow the laser light to pass through and reach the ignition site 28. The collector 30 may be, e.g., an elliptical mirror that has a first focus at the ignition site 28 and a second focus at a so-called intermediate point 40 (also called the intermediate focus 40) where the EUV light is output from the light source and input to, e.g., an integrated circuit lithography tool (not shown).


The pulsed system 22 may include a dual chamber, e.g., a master oscillator-power amplifier (“MOPA”), gas discharge laser system having, e.g., an oscillator laser system 44 and an amplifier laser system 48, with, e.g., a magnetic reactor-switched pulse compression and timing circuit 50 for the oscillator laser system 44 and a magnetic reactor-switched pulse compression and timing circuit 52 for the amplifier laser system 48, along with a pulse power timing monitoring system 54 for the oscillator laser system 44 and a pulse power timing monitoring system 56 for the amplifier laser system 48. The system 20 may also include an EUV light source controller system 60, which may also include, e.g., a target position detection feedback system 62 and a firing control system 65, along with, e.g., a laser beam positioning system 66.


The system 20 may also include a target position detection system which may include one or more droplet imagers 70 that provide an output indicative of the position of a target droplet, e.g., relative to the ignition site and provide this output to the target position detection feedback system, which can, e.g., compute a target position and trajectory, from which a target error can be computed, if not on a droplet by droplet basis then on average. The target error may then be provided as an input to the system controller 60, which can, e.g., provide a laser position, direction and timing correction signal, e.g., to the laser beam positioning system 66 that the laser beam positioning system can use, e.g., to control the laser timing circuit and/or to control the laser position and direction changer 68, e.g., to change the focus point of the laser beam to a different ignition point 28.


The target delivery control system 90, in response to a signal from the system controller 60 may, e.g., modify the release point of the target droplets as released by the target delivery mechanism 92 to correct for errors in the target droplets arriving at the desired ignition site 28. An EUV light source detector 100 may also provide feedback to the system controller 60 that can be, e.g., indicative of the errors in such things as the timing and focus of the laser pulses to properly intercept the target droplets in the right place and time for effective and efficient EUV light production.


As shown schematically in FIG. 1 and described in more detail below, an aspect of an embodiment of the present invention can include a shielding system 102 for protecting a surface of a plasma chamber optical element from debris generated at the plasma formation site 28. Although the shielding system 102 is shown positioned to protect a surface of an EUV light source detector 100, it is to be appreciated that the shielding system 102 can be used to protect other optical elements in the chamber 26.



FIG. 2 shows in more detail a system 102, for protecting a surface 104 of an optical element, e.g., EUV light detector 100, from plasma generated debris. As shown, the system 102 may include a plurality of hollow tubes 126, e.g., so-called capillary tubes, with each tube having a tube wall that surrounds a tube lumen (i.e., bore). Tubes 126 may be made of a material, e.g., glass, metal or ceramic, e.g., borosilicate material, which reflects EUV light at grazing angles of incidence, e.g., grazing incidence reflection at small (<10 degrees) angles of grazing incidence where the EUV reflectivity of smooth surfaces is relatively high for most materials. As shown, the tubes 126 may be grouped together and housed within a stainless steel housing tube 128 having a similar shape as the tubes 126. In an exemplary embodiment, about 50 bent glass capillary tubes 126 (1 mm outer diameter, 0.78 mm inner diameter, 150 mm long) may be mounted inside of a bent stainless steel tube 128. As shown in FIG. 3, the tubes 126 may be shaped having a midsection 130 that may be laterally offset from a tube axis 132 defined by the tube ends 134, 136. In particular, the midsection 130 may be offset by a distance 138 that is larger than inner diameter of the tube 126.



FIG. 3 shows that the tubes 126 may be interposed between the plasma formation site 28 and the detector surface 104. FIG. 3 also shows an exemplary path 140 of an EUV light ray and the exemplary path 142 of a debris particle. As shown, the EUV light ray passes through the lumen (i.e., bore) of a tube 126 after one or more small angle grazing incidence reflections from the inner wall surface of the tube 126 and reaches the surface 104. On the other hand, as shown, the debris particle may strike the inner wall of the hollow tube and stick to the inner wall. Moreover, in some cases, the accumulation of debris on the inner wall may result in a surface that may be smooth enough to adequately reflect EUV light at grazing angles of incidence. Use of the tubes 126 may have an advantage over the use of flat mirrors to direct light to a detector in that they will direct the light towards the end of the tube and no complicated alignment is required, like in the case of redirecting mirrors.


In use, the tubes 126 may be positioned inside the plasma chamber 26 (see FIG. 1) and located between the plasma formation site 28 and an optical element, e.g., detector 100, to thereby allow debris to temporarily deposit on the inner wall surfaces of the tubes 126. As shown, detector 100 may include one or more thin EUV filter foils 146, a multi-layer mirror 148 and a photodiode detector 150.


Continuing with FIG. 2, the system 102 may include a heater 154 to heat a portion of each tube 126, or in some cases each tube may be heated in its entirety, to a temperature sufficient to remove at least a portion the deposited debris, e.g., to remove portions (or all) of one or more deposited species. The application of heat may also function to smooth out deposits and thereby increase grazing angle reflections. For example, the heater may heat the tubes 126 to a temperature sufficient to vaporize at least a portion of a deposited material. For a plasma source material which comprises Li, the heater 154 may be designed to heat the shield 108′ to a temperature in the range of about 400 to 550° C. to vaporize Li from the tube surface.


In some cases, the heater may heat the tubes 126 to a temperature sufficient to initiate a chemical reaction between a deposited material and an etchant gas that is introduced into the tubes 126. FIG. 2 shows that the system 102 may include a sub-system 144 for releasing an etchant for flow into each tube 126. As shown, the sub-system 144 may be positioned to release etchant for travel through the tubes 126 from the detector 100 and toward the chamber 26. Suitable etchants can include, but are not necessarily limited to etchants such as HBr, Br2, Cl2, HCl, H2, HCF3 and combinations thereof. For example, an HBr concentration of a few Torr can be used.


For a plasma source material which comprises Sn, the heater 154 may be designed to heat the tubes 126 (or portions thereof) to a temperature in the range of about 200 to 325° C. to initiate a reaction between Sn deposits and one or more gaseous etchants, e.g., HBr, to create a reaction product that may be removed from the inner tube wall.


In more structural detail, as shown in FIG. 2, the heater 154 may comprise a heating element 156 that is wrapped around the tubes 126, and a current source 158 for passing a current through the heating element 156. The heating element 156 may be made of a conductive material, and thus be heated via ohmic heating during current flow. Other means of heating the tubes 126 may include, but are not limited to radiative heaters, microwave heaters, RF heaters and combinations thereof.



FIG. 4 shows another aspect of an embodiment of the present invention which may comprise an EUV metrology monitor 100′ having a detector 150′ for measuring EUV light parameters, e.g., pulse energy or flux. In some applications, it may be desirable for the detector to measure light having a wavelength of about 13.5 nm and a bandwidth of about 2% or less. For this purpose, light from the EUV light source may be filtered at the monitor 100′. Specifically, as shown, the monitor 100′ may comprise one or more filter foils 146a′, 146b′, 146c′ and 146d′, one or more CaF2 windows 160a,b, and one or more multi-layer mirrors 148′ capable of reflecting a band of light centered on 13.5 nm at normal incidence. It is to be appreciated that the multi-layer mirrors 148′, e.g., multilayer mirrors having alternating layers of MoSi2 and Si, may absorb light, e.g., light outside the 2% band centered on 13.5 nm, and thus, may act as a band-pass optical filter. On the other hand, when a CaF2 window 160a,b is interposed along the beam path, EUV light may be absorbed while UV and visible light may be transmitted through the window 160a,b. Thus, the CaF2 window 160a,b may also act as an optical filter. Similarly, the filter foils 146a′-d′, which may be comprised of a thin layer of antimony, may absorb or reflect visible light while transmitting EUV radiation.



FIG. 2 further shows that the monitor 100′ may include a pair of linear motion actuators 162a,b to selectively interpose one or more filters 146a′-d′, 160a,b along the beam path 164. The monitor 100′ may also include an entrance aperture 166 and fast shutter 168. With this arrangement, the filters 146a′-d′, 160a,b may be undesirable exposed to plasma generate debris entering the monitor 100′ through the entrance aperture 166. In some cases, debris deposits may reduce the operational efficiency of the filters 146a′-d′, 160a,b. With this in mind, the monitor 100′ may include a heater 170, which for the monitor 100′ that is shown can be a radiative heater, to heat a filter 146a′-d′, 160a,b to remove plasma generated debris that has temporarily deposited thereon. Other means of heating the filters 146a′-d′, 160a,b may include, but are not limited to ohmic heaters, radiative heaters, microwave heaters, RF heaters and combinations thereof.


For a plasma source material which comprises Li, the heater 170 may be designed to heat the filter(s) 146a′-d′, 160a,b to a temperature in the range of about 400 to 550° C. to vaporize Li from the filter surface. For a plasma source material which comprises Sn, the heater 170 may be designed to heat the filter(s) 146a′-d′, 160a,b to a temperature in the range of about 200 to 325° C. to initiate a reaction between Sn deposits and gaseous etchants, e.g., HBr, to create a reaction product that may be removed from the filter surface. Gaseous etchants can be introduced directly into the monitor 100′ or into the chamber 26 (See FIG. 1).



FIG. 5 shows an alternative arrangement for a monitor (generally designated monitor 100″). As shown, the EUV metrology monitor 100″ may have a detector 150″ for measuring EUV light parameters, e.g., pulse energy or flux and may include one or more filters 146a″, 146b″, 146c″ and 146d″, 160a′,b′, one or more of which can be selectively interposed along beam path 164′. The monitor 100″ may also include one or more multi-layer mirrors 148″. It can be further seen that the monitor 100″ may also include an aperture 166′ and fast shutter 168′. With this arrangement, the multi-layer mirror 148″ may be undesirable exposed to plasma generate debris entering the monitor 100″ through the aperture 166′. Debris deposits may, in some cases, reduce the operational efficiency of the mirror 148″. With this in mind, the monitor 100″ may include a heater 170′, which for the monitor 100′ that is shown can be an ohmic heater that is mounted on the backside of the mirror 148″, to heat the mirror 148″ and remove plasma generated debris that has temporarily deposited thereon. Other means of heating the mirror 148″ may include, but are not limited to radiative heaters, microwave heaters, RF heaters and combinations thereof.


For a plasma source material which comprises Li, the heater 170′ may be designed to heat the mirror 148″to a temperature in the range of about 400 to 550° C. to vaporize Li from the mirror surface. For a plasma source material which comprises Sn, the heater 170 may be designed to heat the mirror 148″ to a temperature in the range of about 200 to 325° C. to initiate a reaction between Sn deposits and gaseous etchants, e.g., HBr, to create a reaction product that may be removed from the mirror surface. Gaseous etchants can be introduced directly into the monitor 100′ or into the chamber 26 (See FIG. 1).


In one aspect of an embodiment of the present invention, as illustrated by FIG. 1, a target material containing Lithium may be used to generate a plasma at the plasma formation site 28. With this arrangement, debris containing Lithium and Lithium compounds may deposit on the collector mirror 30. Inherently, Lithium is very reactive material and reacts with almost any contaminant on a collector surface, and thus, creates lithium compounds. Typically, uncombined Lithium can be evaporated by heating the collector mirror 30 to an elevated temperature, e.g., 350-450° C. In particular, the temperature may be chosen to ensure that the Lithium evaporation rate is higher than the rate of lithium debris deposition. Unfortunately, some Lithium compounds do not evaporate at these moderate temperatures (i.e., 350-450° C.). For example, compounds such as Li2O or Li2CO3 required higher temperatures to evaporate and do not easily sputter from the surface of the collector 30. To evaporate lithium compounds may require the collector to be heated to very high temperature (above 600-700° C.) which may reduce or destroy the reflectivity of a typical multi-layer mirror. Thus, evaporation and or sputtering of lithium compounds may be problematic.


With the above in mind, FIG. 1 illustrates that a hydrogen source 200, e.g., a source of molecular or atomic hydrogen, e.g., atomic hydrogen from a remote plasma source, may be provided to introduce hydrogen into the chamber 26 for reaction with Lithium to create LiH. A sputtering system 202 may be provided to generate sputtering ions and/or molecules and direct them to the surface of the collector with sufficient energy to sputter LiH. For example, the sputtering system may establish an RF cleaning plasma, e.g., capacitive or inductively coupled, with helium or argon as the sputtering material. As shown, the collector 30 may be RF biased to selectively control the energy of ions bombarding debris that has deposited on the collector 30. It general, it can be significantly easier to sputter LiH from the collector surface than Li2O or Li2CO3. Also LiH deposits may be more transparent than Li2O. Sputtering in this manner may be used alone to sputter Lithium and Lithium compounds or in combination with heat to evaporate Lithium and/or plasma etching.



FIG. 6 illustrates an aspect of an embodiment of the present invention in which a laser 300 is focused to a plasma formation site 28′ in a chamber 26′. A collector 30′, e.g., an elliptical collector having a first focal point at or near the plasma formation site and a second focal point at an intermediary focus (See FIG. 1) may be provided. With this arrangement, plasma generated debris may deposit at different rates at different zones on the collector mirror 30′. For example, more debris may deposit at location 302a than location 302b (note, for an elliptical collector, location 302b is farther from the plasma initiation site 28′ than location 302a). Thus, for the system shown in FIG. 6 which uses plasma etching to remove debris from the collector 30′, a higher etch rate may be desirable at location 302a than location 302b. (Note: it may be damaging to the mirror to continue etching a portion of the mirror after deposited debris has been removed). To this end, the system may include a source 144′ of plasma etchant and first and second, independently controllable, RF power supplies 304a,b that are attached respectively through capacitors to separate RF electrodes 306a,b, as shown. Although two RF systems are shown for respectively operating on substantially annularly shaped collector zones, it is to be appreciated that more than two RF systems may be employed and the use of RF systems is not limited to zones having any specific shape, such as the annular shape shown.


Suitable etchants may include, but are not necessarily limited to etchants such as HBr, Br2, Cl2, HCl, H2, HCF3 and combinations thereof. A non-etching gas, e.g., Argon or Helium, may be introduced to establish the etching plasma. As used herein, the term “plasma etching” means a process which may include one or more of the following process steps: 1) generation of reactive species in a plasma; 2) diffusion of these species to the surface of the material being etched; 3) adsorption of these species on the surface; 4) occurrence of one or more chemical reactions between the species and the material being etched, forming volatile byproducts; 5) desorption of the byproducts from the surface; and 6) diffusion of the desorbed byproducts into the bulk of the gas. The embodiment shown in FIG. 6 can be used for target material containing Lithium, tin, Xenon and/or other materials.



FIG. 7 illustrates another aspect of an embodiment of the present invention in which different zones of a collector 30″ may be heated at different rates. Specifically, an etch rate may be strongly dependent on temperature. For example, the rate of Tin removal using HBr and/or Br2 has been found to be strongly dependent on temperature in the range of 150-400° C. As shown in FIG. 7, which shows the backside of an exemplary elliptical collector 30″, differential heating may be employed using ohmic heating systems to establish different etch rates for different collector zones. Specifically, each heating system includes an electrical power source 400a,b connected to a respective, shaped conductor 402a,b. Other types of heaters for heating collector zones to differing temperatures may include, but are not limited to radiative heaters, microwave heaters, RF heaters and combinations thereof. The embodiment shown in FIG. 7 can be used for target material containing Lithium, tin, Xenon and/or other materials.



FIG. 8 illustrates another aspect of an embodiment of the present invention in which an apparatus for etching debris from a surface of a EUV light source collector mirror 30″′ with a controlled plasma etch rate may be provided. As shown, the apparatus may include a reference material, e.g., witness plate 700, having a surface positioned to receive a substantially same amount of debris accumulation as location 702 on the surface of collector 30″′. For example, a small (about 1×1 cm) sacrificial witness plate 700 may placed next to the MLM collector 30″′ and made of a material having a moderate halogen etch rate, such as In or Sb. With this arrangement, a plasma etch system can be deployed to etch debris from the plate 700 and location 702 on the collector 30″′, at approximately the same etch rate. As shown, the plasma etch system can include a source 144″ of plasma etchant and a controllable, RF power supply 304′ that is attached through a capacitor to RF electrode 306′, as shown.


The system may further include an instrument 704 for analyzing etching plasma emission from the witness plate 700. For example, the instrument 704 may be a spectrometer. As shown, an optical fiber 706, e.g., fiber optic cable can be used to transmit etching plasma emission from the witness plate 700 to the instrument 704. Other suitable techniques for efficiently transmitted the etching plasma emission from the witness plate 700 to the instrument may include a focusing optic, e.g., lens (not shown). For the etch control system, the instrument may produce an output indicative of a debris accumulation amount on the witness plate 700. This output may then be received by a controller 708 which then used the output to vary an etch rate parameter to control plasma etch rate. For example, the controller 708 can vary the RF power or the etchant concentration in the chamber 26.


To measure the amount of debris accumulation on the witness plate 700, the instrument may measure a spectral line intensity for the witness plate material, e.g., In or Sb. If the witness material line intensity exceeds the highest allowable preselected value, the indication is that the etching efficiency exceeds the debris flux, e.g., Sn flux. In this case, the RF power or etchant concentration may be reduced by the controller 708. Alternatively, if the witness material line intensity becomes smaller than the specified minimum value, the indication is that the cleaning power of the etcher is insufficient for the arriving debris flux, e.g., Sn flux, and the RF power or etchant concentration may be increased.


The witness plate material spectral line intensity may be used as feedback to control RF power and/or etchant concentration to keep the witness plate material spectral line intensity (as measured by the instrument 704) at a specified level or within a specified range. Alternatively, a ratio of spectral intensities for the EUV plasma target, e.g., Tin, line and the witness material line can be kept at the specified target value or within a specified range.


It will be understood by those skilled in the art that the aspects of embodiments of the present invention disclosed above are intended to be preferred embodiments only and not to limit the disclosure of the present invention(s) in any way and particularly not to a specific preferred embodiment alone. Many changes and modification can be made to the disclosed aspects of embodiments of the disclosed invention(s) that will be understood and appreciated by those skilled in the art. The appended claims are intended in scope and meaning to cover not only the disclosed aspects of embodiments of the present invention(s) but also such equivalents and other modifications and changes that would be apparent to those skilled in the art.

Claims
  • 1. An EUV metrology monitor for an EUV light source, said source generating debris by plasma formation, said monitor comprising: a radiation detector;a multi-layer mirror filtering radiation generated by the EUV light source and positioned to reflect radiation to said detector, said mirror positioned at a location wherein debris generated by plasma formation is deposited on the mirror; andan etchant comprising H2 to remove at least a portion the deposited debris.
  • 2. An EUV metrology monitor as recited in claim 1 wherein said multi-layer mirror comprises at least one layer of MoSi2 and one layer of Si.
  • 3. An EUV metrology monitor as recited in claim 1 further comprising a metal foil filter.
  • 4. An EUV metrology monitor as recited in claim 3 wherein said foil comprises zirconium.
  • 5. An EUV metrology monitor as recited in claim 1 further comprising a heater selected from the group of heaters consisting of an ohmic heater, a radiative heater, a radio-frequency heater and a microwave heater.
  • 6. An EUV metrology monitor as recited in claim 5 wherein the plasma comprises a plasma formation material, an etchant for the plasma formation material is introduced into the monitor, and the heater heats the mirror to a temperature greater than 200° C. to initiate a chemical reaction between deposited plasma formation material and the etchant.
  • 7. An EUV metrology monitor as recited in claim 6 wherein the plasma formation material comprises Sn.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 11/174,442, filed Jun. 29, 2005, which is a continuation-in-part application of U.S. patent application Ser. No. 10/979,945, entitled LPP EUV LIGHT SOURCE, filed on Nov. 1, 2004, and is a continuation-in-part of application of U.S. patent application Ser. No. 10/900,839, entitled EUV LIGHT SOURCE, filed on Jul. 27, 2004, and is a continuation-in-part of application of U.S. patent application Ser. No. 10/803,526, entitled HIGH REPETITION RATE LPP EUV LIGHT SOURCE, filed on Mar. 17, 2004, and is a continuation-in-part application of U.S. patent application Ser. No. 10/798,740, entitled COLLECTOR FOR EUV LIGHT, filed on Mar. 10, 2004, the disclosures of each of which are hereby incorporated by reference herein.

US Referenced Citations (143)
Number Name Date Kind
2759106 Wolter Aug 1956 A
3150483 Mayfield et al. Sep 1964 A
3232046 Meyer Feb 1966 A
3279176 Boden Oct 1966 A
3746870 Demarest Jul 1973 A
3960473 Harris Jun 1976 A
3961197 Dawson Jun 1976 A
3969628 Roberts et al. Jul 1976 A
4042848 Lee Aug 1977 A
4088966 Samis May 1978 A
4143275 Mallozzi et al. Mar 1979 A
4162160 Witter Jul 1979 A
4203393 Giardini May 1980 A
4223279 Bradford, Jr. et al. Sep 1980 A
4364342 Asik Dec 1982 A
4369758 Endo Jan 1983 A
4455658 Sutter et al. Jun 1984 A
4504964 Cartz et al. Mar 1985 A
4507588 Asmussen et al. Mar 1985 A
4534035 Long Aug 1985 A
4536884 Weiss et al. Aug 1985 A
4538291 Iwamatsu Aug 1985 A
4550408 Karning et al. Oct 1985 A
4561406 Ward Dec 1985 A
4596030 Herziger et al. Jun 1986 A
4618971 Weiss et al. Oct 1986 A
4626193 Gann Dec 1986 A
4633492 Weiss et al. Dec 1986 A
4635282 Okada et al. Jan 1987 A
4751723 Gupta et al. Jun 1988 A
4752946 Gupta et al. Jun 1988 A
4774914 Ward Oct 1988 A
4837794 Riordan et al. Jun 1989 A
4891820 Rando et al. Jan 1990 A
4928020 Birx et al. May 1990 A
4959840 Akins et al. Sep 1990 A
5005180 Edelman et al. Apr 1991 A
5023884 Akins et al. Jun 1991 A
5023897 Neff et al. Jun 1991 A
5025445 Anderson et al. Jun 1991 A
5025446 Kuizenga Jun 1991 A
5027076 Horsley et al. Jun 1991 A
5070513 Letardi Dec 1991 A
5102776 Hammer et al. Apr 1992 A
5126638 Dethlefsen Jun 1992 A
5142166 Birx Aug 1992 A
5175755 Kumakhov Dec 1992 A
5189678 Ball et al. Feb 1993 A
5313481 Cook et al. May 1994 A
5315611 Ball et al. May 1994 A
5319695 Itoh et al. Jun 1994 A
5359620 Akins Oct 1994 A
RE34806 Cann Dec 1994 E
5411224 Dearman et al. May 1995 A
5448580 Birx et al. Sep 1995 A
5471965 Kapich Dec 1995 A
5504795 McGeoch Apr 1996 A
5729562 Birx et al. Mar 1998 A
5763930 Partlo Jun 1998 A
5852621 Sandstrom Dec 1998 A
5856991 Ershov Jan 1999 A
5863017 Larson et al. Jan 1999 A
5866871 Birx Feb 1999 A
5936988 Partlo et al. Aug 1999 A
5953360 Vitruk et al. Sep 1999 A
5963616 Silfvast et al. Oct 1999 A
5978394 Newman et al. Nov 1999 A
5991324 Knowles et al. Nov 1999 A
6005879 Sandstrom et al. Dec 1999 A
6016325 Ness et al. Jan 2000 A
6018537 Hofmann et al. Jan 2000 A
6028880 Carlesi et al. Feb 2000 A
6031241 Silfvast et al. Feb 2000 A
6039850 Schulz Mar 2000 A
6051841 Partlo Apr 2000 A
6064072 Partlo et al. May 2000 A
6067311 Morton et al. May 2000 A
6094448 Fomenkov et al. Jul 2000 A
6104735 Webb Aug 2000 A
6128323 Myers et al. Oct 2000 A
6151346 Partlo et al. Nov 2000 A
6151349 Gong et al. Nov 2000 A
6164116 Rice et al. Dec 2000 A
6172324 Birx Jan 2001 B1
6192064 Algots et al. Feb 2001 B1
6195272 Pascente Feb 2001 B1
6208674 Webb et al. Mar 2001 B1
6208675 Webb Mar 2001 B1
6219368 Govorkov Apr 2001 B1
6240117 Gong et al. May 2001 B1
6285743 Kondo et al. Sep 2001 B1
6304630 Bisschops et al. Oct 2001 B1
6307913 Foster et al. Oct 2001 B1
6359922 Partlo et al. Mar 2002 B1
6370174 Onkels et al. Apr 2002 B1
6377651 Richardson et al. Apr 2002 B1
6381257 Ershov et al. Apr 2002 B1
6392743 Zambon et al. May 2002 B1
6396900 Barbee, Jr. et al. May 2002 B1
6404784 Komine Jun 2002 B2
6414979 Ujazdowski et al. Jul 2002 B2
6442181 Oliver et al. Aug 2002 B1
6449086 Singh Sep 2002 B1
6452194 Bijkerk et al. Sep 2002 B2
6452199 Partlo et al. Sep 2002 B1
6466602 Fleurov et al. Oct 2002 B1
6477193 Oliver et al. Nov 2002 B2
6493374 Fomenkov et al. Dec 2002 B1
6493423 Bisschops Dec 2002 B1
6504903 Kondo et al. Jan 2003 B1
6529531 Everage et al. Mar 2003 B1
6532247 Spangler et al. Mar 2003 B2
6535531 Smith et al. Mar 2003 B1
6538257 Bgisschops Mar 2003 B2
6538737 Sandstrom et al. Mar 2003 B2
6541786 Partlo et al. Apr 2003 B1
6549551 Ness et al. Apr 2003 B2
6566667 Partlo et al. May 2003 B1
6566668 Rauch et al. May 2003 B2
6567450 Myers et al. May 2003 B2
6576912 Visser et al. Jun 2003 B2
6584132 Morton Jun 2003 B2
6586757 Melnychuk et al. Jul 2003 B2
6590922 Onkels et al. Jul 2003 B2
6590959 Kandaka et al. Jul 2003 B2
6618421 Das et al. Sep 2003 B2
6621846 Sandstrom et al. Sep 2003 B1
6625191 Knowles et al. Sep 2003 B2
6647086 Amemiya et al. Nov 2003 B2
6671294 Kroyan et al. Dec 2003 B2
6721340 Fomenkov et al. Apr 2004 B1
6744060 Ness et al. Jun 2004 B2
6757316 Newman et al. Jun 2004 B2
6782031 Hofmann et al. Aug 2004 B1
6795474 Partlo et al. Sep 2004 B2
6804327 Schriever et al. Oct 2004 B2
6815700 Melnychuk et al. Nov 2004 B2
6822251 Arenberg et al. Nov 2004 B1
6865255 Richardson Mar 2005 B2
6894298 Ahmad et al. May 2005 B2
6904073 Yager et al. Jun 2005 B2
6985508 Knowles Jan 2006 B2
6987279 Hoshino et al. Jan 2006 B2
Foreign Referenced Citations (7)
Number Date Country
02-105478 Apr 1990 JP
03-173189 Jul 1991 JP
06-053594 Feb 1994 JP
09-219555 Aug 1997 JP
2000-058944 Feb 2000 JP
200091096 Mar 2000 JP
WO2004010470 Dec 2004 WO
Related Publications (1)
Number Date Country
20070187627 A1 Aug 2007 US
Divisions (1)
Number Date Country
Parent 11174442 Jun 2005 US
Child 11705954 US
Continuation in Parts (4)
Number Date Country
Parent 10979945 Nov 2004 US
Child 11174442 US
Parent 10900839 Jul 2004 US
Child 10979945 US
Parent 10803526 Mar 2004 US
Child 10900839 US
Parent 10798740 Mar 2004 US
Child 10803526 US