The present invention relates to a temperature-compensated micro-electromechanical device and to a method of temperature compensation in a micro-electromechanical device.
As is known, the use of micro-electromechanical systems (MEMS) is increasingly widespread in several sectors of technology and has yielded encouraging results especially in the construction of inertial sensors, micro-integrated gyroscopes, and electromechanical oscillators for a wide range of applications.
MEMS systems of this type usually comprise at least one mass, which is connected to a fixed body (stator) by means of springs and is movable with respect to the stator according to pre-determined degrees of freedom. The movable mass and the stator are capacitively coupled by a plurality of respective comb-fingered electrodes facing one another so as to form capacitors. The movement of the movable mass with respect to the stator, for example on account of an external stress, modifies the capacitance of the capacitors; from which it is possible to deduce the relative displacement of the movable mass with respect to the fixed body, and hence the degree of force applied to cause the movement. On the other hand, it is also possible to apply an electrostatic force to the movable mass to set it in motion, by supplying appropriate biasing voltages.
In optimal working conditions, MEMS systems present excellent performance; in particular, MEMS inertial sensors are extremely sensitive and precise. However, a limit of currently available MEMS systems lies in the strong dependence of their response upon the temperature. In fact, also on account of their extremely small dimensions, very modest variations in temperature can produce significant strains in micro-electromechanical structures. Such strains are equivalent to relative displacements of the electrodes of the movable mass with respect to those of the stator and cause a detectable variation of the capacitive coupling between stator and movable mass. In practice, then, an offset, due to the variations in temperature, is added to the output signal of the MEMS system.
To overcome this drawback, MEMS systems are frequently incorporated in special packages, made so as to reduce the effects of thermal expansion. Alternatively, it has been proposed to use compensation circuits that electrically erase the effects of possible thermal drifts. According to one solution, for example, a nonlinear element with a temperature dependent electrical characteristic is integrated in the reading interface of the MEMS system (a diode, for example). Another technique envisages, instead, the use of a temperature sensor.
The solutions illustrated above are, however, not really satisfactory both because in any case the achievable precision is not optimal and because high costs are involved. The special packages, in fact, cannot be of a standard type and hence have very high design and fabrication costs. The compensation circuits require burdensome procedures for measuring the thermal drifts and calibrating the compensation curves and, moreover, a sufficient stability over time cannot be guaranteed.
Embodiments of the present invention provide a temperature-compensated micro-electromechanical device and a method of temperature compensation in a micro-electromechanical device.
According to one embodiment of the invention, a micro-electromechanical device is provided, comprising a semiconductor substrate, a first microstructure integrated in the substrate, and a second microstructure integrated in the substrate as a reference, and arranged so that the first microstructure and the second microstructure undergo equal strains as a result of thermal expansions of the substrate. The first microstructure comprises movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape substantially symmetrical to the first microstructure, but is fixed in position with respect to the substrate.
The first and second microstructures are specularly symmetrical with respect to a symmetry axis of the substrate. That is to say that the second microstructure is a mirror image of the first microstructure, and they are symmetrically positioned with respect to a center of mass of the semiconductor substrate. According to an embodiment of the invention, the first microstructure includes a capacitive coupling between movable electrodes and fixed electrodes, while the second microstructure includes a capacitive coupling between electrodes in positions corresponding to the movable and fixed electrodes of the first microstructure. Because of their substantially identical configuration, the capacitive couplings of the first and second microstructures are substantially identical in their response to changes in temperature, though only the first microstructure is movable with respect to the substrate.
According to an embodiment of the invention, a method is provided in which changes in the capacitive coupling of the first microstructure are employed to detect acceleration of the semiconductor substrate, while changes in the capacitive coupling of the second microstructure are employed to compensate for changes in the capacitive coupling of the first microstructure caused by thermal effects.
For a better understanding of the invention, some embodiments thereof are now described, purely by way of non-limiting example and with reference to the attached drawings.
With reference to
The suspended mass 6 and the stator structure 7 are provided with respective plane detection electrodes 12, arranged perpendicular to the detection axis X1 and comb-fingered (see also
The reference microstructure 3 is substantially identical and is arranged symmetrically to the detection microstructure 2 with respect to the symmetry axis S1, which is perpendicular to the detection axis X1 and passes through the center 5a of the chip 5. In particular, the reference microstructure 3 comprises a suspended mass 6′ and a stator structure 7′, which have the same shapes and dimensions as the suspended mass 6 and, respectively, the stator structure 7 of the detection microstructure 2 and are separated from one another in a conventional way by means of insulating regions (not illustrated). The stator structure 7′ is delimited laterally by the substrate 8 of the chip 5 by means of a trench 9′ filled with dielectric material. In the case of the reference microstructure 3, however, the suspended mass 6′ is rigidly connected to the stator structure 7′ by means of rigid connection elements 10′, which are substantially non-deformable. The suspended mass 6′ is hence fixed with respect to the stator structure 7′. The rigid connection elements 10′ project from the suspended mass 6′, at a distance from the substrate 8 of the chip 5, and are fixed to respective suspension anchorages 11′, which have the same shape and the same relative distances as the first suspension anchorages 11 of the detection microstructure 2 (see also
In use, the detection microstructure 2 and the reference microstructure 3 are read by the control unit 4 using conventional reading modalities of linear MEMS accelerometers. As described above, moreover, the detection microstructure 2 and the reference microstructure 3 are substantially identical and, since they are also integrated in the same chip 5, they are deformed exactly in the same way as a result of thermal expansion. In particular, the relative distances of the suspension anchorages 11″ and of the stator anchorages 14″ of the reference microstructure 3, even though they are not fixed, remain in any case equal to the relative distances of the corresponding suspension anchorages 11 and stator anchorages 14 of the detection microstructure 2. For this reason, the configuration of the detection electrodes 12″ of the suspended mass 6″ and of the stator structure 7″ of the reference microstructure 3 is always equal to the rest configuration (i.e., in the absence of accelerations along the detection axis X1) of the detection electrodes 12 of the suspended mass 6 and of the stator structure 7 of the detection microstructure 2. Consequently, temperature variations of the chip 5 cause identical variations in the measurement signal SX and in the compensation signal SCOMP. However, in the measurement signal SX the effect of temperature variations is superimposed on the effect of the accelerations according to the detection axis X1, whereas the variations of the compensation signal SCOMP depend exclusively upon thermal expansion, because the suspended mass 6′ of the reference microstructure 3 is fixed. The compensation signal SCOMP can thus be used for effective compensation of the effects of thermal expansion on the measurement signal SX.
For this purpose, the control unit 4 subtracts the compensation signal SCOMP from the measurement signal SX for generating the output acceleration signal SXO.
The location of the detection microstructure 2 and of the reference microstructure 3 in specularly symmetrical positions with respect to the symmetry axis S1 of the chip 5 enables maximum precision of compensation to be achieved, also considering that, on account of the thermal expansion, the chips tend to undergo deformation and to assume a cup-like shape. Owing to the described arrangement, the compensation is extremely precise because, practically in any operating condition, the thermal expansion acts homogeneously on the detection microstructure 2 and on the reference microstructure 3.
According to an alternative embodiment of the invention, illustrated in
A third embodiment of the invention is illustrated in
The reference microstructure 203 comprises a suspended mass 206″ and a stator structure 207″, having the same shape and the same dimensions as the suspended mass 206 and as the stator structure 207 of the detection microstructure 202 and separated from one another in a conventional way by insulating regions (not illustrated). The suspended mass 206″ is rigidly connected to the stator structure 207″ by means of rigid connection elements 210″, which are substantially non-deformable. In particular, the rigid connection elements 210″ are fixed to respective suspension anchorages 211″ of the stator structure 207″. The suspended mass 206″ and the stator structure 207″ of the reference microstructure 203 are capacitively coupled by a plurality of respective comb-fingered detection electrodes 212″, which are arranged symmetrically to the detection electrodes 212 of the detection microstructure 202 with respect to the symmetry axis S3. More precisely, each detection electrode 212″ of the stator structure 107″ is fixed to a respective anchoring stator 214 and is coupled to a respective detection electrode 212″ of the suspended mass 206″. With reference to the arrangement of
According to a fourth embodiment of the invention, illustrated schematically in
The first detection microstructure 302 detects the accelerations which act according to the first detection axis X4. The second detection microstructure 322 is rotated by 90° in the plane of
The first and second detection microstructures 302, 322 provide the control unit 304 with a first measurement signal SX and with a second measurement signal SY, which are correlated to the accelerations acting on the chip 305 according to the first detection axis X4 and to the second detection axis Y4, respectively. The first and the second reference microstructures 303, 323 provide the control unit 304 with a first compensation signal SCOMPX and with a second compensation signal SCOMPY, which indicate the amount of the thermal expansion of the chip 305 in the direction of the first detection axis X4 and of the second detection axis Y4, respectively. Finally, the control unit 304 generates a first output acceleration signal SXO, by subtracting the first compensation signal SCOMPX from the first measurement signal SX; and a second output acceleration signal SYO, by subtracting the second compensation signal SCOMPY from the second measurement signal SY.
In the fourth embodiment, in practice, the precision of the compensation is maximized, by arranging the detection microstructure and the compensation microstructure symmetrically with respect to the center of the chip.
Finally, it is clear that modifications and variations can be made to the device and to the method described herein, without thereby departing from the scope of the present invention, as defined in the annexed claims.
In particular, the invention can be exploited for compensating the effects of thermal expansion in various types of MEMS devices that use a mass that oscillates with respect to a fixed body, such as, for example, two-axes or three-axes linear accelerometers, rotational accelerometers, inclinometers, gyroscopes, pressure sensors, and electromechanical oscillators.
The control unit can be made separately, on a chip different from the one containing the microstructures.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
04425753 | Oct 2004 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4447753 | Ochiai | May 1984 | A |
4479098 | Watson | Oct 1984 | A |
4592242 | Kempas | Jun 1986 | A |
4805456 | Howe | Feb 1989 | A |
5025346 | Tang | Jun 1991 | A |
5491604 | Nguyen | Feb 1996 | A |
5621157 | Zhao et al. | Apr 1997 | A |
5747991 | Ito et al. | May 1998 | A |
5780885 | Diem et al. | Jul 1998 | A |
5783973 | Weinberg et al. | Jul 1998 | A |
5909078 | Wood et al. | Jun 1999 | A |
5983721 | Sulzberger et al. | Nov 1999 | A |
6065339 | Takeuchi et al. | May 2000 | A |
6070464 | Koury, Jr. et al. | Jun 2000 | A |
6230563 | Clark | May 2001 | B1 |
6269696 | Weinberg et al. | Aug 2001 | B1 |
6417743 | Mihailovich et al. | Jul 2002 | B1 |
6424074 | Nguyen | Jul 2002 | B2 |
6504356 | Yao et al. | Jan 2003 | B2 |
6506989 | Wang | Jan 2003 | B2 |
6507475 | Sun | Jan 2003 | B1 |
6566786 | Nguyen | May 2003 | B2 |
6577040 | Nguyen | Jun 2003 | B2 |
6583374 | Knieser et al. | Jun 2003 | B2 |
6591678 | Sakai | Jul 2003 | B2 |
6598475 | Pinson | Jul 2003 | B2 |
6823733 | Ichinose | Nov 2004 | B2 |
6837108 | Platt | Jan 2005 | B2 |
6843127 | Chiou | Jan 2005 | B1 |
6887732 | Gopal et al. | May 2005 | B2 |
6954348 | Rodgers | Oct 2005 | B1 |
6980412 | Cheng et al. | Dec 2005 | B2 |
7287428 | Green | Oct 2007 | B2 |
7322242 | Merassi et al. | Jan 2008 | B2 |
7331209 | Saari et al. | Feb 2008 | B2 |
7520171 | Merassi et al. | Apr 2009 | B2 |
7603902 | Katashi | Oct 2009 | B2 |
8156783 | Beer | Apr 2012 | B2 |
20050132805 | Park et al. | Jun 2005 | A1 |
20080138922 | Wan | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
42 26 430 | Feb 1994 | DE |
198 32 906 | Feb 2017 | DE |
1 217 735 | Jun 2002 | EP |
9852051 | Nov 1998 | WO |
03106927 | Dec 2003 | WO |
Entry |
---|
Esashi, M. et al., “Packaged Micromechanical Sensors,” 1994 IEEE Symposium on Emerging Technologies & Factory Automation, Tokyo, Japan, Nov. 6-10, 1994, pp. 30-37. |
Moe, S.T., et al., “Capacitive Differential Pressure Sensor for Harsh Environments,” Sensors and Actuators, 83(2000):30-33, May 2000. |
Seidel, H., et al., “A Piezoresistive Silicon Accelerometer with Monolithically Integrated CMOS-Circuitry,” Transducers '95-Eurosensors IX, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, Jun. 25-29, 1995, pp. 597-600. |
Number | Date | Country | |
---|---|---|---|
20180118561 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12683888 | Jan 2010 | US |
Child | 14271009 | US | |
Parent | 11244439 | Oct 2005 | US |
Child | 12683888 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14271009 | May 2014 | US |
Child | 15863051 | US |