The present disclosure relates generally to substrate designs for forming a current loop across two metal layers that are separated by a thin dielectric coating or a thin dielectric layer that provides a low thermal resistance and a low parasitic inductance.
Chip submounts are components that are used in the electronics industry to provide a platform for mounting microelectronic devices, such as chips and die, onto a printed circuit board (PCB) or other substrate. The chip submounts typically serve as an intermediate stage in the assembly of microelectronic devices, allowing for easy handling, testing, and protection of the sensitive devices before final assembly. Chip submounts typically include a base material, such as ceramic or metal, and a bonding surface that allows the microelectronic device to be attached. Chip submounts play an important role in the performance and reliability of microelectronic devices by providing electrical and thermal connections between the microelectronic device and the substrate. For example, the electronical contacts of a chip submount provide the necessary pathways for the microelectronic device to communicate with other components on the substrate, while thermal interface materials help to dissipate heat that the microelectronic device generates during operation. In addition, chip submounts can provide mechanical support to the microelectronic device, which reduces the risk of physical damage during handling and assembly. With advancements in microelectronics and increasing demand for higher performance devices, the use of chip submounts continues to grow and evolve.
In some implementations, a substrate includes a ceramic core; a plurality of metal-filled vias through the ceramic core; a first metal layer, on a top side of the ceramic core, including: a first metal trace, over and connected to a first metal-filled via of the plurality of metal-filled vias, a second metal trace, over and connected to a second metal-filled via of the plurality of metal-filled vias, and a third metal trace, over and connected to a third metal-filled via of the plurality of metal-filled vias, wherein the second metal trace is electrically isolated from the first metal trace and the third metal trace; a thin dielectric layer on the first metal layer, wherein the thin dielectric layer has a low thermal resistance based on one or more of the thickness of the thin dielectric layer or a material used for the thin dielectric layer; and a second metal layer, on the thin dielectric layer, including: a first electrical contact over the first metal trace and electrically isolated from the first metal trace, a second electrical contact over the second metal trace and electrically connected to the second metal trace, and a third electrical contact over the third metal trace and electrically connected to the third metal trace, wherein the second electrical contact is electrically isolated from the first electrical contact and the third electrical contact.
In some implementations, a circuit includes a ceramic core comprising a plurality of metal-filled vias through the ceramic core; a first metal layer, on a top side of the ceramic core, including a plurality of metal traces over and connected to the plurality of metal-filled vias, wherein the plurality of metal traces include one or more first metal traces and one or more second metal traces, wherein the one or more second metal traces are each electrically isolated from the rest of the plurality of metal traces; a thin dielectric on the first metal layer, wherein the thin dielectric has a low thermal resistance based on one or more of a thickness of the thin dielectric or a material used to form the thin dielectric; a second metal layer, on the thin dielectric, including: an anode over and electrically isolated from the plurality of metal traces by the thin dielectric; a cathode pad over and electrically connected to at least one of the one or more second metal traces by a first via through the thin dielectric; and a ground over and electrically connected to the one or more first metal traces by a second via through the thin dielectric; and a capacitor connected to the ground, wherein the thin dielectric between the first metal layer and the second metal layer provides the circuit with a low parasitic inductance and a low thermal resistance during operation.
In some implementations, a method includes receiving a substrate that includes a ceramic core, a plurality of metal-filled vias through the ceramic core, and a first metal layer, on a top side of the ceramic core, including one or more metal traces; depositing, on top of the ceramic core and the first metal layer, a dielectric layer that comprises: an aluminum oxynitride (AlON) layer with a thickness in a range from one micrometer (µm) to sixty µm, an aluminum phosphate (AlPO4) layer with a thickness in a range from 0.01 µm to sixty µm, an aluminum oxide (Al2O3) layer with a thickness in a range from 0.3 µm to one µm, or a silicon dioxide (SiO2) layer with a thickness in a range from 0.3 µm to one µm; and forming, on the dielectric layer, a second metal layer including a floating contact over a first metal trace, a signal contact over a second metal trace, and a ground contact over a third metal trace.
The following detailed description of example implementations refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
In contrast, a vertical-cavity surface-emitting laser (VCSEL) chip is generally designed to emit a laser beam in a direction perpendicular to a substrate surface (e.g., vertically from a surface of a semiconductor wafer), which differs from conventional IC chip designs in that electrical current and heat both flow from a top surface of the VCSEL chip to the bottom surface and then to a die pad or cathode layer. For example,
For example, in the underlying substrate design, the cathode 214 is needed to enable electric current to flow through the VCSEL chip 210 to the neighboring controller, IC driver, and/or other suitable component(s), and the ground layer 216 is needed under the cathode 214 to support high-speed signals. Accordingly, the dielectric layer 218 is needed to electrically insulate the electric current that flows horizontally through the cathode 214 and to separate the cathode 214 from a heat dissipation pad on the substrate bottom (e.g., because the heat dissipation pad is typically electrically grounded and cannot be connected to the cathode 214 directly). However, the dielectric layer 218 that is needed between the cathode 214 and the ground layer 216 poses various design challenges. In particular, because both heat and electric current flow vertically through the VCSEL chip 210, the dielectric layer 218 needs to provide electrical insulation for the electric current, and the dielectric layer 218 further needs to have a low thermal resistance such that a heat dissipation pad (not shown) under the ground layer 216 can dissipate and/or spread the heat that flows vertically through the VCSEL chip 210.
For example, in example 200, the VCSEL chip 210 is connected to a substrate that includes a dielectric layer 218 made from a polymer dielectric material, such as flame retardant 4 (FR4 or FR-4), which is a flame resistant or self-extinguishing composite material made from woven fiberglass cloth with an epoxy resin binder. In such cases, when the dielectric layer 218 is made from a polymer dielectric such as FR4, the dielectric layer 218 has a very low thermal conductivity (e.g., approximately 0.3 to approximately 0.7 watts per meter-kelvin (W/mK)). As a result, even if advanced substrate technology were to be used to form the dielectric layer 218 with a minimum thickness for the chosen polymer dielectric material (e.g., 25 micrometers (µm) for FR4) to optimize electrical performance (e.g., by minimizing parasitic inductance across the dielectric layer 218, between the cathode 214 and the ground layer 216), the low thermal conductivity of the polymer dielectric material results in a high thermal resistance (e.g., 46.61° C. per watt (C/W) for FR4). In other words, the very high thermal resistance of polymer dielectric materials blocks the dissipation and/or spreading of heat that flows vertically through the VCSEL chip 210, which in turn downgrades optical output power from the VCSEL chip 210 (e.g., the high thermal resistance impacts power conversion efficiency of the VCSEL chip 210).
Alternatively, in example 250, the VCSEL chip 210 is connected to a substrate in which the dielectric layer 218 is made from a ceramic material (e.g., aluminum (Al) nitride (AlN) or aluminum oxide (Al2O3)). In such cases, the thermal conductivity of the ceramic dielectric material may be somewhat higher than the thermal conductivity of a polymer dielectric material (e.g., 130 W/mK for AlN or 15 W/mK for Al2O3 at a typical VCSEL operating temperature). However, in cases where a ceramic material is used to form the dielectric layer 218, the dielectric layer 218 may have a large thickness (e.g., a minimum thickness of 100 µm for AlN, or a minimum thickness of 70 µm for Al2O3) due to substrate manufacturing constraints. Accordingly, thermal resistance of the dielectric layer 218 is not significantly reduced due to the very large thickness of the dielectric layer 218, which also increases parasitic inductance to a higher level that has an impact on high-speed signal quality (e.g., by degrading high-speed modulation performance, increasing a rise time, and/or degrading a light detection and ranging (LiDAR) detection accuracy, among other examples). In other words, although ceramic dielectric materials such as AlN and Al2O3 generally have better thermal conductivity (e.g., lower thermal resistance) than polymer dielectric materials such as FR4, the large thickness of the ceramic dielectric layer 218 in example 250 results in suboptimal thermal performance (e.g., insufficient heat spreading and dissipation) and suboptimal electrical performance (e.g., a very high parasitic inductance).
Accordingly, existing substrates that are typically used in the IC packaging industry suffer from various drawbacks that degrade performance of a VCSEL chip 210 in cases where heat and electrical current flow vertically through the VCSEL chip 210 (e.g., because the dielectric layer 218 used in the substrate connected to the VCSEL chip 210 is typically made from one or more dielectric materials that have a high thermal resistance and/or a large minimum thickness that leads to a higher parasitic inductance). Furthermore, the drawbacks associated with existing dielectric materials are worse for VCSEL chips 210 that are operated using high-speed signals, which generally require more power, thereby resulting in more heat to be dissipated and/or spread and/or greater sensitivity to parasitic inductance. Furthermore, although some thin dielectric coating systems allow inorganic materials (e.g., aluminum oxynitride (AlON), AlN, aluminum phosphate (AlPO4), and/or Al2O3) to be used as a coating material, these materials are usually incompatible with lamination processes used in the polymer dielectric (e.g., FR4) substrate industry and with co-firing processes used in the high temperature co-fired ceramic (HTCC) substrate industry.
Some implementations described herein relate to one or more substrate designs in which a first metal layer is separated from a second metal layer by one or more thin dielectric layers (or dielectric coatings) that may have a thickness in a range from 0.01 µm to 60 µm. For example, in some implementations, a substrate may include a ceramic core with various vias through the ceramic core, where the vias may be filled with a metal that has a high thermal conductivity (e.g., copper, copper-tungsten, or aluminum) to enable heat dissipation or spreading. In addition, the substrate may include a first metal layer and a second metal layer on a top surface of the ceramic core, and a thin dielectric layer is used to separate the first metal layer from the second metal layer. The dielectric coating layers may generally have a thickness less than approximately 60 µm and may have a thickness that is less than 25 µm in the case of AlON, AlN, or AlPO4 (e.g., going as low as 0.01 to 5 µm for AlPO4), which may result in a low parasitic inductance. Furthermore, the dielectric coating layers may be made from a dielectric material (e.g., AlON, AlN, AlPO4, and/or Al2O3) that has a low thermal resistance (e.g., when the dielectric coating layers have a thickness of approximately 60 µm or less).
In this way, some implementations described herein relate to one or more substrate designs and one or more package (e.g., hybrid substrate) designs that may satisfy thermal and electrical performance requirements in circuits where heat and electrical current flows vertically across different metal layers. For example, as described herein, a dielectric layer used to electrically isolate a metal contact may be designed to have a low parasitic inductance and a low thermal resistance. For example, because the dielectric layer is thin (e.g., generally less than 60 µm, and potentially as thin as 0.01 µm), the dielectric layer is associated with a low parasitic inductance (e.g., because the parasitic inductance is proportional to a size of a current loop formed across the dielectric layer and vertically between two metal layers, whereby a thinner dielectric layer reduces parasitic inductance by reducing the size of the current loop). Furthermore, because the dielectric layer is thin and made from a dielectric material with a high thermal conductivity, the dielectric layer does not interfere with the heat spreading and/or heat dissipation properties of the metal-filled vias that are formed in the ceramic core. For example, the following table indicates thermal resistance and parasitic inductance properties for various dielectric materials, including FR4 and AlN layers with a minimum thickness of 100 µm, which suffer from degraded optical output power due to high thermal resistance, poor high-speed signal quality due to a large thickness increasing electrical inductance, and/or incompatibility with lamination, co-firing, and/or other manufacturing processes used in the substrate industry. In addition, the following table indicates thermal resistance and parasitic inductance properties for AlON that may be grown to a 20 µm thickness on a metal layer, where AlON grown on copper (Cu) or copper-tungsten (CuW) exhibits comparable thermal resistance as AlN but a much lower parasitic inductance due to the very small thickness.
For example,
Alternatively,
For example, in
For example, as shown by reference number 365, the rectangular shaped current loop may have a self-inductance approximately proportional to an area of the current loop, defined using the expression h*d, where d is a horizontal dimension of the circuit components forming the current loop (e.g., the capacitor(s) 314, the VCSEL 310, and the driver 312), and h is a vertical dimension of the layers forming the current loop (e.g., a combined thickness of the top metal layer 325 and the dielectric layer 328). In general, the horizontal dimension d is typically limited by the size of the circuit components. However, the vertical dimension h of the current loop may vary depending on the thickness of the dielectric layer 328.
Accordingly, in
For example, as described herein, the thickness of the dielectric layer 328 may be approximately 5 µm to 20 µm for AlON or approximately 0.2 µm to 5 µm for AlPO4 dielectric materials, and the thickness of the top metal layer 325 may be 18 µm, which may result in the vertical dimension h having a maximum value of 38 µm in cases where AlON or AlPO4 is used to form the dielectric layer 328. Accordingly, whereas the self-inductance in a current loop formed horizontally in one metal layer is generally proportional to the total length of the current path (e.g., 2h + 2d, as in
Some implementations described in further detail herein therefore relate to a substrate design that includes a thin dielectric layer to separate a first metal layer and a second metal layer when a current loop is formed vertically across the first metal layer and the second metal layer. In this way, where a high speed current loop is formed in two metal layers, using a thin dielectric layer between the top metal layer 325 and the second metal layer 326 (e.g., as shown in
As indicated above,
In particular, as described above, existing substrates that are typically used in the IC packaging industry suffer from drawbacks that make the existing substrates generally unsuitable for use with a VCSEL chip where heat and electrical current flow vertically through the VCSEL chip. In particular, a dielectric layer used in a substrate for a VCSEL chip is typically made from a dielectric material that has a very large minimum thickness that leads to a higher parasitic inductance, which increases a rise time and/or degrades LiDAR detection accuracy. Additionally, or alternatively, the dielectric material used for the dielectric layer in the substrate may have a very high thermal resistance that impacts a power conversion efficiency and therefore reduces optical output power of the VCSEL chip. For example, referring to
Accordingly, some implementations described herein relate to ceramic core substrate designs that use thin dielectric materials such as AlON, AlPO4, Al2O3, and/or SiO2 to separate adjacent metal layers, which may enable more layers for signal routing and enable multiple capacitors to be easily and/or freely integrated into a ToF projector module.
For example, as described in further detail herein, some implementations relate to multi-layer DPC substrates that include a ceramic core that may be made from AlN, Al2O3 or another suitable ceramic material and one or more thin dielectric layers that are made from a dielectric material such as AlON (e.g., with a thickness in a range from 1 µm to 60 µm), AlPO4 (e.g., with a thickness in a range from 0.01 µm to 60 µm), Al2O3 (e.g., with a thickness in a range from 0.3 µm to 1 µm), and/or SiO2 (e.g., with a thickness in a range from 0.3 µm to 1 µm). For example, in some implementations, the substrate may include a rigid ceramic core DPC substrate including one or more through vias (e.g., that may be premanufactured in the ceramic core), which may be filled with metal (e.g., Cu) to enable thermal heat dissipation and reduce a distance between one or more metal contacts and a ground layer (e.g., thereby reducing parasitic inductance and/or electrical resistance). The top side of the ceramic core DPC substrate may be uniformly coated with a thin dielectric layer, which may cover the top surface and sidewalls of the metal traces in an M3 layer. In some implementations, one or more vias may then be drilled through the thin dielectric layer to provide electrical connections between one or more of the metal traces in the M3 layer and one or more contacts to be formed on the thin dielectric layer. In some implementations, formation of the vias through the thin dielectric layer may be followed by metal (e.g., Cu) plating and etching to form an M2 layer, which may include a first contact (e.g., an anode) that is electrically isolated from an underlying metal trace in the M3 layer and one or more contacts (e.g., a cathode and a ground) that are electrically connected to underlying metal traces in the M3 layer by the via(s) formed in the thin dielectric layer. Accordingly, because the dielectric layer on the top surface of the ceramic core is very thin, the thin dielectric layer significantly reduces parasitic inductance and electrical resistance that may otherwise increase a rise time and/or degrade LiDAR performance. Furthermore, the thin dielectric layer is made from a material that has a low to moderate thermal resistance, which reduces thermal resistance that may otherwise reduce power conversion efficiency of a VCSEL or other high-speed electro-optical chip that may be connected to the contact that is electrically isolated from the underlying metal trace in the M3 layer. Furthermore, in some implementations, a second thin dielectric layer may be provided on the bottom side of the ceramic core to increase the number of layers that are available for circuit and/or signal routing.
As indicated above,
Furthermore, as shown in
In some implementations, the thin dielectric layer 508 may be made from AlON with a thickness in a range from 1 µm to 60 µm (e.g., about 10 µm thick), which may be coated on the top surfaces and sidewalls of the metal traces 522, 532, 542 and on exposed portions of the ceramic core 502 (e.g., regions that are not covered by the metal traces 522, 532, 542 in the first metal layer 506) using physical vapor deposition (PVD), chemical vapor deposition (CVD), and/or another suitable technique. Additionally, or alternatively, the thin dielectric layer 508 may be made from AlPO4 with a thickness in a range from 0.01 µm to 60 µm (e.g., about 0.2 µm thick), which may be coated on the top surfaces and sidewalls of the metal traces 522, 532, 542 and on the exposed portions of the ceramic core 502 using dip coating, spin coating, and/or another suitable technique. Additionally, or alternatively, the thin dielectric layer 508 may be made from Al2O3 or SiO2 with a thickness in a range from 0.3 µm to 1 µm, which may be coated on the top surfaces and sidewalls of the metal traces 522, 532, 542 and on the exposed portions of the ceramic core 502 using PVD, CVD, and/or another suitable technique.
As further shown in
For example, as described herein, an Mx layer (where x is a positive integer) may generally refer to a number of a metal layer relative to an exposed side (e.g., a topside) or a front-end region of a device, which usually ends at contacts of one or more devices that form a circuit (e.g., a capacitor, VCSEL, and driver in a ToF projector module). The M1 layer may be the lowest layer, commonly adjacent to a substrate, while the layer with the highest number would be the uppermost layer, often for interconnection to other devices. Between the M1-Mx layers would be electrical insulation layers, such as one or more dielectric layers. One or more traces may be formed in each metal layer and one or more vias may be formed within the electrical insulation layer(s) to interconnect various traces and thereby form circuit paths horizontally and/or vertically through the layers. Metallization layers M1-Mx are typically referred to as being located in the back-end region of the device, and are used to interconnect the devices in the front-end region of the device and also connect the devices to packaging connections (e.g., to ground in
In this way, due to the vias 514-1 and 514-2 providing the electrical connections between the electrical contacts 534 and the metal traces 532 in the second region 530, the electrical contacts 534 in the second region 530 may provide electrical through-connections (e.g., through the ceramic core 502) with a low inductance and a low thermal resistance, which may be suitable for using the second electrical contact 534 as a signal pad or a cathode pad that is separated from other electrical connections (e.g., for connecting a driver in a ToF projector module). Furthermore, due to the vias 514-3 and 514-4 providing the electrical connections between the electrical contacts 544 and the metal traces 542, which are formed over the metal-filled vias 512 in the third region 540, the electrical contacts 544 in the third region 540 may provide electrical through-connections (e.g., through the ceramic core 502) to ground with a low inductance and low thermal resistance, which may be suitable for using the electrical contacts 544 in the third region 540 as ground pads (e.g., for connecting a capacitor in a ToF projector module). While individual vias through the thin dielectric layer 508 have been illustrated and/or described, such as the vias 514-1, 514-2 in the second region 530 and the vias 514-3, 514-4 in the third region 540, more or fewer vias 514 may be provided as desired. Further, in
Accordingly, in the substrate 500 depicted in
In some implementations, as shown in
As indicated above,
For example, referring to
Accordingly, as shown in
For example, after the thin dielectric layer is applied to uniformly coat the top surfaces and sidewalls of the metal traces and one or more exposed surfaces on the top side of the ceramic core, one or more vias may be drilled or otherwise formed (e.g., etched) through the thin dielectric layer to provide electrical connections between the underlying metal traces and one or more electrical contacts to be formed over the vias and the underlying metal traces. In some implementations, forming the vias in the dielectric layer may then be followed by metal (e.g., Cu) plating and etching to form an M2 layer (e.g., the second metal layer). In some implementations, as shown in
Alternatively, in some implementations, the capacitor 620 may comprise a one-dimensional (1D) in-silicon capacitor array. For example, in the case of a 1D addressable array of VCSELs, there may be a need to control each row in the array using multiple capacitors 620 (e.g., each emitter row in 1D addressable array of VCSELs connects to an individual capacitor 620). Accordingly, to satisfy the requirements of a 1D addressable VCSEL, the circuit 600 shown in
As indicated above,
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the implementations. Furthermore, any of the implementations described herein may be combined unless the foregoing disclosure expressly provides a reason that one or more implementations may not be combined.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various implementations includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiple of the same item.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more.” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, or a combination of related and unrelated items), and may be used interchangeably with “one or more.” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or,” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of”). Further, spatially relative terms, such as “below,” “lower,” “bottom,” “above,” “upper,” “top,” or the like, may be used herein for ease of description to describe one element or feature’s relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the apparatus, device, and/or element in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
This Pat. Application claims priority to U.S. Provisional Pat. Application No. 63/362,311, filed on Mar. 31, 2022, and entitled “TIME-OF-FLIGHT CAMERA PROJECTOR WITH ULTRA-THIN DIELECTRIC SUBSTRATE FOR LOW THERMAL RESISTANCE AND LOW PARASITIC INDUCTANCE.” The disclosure of the prior Application is considered part of and is incorporated by reference into this Patent Application.
Number | Date | Country | |
---|---|---|---|
63362311 | Mar 2022 | US |