Photolithography is a process used in fabrication of nanoscale components (e.g., electrical circuits, optical components) that are generally made of thin films layered on a substrate. This process involves depositing thin film layer(s) on a substrate, forming geometric pattern formed with a layer of photoresist material, and then selectively removing parts of a thin film (or the substrate itself) based on the geometric pattern.
During the photolithography process, electromagnetic energy (e.g., light) is transmitted through a photomask or reticle to expose parts of the photoresist layer in the desired pattern. The exposed photoresist can be subjected to a chemical treatment (e.g., “developing”) that removes areas of photoresist that were exposed to the light. In other cases, areas receiving no light exposure may instead be removed by a developer. In either case, the resulting surface has a pattern formed by the developed photoresist, and the surface can then be further treated. For example, etching may be performed so that exposed areas of the surface are etched away, while those areas covered by the photoresist are unaffected.
Photolithography is commonly associated with the manufacture of an integrated electronic circuit. Photolithography can also be used in making integrated optics, which includes optical components (e.g., lasers, waveguides, lenses, mirrors, collimators, etc.) that are formed on a substrate in a manner analogous to integrated electrical circuits. Photolithography is also used in manufacturing recording head components for data storage devices.
Implementations described and claimed herein include photolithography patterning technology to alleviate the imbalance of transmission intensity induced by the alternating phase shift mask exposure in magnetic reader device formation. In one implementation, a method comprises exposing an alternating phase shift mask (Alt-PSM) and a trim mask, wherein an exposure placement of the trim mask is shifted relative to an exposure placement of the Alt-PSM.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. These and various other features and advantages will be apparent from a reading of the following Detailed Description.
An ongoing desire to make more densely packed integrated devices has necessitated changes to the photolithography process to form smaller individual feature sizes, often referred to by the term “minimum feature size” or “critical dimension” (CD). The CD is determined approximated by the formula CD=k1*λ/NA, where k1 is a process-specific coefficient, λ is the wavelength of applied light/energy, and NA is the numerical aperture of the optical lens as seen from the wafer. This formula may be applicable to both dense features and isolated features for resolution purposes.
For fabrication of dense features with a given value of k1, the ability to project a usable image of a small feature onto a wafer is limited by the wavelength λ and the ability of the projection optics to capture enough diffraction orders from an illuminated mask. When either dense features or isolated features made from a photomask or a reticle is of a certain size and/or shape, the transitions between light and dark at the edges of the projected image may not be sharply defined enough to correctly form target photoresist patterns. This may result, among other things, in reducing the contrast of aerial images and also the quality of resulting photoresist profiles. As a result, features 150 nm or below in size may need to utilize phase shifting techniques to enhance the image quality at the wafer, e.g., sharpening edges of features to improve resist profiles.
Phase-shifting generally involves selectively changing phase of part of the energy passing through a photomask/reticle so that the phase-shifted energy is additive or subtractive with unshifted energy at the surface of the wafer. By carefully controlling the shape, location, and phase shift angle of mask features, the resulting photoresist patterns can have more precisely defined edges.
Phase shifts may be obtained in a number of ways. For example, one process known as attenuated phase shifting utilizes a layer of non-opaque material that causes light passing through the material to change in phase compared to light passing through transparent parts of the mask.
Another technique is known as alternating phase shift, where the transparent mask material (e.g., quartz) is etched to have different depths across its surface exposed to optical energy. The depths can be chosen to cause a desired relative phase difference in light passing through the different depths. Using an alternating phase shift mask (Alt-PSM), forming resist line features, provides a larger process window over that of the chrome-on-glass masks.
For one implementation, the opaque material between 0° and 180° phases can be totally removed during the mask fabrication process. This design may be referred to as “chromeless” and further improves the process window and can be used for patterning extremely narrow features. On the other hand, the intrinsic phase termination issue makes the circuit design extremely difficult. To address this, a combination of a phase shift mask and a chrome-on-glass trim mask (referred to as the “trim mask”) may be used. Therefore, a double exposure technique may be utilized when an Alt-PSM is involved for process patterning.
The Alt-PSM and the trim mask are exposed by placing the Alt-PSM and the trim mask between the light source and a wafer where a photoresist pattern is desired. In order to pattern small features, an Alt-PSM can be exposed, and subsequently a trim mask is exposed to finalize a target area and remove unwanted large features. In one implementation, these two masks can be exposed with a perfect overlap of the center of the trim mask to the center of the Alt-PSM, wherein the center of the Alt-PSM is also the phase transition edge from 0° to 180° of the Alt-PSM.
As the feature size is getting smaller, the imbalance of transmission intensity due to the phase-shift mask manufacturing process results in significant CD variation and placement errors for the photoresist pattern. Manufacturing/process techniques have attempted to alleviate the imbalance issue, including the opening biasing between 0° and 180° phase portion, isotropic etching, and exposing with original and inverse phase shift masks.
As the areal density advances at a staggering pace in magnetic recording, the demand to scale down recording head dimensions continues. A photolithography-defined reader width can be as small as sub 50 nm, and phase shift mask technology may be used to achieve such fine features. These patterned structures are extremely sensitive to any mask/process induced variations. Particularly, CD placement and uniformity suffers from the transmission intensity imbalance induced from the phase shift mask exposure. Keeping up the scaling down of CD variation with the continuous reader dimension reduction is a significant challenge.
The technology disclosed herein involves a photolithography method to eliminate the transmission intensity issue by shifting/modulating an exposure placement of a trim mask relative to an exposure placement of an Alt-PSM. By modulating the trim mask exposure, the imbalance of transmission intensity induced by the Alt-PSM exposure is alleviated, the transmission intensity can be symmetrical on the left and right resist edges, and have less wafer-to-wafer (wTw) CD variation (e.g., as much as 15%).
The example CAD image 200 in
The weighted aerial image of Alt-PSM 202 and trim mask 204 can be constructed through the dose ratios between these two masks. The weighted aerial image generated by the combination of the masks is studied as a metric for transmission intensity symmetry. The trim mask 204 relative to the Alt-PSM 202 can be swept from approximately −12 nm to approximately 12 nm, as shown in
Simulated results may be generated for the weighted aerial images for different displacements of the center 316 of the trim mask 304 relative to the phase transition edge 306 of an Alt-PSM 302. The relative shifting of the center 316 of the trim mask 304 relative to the phase transition edge 306 of the Alt-PSM 302 eliminates the transmission intensity imbalance resulting from the use of the Alt-PSM 302. In the illustrated implementation, the center 316 of the trim mask 304 is shifted towards the thinner section of the Alt-PSM 302 along the y-axis. In one implementation, the center 316 of the trim mask 304 may be shifted away from the phase transition edge 306 of the Alt-PSM 302. For example, in one implementation, the center 316 of the Trim mask 304 may be shifted away from the phase transition edge 306 of the Alt-PSM 302 by approximately 8 nm.
The left and right log slopes show opposite trends when the displacement moves from −12 nm to 12 nm. In one implementation, these two trends intercept at a condition when the center of the trim mask is approximately at −8 nm from the Alt-PSM phase transition edge, illustrated by the interception 402 in
In another implementation, wafers with SiO2 (10 nm)/amorphous carbon (35 nm)/Ru (30 nm)/NiFe(100 nm)/AlTiC (substrate) can be exposed with the trim and Alt-PSM masks. As shown in example graph 700 in
The trim mask can be shifted relative to the Alt-PSM for various measurements. In one implementation, the trim mask relative to the Alt-PSM can be shifted by at least 2 nm. In other implementations, the trim mask relative to the Alt-PSM can be shifted even more. The shift between the trim mask and the Alt-PSM is a function of trim mask CAD size and a dose ratio between of a trim mask and an Alt-PSM. An operation 808 exposes the same wafer through a trim mask. The wafer with double exposures continues through the normal photolithography process in an operation 810.
A simulation operation 902 simulates different CDs with a series of Alt-PSM exposure dose (mJ/cm2) settings and with the relative trim mask shifts. The first time the simulation operation 902 is performed, the simulation operation 902 is performed without relative trim mask shift.
In an operation of 904, the Alt-PSM exposure dose can be drawn based on a working function of CD vs. Alt-PSM dose. The exposure dose determined at operation 904 is then fed to the operation 906. In operation 906, the trim mask shift can be determined where the CD is maximized when sweeping the shift with Alt-PSM dose.
The CD simulation is then run with the trim mask shift in an operation 908. A determining operation 910 determines whether the CD is equal to the targeted CD. If the CD is equal to the targeted CD, then an Alt-PSM dose and relative trim mask shift for a given CD is achieved in an operation 912. If the CD is not equal to the targeted CD, then the trim mask shift is used as per operation 908, operations 900 are repeated, starting with operation 902.
The above specification, examples, and data provide a complete description of the structure and use of exemplary embodiments of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Furthermore, structural features of the different embodiments may be combined in yet another embodiment without departing from the recited claims.
The present application is a divisional application of U.S. patent application Ser. No. 14/528,174, filed Oct. 30, 2014, and titled “Transmission Balancing For Phase Shift Mask With A Trim Mask”, and expected to issue on May 17, 2016 as U.S. Pat. No. 9,341,939, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6458495 | Tsai et al. | Oct 2002 | B1 |
6818389 | Fritze et al. | Nov 2004 | B2 |
6884551 | Fritze et al. | Apr 2005 | B2 |
7282306 | Vernon et al. | Oct 2007 | B2 |
7306881 | Fritze et al. | Dec 2007 | B2 |
7651821 | Tyrrell et al. | Jan 2010 | B2 |
7695872 | Vernon et al. | Apr 2010 | B2 |
7735056 | Aton et al. | Jun 2010 | B2 |
7794921 | Chen et al. | Sep 2010 | B2 |
7818711 | Aton | Oct 2010 | B2 |
7906253 | Aton et al. | Mar 2011 | B2 |
7906271 | Aton | Mar 2011 | B2 |
7968277 | Chen et al. | Jun 2011 | B2 |
7984393 | Aton et al. | Jul 2011 | B2 |
7993815 | Colburn et al. | Aug 2011 | B2 |
8415089 | Gupta et al. | Apr 2013 | B1 |
20030165749 | Fritze et al. | Sep 2003 | A1 |
20040259042 | Fritze et al. | Dec 2004 | A1 |
20050112476 | Bellman et al. | May 2005 | A1 |
20050214652 | Vernon et al. | Sep 2005 | A1 |
20050238965 | Tyrrell et al. | Oct 2005 | A1 |
20070231711 | Aton et al. | Oct 2007 | A1 |
20080044768 | Vernon et al. | Feb 2008 | A1 |
20090004573 | Aton | Jan 2009 | A1 |
20090065956 | Colburn et al. | Mar 2009 | A1 |
20090068837 | Colburn et al. | Mar 2009 | A1 |
20090087619 | Aton et al. | Apr 2009 | A1 |
20090087754 | Aton | Apr 2009 | A1 |
20090125870 | Aton et al. | May 2009 | A1 |
20090128788 | Aton | May 2009 | A1 |
Number | Date | Country |
---|---|---|
02-03138 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20160246183 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14528174 | Oct 2014 | US |
Child | 15144368 | US |