Wire bonding method and apparatus for electromagnetic interference shielding

Information

  • Patent Grant
  • 9935075
  • Patent Number
    9,935,075
  • Date Filed
    Tuesday, August 16, 2016
    9 years ago
  • Date Issued
    Tuesday, April 3, 2018
    7 years ago
Abstract
Apparatuses relating generally to a microelectronic package having protection from electromagnetic interference are disclosed. In an apparatus thereof, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane with a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage.
Description
FIELD

The following description relates generally to integrated circuits (“ICs”). More particularly, the following description relates generally to wire bonding for electromagnetic interference shielding.


BACKGROUND

Some passive or active microelectronic devices may be shielded from electromagnetic interference (“EMI”), including without limitation radio frequency interference (“RFI”). However, conventional shielding may be complicated to fabricate, too heavy for some mobile applications, too expensive to produce and/or assemble, and/or too large for some low-profile applications. Moreover, some shielding may not be suitable for a stacked die or a stacked package, generally referred to as three-dimensional (“3D”) ICs or “3D ICs.”





BRIEF DESCRIPTION OF THE DRAWING(S)

Accompanying drawing(s) show exemplary embodiment(s) in accordance with one or more aspects of exemplary apparatus(es) or method(s). However, the accompanying drawings should not be taken to limit the scope of the claims, but are for explanation and understanding only.



FIG. 1-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package having interference protection.



FIG. 1-2 is the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 1-1 after the addition of a conductive layer.



FIG. 1-3 is a cut-away diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 1-1 after the addition of a molding layer and a conductive layer.



FIG. 1-4 is a block diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 1-1 after the addition of a molding layer and a conductive layer, where conductive layer covers an upper surface of the microelectronic package.



FIGS. 2-1 through 2-7 are respective block diagrams of side views illustratively depicting exemplary profiles of wire bond wires.



FIG. 3-1 is the exemplary microelectronic package of FIG. 1-3 though with slash-like shaped wire bond wires.



FIG. 3-2 is the exemplary microelectronic package of FIG. 1-3 though with squared-off vertical-z-like shaped wire bond wires.



FIG. 4-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package having interference protection, as in FIG. 1-1, though with a triangularly shaped microelectronic device.



FIG. 4-2 is a cut-away diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 4-1 after the addition of a molding layer and a triangular conductive layer.



FIG. 5 is a block diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package after the addition of a molding layer and an oval conductive layer.



FIG. 6 is a block diagram of a cross-sectional view illustratively depicting an exemplary microelectronic package with inner and outer interference shielding cages.



FIG. 7-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package having inner and outer interference protection.



FIG. 7-2 is the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 7-1 after the addition of a conductive layer.



FIG. 7-3 is a cut-away diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 7-1 after the addition of a molding layer and a conductive layer.



FIG. 8 is a block diagram of a cross-sectional view illustratively depicting an exemplary microelectronic package with inner and outer interference shielding cages.



FIG. 9-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package having inner and outer interference protection.



FIG. 9-2 is the top-down perspective view illustratively depicting the exemplary microelectronic package of FIG. 9-1 after the addition of a conductive layer.



FIG. 10 is a top-down perspective view illustratively depicting an exemplary microelectronic package having plots for interference shielding cages as in FIG. 1-1 and as in FIG. 7-1 for example.



FIG. 11 is a block diagram of a top-down view illustratively depicting an exemplary microelectronic package.



FIG. 12-1 is a block diagram of a cross-section along A1-A2 of FIG. 11.



FIG. 12-2 is a block diagram of a cross-section along A1-A2 of FIG. 11 after addition of a molding layer.



FIG. 13 is a top-down perspective view illustratively depicting an exemplary microelectronic package having interference shielding cages.



FIGS. 14-1 and 14-2 are block diagrams of a top-down view illustratively depicting respective exemplary wire bond wire patterns for neighboring EMI isolation regions.



FIGS. 15-1 through 15-3 are block diagrams of a side view illustratively depicting respective exemplary wire bond wire patterns for neighboring EMI isolation regions.



FIG. 16 is a flow diagram illustratively depicting a process for forming a microelectronic package having wire bond wire interference shielding.





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to provide a more thorough description of the specific examples described herein. It should be apparent, however, to one skilled in the art, that one or more other examples or variations of these examples may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the description of the examples herein. For ease of illustration, the same number labels are used in different diagrams to refer to the same items; however, in alternative examples the items may be different.


Exemplary apparatus(es) and/or method(s) are described herein. It should be understood that the word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any example or feature described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other examples or features.


Interference may be electromagnetic interference (“EMI”), including without limitation radio frequency interference (“RFI”), and/or another electrical and/or magnetic field that would produce undesirable EMI outside of the source generating the field. The following description of interference shielding may be used for EMI or other types of interference. EMI may be emitted from one device to another separate device, and compatibility of a device with respect to such out-of-package or out-of-device EMI emissions may be referred to as electromagnetic compatibility (“EMC”). For a device to have EMC, such a device may be precluded from emitting levels of EM energy sufficient to cause EMI harm in another device in an EMI environment of the EM emitting device. A common EMI emitting device is a mobile phone, and a mobile phone may have an EMC problem with respect to medical devices, which is a reason people are asked to turn-off their mobile phones in hospitals. For purposes of clarity by way of example and not limitation, generally only shielding from EMI is described below in additional detail; however, it shall become apparent from the following description that this shielding may also be used to enhance EMC. Along those lines, it will be appreciated that the following description is applicable to thin profile devices, such as mobile phones, wearables and/or Internet of Things devices, for reducing EM emission therefrom, and in some implementations enhancing EMC.


With the above general understanding borne in mind, various configurations for protection from interference are generally described below.


Along those lines, an apparatus generally relates to protection from electromagnetic (“EM”) interference. In such an apparatus, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane. The wire bond wires have a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage. To achieve enhanced suppression of EMI, spacings between each pair of adjacent wire bond wires may be substantially smaller than electrical wavelengths of interest, including without limitation the electrical wavelength of the highest operation frequency of interest. Along those lines, spacing between two adjacent wires can be less than approximately one tenth of the electromagnetic wavelength in a medium. For example, in a microelectronic package with conventional dielectric materials, the spacing between two adjacent wires can be less than 500 microns (“um”) for an operational frequency of approximately 3 GHz, and less than 50 um for an operational frequency of approximately 30 GHz.


In the apparatus in the immediately preceding paragraph, the microelectronic device can be shielded from the interference outside of the interference shielding cage. The microelectronic device can be shielded by the interference shielding cage to reduce spread of the interference generated by the microelectronic device. The interference can be electromagnetic interference. The conductive layer can have an overhang extending beyond the perimeter. At least a subset of the wire bond wires can have gaps therebetween narrower than the pitch of at least the subset of the wire bond wires. The wire bond wires can have a custom character-like shape. The wire bond wires can have a custom character-like shape. The wire bond wires can have a rcustom character-like shape. The perimeter can have a shape corresponding to a layout of the microelectronic device. The perimeter can have a contour or non-parallel sides shape. The perimeter can have a circular shape. The microelectronic device can be a first microelectronic device, and the apparatus can further include a second microelectronic device coupled to the platform and located outside of the interference shielding cage. The platform can be selected from a leadframe, a circuit board, a substrate, and a redistribution layer. The wire bond wires having the pitch can be first wire bond wires having a first pitch, the interference shielding cage can be a first interference shielding cage having a first perimeter, and the conductive layer can be a first conductive layer; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch, with the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and the upper ends of the first wire bond wires; the second wire bond wires can be spaced apart from one another to provide a second fence-like perimeter to provide a second interference shielding cage, with the first perimeter being within the second perimeter; and a second conductive layer can be coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the first interference shielding cage and the second interference shielding cage including overlapping the first conductive layer for having the first interference shielding cage within the second interference shielding cage. The wire bond wires having the pitch can be first wire bond wires having a first pitch, and the interference shielding cage can be a first interference shielding cage having a first perimeter; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch, with the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and at a same level as the upper ends of at least the subset of the first wire bond wires; the second wire bond wires can be spaced apart from one another to provide a second fence-like perimeter to provide a second interference shielding cage with the first perimeter being within the second perimeter; and the conductive layer can be coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the second interference shielding cage. The first microelectronic device can be coupled to the second microelectronic device though a gap in the interference shielding cage. The first microelectronic device can be a stronger electromagnetic interference source than the second microelectronic device. The wire bond wires having the pitch can be first wire bond wires having a first pitch, and the interference shielding cage can be a first interference shielding cage having a first perimeter; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch wider than the first pitch to provide a second interference for providing a portion of a second interference shielding cage having less shielding against interference than the first interference shielding cage. The conductive layer can define a ring-like hole therein having a pad therein isolated from a remainder of the conductive layer by the ring-like hole. The conductive layer can be a ground plane. The pad can be a signal pad or a power pad. The wire bond wires having the pitch can be first wire bond wires having a first pitch, and the interference shielding cage can be a first interference shielding cage having a first perimeter; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch with the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and at a same level as the upper ends of at least the subset of the first wire bond wires; the second wire bond wires can be spaced apart from one another to provide a second fence-like perimeter in combination with a portion of the first wire bond wires to provide a second interference shielding cage with the first perimeter bordering the second perimeter; and the conductive layer can be coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the second interference shielding cage.


A method relates generally to protection from EM interference. In such a method, a platform is obtained having an upper surface and a lower surface opposite the upper surface and having a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are bonded to the ground plane, where the wire bond wires have a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires being above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A molding layer is deposited over the upper surface of the platform. A conductive layer is formed for coupling to at least a subset of the upper ends of the wire bond wires to provide a conductive shielding layer for electrical conductivity to cover the interference shielding cage.


Other features will be recognized from consideration of the description and claims, which follow.



FIG. 1-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package 100 having interference protection. FIG. 1-2 is the top-down perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 1-1 after the addition of a conductive layer 112. With simultaneous reference to FIGS. 1-1 and 1-2, microelectronic package 100 is further described.


In microelectronic package 100, a platform 104 has an upper surface 102 and a lower surface 106 opposite upper surface 102. Platform 104 further includes a ground plane 107, which in this example is subsurface with respect to upper surface 102, with surface accessible bond pads (not shown in this figure for purposes of clarity and not limitation) coupled to such ground plane 107. Platform 104 may be selected from a leadframe, a circuit board, a redistribution layer, a substrate, or other circuit base.


A microelectronic device 105 may be coupled to other bond pads (not shown in this figure for purposes of clarity and not limitation) on upper surface 102 of platform 104. Microelectronic device 105 for example may be an integrated circuit die, such as a resonator for example, or any other microelectronic component that generates EMI noise. Wire bond wires 101 may be coupled to ground plane 107 with a pitch 108. Wire bond wires 101 extend away from upper surface 102 of platform 104 with upper ends 103 of wire bond wires 101 being above an upper surface 109 of microelectronic device 105. For purposes of clarity by way of example and not limitation, wire bond wires 101 may have a height of approximately 0.4 mm and a diameter of 20 microns, with a pitch of approximately 80 microns. Distance between a wire bond wire 101 used to provide a perimeter for shielding and a microelectronic device 105 may be approximately 0.5 mm. An interference shielding cage in accordance therewith may provide approximately 30 to 33 dB of EMI suppression at maximum radiation direction for a frequency in a range of approximately 3.0 to 4.5 GHz with E-field radiation and radiation power both reduced by approximately over 97 percent or higher. By implementing EMI shielding as described herein, applications with operating frequencies of 5 GHz or greater frequencies may be have EMI suppression as described herein, including without limitation EMC enhancement. However, these or other parameter details to provide EMI shielding may be used as may vary from application-to-application.


Wire bond wires 101 are spaced apart from one another to provide a picket fence-like wall or perimeter 110. Such a picket-fence like or bars on a cage-like perimeter of wire bond wires 101 may be used to provide an interference shielding wall for an interference shielding cage 111, such as a bond via array (“BVA”) cage. Interference shielding cage 111 further includes a conductive layer 112 having a lower surface. Such lower surface of conductive layer 112 may be mechanically coupled, such as by applying solder or other eutectic masses to at least a subset, if not all, of upper ends 103 of wire bond wires 101 to provide attachment of a conductive shielding layer for electrical conductivity to cover interference shielding cage 111. Conductive surface 112 in this example is a sheet material, which may be used to provide an EMI shield cap or cover of an interference shielding cage 111. However, in another implementation, a mesh of material may be deposited for use as a shield cover of an interference shielding cage 111.



FIG. 1-3 is a cut-away diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 1-1 after the addition of a molding layer 113 and a conductive layer 112. In this optional implementation, after forming molding layer 113 over upper surface 102 and around bases and shafts of wire bond wires 101, at least a subset, if not all, of upper ends 103 of wire bond wires 101 may be temporarily exposed above an upper surface 114 of molding layer 113. A mold assist film (removed in this figure) may be used in an injection mold for example to have upper ends 103 available for mechanical or other coupling. In this implementation, upper ends of wire bond wires 101 do not have to be exposed by back grinding, planarizing, etching back, polishing or otherwise from molding layer 113.


Along those lines, conductive layer 112 may be mechanically coupled as previously described. However, optionally conductive layer 112 may be formed by spraying, sputtering, printing, painting, ink stamping, or otherwise forming a conductive shielding layer on upper surface 114 for interconnect with upper ends 103. By forming conductive layer 112 by spraying, sputtering, printing, painting, ink stamping, or otherwise depositing a conductive material, conductive layer 112 may be selectively applied. Along those lines, a mesh or solid surface, or a combination of part mesh and part solid surface, for conductive layer 112 may be formed.


For purposes of clarity, conductive layer 112 is illustratively depicted as extending toward a front edge 139 of microelectronic package 100 and covering only a portion of an upper surface 114 of molding layer 113. However, in another implementation, conductive layer 112 may extend to none, or one or more edges 139 of microelectronic package 100. Along those lines, FIG. 1-4 is a block diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 1-1 after the addition of a molding layer 113 and a conductive layer 112, where conductive layer 112 covers an upper surface of microelectronic package 100.


In this example, there are four edges 139 to which conductive layer 112 extends; however, conductive layer 112 may be formed to cover an upper surface area of any shape of a microelectronic package 100. By having conductive layer 112 overhang or otherwise extend beyond a perimeter 110 formed by wire bond wires 101 associated with an interference shielding cage 111, EMI shielding may be enhanced over a corresponding interference shielding cage 111 where conductive layer 112 does not extend beyond perimeter 110 formed of wire bond wires 101. For minimally effective EMI shielding, such an overhang or extension may be approximately minimally half of the vertical or perpendicular height (“H”) of wire bond wires 101. Thus, a perimeter of conductive layer 112 may be greater than a surface area associated with a perimeter 110 of wire bond wires 101 of an interference shielding cage 111 minimally by ½ H in each direction toward one or more edges 139. Though a ½ H overhang can reduce EMI emissions, such as of an evanescent or standing wave, a larger overhang may suppress EMI emission further, as EMI emission may include both radial emission and an evanescent wave. Based on electromagnetic wave theory, only the lowest transverse electric (TE) mode is propagation wave, other higher order modes are evanescent waves that decay to negligible small after propagating distance of perpendicular height H. Thus, an overhang of H can significantly further suppress the EMI radiation. Along those lines, an overhang for extending conductive layer 112 beyond perimeter 110 in each direction by approximately H may be used. Thus, conductive layer 112 may be extended to all edges 139 of a package part for an overhang of H or greater beyond perimeter 110 in all directions toward edges 139.


In any of the above configurations, microelectronic device 105 may be shielded from interference outside of interference shielding cage 111, such as outside of a perimeter 110 of wire bond wires 101. However, for purposes of clarity by way of example and not limitation, it shall be assumed that during operation microelectronic device 105 is an EMI generator. Along those lines, microelectronic device 105 may be shielded by interference shielding cage 111, such as by perimeter 110 of wire bond wires 101, to reduce or prevent spread of EMI, namely size of an EM environment, generated by microelectronic device 105. For example, interference generated by microelectronic device 105 without interference shielding cage 111 may generate an EMI environment affecting EMC. For purposes of clarity by way of example and not limitation, it shall be assumed that microelectronic device 105 is an RF component. Microelectronic device 105 may be a stacked die, such as a 3D IC or may be shielded from such a stacked die.



FIGS. 2-1 through 2-7 are respective block diagrams of side views illustratively depicting exemplary profiles of wire bond wires 101. In FIG. 2-1, wire bond wires 101 have a generally vertical profile, such as previously described. Along those lines, gaps between such generally vertical profile wire bond wires 101 may have a generally consistent pitch 108, where such wire bond wires 101 are bonded for example to platform 104, and closest spaces or gaps 115 between such wires moving up from such platform 104 may be generally a consistent spacing or gapping. Routing wiring, such as signal, power, or ground traces for microelectronic package 100 may extend through one or more gaps between adjacent wire bond wires 101. Thus, wiring layers (not shown) may include routing on upper surface 102 of platform 104 without interfering with corresponding EMI shielding, thereby simplifying routing over traditional “can” style EMI shielding mechanisms, which would experience an electrical short if the solid conductive surface contacted surface routing.


For FIGS. 2-2 through 2-7, the closest spacings of gaps 115 may be narrower than pitch 108. By “pitch”, it is generally meant a predetermined center-to-center spacing between bases of wire bond wires, which may be contrast for example from slant of such wire bond wires. Along those lines, at least a subset, if not all, of wire bond wires 101 may have gaps 115 therebetween narrower than a corresponding pitch 108 of at least a subset of wire bond wires 101. Wire bond wires 101 may have a slash-like or “/” shape or profile, such as in FIGS. 2-2 and 2-6. In FIG. 2-3, wire bond wires 101 have a squared-off vertical-z-like, or a kinked or rounded shaped profile. Of course, the wires shown by way of example in FIGS. 2-1 through 2-7 may have additional bends not shown in the schematic drawings. For instance, the “/” shaped wires may have portions that do not have a straight line profile and instead have slightly more vertical or horizontal portions at either end due to tooling parameters. Thus, the wire may have be considered to have an imaginary axis extending from one end of the wire to the other with portions of the wire bond extending outside of that axis in the x, y, and/or z directions.


In FIGS. 2-4 and 2-5 wire bond wires may have a vertical partial four-like shape or profile. Other shapes, such as chevron (“<” or “>” shapes), arc (“(” or “)” shapes), or coil shaped configurations are optional. Even though non-curved angles and/or segments are illustratively depicted, in other implementations, such angles and/or segments may have curves, such as for example a curved-el-like profile shape. Moreover, wire bond wires 101 may be loops, such as having an open loop omega-like “Ω” shaped profile or a closed loop el-like “l” shaped profile. The wire loops may each be formed on a single pad and may be offset or angled relative to each other in the x and y direction (i.e., in a layout similar to “\\\” when viewed down the z direction) to facilitate a more tightly packed layout than might be possible if the wires in the wire loop extended in the same plane (i.e., in a layout similar to “- - - ” when viewed down the z direction).



FIG. 3-1 is the exemplary microelectronic package 100 though with slash-like shaped wire bond wires 101, and FIG. 3-2 is the exemplary microelectronic package 100 though with squared-off vertical-z-like shaped wire bond wires 101. Along those lines, pitch, shape, and diameter of wire bond wires 101, including without limitation irregularly shaped wire bond wires 101, may be used to further reduce EM emissions from a fence-like perimeter, such as perimeter 110 for example, formed of wire bond wires 101. Some of adjacent wire bond wires 101 may be in contact with each other, and some wires 101 may not extend to conductive layer 112, such as illustrative depicted in FIG. 2-7 for purposes of clarity by way of example and not limitation, and these or other options described herein may be selectable by a designer for a given EMI shield design or characteristic.


As above with reference to FIG. 1-1, perimeter 110 formed by layout of wire bond wires 101 may have a shape corresponding to a layout of microelectronic device 105. However, microelectronic device 105 may have a layout shape other than that of a square, rectangle or other similar polygon. Moreover, microelectronic device 105 may have a layout shape of a circle, oval or other curvilinear shape. Shaping fence-like perimeters, such as for example perimeter 110 and/or below described perimeter 120, formed of wire bond wires 101 to a microelectronic device 105 layout shape or footprint may be used to provide more compact designs and/or better shielding performance than not contouring fence-like perimeters to such footprint.



FIG. 4-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package 100 having interference protection, as in FIG. 1-1, though with a triangularly shaped microelectronic device 105. Correspondingly, perimeter 110 formed of wire bond wires 101 may have a corresponding triangular shape. In this example, wire bond wires 101 have a slash-like profile. FIG. 4-2 is a cut-away diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 4-1 after the addition of a molding layer 113 and a triangular conductive layer 112. Accordingly, more generally, a perimeter may have one or more contoured sides, non-parallel sides and/or non-orthogonal sides in order to follow a layout of an irregularly shaped microelectronic device 105.



FIG. 5 is a block diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package 100 after the addition of a molding layer 113 and a conductive layer 112. Circles 116 generally indicate upper ends of wire bond wires 101 positioned for providing an oval shaped perimeter 110 of wire bond wires 101, as previously described though for an oval shaped microelectronic device 105. Microelectronic devices 105 as described herein may be passive or active devices. Conductive layer 112 may have an oval shape as generally indicated by dashed oval 112A. However, conductive layer 112 may overhang an oval shaped perimeter 110 and need not be contoured like perimeter 110. Thus, for example, conductive layer 112 may extend to edges of a package, as generally indicated by arrow 112B. Moreover, in another implementation, conductive layer 112 may have an oval shape to extend beyond perimeter 110, as generally indicated by dashed oval 112C.



FIG. 6 is a block diagram of a cross-sectional view illustratively depicting an exemplary microelectronic package 100 with inner and outer interference shielding cages 111 and 121, respectively. In this example, inner interference shielding cage 111 has therein a microelectronic device 105 surrounded by a perimeter of wire bond wires 101, where location of a conductive layer 112 is generally indicated with a dashed line bridging such wire bond wires 101, such as previously described for example. In this example, conductive layer 112 of inner interference shielding cage 111 does not overhang or extend beyond an inner perimeter formed of wire bond wires 101.


An outer interference shielding cage 121 has one or more microelectronic devices 117, as well as inner interference shielding cage 111, therein. One or more of microelectronic devices 117 may be taller than microelectronic device 105. In other words, an upper surface of such one or more taller microelectronic devices 117 may be above, though not necessarily overlapping, an upper surface of microelectronic device 105.


Microelectronic devices 117 may be coupled to an upper surface of platform 104 and may be located outside of inner interference shielding cage 111. In this example, inner interference shielding cage 111 is surrounded by a perimeter of wire bond wires 101 of outer interference shielding cage 121. For outer interference shielding cage 121, location of a conductive layer 122 therefor is generally indicated with a dashed line bridging such wire bond wires 101, such as previously described with reference to conductive layer 112 for example, as well as extending beyond an outer perimeter of wire bond wires 101 of outer interference shielding cage 121.


Having both inner and outer interference shielding cages 111 and 121 within a same plot may be used for different types or levels of interference noise, such as EMI and EMC for example, as well as more or less compact and/or complex shielding implementations as described elsewhere herein. Along those lines, an overhang or eave 171 may extend beyond each side of a perimeter of wire bond wires 101 of outer interference shielding cage 121 by approximately a distance H, for H also a vertical height of wire bond wires 101 used to provide such a perimeter.



FIG. 7-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package 100 having inner and outer interference protection. FIG. 7-2 is the top-down perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 7-1 after the addition of conductive layer 122. With simultaneous reference to FIGS. 1-1 through 7-2, microelectronic package 100 of FIGS. 7-1 and 7-2 is further described. As much of the above description is applicable to describing microelectronic package 100 of FIGS. 7-1 and 7-2, some of such description is not repeated for purposes of clarity and not limitation.


Inner perimeter wire bond wires 101 may have a pitch 108 for an inner interference shielding cage 111 having a conductive layer 112. Conductive layer 112 may not have sufficient room for an overhang. Outer wire bond wires 101 may be coupled to a ground plane 107 though with a same or different pitch 128 with reference to pitch 108. Outer wire bond wires 101 extend away from an upper surface of platform 104 with upper ends 103 of outer wire bond wires 101 being above an uppermost upper surface of microelectronic devices 117, as well as above upper ends of inner wire bond wires 101 and inner conductive layer 112.


Outer wire bond wires 101 may be spaced apart from one another to provide an outer picket fence-like perimeter 120 to provide an outer interference shielding cage 121. Inner perimeter 110 may be completely within outer perimeter 120.


An upper conductive layer 122 may be coupled to at least a subset of upper ends 103 of outer wire bond wires 101 for electrical conductivity to cover inner interference shielding cage 111 and outer interference shielding cage 121, where upper conductive layer 122 is above and overlapping inner-lower conductive layer 112 for having inner interference shielding cage 111 within outer interference shielding cage 121. Outer interference shielding cage 121 may be for EMC shielding, whereas inner interference shielding cage 111 may be for EMI shielding. Along those lines, conductive layer 122 may extend beyond perimeter 120 to provide an overhang 171, of at least approximately ½ H in order to enhance EMC, and overhangs greater than ½ H, such as an overhang of at least H may provide more EMI evanescent wave suppression.


Even though a mechanical coupling is illustratively depicted in FIG. 7-2, such coupling of conductive layer 122 may be after forming another molding layer over molding layer 113. FIG. 7-3 is a cut-away diagram of the top-down perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 7-1 after the addition of a molding layer 123 and a conductive layer 122. In this optional implementation, after forming molding layer 123 over conductive layer 112 and molding layer 113, at least a subset, if not all, of upper ends 103 of outer wire bond wires 101 may be temporarily exposed above an upper surface 124 of molding layer 123. A mold assist film (removed in this figure) may be used in an injection mold for example to have upper ends 103 of outer wire bond wires 101 available for mechanical or other coupling.


Along those lines, conductive layer 122 may be mechanically coupled as previously described. However, optionally conductive layer 122 may be formed by spraying, sputtering, printing, painting, ink stamping, or otherwise forming a conductive shielding layer on upper surface 124 for interconnect with upper ends 103 of outer wire bond wires 101. Conductive layer 122 may provide an overhang 171, which may or may not extend to outer edges 139 of microelectronic package 100. Conductive layer 122 is illustratively depicted as being short of outer edges 139 in order to more clearly indicate a perimeter of conductive layer 122.



FIG. 8 is a block diagram of a cross-sectional view illustratively depicting an exemplary microelectronic package 100 with inner and outer interference shielding cages 111 and 121, respectively. In this example, inner interference shielding cage 111 has therein a microelectronic device 105 surrounded by a perimeter of wire bond wires 101, where location of a conductive layer 122 is generally indicated with a dashed line bridging such wire bond wires 101. In this example, conductive layer 122 provides a common cover for both of inner interference shielding cages 111 and 121 and also provides an overhang 171 to extend beyond an outer perimeter formed of wire bond wires 101 by approximately ½ H.


An outer interference shielding cage 121 has one or more microelectronic devices 117, as well as inner interference shielding cage 111, therein. One or more of microelectronic devices 117 may be taller than microelectronic device 105. In other words, an upper surface of such one or more taller microelectronic devices 117 may be above, though not necessarily overlapping, an upper surface of microelectronic device 105.


Microelectronic devices 117 may be coupled to an upper surface of platform 104 and may be located outside of a perimeter of inner interference shielding cage 111. In this example, inner interference shielding cage 111 is surrounded by a perimeter of wire bond wires 101 of outer interference shielding cage 121. Location of a conductive layer 122 is generally indicated with a dashed line bridging wire bond wires 101 for both inner interference shielding cage 111 and outer interference shielding cage 121, namely being an EMI shielding cover common to both of cages 111 and 121 without having a separate cover for inner interference shielding cage 111. Conductive layer 122 extends beyond an outer perimeter of wire bond wires 101 of outer interference shielding cages 121. Having both inner and outer interference shielding cages 111 and 121 within a same plot may be used for different types or levels of interference noise, such as EMI and EMC for example, as well as more compact and less complex shielding implementations. Along those lines, an overhang or eave 171 may extend beyond each side of a perimeter of wire bond wires 101 of each outer interference shielding cage 121 by approximately at least a distance ½ H, for H also a vertical height of wire bond wires 101 used to provide such a perimeter. Effectively, because a common conductive layer 122 is used for both outer interference shielding cages 121 and inner interference shielding cage 111, common sections 172 provide overhangs 173 for EMI shielding, such as for EMI suppression of higher order modes and evanescent waves.



FIG. 9-1 is a top-down perspective view illustratively depicting an exemplary microelectronic package 100 having inner and outer interference protection. FIG. 9-2 is the top-down cutaway perspective view illustratively depicting the exemplary microelectronic package 100 of FIG. 9-1 after the addition of conductive layer 122. With simultaneous reference to FIGS. 1-1 through 9-2, microelectronic package 100 of FIGS. 9-1 and 9-2 is further described. As much of the above description is applicable to describing microelectronic package 100 of FIGS. 9-1 and 9-2, some of such description is not repeated for purposes of clarity and not limitation.


Inner perimeter wire bond wires 101 may have a pitch 108 for an inner interference shielding cage 111 having a separate conductive layer 112 independent of another interference shielding cage or having a common conductive layer 122 for a common cover with another interference shielding cage. Outer wire bond wires 101 of outer interference shielding cage 121 may be coupled to a ground plane 107, though with a same or different pitch 128 with reference to pitch 108 as inner wire bond wires 101 of inner interference shielding cage 111. Outer wire bond wires 101 coupled to ground plane 107 with a pitch 128 wider than pitch 108 may be for EMC for providing an outer interference shielding cage 121 having less shielding against EMI than inner interference shielding cage 111. Conductive layer 122 may have an overhang 171 extending beyond a perimeter 120 of outer wire bond wires 101 for enhancing EMC.


Outer wire bond wires 101 extend away from an upper surface of platform 104 with upper ends 103 of outer wire bond wires 101 being above an uppermost upper surface of microelectronic devices 117, but at a same level as upper ends of at least a subset, if not all, of inner wire bond wires 101 with no inner conductive layer 112.


Outer wire bond wires 101 may be spaced apart from one another to provide an outer picket fence-like perimeter 120 to provide an outer interference shielding cage 121. Inner perimeter 110 may be completely within outer perimeter 120.


A conductive layer 122 may be mechanically coupled to at least subsets of upper ends 103 of both inner and outer wire bond wires 101 for electrical conductivity to cover inner interference shielding cage 111 and outer interference shielding cage 121, where conductive layer 122 is above and overlapping inner interference shielding cage 111 within outer interference shielding cage 121. Outer interference shielding cage 121 may be for EMI and/or EMC shielding, and inner interference shielding cage 111 may be for EMI shielding, with a single conductive layer 122 for providing a ceiling for both inner and outer interference shielding cages.


Again, even though a mechanical coupling is illustratively depicted in FIG. 9-2, such coupling of conductive layer 122 may be after forming another molding layer 123 over molding layer 113, as previously described.


Even though concentric inner and outer perimeters 110 and 120 of wire bond wires 101 has been described for forming inner and outer interference shielding cages 111 and 121, respectively, a microelectronic package 100 may include multiple types of interference shielding cages in accordance with the description herein.


Along those lines, FIG. 10 is a top-down perspective view illustratively depicting an exemplary microelectronic package 100 having plots for interference shielding cages as in FIG. 1-1 and as in FIG. 7-1 for example. With simultaneous reference to FIGS. 1-1 through 10, microelectronic package 100 of FIG. 10 is further described, while much of the above description which is the same is not repeated for purposes of clarity and not limitation.


Though four plots with both one and two interference shielding cages are illustratively depicted, other combinations of plots as described herein may be implemented in other configurations of microelectronic package 100. In this configuration, wire bond wires 101 forming one or more picket fence-like perimeters 110 and/or 120 of one plot may be adjacent another picket fence-like outer perimeter 110 or 120. Thus, a portion of one picket fence-like perimeter may be used in combination with a portion of a neighboring or bordering picket fence-like perimeter to provide an interference shielding cage. Along those lines, a multiplex of interference shielding cages 121, with or without one or more inner interference shielding cages 111, may be provided with a single microelectronic package 100. Inner perimeters 110 of these interference shield cages 111 provided by wire bond wires 101 may, but do not need to, run perpendicular to an edge or follow a straight line. Rather, such inner perimeters can be laid out or shaped to follow a contour or other irregular pattern. Conductive layer 122, which is left off for clarity in FIG. 10, may be formed over multiple outer interference shielding cages 121, as previously described herein.


A microelectronic device 105 in an inner or only interference shielding cage 111 or a microelectronic device 117 in an outer interference shielding cage 121 of a plot may be coupled to another microelectronic device 105 or 117 in another interference shielding cage 111 or 121 in another plot by routing between pairs of adjacent wire bond wires 101 in one or more intervening perimeters 110 and/or 120, such as routings 140 and 141 for example. By coupling microelectronic devices between one or more gaps in one or more interference shielding cages, a microelectronic device which is a stronger EMI source, such as a signal pad without grounding, than another microelectronic device, such as a ground pad which may not be caged, may be directly coupled to one another while still providing sufficient EMI shielding to such stronger EMI source. This may be used for more compact designs with fewer fences to provide sufficient shielding.


Furthermore, it should be understood that one interference shielding cage 121 may directly border, space apart or not, another interference shielding cage 121 without having to provide isolation gaps, such as in a molding layer for example, for electrical isolation between such neighboring interference shielding cages. By routing through fences of cages as described herein, routing may be at lower levels, rather than having to run such routing over on top of a microelectronic package. In conventional isolation, trenches are formed which can significantly increase topside routing complexity, and this complexity may be significantly reduced with routing through cage fences, in addition to not having EMI isolation trenches. Moreover, wire bond wires 101 may be shared among such neighboring interference shielding cages, as previously described. Accordingly, either or both of these configurations may be used to provide a more densely populated microelectronic package 100, namely a microelectronic package that has a smaller footprint.



FIG. 11 is a block diagram of a top-down view illustratively depicting an exemplary microelectronic package 100, and FIG. 12-1 is a block diagram of a cross-section along A1-A2 of FIG. 11. With simultaneous reference to FIGS. 1 through 12-1, microelectronic package 100 of FIGS. 11 and 12-1 is further described.


A conductive layer 112 or 122 may be a ground plane, which as a hole 160, such as a ring-like hole, cut or ablated therein, such as laser ablated for example, to define an electrical island or pad 161 therein, namely pad 161 is not in contact with, nor isolated from, a remainder of conductive layer 112 or 122. Pad 161 may be a signal pad or a power pad coupled to at least one wire bond wire 101C, not part of an interference shielding cage 111 or 121, located for interconnection with pad 161. Isolation of pad 161 may be used for system-in-package (“SiP”) integration. As one example, a decoupling capacitor or other passive or active device may be coupled to one or more of such isolated pads 161. This implementation allows passive and/or active devices to be placed on a level above EMI shielding with interconnects through microelectronic package 100 formed at the same time as one or more interference shielding cages, thereby simplifying package processing. Of course, multiple pads 161 maybe formed singularly or in an array of two or more pads. Devices may be attached to one or more pads 161, conductive layer 112/122, or both, for an application. Moreover, while pad 161 is illustratively depicted as surrounded by a conductive layer, this is for illustrative purposes only. Conductive layer 112/122 may be generally adjacent to only one or more of the sides of contact pad 161.



FIG. 12-2 is a block diagram of a cross-section along A1-A2 of FIG. 11 after addition of a molding layer 113. With simultaneous reference to FIGS. 1 through 12-2, microelectronic package 100 of FIGS. 11 and 12-2 is further described. In another implementation, one or more pads 161 may be selectively formed on an upper surface of a molding layer 113. Along those lines, molding layer 113 may be a dielectric, and such one or more pads 161 may be electrically isolated from one another along an upper surface of molding layer 113. By forming conductive layer 112 by plating, spraying, sputtering, printing, painting, ink stamping, or otherwise selectively depositing a conductive material, conductive layer 112 may be selectively applied in any applicable pattern or design to an upper surface of molding layer 113.



FIG. 13 is a top-down perspective view illustratively depicting an exemplary microelectronic package 100 having interference shielding cages, as described above. In this example, interference shielding cages may include multiple odd-shaped divisions or sections. Thus, there may be multiple isolation zones, which need not, though may, be orthogonal to one another. FIG. 13 is further described with simultaneous reference to FIGS. 1 through 13.


Along those lines, microelectronic package 100 may be a SiP having passive devices 181, flip-chip (“FC”) dies 182, and wire bond (“WB”) dies 183 all coupled to an upper surface 102 of a platform 104. WB dies 183 may be bonded to platform 104 with wire bonds 185. The wire bonds 185 and/or surface traces (not shown) on platform 104 may be configured to extend between adjacent wire bond wires 101A-101D to other die, or to pads located on the platform 104, on the other side of an EMI shielded area. In certain implementations, this allows the EMI shield wire bond wires 101A-101D to be formed closer to the EMI source or EMI protected device than the pad on the the platform 104. This also allows for more routing flexibility through the sides of the EMI cage than would be possible through conventional techniques such as those EMI shields configured using either a solid conductive side surface or wire bond arches. Other interconnection techniques are shown in FIG. 13, such as FC dies 182 being “flip-chip” coupled to platform 104, along with having an underfill layer 184 for such coupling.


Wire bond wires 101B and 101D may form separate EMI shielding perimeters, such as perimeters 110 for example, around respective FC dies 182. Wire bond wires 101C may form a separate EMI shielding perimeter, such as a perimeter 110 for example, around a WB die 183. Wire bond wires 101A may form an EMI shielding perimeter, such as a perimeter 120 for example, around components coupled to upper surface 102 of platform 104 for EMI shielding to enhance EMC.


A SiP may be a number of active or/and passive components enclosed in a single IC package module, such as microelectronic package 100. SiPs are widely used in RF applications, including without limitation mobile devices, wearables and Internet of Things (“IoT”) devices. For example, an RF SiP can contain some active chips such as one or more ASIC and/or memory chips, and some passive components such as RF resistors, capacitors, inductors, oscillators, etc. A SiP is particularly useful in space constrained environments, as a SiP significantly reduces complexity of a printed circuit board (“PCB”) and system design. Recently, SiPs are attracting interest in small form factor electronics, including without limitation IoT devices.


It should be appreciated that issues of EMI and EMC may be more problematic in future SiP designs because more components with multiple frequencies may be integrated into a single RF SiP. For example, a SiP for 5G wireless devices may handle multiple RF functions including WiFi, 3G, 4G LTE, ZigBee, etc. However, by having the ability to selectively apply wire bond wire perimeters for EMI shielding, as previously described, EMI shielding may be provided for different domains within a same SiP. Wire bond wires 101 may be implemented with high-frequency wire bonding machines for cost effective and high volume production. Moreover, wire bond wires, whether ball bonded or wedge bonded, may be used to make good ground contacts without block surface signal routings between domains.



FIGS. 14-1 and 14-2 are block diagrams of a top-down view illustratively depicting respective exemplary wire bond wire patterns 191 and 192 for neighboring EMI isolation regions. With simultaneous reference to FIGS. 1 through 14-2, wire bond wire patterns 191 and 192 are further described. A row of wire bond wires 101B and a row of wire bond wires 101D may be back-to-back and spaced apart from one another. Having two or more rows of wire bond wires may be laid out to create concentric perimeters with an array of wires instead of lines of wire bond wires as illustratively depicted in the earlier figures, or a combination thereof.


In wire bond wire pattern 191, bases of wire bond wires 101B and 101D are horizontally- or vertically-aligned to one another, so gaps between wire bond wires 101B correspond to gaps between wire bond wires 101D. This arrangement or pattern may be useful for allowing direct surface routing to pass through fence-like EMI shield perimeters formed by wire bond wires 101B and 101D. In another implementation, wire bond wires 101B and/or 101D may include loop-like structures, such as open loop omega-like structures, as generally indicated with dashed lines 189.


In wire bond wire pattern 192, bases of wire bond wires 101B and 101D are offset-aligned to one another, so gaps between wire bond wires 101B correspond to bases of wire bond wires 101D, and gaps between wire bond wires 101D correspond to bases of wire bond wires 101B. This arrangement or pattern may be useful for having an overlapping and/or interspersing of wire bond wires with respect to EMI emissions to effectively provide a more dense mesh, for example by a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.


Moreover, wire bond wires 101B and 101D may have same or different diameters, and may be made out of same or different materials. Pattern selection, as well as thickness and/or material selection, may be tailored to an application, such as may be associated with parameters of sources of EMI emission, including without limitation frequency of operation.



FIGS. 15-1 through 15-3 are block diagrams of a side view illustratively depicting respective exemplary wire bond wire patterns 193 and 194 for neighboring EMI isolation regions. With simultaneous reference to FIGS. 1 through 15-3, wire bond wire patterns 193 and 194 are further described. A row of wire bond wires 101B and a row of wire bond wires 101D may be back-to-back and spaced apart from one another, and both sets of these rows of wire bond wires may be slanted. Wire bond wires 101D are illustrated with dashed lines to indicate they are in back of wire bond wires 101B. An outer ring or other perimeter of an EMI cage may have wires slanted in one direction, while an inner ring or other perimeter of another EMI cage may be slanted in a second direction opposite the first direction. For example, such a second direction may be generally an opposite angle with respect to the angle in such a first direction in any of x, y, or z directions.


More particularly by way of non-limiting example, in left wire bond wire pattern 193, bases of wire bond wires 101B and 101D are horizontally- or vertically-aligned to one another, so gaps between wire bond wires 101B correspond to gaps between wire bond wires 101D. As mentioned above with reference to FIG. 10, this arrangement or pattern may be useful for allowing surface-based routing to pass through fence-like EMI shield perimeters formed by wire bond wires 101B and 101D. However, wire bond wires 101B and 101D are slanted in opposite directions in order to form a crosswise mesh for a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.


Right wire bond pattern 193 is the same as left wire bond pattern, except bases of wire bond wires 101B and 101D are offset-aligned to one another, so gaps between wire bond wires 101B correspond to bases of wire bond wires 101D, and gaps between wire bond wires 101D correspond to bases of wire bond wires 101B. This arrangement or pattern may be useful for forming a bi-directional mesh for a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.


In wire bond wire pattern 194, bases of wire bond wires 101B and 101D are offset-aligned to one another, so gaps between wire bond wires 101B correspond to bases of wire bond wires 101D, and gaps between wire bond wires 101D correspond to bases of wire bond wires 101B. This arrangement or pattern may be useful for forming a unidirectional mesh for a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.



FIG. 16 is a flow diagram illustratively depicting a EMI shield forming process 200 for forming a microelectronic package 100 having wire bond wires 101 for interference shielding for protection from EMI. Process 200 is further described with simultaneous reference to FIGS. 1 through 16.


At 201, a platform 104 is obtained having an upper surface 102 and a lower surface 106 opposite upper surface 102 and having a ground plane 107. At 202, a microelectronic device 105 is coupled to upper surface 102 of platform 104. At 203, wire bond wires 101 are wire bonded, such as ball, wedge or stitch bonded, for electrical interconnection with ground plane 107. Such wire bond wires 101 may have a pitch, as previously described. Wire bond wires 101 extend away from upper surface 102 of platform 104 with upper ends of wire bond wires 101 being above an upper surface of microelectronic device 105. Such wire bond wires 101 are spaced apart from one another to provide a fence-like perimeter to provide at least one interference shielding cage, such as previously described. At 204, a molding layer 113 may be deposited over upper surface 102 of platform 104, as previously described. At 205, a conductive layer may be formed, as previously described, for being coupled to at least a subset of upper ends of wire bond wires 101 for electrical conductivity to provide a conductive shielding layer 112 and/or 122 to cover such an interference shielding cage 111 and/or 121. Along those lines, operation 202 may be for coupling multiple microelectronic devices to an upper surface of a platform, and operation 203 may be for forming multiple wire bond perimeters, such as described elsewhere herein. Thus, at operation 205 one or more conductive layers may be formed.


While the foregoing describes exemplary embodiment(s) in accordance with one or more aspects of the invention, other and further embodiment(s) in accordance with the one or more aspects of the invention may be devised without departing from the scope thereof, which is determined by the claim(s) that follow and equivalents thereof. Claim(s) listing steps do not imply any order of the steps. Trademarks are the property of their respective owners.

Claims
  • 1. An apparatus for protection from electromagnetic interference, comprising: a platform having an upper surface and a lower surface opposite the upper surface and having a ground plane;a first microelectronic device coupled to the upper surface of the platform;first wire bond wires coupled to the ground plane, the first wire bond wires having a first pitch;the first wire bond wires extending away from the upper surface of the platform with upper ends of the first wire bond wires extending above an upper surface of the first microelectronic device;the first wire bond wires spaced apart from one another to provide a first fence-like perimeter to provide a first interference shielding cage;a first conductive layer coupled to at least a subset of the upper ends of the first wire bond wires for electrical conductivity to provide a first conductive shielding layer to cover the first interference shielding cage;a second microelectronic device coupled to the platform and located outside of the first interference shielding cage;second wire bond wires coupled to the ground plane with a second pitch;the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and the upper ends of the first wire bond wires;the second wire bond wires spaced apart from one another to provide a second fence-like perimeter to provide a second interference shielding cage;the first perimeter being within the second perimeter;a second conductive layer coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the first interference shielding cage; andthe second conductive layer overlapping the first conductive layer for having the first interference shielding cage within the second interference shielding cage.
  • 2. The apparatus according to claim 1, wherein the first microelectronic device is shielded from the interference outside of the first interference shielding cage.
  • 3. The apparatus according to claim 1, wherein the first microelectronic device is shielded by the first interference shielding cage to reduce spread of the interference generated by the first microelectronic device.
  • 4. The apparatus according to claim 1, wherein the first conductive layer has an overhang extending beyond the first perimeter.
  • 5. The apparatus according to claim 1, wherein at least a subset of the first wire bond wires have portions thereof with center-to-center spacing therebetween that is narrower than the first pitch.
  • 6. The apparatus according to claim 5, wherein the first wire bond wires have an -like shape.
  • 7. The apparatus according to claim 5, wherein the first wire bond wires have a kinked or rounded shape.
  • 8. The apparatus according to claim 1, wherein the first wire bond wires have a loop-like shape.
  • 9. The apparatus according to claim 1, wherein the first perimeter has a shape corresponding to a layout of the first microelectronic device.
  • 10. The apparatus according to claim 9, wherein the first perimeter has a contour or non-parallel sides shape.
  • 11. The apparatus according to claim 9, wherein the first perimeter has a circular shape.
  • 12. The apparatus according to claim 1, wherein the platform is selected from a leadframe, a circuit board, a substrate, and a redistribution layer.
  • 13. The apparatus according to claim 1, wherein the first microelectronic device is coupled to the second microelectronic device though a gap between the first wire bond wires in the first interference shielding cage.
  • 14. The apparatus according to claim 13, wherein the first microelectronic device is a stronger electromagnetic interference source than the second microelectronic device.
  • 15. The apparatus according to claim 1, wherein the first conductive layer defines a ring-like hole therein having a pad therein isolated from a remainder of the first conductive layer by the ring-like hole.
  • 16. The apparatus according to claim 1, wherein the first conductive layer is a ground plane.
  • 17. A method for protection from electromagnetic interference, comprising: obtaining a platform having an upper surface and a lower surface opposite the upper surface and having a ground plane;coupling a microelectronic device to the upper surface of the platform;bonding wire bond wires to the ground plane, the wire bond wires having a pitch;the wire bond wires extending away from the upper surface of the platform with upper ends of the wire bond wires being above an upper surface of the microelectronic device;the wire bond wires spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage;depositing a molding layer over the upper surface of the platform; andforming a conductive layer coupled to at least a subset of the upper ends of the wire bond wires to provide a conductive shielding layer for electrical conductivity to cover the interference shielding cage;wherein the microelectronic device is a first microelectronic device, the apparatus further comprising a second microelectronic device coupled to the platform and located outside of the interference shielding cage;wherein the wire bond wires having the pitch are first wire bond wires having a first pitch, wherein the interference shielding cage is a first interference shielding cage having a first perimeter, and wherein the conductive layer is a first conductive layer, the method further comprising:bonding second wire bond wires to the ground plane with a second pitch;the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and the upper ends of the first wire bond wires;the second wire bond wires spaced apart from one another to provide a second fence-like perimeter to provide a second interference shielding cage;the first perimeter being within the second perimeter; andforming a second conductive layer coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the first interference shielding cage and the second interference shielding cage including overlapping the first conductive layer for having the first interference shielding cage within the second interference shielding cage.
  • 18. The method according to claim 17, further comprising forming at least a subset of the first wire bond wires have portions thereof with center-to-center spacing therebetween narrower than the first pitch.
  • 19. The method according to claim 17, further comprising forming a trace on the upper surface of the platform for coupling the first microelectronic device to the second microelectronic device, the trace extending though a gap between the first wire bond wires of the first interference shielding cage.
  • 20. The method according to claim 17, wherein: the first conductive layer defines a ring-like hole therein; andthe first conductive layer includes a pad in the ring-like hole electrically isolated from a remainder of the first conductive layer by the ring-like hole.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. section 119(e) of U.S. Provisional Application No. 62/368,423, filed Jul. 29, 2016, the entirety of which is incorporated by reference herein for all purposes.

US Referenced Citations (769)
Number Name Date Kind
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Lifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman et al. Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 DiFrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Farad et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6469373 Funakura et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6489676 Taniguchi et al. Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6550666 Chew et al. Feb 2003 B2
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6563217 Corisis et al. May 2003 B2
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth et al. Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6693363 Tay et al. Feb 2004 B2
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6740981 Hosomi May 2004 B2
6746894 Fee et al. Jun 2004 B2
6754407 Chakravorty et al. Jun 2004 B2
6756252 Nakanishi Jun 2004 B2
6756663 Shiraishi et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774317 Fjelstad Aug 2004 B2
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6800941 Lee et al. Oct 2004 B2
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6825552 Light et al. Nov 2004 B2
6828665 Pu et al. Dec 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabrizi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6909181 Aiba et al. Jun 2005 B2
6917098 Yamunan Jul 2005 B1
6930256 Huemoeller et al. Aug 2005 B1
6933598 Kamezos Aug 2005 B2
6933608 Fujisawa Aug 2005 B2
6939723 Corisis et al. Sep 2005 B2
6946380 Takahashi Sep 2005 B2
6951773 Ho et al. Oct 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7017794 Nosaka Mar 2006 B2
7021521 Sakurai et al. Apr 2006 B2
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7052935 Pai et al. May 2006 B2
7053477 Kamezos et al. May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071028 Koike et al. Jul 2006 B2
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7078788 Vu et al. Jul 2006 B2
7078822 Dias et al. Jul 2006 B2
7095105 Cherukuri et al. Aug 2006 B2
7112520 Lee et al. Sep 2006 B2
7115986 Moon et al. Oct 2006 B2
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7138722 Miyamoto et al. Nov 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176043 Haba et al. Feb 2007 B2
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7187072 Fukitomi et al. Mar 2007 B2
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7216794 Lange et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7256069 Akram et al. Aug 2007 B2
7259445 Lau et al. Aug 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276799 Lee et al. Oct 2007 B2
7287322 Mahieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7298033 Yoo Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7307348 Wood et al. Dec 2007 B2
7321164 Hsu Jan 2008 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7342803 Inagaki et al. Mar 2008 B2
7344917 Gautham Mar 2008 B2
7345361 Malik et al. Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7368924 Beaman et al. May 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7378726 Punzalan et al. May 2008 B2
7390700 Gerber et al. Jun 2008 B2
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7425758 Corisis et al. Sep 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7456495 Pohl et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7495644 Hirakata Feb 2009 B2
7504284 Ye et al. Mar 2009 B2
7504716 Abbott Mar 2009 B2
7517733 Camacho et al. Apr 2009 B2
7527505 Murata May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7564116 Ahn et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7605479 Mohammed Oct 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7629695 Yoshimura et al. Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659612 Hembree et al. Feb 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7683482 Nishida et al. Mar 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7723839 Yano et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7759782 Haba et al. Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7807512 Lee et al. Oct 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7834464 Meyer et al. Nov 2010 B2
7838334 Yu et al. Nov 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7855464 Shikano Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7859033 Brady Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7898083 Castro Mar 2011 B2
7901989 Haba et al. Mar 2011 B2
7902644 Huang et al. Mar 2011 B2
7902652 Seo et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7919871 Moon et al. Apr 2011 B2
7923295 Shim et al. Apr 2011 B2
7923304 Choi et al. Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7944034 Gerber et al. May 2011 B2
7956456 Gurrum et al. Jun 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Roberts et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
7994622 Mohammed et al. Aug 2011 B2
8004074 Mori et al. Aug 2011 B2
8004093 Oh et al. Aug 2011 B2
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8017437 Yoo et al. Sep 2011 B2
8017452 Ishihara et al. Sep 2011 B2
8018033 Moriya Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8021907 Pagaila et al. Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039960 Lin Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8048479 Hedler et al. Nov 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8053906 Chang et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8063475 Choi et al. Nov 2011 B2
8071424 Kang et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076765 Chen et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8106498 Shin et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8119516 Endo Feb 2012 B2
8120054 Seo et al. Feb 2012 B2
8120186 Yoon Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8143141 Sun et al. Mar 2012 B2
8143710 Cho Mar 2012 B2
8158888 Shen et al. Apr 2012 B2
8169065 Kohl et al. May 2012 B2
8183682 Groenhuis et al. May 2012 B2
8183684 Nakazato May 2012 B2
8193034 Pagaila et al. Jun 2012 B2
8194411 Leung et al. Jun 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8225982 Pirkle et al. Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8237257 Yang Aug 2012 B2
8258010 Pagaila et al. Sep 2012 B2
8258015 Chow et al. Sep 2012 B2
8263435 Choi et al. Sep 2012 B2
8264091 Cho et al. Sep 2012 B2
8269335 Osumi Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8293580 Kim et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8318539 Cho et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8330272 Haba Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8390108 Cho et al. Mar 2013 B2
8390117 Shimizu et al. Mar 2013 B2
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau Mar 2013 B1
8409922 Camacho et al. Apr 2013 B2
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8435899 Miyata et al. May 2013 B2
8450839 Corisis et al. May 2013 B2
8476115 Choi et al. Jul 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8487421 Sato et al. Jul 2013 B2
8492201 Pagaila et al. Jul 2013 B2
8502387 Choi et al. Aug 2013 B2
8507297 Iida et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558379 Kwon Oct 2013 B2
8558392 Chua et al. Oct 2013 B2
8564141 Lee et al. Oct 2013 B2
8567051 Val Oct 2013 B2
8569892 Mori et al. Oct 2013 B2
8580607 Haba Nov 2013 B2
8598717 Masuda Dec 2013 B2
8618646 Sasaki et al. Dec 2013 B2
8618659 Sato et al. Dec 2013 B2
8624374 Ding et al. Jan 2014 B2
8637991 Haba Jan 2014 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8653676 Kim et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8664780 Han et al. Mar 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680662 Haba et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8685792 Chow et al. Apr 2014 B2
8697492 Haba et al. Apr 2014 B2
8723307 Jiang et al. May 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson Jun 2014 B2
8766436 Delucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8785245 Kim Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8796846 Lin et al. Aug 2014 B2
8802494 Lee et al. Aug 2014 B2
8810031 Chang et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836140 Ma et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8846521 Sugizaki Sep 2014 B2
8847376 Oganesian et al. Sep 2014 B2
8853558 Gupta et al. Oct 2014 B2
8878353 Haba et al. Nov 2014 B2
8884416 Lee et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8912651 Yu et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8937309 England et al. Jan 2015 B2
8940630 Damberg et al. Jan 2015 B2
8940636 Pagaila et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8970049 Karnezos Mar 2015 B2
8975726 Chen Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9006031 Camacho et al. Apr 2015 B2
9012263 Mathew et al. Apr 2015 B1
9041227 Chau et al. May 2015 B2
9054095 Pagaila Jun 2015 B2
9082763 Yu et al. Jul 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9105552 Yu et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9142586 Wang et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9171790 Yu et al. Oct 2015 B2
9177832 Camacho Nov 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9258922 Chen et al. Feb 2016 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9299670 Yap et al. Mar 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9349706 Co et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9412661 Lu et al. Aug 2016 B2
9418940 Hoshino et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9496152 Cho et al. Nov 2016 B2
9502390 Caskey et al. Nov 2016 B2
9508622 Higgins Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9735084 Katkar et al. Aug 2017 B2
20010042925 Yamamoto et al. Nov 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020171152 Miyazaki Nov 2002 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030094666 Clayton et al. May 2003 A1
20030162378 Mikami Aug 2003 A1
20040041757 Yang et al. Mar 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20060087013 Hsieh Apr 2006 A1
20060255449 Lee et al. Nov 2006 A1
20070010086 Hsieh Jan 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070190747 Hup Aug 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080042265 Merilo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee et al. May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110084368 Hoang Apr 2011 A1
20110157834 Wang Jun 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120126431 Kim et al. May 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130153646 Ho Jun 2013 A1
20130200524 Han et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130323409 Read et al. Dec 2013 A1
20130324069 Chen Dec 2013 A1
20130328178 Bakalski et al. Dec 2013 A1
20140035892 Shenoy et al. Feb 2014 A1
20140103527 Marimuthu et al. Apr 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140308907 Chen Oct 2014 A1
20140312503 Sec Oct 2014 A1
20150044823 Mohammed Feb 2015 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee et al. May 2015 A1
20150206865 Yu et al. Jul 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20160043813 Chen et al. Feb 2016 A1
20160200566 Ofner et al. Jul 2016 A1
20160225692 Kim et al. Aug 2016 A1
20170117231 Awujoola Apr 2017 A1
Foreign Referenced Citations (119)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
32-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
1118364 May 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
H1065054 Mar 1998 JP
H10135220 May 1998 JP
H10135221 May 1998 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11260856 Sep 1999 JP
11317476 Nov 1999 JP
2000323516 Nov 2000 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003307897 Oct 2003 JP
2004031754 Jan 2004 JP
2004-172157 Jun 2004 JP
2004-200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009508324 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
02-13256 Feb 2002 WO
03-045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (60)
Entry
U.S. Office Action for U.S. Appl. No. 12/769,930, dated May 5, 2011.
3D Plus “Wafer Level Stack—WDoD”, [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Written Opinion for Appln. No. PCT/US2014/050125, dated Jul. 15, 2015.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” May 2010, STATS ChipPAC Ltd.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
EE Times Asia “Freescale Cuts Die Area, Thickness with New Packaging Tech” [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.eetasia.com/ART_8800428222_280300_NT_DEC52276.htm>, Aug. 3, 2006, 2 pages.
Extended European Search Report for Appln. No. EP13162975, dated Sep. 5, 2013.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report for Appln. No. PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Sep. 14, 2011.
Partial Search Report—Invitation to Pay Fees for Appln. No. PCT/US2011/024143, dated Jan. 17, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/060551, dated Apr. 18, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044342, dated May 7, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2011/044346, dated May 11, 2012.
International Search Report and Written Opinion for Appln. No. PCT/US2012/060402, dated Apr. 2, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/026126, dated Jul. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/052883, dated Oct. 21, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/041981, dated Nov. 13, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/053437, dated Nov. 25, 2013.
International Search Report and Written Opinion for Appln. No. PCT/US2013/075672, dated Apr. 22, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/014181, dated Jun. 13, 2014.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050125, dated Feb. 4, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/050148, dated Feb. 9, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Mar. 20, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2015/011715, dated Apr. 20, 2015.
International Preliminary Report on Patentability for Appln. No. PCT/US2014/055695, dated Dec. 15, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017.
Japanese Office Action for Appln. No. 2013-509325, dated Oct. 18, 2013.
Japanese Office Action for Appln. No. 2013-520776, dated Apr. 21, 2015.
Japanese Office Action for Appln. No. 2013-520777, dated May 22, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/ STMicroelectronics France, May 21, 2010, 28 pages.
Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages.
Korean Office Action for Appn. 10-2011-0041843, dated Jun. 20, 2011.
Korean Office Action for Appn. 2014-7025992, dated Feb. 5, 2015.
Korean Search Report KR10-2010-0113271, dated Jan. 12, 2011.
Korean Search Report KR10-2011-0041843, dated Feb. 24, 2011.
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates and 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003, 34 pages.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report from Invitation to Pay Additional Fees for Appln. No. PCT/US2012/028738, dated Jun. 6, 2012.
Partial International Search Report for Appln. No. PCT/US2012/060402, dated Feb. 21, 2013.
Partial International Search Report for Appln. No. PCT/US2013/026126, dated Jun. 17, 2013.
Partial International Search Report for Appln. No. PCT/US2013/075672, dated Mar. 12, 2014.
Partial International Search Report for Appln. No. PCT/US2014/014181, dated May 8, 2014.
Partial International Search Report for Appln. No. PCT/US2015/033004, dated Sep. 9, 2015.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
Taiwan Office Action for 102106326, dated Dec. 13, 2013.
Taiwan Office Action for 100125521, dated Dec. 20, 2013.
Taiwan Office Action for 100125522, dated Jan. 27, 2014.
Taiwan Office Action for 100141695, dated Mar. 19, 2014.
Taiwan Office Action for 100138311, dated Jun. 27, 2014.
Taiwan Office Action for 100140428, dated Jan. 26, 2015.
Taiwan Office Action for 103103350, dated Mar. 21, 2016.
North Corporation, Processed Intra-Layer Interconnection Material for PWRs [Etched Copper Bump with Copper Foil], NMBITM, Version 2001.6.
Taiwan Office Action for 102106326, dated Sep. 8, 2015.
Related Publications (1)
Number Date Country
20180033764 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
62368423 Jul 2016 US