The following description relates generally to integrated circuits (“ICs”). More particularly, the following description relates generally to wire bonding for electromagnetic interference shielding.
Some passive or active microelectronic devices may be shielded from electromagnetic interference (“EMI”), including without limitation radio frequency interference (“RFI”). However, conventional shielding may be complicated to fabricate, too heavy for some mobile applications, too expensive to produce and/or assemble, and/or too large for some low-profile applications. Moreover, some shielding may not be suitable for a stacked die or a stacked package, generally referred to as three-dimensional (“3D”) ICs or “3D ICs.”
Accompanying drawing(s) show exemplary embodiment(s) in accordance with one or more aspects of exemplary apparatus(es) or method(s). However, the accompanying drawings should not be taken to limit the scope of the claims, but are for explanation and understanding only.
In the following description, numerous specific details are set forth to provide a more thorough description of the specific examples described herein. It should be apparent, however, to one skilled in the art, that one or more other examples or variations of these examples may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the description of the examples herein. For ease of illustration, the same number labels are used in different diagrams to refer to the same items; however, in alternative examples the items may be different.
Exemplary apparatus(es) and/or method(s) are described herein. It should be understood that the word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any example or feature described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other examples or features.
Interference may be electromagnetic interference (“EMI”), including without limitation radio frequency interference (“RFI”), and/or another electrical and/or magnetic field that would produce undesirable EMI outside of the source generating the field. The following description of interference shielding may be used for EMI or other types of interference. EMI may be emitted from one device to another separate device, and compatibility of a device with respect to such out-of-package or out-of-device EMI emissions may be referred to as electromagnetic compatibility (“EMC”). For a device to have EMC, such a device may be precluded from emitting levels of EM energy sufficient to cause EMI harm in another device in an EMI environment of the EM emitting device. A common EMI emitting device is a mobile phone, and a mobile phone may have an EMC problem with respect to medical devices, which is a reason people are asked to turn-off their mobile phones in hospitals. For purposes of clarity by way of example and not limitation, generally only shielding from EMI is described below in additional detail; however, it shall become apparent from the following description that this shielding may also be used to enhance EMC. Along those lines, it will be appreciated that the following description is applicable to thin profile devices, such as mobile phones, wearables and/or Internet of Things devices, for reducing EM emission therefrom, and in some implementations enhancing EMC.
With the above general understanding borne in mind, various configurations for protection from interference are generally described below.
Along those lines, an apparatus generally relates to protection from electromagnetic (“EM”) interference. In such an apparatus, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane. The wire bond wires have a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage. To achieve enhanced suppression of EMI, spacings between each pair of adjacent wire bond wires may be substantially smaller than electrical wavelengths of interest, including without limitation the electrical wavelength of the highest operation frequency of interest. Along those lines, spacing between two adjacent wires can be less than approximately one tenth of the electromagnetic wavelength in a medium. For example, in a microelectronic package with conventional dielectric materials, the spacing between two adjacent wires can be less than 500 microns (“um”) for an operational frequency of approximately 3 GHz, and less than 50 um for an operational frequency of approximately 30 GHz.
In the apparatus in the immediately preceding paragraph, the microelectronic device can be shielded from the interference outside of the interference shielding cage. The microelectronic device can be shielded by the interference shielding cage to reduce spread of the interference generated by the microelectronic device. The interference can be electromagnetic interference. The conductive layer can have an overhang extending beyond the perimeter. At least a subset of the wire bond wires can have gaps therebetween narrower than the pitch of at least the subset of the wire bond wires. The wire bond wires can have a -like shape. The wire bond wires can have a
-like shape. The wire bond wires can have a r
-like shape. The perimeter can have a shape corresponding to a layout of the microelectronic device. The perimeter can have a contour or non-parallel sides shape. The perimeter can have a circular shape. The microelectronic device can be a first microelectronic device, and the apparatus can further include a second microelectronic device coupled to the platform and located outside of the interference shielding cage. The platform can be selected from a leadframe, a circuit board, a substrate, and a redistribution layer. The wire bond wires having the pitch can be first wire bond wires having a first pitch, the interference shielding cage can be a first interference shielding cage having a first perimeter, and the conductive layer can be a first conductive layer; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch, with the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and the upper ends of the first wire bond wires; the second wire bond wires can be spaced apart from one another to provide a second fence-like perimeter to provide a second interference shielding cage, with the first perimeter being within the second perimeter; and a second conductive layer can be coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the first interference shielding cage and the second interference shielding cage including overlapping the first conductive layer for having the first interference shielding cage within the second interference shielding cage. The wire bond wires having the pitch can be first wire bond wires having a first pitch, and the interference shielding cage can be a first interference shielding cage having a first perimeter; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch, with the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and at a same level as the upper ends of at least the subset of the first wire bond wires; the second wire bond wires can be spaced apart from one another to provide a second fence-like perimeter to provide a second interference shielding cage with the first perimeter being within the second perimeter; and the conductive layer can be coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the second interference shielding cage. The first microelectronic device can be coupled to the second microelectronic device though a gap in the interference shielding cage. The first microelectronic device can be a stronger electromagnetic interference source than the second microelectronic device. The wire bond wires having the pitch can be first wire bond wires having a first pitch, and the interference shielding cage can be a first interference shielding cage having a first perimeter; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch wider than the first pitch to provide a second interference for providing a portion of a second interference shielding cage having less shielding against interference than the first interference shielding cage. The conductive layer can define a ring-like hole therein having a pad therein isolated from a remainder of the conductive layer by the ring-like hole. The conductive layer can be a ground plane. The pad can be a signal pad or a power pad. The wire bond wires having the pitch can be first wire bond wires having a first pitch, and the interference shielding cage can be a first interference shielding cage having a first perimeter; and the apparatus can further include: second wire bond wires coupled to the ground plane with a second pitch with the second wire bond wires extending away from the upper surface of the platform with upper ends of the second wire bond wires being above an upper surface of the second microelectronic device and at a same level as the upper ends of at least the subset of the first wire bond wires; the second wire bond wires can be spaced apart from one another to provide a second fence-like perimeter in combination with a portion of the first wire bond wires to provide a second interference shielding cage with the first perimeter bordering the second perimeter; and the conductive layer can be coupled to at least a subset of the upper ends of the second wire bond wires for electrical conductivity to at least provide a shield cover over the second interference shielding cage.
A method relates generally to protection from EM interference. In such a method, a platform is obtained having an upper surface and a lower surface opposite the upper surface and having a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are bonded to the ground plane, where the wire bond wires have a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires being above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A molding layer is deposited over the upper surface of the platform. A conductive layer is formed for coupling to at least a subset of the upper ends of the wire bond wires to provide a conductive shielding layer for electrical conductivity to cover the interference shielding cage.
Other features will be recognized from consideration of the description and claims, which follow.
In microelectronic package 100, a platform 104 has an upper surface 102 and a lower surface 106 opposite upper surface 102. Platform 104 further includes a ground plane 107, which in this example is subsurface with respect to upper surface 102, with surface accessible bond pads (not shown in this figure for purposes of clarity and not limitation) coupled to such ground plane 107. Platform 104 may be selected from a leadframe, a circuit board, a redistribution layer, a substrate, or other circuit base.
A microelectronic device 105 may be coupled to other bond pads (not shown in this figure for purposes of clarity and not limitation) on upper surface 102 of platform 104. Microelectronic device 105 for example may be an integrated circuit die, such as a resonator for example, or any other microelectronic component that generates EMI noise. Wire bond wires 101 may be coupled to ground plane 107 with a pitch 108. Wire bond wires 101 extend away from upper surface 102 of platform 104 with upper ends 103 of wire bond wires 101 being above an upper surface 109 of microelectronic device 105. For purposes of clarity by way of example and not limitation, wire bond wires 101 may have a height of approximately 0.4 mm and a diameter of 20 microns, with a pitch of approximately 80 microns. Distance between a wire bond wire 101 used to provide a perimeter for shielding and a microelectronic device 105 may be approximately 0.5 mm. An interference shielding cage in accordance therewith may provide approximately 30 to 33 dB of EMI suppression at maximum radiation direction for a frequency in a range of approximately 3.0 to 4.5 GHz with E-field radiation and radiation power both reduced by approximately over 97 percent or higher. By implementing EMI shielding as described herein, applications with operating frequencies of 5 GHz or greater frequencies may be have EMI suppression as described herein, including without limitation EMC enhancement. However, these or other parameter details to provide EMI shielding may be used as may vary from application-to-application.
Wire bond wires 101 are spaced apart from one another to provide a picket fence-like wall or perimeter 110. Such a picket-fence like or bars on a cage-like perimeter of wire bond wires 101 may be used to provide an interference shielding wall for an interference shielding cage 111, such as a bond via array (“BVA”) cage. Interference shielding cage 111 further includes a conductive layer 112 having a lower surface. Such lower surface of conductive layer 112 may be mechanically coupled, such as by applying solder or other eutectic masses to at least a subset, if not all, of upper ends 103 of wire bond wires 101 to provide attachment of a conductive shielding layer for electrical conductivity to cover interference shielding cage 111. Conductive surface 112 in this example is a sheet material, which may be used to provide an EMI shield cap or cover of an interference shielding cage 111. However, in another implementation, a mesh of material may be deposited for use as a shield cover of an interference shielding cage 111.
Along those lines, conductive layer 112 may be mechanically coupled as previously described. However, optionally conductive layer 112 may be formed by spraying, sputtering, printing, painting, ink stamping, or otherwise forming a conductive shielding layer on upper surface 114 for interconnect with upper ends 103. By forming conductive layer 112 by spraying, sputtering, printing, painting, ink stamping, or otherwise depositing a conductive material, conductive layer 112 may be selectively applied. Along those lines, a mesh or solid surface, or a combination of part mesh and part solid surface, for conductive layer 112 may be formed.
For purposes of clarity, conductive layer 112 is illustratively depicted as extending toward a front edge 139 of microelectronic package 100 and covering only a portion of an upper surface 114 of molding layer 113. However, in another implementation, conductive layer 112 may extend to none, or one or more edges 139 of microelectronic package 100. Along those lines,
In this example, there are four edges 139 to which conductive layer 112 extends; however, conductive layer 112 may be formed to cover an upper surface area of any shape of a microelectronic package 100. By having conductive layer 112 overhang or otherwise extend beyond a perimeter 110 formed by wire bond wires 101 associated with an interference shielding cage 111, EMI shielding may be enhanced over a corresponding interference shielding cage 111 where conductive layer 112 does not extend beyond perimeter 110 formed of wire bond wires 101. For minimally effective EMI shielding, such an overhang or extension may be approximately minimally half of the vertical or perpendicular height (“H”) of wire bond wires 101. Thus, a perimeter of conductive layer 112 may be greater than a surface area associated with a perimeter 110 of wire bond wires 101 of an interference shielding cage 111 minimally by ½ H in each direction toward one or more edges 139. Though a ½ H overhang can reduce EMI emissions, such as of an evanescent or standing wave, a larger overhang may suppress EMI emission further, as EMI emission may include both radial emission and an evanescent wave. Based on electromagnetic wave theory, only the lowest transverse electric (TE) mode is propagation wave, other higher order modes are evanescent waves that decay to negligible small after propagating distance of perpendicular height H. Thus, an overhang of H can significantly further suppress the EMI radiation. Along those lines, an overhang for extending conductive layer 112 beyond perimeter 110 in each direction by approximately H may be used. Thus, conductive layer 112 may be extended to all edges 139 of a package part for an overhang of H or greater beyond perimeter 110 in all directions toward edges 139.
In any of the above configurations, microelectronic device 105 may be shielded from interference outside of interference shielding cage 111, such as outside of a perimeter 110 of wire bond wires 101. However, for purposes of clarity by way of example and not limitation, it shall be assumed that during operation microelectronic device 105 is an EMI generator. Along those lines, microelectronic device 105 may be shielded by interference shielding cage 111, such as by perimeter 110 of wire bond wires 101, to reduce or prevent spread of EMI, namely size of an EM environment, generated by microelectronic device 105. For example, interference generated by microelectronic device 105 without interference shielding cage 111 may generate an EMI environment affecting EMC. For purposes of clarity by way of example and not limitation, it shall be assumed that microelectronic device 105 is an RF component. Microelectronic device 105 may be a stacked die, such as a 3D IC or may be shielded from such a stacked die.
For
In
As above with reference to
An outer interference shielding cage 121 has one or more microelectronic devices 117, as well as inner interference shielding cage 111, therein. One or more of microelectronic devices 117 may be taller than microelectronic device 105. In other words, an upper surface of such one or more taller microelectronic devices 117 may be above, though not necessarily overlapping, an upper surface of microelectronic device 105.
Microelectronic devices 117 may be coupled to an upper surface of platform 104 and may be located outside of inner interference shielding cage 111. In this example, inner interference shielding cage 111 is surrounded by a perimeter of wire bond wires 101 of outer interference shielding cage 121. For outer interference shielding cage 121, location of a conductive layer 122 therefor is generally indicated with a dashed line bridging such wire bond wires 101, such as previously described with reference to conductive layer 112 for example, as well as extending beyond an outer perimeter of wire bond wires 101 of outer interference shielding cage 121.
Having both inner and outer interference shielding cages 111 and 121 within a same plot may be used for different types or levels of interference noise, such as EMI and EMC for example, as well as more or less compact and/or complex shielding implementations as described elsewhere herein. Along those lines, an overhang or eave 171 may extend beyond each side of a perimeter of wire bond wires 101 of outer interference shielding cage 121 by approximately a distance H, for H also a vertical height of wire bond wires 101 used to provide such a perimeter.
Inner perimeter wire bond wires 101 may have a pitch 108 for an inner interference shielding cage 111 having a conductive layer 112. Conductive layer 112 may not have sufficient room for an overhang. Outer wire bond wires 101 may be coupled to a ground plane 107 though with a same or different pitch 128 with reference to pitch 108. Outer wire bond wires 101 extend away from an upper surface of platform 104 with upper ends 103 of outer wire bond wires 101 being above an uppermost upper surface of microelectronic devices 117, as well as above upper ends of inner wire bond wires 101 and inner conductive layer 112.
Outer wire bond wires 101 may be spaced apart from one another to provide an outer picket fence-like perimeter 120 to provide an outer interference shielding cage 121. Inner perimeter 110 may be completely within outer perimeter 120.
An upper conductive layer 122 may be coupled to at least a subset of upper ends 103 of outer wire bond wires 101 for electrical conductivity to cover inner interference shielding cage 111 and outer interference shielding cage 121, where upper conductive layer 122 is above and overlapping inner-lower conductive layer 112 for having inner interference shielding cage 111 within outer interference shielding cage 121. Outer interference shielding cage 121 may be for EMC shielding, whereas inner interference shielding cage 111 may be for EMI shielding. Along those lines, conductive layer 122 may extend beyond perimeter 120 to provide an overhang 171, of at least approximately ½ H in order to enhance EMC, and overhangs greater than ½ H, such as an overhang of at least H may provide more EMI evanescent wave suppression.
Even though a mechanical coupling is illustratively depicted in
Along those lines, conductive layer 122 may be mechanically coupled as previously described. However, optionally conductive layer 122 may be formed by spraying, sputtering, printing, painting, ink stamping, or otherwise forming a conductive shielding layer on upper surface 124 for interconnect with upper ends 103 of outer wire bond wires 101. Conductive layer 122 may provide an overhang 171, which may or may not extend to outer edges 139 of microelectronic package 100. Conductive layer 122 is illustratively depicted as being short of outer edges 139 in order to more clearly indicate a perimeter of conductive layer 122.
An outer interference shielding cage 121 has one or more microelectronic devices 117, as well as inner interference shielding cage 111, therein. One or more of microelectronic devices 117 may be taller than microelectronic device 105. In other words, an upper surface of such one or more taller microelectronic devices 117 may be above, though not necessarily overlapping, an upper surface of microelectronic device 105.
Microelectronic devices 117 may be coupled to an upper surface of platform 104 and may be located outside of a perimeter of inner interference shielding cage 111. In this example, inner interference shielding cage 111 is surrounded by a perimeter of wire bond wires 101 of outer interference shielding cage 121. Location of a conductive layer 122 is generally indicated with a dashed line bridging wire bond wires 101 for both inner interference shielding cage 111 and outer interference shielding cage 121, namely being an EMI shielding cover common to both of cages 111 and 121 without having a separate cover for inner interference shielding cage 111. Conductive layer 122 extends beyond an outer perimeter of wire bond wires 101 of outer interference shielding cages 121. Having both inner and outer interference shielding cages 111 and 121 within a same plot may be used for different types or levels of interference noise, such as EMI and EMC for example, as well as more compact and less complex shielding implementations. Along those lines, an overhang or eave 171 may extend beyond each side of a perimeter of wire bond wires 101 of each outer interference shielding cage 121 by approximately at least a distance ½ H, for H also a vertical height of wire bond wires 101 used to provide such a perimeter. Effectively, because a common conductive layer 122 is used for both outer interference shielding cages 121 and inner interference shielding cage 111, common sections 172 provide overhangs 173 for EMI shielding, such as for EMI suppression of higher order modes and evanescent waves.
Inner perimeter wire bond wires 101 may have a pitch 108 for an inner interference shielding cage 111 having a separate conductive layer 112 independent of another interference shielding cage or having a common conductive layer 122 for a common cover with another interference shielding cage. Outer wire bond wires 101 of outer interference shielding cage 121 may be coupled to a ground plane 107, though with a same or different pitch 128 with reference to pitch 108 as inner wire bond wires 101 of inner interference shielding cage 111. Outer wire bond wires 101 coupled to ground plane 107 with a pitch 128 wider than pitch 108 may be for EMC for providing an outer interference shielding cage 121 having less shielding against EMI than inner interference shielding cage 111. Conductive layer 122 may have an overhang 171 extending beyond a perimeter 120 of outer wire bond wires 101 for enhancing EMC.
Outer wire bond wires 101 extend away from an upper surface of platform 104 with upper ends 103 of outer wire bond wires 101 being above an uppermost upper surface of microelectronic devices 117, but at a same level as upper ends of at least a subset, if not all, of inner wire bond wires 101 with no inner conductive layer 112.
Outer wire bond wires 101 may be spaced apart from one another to provide an outer picket fence-like perimeter 120 to provide an outer interference shielding cage 121. Inner perimeter 110 may be completely within outer perimeter 120.
A conductive layer 122 may be mechanically coupled to at least subsets of upper ends 103 of both inner and outer wire bond wires 101 for electrical conductivity to cover inner interference shielding cage 111 and outer interference shielding cage 121, where conductive layer 122 is above and overlapping inner interference shielding cage 111 within outer interference shielding cage 121. Outer interference shielding cage 121 may be for EMI and/or EMC shielding, and inner interference shielding cage 111 may be for EMI shielding, with a single conductive layer 122 for providing a ceiling for both inner and outer interference shielding cages.
Again, even though a mechanical coupling is illustratively depicted in
Even though concentric inner and outer perimeters 110 and 120 of wire bond wires 101 has been described for forming inner and outer interference shielding cages 111 and 121, respectively, a microelectronic package 100 may include multiple types of interference shielding cages in accordance with the description herein.
Along those lines,
Though four plots with both one and two interference shielding cages are illustratively depicted, other combinations of plots as described herein may be implemented in other configurations of microelectronic package 100. In this configuration, wire bond wires 101 forming one or more picket fence-like perimeters 110 and/or 120 of one plot may be adjacent another picket fence-like outer perimeter 110 or 120. Thus, a portion of one picket fence-like perimeter may be used in combination with a portion of a neighboring or bordering picket fence-like perimeter to provide an interference shielding cage. Along those lines, a multiplex of interference shielding cages 121, with or without one or more inner interference shielding cages 111, may be provided with a single microelectronic package 100. Inner perimeters 110 of these interference shield cages 111 provided by wire bond wires 101 may, but do not need to, run perpendicular to an edge or follow a straight line. Rather, such inner perimeters can be laid out or shaped to follow a contour or other irregular pattern. Conductive layer 122, which is left off for clarity in
A microelectronic device 105 in an inner or only interference shielding cage 111 or a microelectronic device 117 in an outer interference shielding cage 121 of a plot may be coupled to another microelectronic device 105 or 117 in another interference shielding cage 111 or 121 in another plot by routing between pairs of adjacent wire bond wires 101 in one or more intervening perimeters 110 and/or 120, such as routings 140 and 141 for example. By coupling microelectronic devices between one or more gaps in one or more interference shielding cages, a microelectronic device which is a stronger EMI source, such as a signal pad without grounding, than another microelectronic device, such as a ground pad which may not be caged, may be directly coupled to one another while still providing sufficient EMI shielding to such stronger EMI source. This may be used for more compact designs with fewer fences to provide sufficient shielding.
Furthermore, it should be understood that one interference shielding cage 121 may directly border, space apart or not, another interference shielding cage 121 without having to provide isolation gaps, such as in a molding layer for example, for electrical isolation between such neighboring interference shielding cages. By routing through fences of cages as described herein, routing may be at lower levels, rather than having to run such routing over on top of a microelectronic package. In conventional isolation, trenches are formed which can significantly increase topside routing complexity, and this complexity may be significantly reduced with routing through cage fences, in addition to not having EMI isolation trenches. Moreover, wire bond wires 101 may be shared among such neighboring interference shielding cages, as previously described. Accordingly, either or both of these configurations may be used to provide a more densely populated microelectronic package 100, namely a microelectronic package that has a smaller footprint.
A conductive layer 112 or 122 may be a ground plane, which as a hole 160, such as a ring-like hole, cut or ablated therein, such as laser ablated for example, to define an electrical island or pad 161 therein, namely pad 161 is not in contact with, nor isolated from, a remainder of conductive layer 112 or 122. Pad 161 may be a signal pad or a power pad coupled to at least one wire bond wire 101C, not part of an interference shielding cage 111 or 121, located for interconnection with pad 161. Isolation of pad 161 may be used for system-in-package (“SiP”) integration. As one example, a decoupling capacitor or other passive or active device may be coupled to one or more of such isolated pads 161. This implementation allows passive and/or active devices to be placed on a level above EMI shielding with interconnects through microelectronic package 100 formed at the same time as one or more interference shielding cages, thereby simplifying package processing. Of course, multiple pads 161 maybe formed singularly or in an array of two or more pads. Devices may be attached to one or more pads 161, conductive layer 112/122, or both, for an application. Moreover, while pad 161 is illustratively depicted as surrounded by a conductive layer, this is for illustrative purposes only. Conductive layer 112/122 may be generally adjacent to only one or more of the sides of contact pad 161.
Along those lines, microelectronic package 100 may be a SiP having passive devices 181, flip-chip (“FC”) dies 182, and wire bond (“WB”) dies 183 all coupled to an upper surface 102 of a platform 104. WB dies 183 may be bonded to platform 104 with wire bonds 185. The wire bonds 185 and/or surface traces (not shown) on platform 104 may be configured to extend between adjacent wire bond wires 101A-101D to other die, or to pads located on the platform 104, on the other side of an EMI shielded area. In certain implementations, this allows the EMI shield wire bond wires 101A-101D to be formed closer to the EMI source or EMI protected device than the pad on the the platform 104. This also allows for more routing flexibility through the sides of the EMI cage than would be possible through conventional techniques such as those EMI shields configured using either a solid conductive side surface or wire bond arches. Other interconnection techniques are shown in
Wire bond wires 101B and 101D may form separate EMI shielding perimeters, such as perimeters 110 for example, around respective FC dies 182. Wire bond wires 101C may form a separate EMI shielding perimeter, such as a perimeter 110 for example, around a WB die 183. Wire bond wires 101A may form an EMI shielding perimeter, such as a perimeter 120 for example, around components coupled to upper surface 102 of platform 104 for EMI shielding to enhance EMC.
A SiP may be a number of active or/and passive components enclosed in a single IC package module, such as microelectronic package 100. SiPs are widely used in RF applications, including without limitation mobile devices, wearables and Internet of Things (“IoT”) devices. For example, an RF SiP can contain some active chips such as one or more ASIC and/or memory chips, and some passive components such as RF resistors, capacitors, inductors, oscillators, etc. A SiP is particularly useful in space constrained environments, as a SiP significantly reduces complexity of a printed circuit board (“PCB”) and system design. Recently, SiPs are attracting interest in small form factor electronics, including without limitation IoT devices.
It should be appreciated that issues of EMI and EMC may be more problematic in future SiP designs because more components with multiple frequencies may be integrated into a single RF SiP. For example, a SiP for 5G wireless devices may handle multiple RF functions including WiFi, 3G, 4G LTE, ZigBee, etc. However, by having the ability to selectively apply wire bond wire perimeters for EMI shielding, as previously described, EMI shielding may be provided for different domains within a same SiP. Wire bond wires 101 may be implemented with high-frequency wire bonding machines for cost effective and high volume production. Moreover, wire bond wires, whether ball bonded or wedge bonded, may be used to make good ground contacts without block surface signal routings between domains.
In wire bond wire pattern 191, bases of wire bond wires 101B and 101D are horizontally- or vertically-aligned to one another, so gaps between wire bond wires 101B correspond to gaps between wire bond wires 101D. This arrangement or pattern may be useful for allowing direct surface routing to pass through fence-like EMI shield perimeters formed by wire bond wires 101B and 101D. In another implementation, wire bond wires 101B and/or 101D may include loop-like structures, such as open loop omega-like structures, as generally indicated with dashed lines 189.
In wire bond wire pattern 192, bases of wire bond wires 101B and 101D are offset-aligned to one another, so gaps between wire bond wires 101B correspond to bases of wire bond wires 101D, and gaps between wire bond wires 101D correspond to bases of wire bond wires 101B. This arrangement or pattern may be useful for having an overlapping and/or interspersing of wire bond wires with respect to EMI emissions to effectively provide a more dense mesh, for example by a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.
Moreover, wire bond wires 101B and 101D may have same or different diameters, and may be made out of same or different materials. Pattern selection, as well as thickness and/or material selection, may be tailored to an application, such as may be associated with parameters of sources of EMI emission, including without limitation frequency of operation.
More particularly by way of non-limiting example, in left wire bond wire pattern 193, bases of wire bond wires 101B and 101D are horizontally- or vertically-aligned to one another, so gaps between wire bond wires 101B correspond to gaps between wire bond wires 101D. As mentioned above with reference to
Right wire bond pattern 193 is the same as left wire bond pattern, except bases of wire bond wires 101B and 101D are offset-aligned to one another, so gaps between wire bond wires 101B correspond to bases of wire bond wires 101D, and gaps between wire bond wires 101D correspond to bases of wire bond wires 101B. This arrangement or pattern may be useful for forming a bi-directional mesh for a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.
In wire bond wire pattern 194, bases of wire bond wires 101B and 101D are offset-aligned to one another, so gaps between wire bond wires 101B correspond to bases of wire bond wires 101D, and gaps between wire bond wires 101D correspond to bases of wire bond wires 101B. This arrangement or pattern may be useful for forming a unidirectional mesh for a combination of fence-like EMI shield perimeters formed by wire bond wires 101B and 101D.
At 201, a platform 104 is obtained having an upper surface 102 and a lower surface 106 opposite upper surface 102 and having a ground plane 107. At 202, a microelectronic device 105 is coupled to upper surface 102 of platform 104. At 203, wire bond wires 101 are wire bonded, such as ball, wedge or stitch bonded, for electrical interconnection with ground plane 107. Such wire bond wires 101 may have a pitch, as previously described. Wire bond wires 101 extend away from upper surface 102 of platform 104 with upper ends of wire bond wires 101 being above an upper surface of microelectronic device 105. Such wire bond wires 101 are spaced apart from one another to provide a fence-like perimeter to provide at least one interference shielding cage, such as previously described. At 204, a molding layer 113 may be deposited over upper surface 102 of platform 104, as previously described. At 205, a conductive layer may be formed, as previously described, for being coupled to at least a subset of upper ends of wire bond wires 101 for electrical conductivity to provide a conductive shielding layer 112 and/or 122 to cover such an interference shielding cage 111 and/or 121. Along those lines, operation 202 may be for coupling multiple microelectronic devices to an upper surface of a platform, and operation 203 may be for forming multiple wire bond perimeters, such as described elsewhere herein. Thus, at operation 205 one or more conductive layers may be formed.
While the foregoing describes exemplary embodiment(s) in accordance with one or more aspects of the invention, other and further embodiment(s) in accordance with the one or more aspects of the invention may be devised without departing from the scope thereof, which is determined by the claim(s) that follow and equivalents thereof. Claim(s) listing steps do not imply any order of the steps. Trademarks are the property of their respective owners.
This application claims the benefit under 35 U.S.C. section 119(e) of U.S. Provisional Application No. 62/368,423, filed Jul. 29, 2016, the entirety of which is incorporated by reference herein for all purposes.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3289452 | Koellner | Dec 1966 | A |
| 3358897 | Christensen | Dec 1967 | A |
| 3430835 | Grable et al. | Mar 1969 | A |
| 3623649 | Keisling | Nov 1971 | A |
| 3795037 | Luttmer | Mar 1974 | A |
| 3900153 | Beerwerth et al. | Aug 1975 | A |
| 4067104 | Tracy | Jan 1978 | A |
| 4072816 | Gedney et al. | Feb 1978 | A |
| 4213556 | Persson et al. | Jul 1980 | A |
| 4327860 | Kirshenboin et al. | May 1982 | A |
| 4422568 | Elles et al. | Dec 1983 | A |
| 4437604 | Razon et al. | Mar 1984 | A |
| 4604644 | Beckham et al. | Aug 1986 | A |
| 4642889 | Grabbe | Feb 1987 | A |
| 4667267 | Hernandez et al. | May 1987 | A |
| 4695870 | Patraw | Sep 1987 | A |
| 4716049 | Patraw | Dec 1987 | A |
| 4725692 | Ishii et al. | Feb 1988 | A |
| 4771930 | Gillotti et al. | Sep 1988 | A |
| 4793814 | Lifcak et al. | Dec 1988 | A |
| 4804132 | DiFrancesco | Feb 1989 | A |
| 4845354 | Gupta et al. | Jul 1989 | A |
| 4902600 | Tamagawa et al. | Feb 1990 | A |
| 4924353 | Patraw | May 1990 | A |
| 4925083 | Farassat et al. | May 1990 | A |
| 4955523 | Carlommagno et al. | Sep 1990 | A |
| 4975079 | Beaman et al. | Dec 1990 | A |
| 4982265 | Watanabe et al. | Jan 1991 | A |
| 4998885 | Beaman et al. | Mar 1991 | A |
| 4999472 | Neinast et al. | Mar 1991 | A |
| 5067007 | Otsuka et al. | Nov 1991 | A |
| 5067382 | Zimmerman et al. | Nov 1991 | A |
| 5083697 | DiFrancesco | Jan 1992 | A |
| 5095187 | Gliga | Mar 1992 | A |
| 5133495 | Angulas et al. | Jul 1992 | A |
| 5138438 | Masayuki et al. | Aug 1992 | A |
| 5148265 | Khandros et al. | Sep 1992 | A |
| 5148266 | Khandros et al. | Sep 1992 | A |
| 5186381 | Kim | Feb 1993 | A |
| 5189505 | Bartelink | Feb 1993 | A |
| 5196726 | Nishiguchi et al. | Mar 1993 | A |
| 5203075 | Angulas et al. | Apr 1993 | A |
| 5214308 | Nishiguchi et al. | May 1993 | A |
| 5220489 | Barreto et al. | Jun 1993 | A |
| 5222014 | Lin | Jun 1993 | A |
| 5238173 | Ura et al. | Aug 1993 | A |
| 5241454 | Ameen et al. | Aug 1993 | A |
| 5241456 | Marcinkiewicz et al. | Aug 1993 | A |
| 5316788 | Dibble et al. | May 1994 | A |
| 5340771 | Rostoker | Aug 1994 | A |
| 5346118 | Degani et al. | Sep 1994 | A |
| 5371654 | Beaman et al. | Dec 1994 | A |
| 5397997 | Tuckerman et al. | Mar 1995 | A |
| 5438224 | Papageorge et al. | Aug 1995 | A |
| 5455390 | DiStefano et al. | Oct 1995 | A |
| 5468995 | Higgins, III | Nov 1995 | A |
| 5494667 | Uchida et al. | Feb 1996 | A |
| 5495667 | Farnworth et al. | Mar 1996 | A |
| 5518964 | DiStefano et al. | May 1996 | A |
| 5531022 | Beaman et al. | Jul 1996 | A |
| 5536909 | DiStefano et al. | Jul 1996 | A |
| 5541567 | Fogel et al. | Jul 1996 | A |
| 5571428 | Nishimura et al. | Nov 1996 | A |
| 5578869 | Hoffman et al. | Nov 1996 | A |
| 5608265 | Kitano et al. | Mar 1997 | A |
| 5615824 | Fjelstad et al. | Apr 1997 | A |
| 5635846 | Beaman et al. | Jun 1997 | A |
| 5656550 | Tsuji et al. | Aug 1997 | A |
| 5659952 | Kovac et al. | Aug 1997 | A |
| 5679977 | Khandros et al. | Oct 1997 | A |
| 5688716 | DiStefano et al. | Nov 1997 | A |
| 5718361 | Braun et al. | Feb 1998 | A |
| 5726493 | Yamashita et al. | Mar 1998 | A |
| 5731709 | Pastore et al. | Mar 1998 | A |
| 5736780 | Murayama | Apr 1998 | A |
| 5736785 | Chiang et al. | Apr 1998 | A |
| 5766987 | Mitchell et al. | Jun 1998 | A |
| 5787581 | DiStefano et al. | Aug 1998 | A |
| 5801441 | DiStefano et al. | Sep 1998 | A |
| 5802699 | Fjelstad et al. | Sep 1998 | A |
| 5811982 | Beaman et al. | Sep 1998 | A |
| 5821763 | Beaman et al. | Oct 1998 | A |
| 5830389 | Capote et al. | Nov 1998 | A |
| 5831836 | Long et al. | Nov 1998 | A |
| 5839191 | Economy et al. | Nov 1998 | A |
| 5854507 | Miremadi et al. | Dec 1998 | A |
| 5874781 | Fogal et al. | Feb 1999 | A |
| 5898991 | Fogel et al. | May 1999 | A |
| 5908317 | Heo | Jun 1999 | A |
| 5912505 | Itoh et al. | Jun 1999 | A |
| 5948533 | Gallagher et al. | Sep 1999 | A |
| 5953624 | Bando et al. | Sep 1999 | A |
| 5971253 | Gilleo et al. | Oct 1999 | A |
| 5973391 | Bischoff et al. | Oct 1999 | A |
| 5977618 | DiStefano et al. | Nov 1999 | A |
| 5980270 | Fjelstad et al. | Nov 1999 | A |
| 5989936 | Smith et al. | Nov 1999 | A |
| 5994152 | Khandros et al. | Nov 1999 | A |
| 6000126 | Pai | Dec 1999 | A |
| 6002168 | Bellaar et al. | Dec 1999 | A |
| 6032359 | Carroll | Mar 2000 | A |
| 6038136 | Weber | Mar 2000 | A |
| 6052287 | Palmer et al. | Apr 2000 | A |
| 6054337 | Solberg | Apr 2000 | A |
| 6054756 | DiStefano et al. | Apr 2000 | A |
| 6077380 | Hayes et al. | Jun 2000 | A |
| 6117694 | Smith et al. | Sep 2000 | A |
| 6121676 | Solberg | Sep 2000 | A |
| 6124546 | Hayward et al. | Sep 2000 | A |
| 6133072 | Fjelstad | Oct 2000 | A |
| 6145733 | Streckfuss et al. | Nov 2000 | A |
| 6157080 | Tamaki et al. | Dec 2000 | A |
| 6158647 | Chapman et al. | Dec 2000 | A |
| 6164523 | Fauty et al. | Dec 2000 | A |
| 6168965 | Malinovich et al. | Jan 2001 | B1 |
| 6177636 | Fjelstad | Jan 2001 | B1 |
| 6180881 | Isaak | Jan 2001 | B1 |
| 6194250 | Melton et al. | Feb 2001 | B1 |
| 6194291 | DiStefano et al. | Feb 2001 | B1 |
| 6202297 | Farad et al. | Mar 2001 | B1 |
| 6206273 | Beaman et al. | Mar 2001 | B1 |
| 6208024 | DiStefano | Mar 2001 | B1 |
| 6211572 | Fjelstad et al. | Apr 2001 | B1 |
| 6211574 | Tao et al. | Apr 2001 | B1 |
| 6215670 | Khandros | Apr 2001 | B1 |
| 6218728 | Kimura | Apr 2001 | B1 |
| 6225688 | Kim et al. | May 2001 | B1 |
| 6238949 | Nguyen et al. | May 2001 | B1 |
| 6258625 | Brofman et al. | Jul 2001 | B1 |
| 6260264 | Chen et al. | Jul 2001 | B1 |
| 6262482 | Shiraishi et al. | Jul 2001 | B1 |
| 6268662 | Test et al. | Jul 2001 | B1 |
| 6295729 | Beaman et al. | Oct 2001 | B1 |
| 6300780 | Beaman et al. | Oct 2001 | B1 |
| 6303997 | Lee et al. | Oct 2001 | B1 |
| 6313528 | Solberg | Nov 2001 | B1 |
| 6316838 | Ozawa et al. | Nov 2001 | B1 |
| 6329224 | Nguyen et al. | Dec 2001 | B1 |
| 6332270 | Beaman et al. | Dec 2001 | B2 |
| 6334247 | Beaman et al. | Jan 2002 | B1 |
| 6358627 | Benenati et al. | Mar 2002 | B2 |
| 6362520 | DiStefano | Mar 2002 | B2 |
| 6362525 | Rahim | Mar 2002 | B1 |
| 6376769 | Chung | Apr 2002 | B1 |
| 6388333 | Taniguchi et al. | May 2002 | B1 |
| 6395199 | Krassowski et al. | May 2002 | B1 |
| 6399426 | Capote et al. | Jun 2002 | B1 |
| 6407448 | Chun | Jun 2002 | B2 |
| 6407456 | Ball | Jun 2002 | B1 |
| 6410431 | Bertin et al. | Jun 2002 | B2 |
| 6413850 | Ooroku et al. | Jul 2002 | B1 |
| 6439450 | Chapman et al. | Aug 2002 | B1 |
| 6458411 | Goossen et al. | Oct 2002 | B1 |
| 6469260 | Horiuchi et al. | Oct 2002 | B2 |
| 6469373 | Funakura et al. | Oct 2002 | B2 |
| 6476503 | Imamura et al. | Nov 2002 | B1 |
| 6476506 | O'Connor | Nov 2002 | B1 |
| 6476583 | McAndrews | Nov 2002 | B2 |
| 6486545 | Glenn et al. | Nov 2002 | B1 |
| 6489182 | Kwon | Dec 2002 | B2 |
| 6489676 | Taniguchi et al. | Dec 2002 | B2 |
| 6495914 | Sekine et al. | Dec 2002 | B1 |
| 6507104 | Ho et al. | Jan 2003 | B2 |
| 6509639 | Lin | Jan 2003 | B1 |
| 6514847 | Ohsawa et al. | Feb 2003 | B1 |
| 6515355 | Jiang et al. | Feb 2003 | B1 |
| 6522018 | Tay et al. | Feb 2003 | B1 |
| 6550666 | Chew et al. | Feb 2003 | B2 |
| 6526655 | Beaman et al. | Mar 2003 | B2 |
| 6531784 | Shim et al. | Mar 2003 | B1 |
| 6545228 | Hashimoto | Apr 2003 | B2 |
| 6555918 | Masuda et al. | Apr 2003 | B2 |
| 6560117 | Moon | May 2003 | B2 |
| 6563205 | Fogal et al. | May 2003 | B1 |
| 6563217 | Corisis et al. | May 2003 | B2 |
| 6573458 | Matsubara et al. | Jun 2003 | B1 |
| 6578754 | Tung | Jun 2003 | B1 |
| 6581276 | Chung | Jun 2003 | B2 |
| 6581283 | Sugiura et al. | Jun 2003 | B2 |
| 6624653 | Cram | Sep 2003 | B1 |
| 6630730 | Grigg | Oct 2003 | B2 |
| 6639303 | Siniaguine | Oct 2003 | B2 |
| 6647310 | Yi et al. | Nov 2003 | B1 |
| 6650013 | Yin et al. | Nov 2003 | B2 |
| 6653170 | Lin | Nov 2003 | B1 |
| 6684007 | Yoshimura et al. | Jan 2004 | B2 |
| 6686268 | Farnworth et al. | Feb 2004 | B2 |
| 6687988 | Sugiura et al. | Feb 2004 | B1 |
| 6693363 | Tay et al. | Feb 2004 | B2 |
| 6696305 | Kung et al. | Feb 2004 | B2 |
| 6699730 | Kim et al. | Mar 2004 | B2 |
| 6708403 | Beaman et al. | Mar 2004 | B2 |
| 6720783 | Satoh et al. | Apr 2004 | B2 |
| 6730544 | Yang | May 2004 | B1 |
| 6733711 | Durocher et al. | May 2004 | B2 |
| 6734539 | Degani et al. | May 2004 | B2 |
| 6734542 | Nakatani et al. | May 2004 | B2 |
| 6740980 | Hirose | May 2004 | B2 |
| 6740981 | Hosomi | May 2004 | B2 |
| 6746894 | Fee et al. | Jun 2004 | B2 |
| 6754407 | Chakravorty et al. | Jun 2004 | B2 |
| 6756252 | Nakanishi | Jun 2004 | B2 |
| 6756663 | Shiraishi et al. | Jun 2004 | B2 |
| 6759738 | Fallon et al. | Jul 2004 | B1 |
| 6762078 | Shin et al. | Jul 2004 | B2 |
| 6765287 | Lin | Jul 2004 | B1 |
| 6774317 | Fjelstad | Aug 2004 | B2 |
| 6774467 | Horiuchi et al. | Aug 2004 | B2 |
| 6774473 | Shen | Aug 2004 | B1 |
| 6774494 | Arakawa | Aug 2004 | B2 |
| 6777787 | Shibata | Aug 2004 | B2 |
| 6777797 | Egawa | Aug 2004 | B2 |
| 6778406 | Eldridge et al. | Aug 2004 | B2 |
| 6787926 | Chen et al. | Sep 2004 | B2 |
| 6790757 | Chittipeddi et al. | Sep 2004 | B1 |
| 6800941 | Lee et al. | Oct 2004 | B2 |
| 6812575 | Furusawa | Nov 2004 | B2 |
| 6815257 | Yoon et al. | Nov 2004 | B2 |
| 6825552 | Light et al. | Nov 2004 | B2 |
| 6828665 | Pu et al. | Dec 2004 | B2 |
| 6828668 | Smith et al. | Dec 2004 | B2 |
| 6844619 | Tago | Jan 2005 | B2 |
| 6856235 | Fjelstad | Feb 2005 | B2 |
| 6864166 | Yin et al. | Mar 2005 | B1 |
| 6867499 | Tabrizi | Mar 2005 | B1 |
| 6874910 | Sugimoto et al. | Apr 2005 | B2 |
| 6897565 | Pflughaupt et al. | May 2005 | B2 |
| 6900530 | Tsai | May 2005 | B1 |
| 6902869 | Appelt et al. | Jun 2005 | B2 |
| 6902950 | Ma et al. | Jun 2005 | B2 |
| 6906408 | Cloud et al. | Jun 2005 | B2 |
| 6908785 | Kim | Jun 2005 | B2 |
| 6909181 | Aiba et al. | Jun 2005 | B2 |
| 6917098 | Yamunan | Jul 2005 | B1 |
| 6930256 | Huemoeller et al. | Aug 2005 | B1 |
| 6933598 | Kamezos | Aug 2005 | B2 |
| 6933608 | Fujisawa | Aug 2005 | B2 |
| 6939723 | Corisis et al. | Sep 2005 | B2 |
| 6946380 | Takahashi | Sep 2005 | B2 |
| 6951773 | Ho et al. | Oct 2005 | B2 |
| 6962282 | Manansala | Nov 2005 | B2 |
| 6962864 | Jeng et al. | Nov 2005 | B1 |
| 6977440 | Pflughaupt et al. | Dec 2005 | B2 |
| 6979599 | Silverbrook | Dec 2005 | B2 |
| 6987032 | Fan et al. | Jan 2006 | B1 |
| 6989122 | Pham et al. | Jan 2006 | B1 |
| 7009297 | Chiang et al. | Mar 2006 | B1 |
| 7017794 | Nosaka | Mar 2006 | B2 |
| 7021521 | Sakurai et al. | Apr 2006 | B2 |
| 7045884 | Standing | May 2006 | B2 |
| 7051915 | Mutaguchi | May 2006 | B2 |
| 7052935 | Pai et al. | May 2006 | B2 |
| 7053477 | Kamezos et al. | May 2006 | B2 |
| 7053485 | Bang et al. | May 2006 | B2 |
| 7061079 | Weng et al. | Jun 2006 | B2 |
| 7061097 | Yokoi | Jun 2006 | B2 |
| 7067911 | Lin et al. | Jun 2006 | B1 |
| 7071028 | Koike et al. | Jul 2006 | B2 |
| 7071547 | Kang et al. | Jul 2006 | B2 |
| 7071573 | Lin | Jul 2006 | B1 |
| 7078788 | Vu et al. | Jul 2006 | B2 |
| 7078822 | Dias et al. | Jul 2006 | B2 |
| 7095105 | Cherukuri et al. | Aug 2006 | B2 |
| 7112520 | Lee et al. | Sep 2006 | B2 |
| 7115986 | Moon et al. | Oct 2006 | B2 |
| 7119427 | Kim | Oct 2006 | B2 |
| 7121891 | Cherian | Oct 2006 | B2 |
| 7138722 | Miyamoto et al. | Nov 2006 | B2 |
| 7170185 | Hogerton et al. | Jan 2007 | B1 |
| 7176043 | Haba et al. | Feb 2007 | B2 |
| 7176506 | Beroz et al. | Feb 2007 | B2 |
| 7176559 | Ho et al. | Feb 2007 | B2 |
| 7185426 | Hiner et al. | Mar 2007 | B1 |
| 7187072 | Fukitomi et al. | Mar 2007 | B2 |
| 7190061 | Lee | Mar 2007 | B2 |
| 7198980 | Jiang et al. | Apr 2007 | B2 |
| 7198987 | Warren et al. | Apr 2007 | B1 |
| 7205670 | Oyama | Apr 2007 | B2 |
| 7215033 | Lee et al. | May 2007 | B2 |
| 7216794 | Lange et al. | May 2007 | B2 |
| 7225538 | Eldridge et al. | Jun 2007 | B2 |
| 7227095 | Roberts et al. | Jun 2007 | B2 |
| 7229906 | Babinetz et al. | Jun 2007 | B2 |
| 7233057 | Hussa | Jun 2007 | B2 |
| 7242081 | Lee | Jul 2007 | B1 |
| 7246431 | Bang et al. | Jul 2007 | B2 |
| 7256069 | Akram et al. | Aug 2007 | B2 |
| 7259445 | Lau et al. | Aug 2007 | B2 |
| 7262124 | Fujisawa | Aug 2007 | B2 |
| 7262506 | Mess et al. | Aug 2007 | B2 |
| 7268421 | Lin | Sep 2007 | B1 |
| 7276799 | Lee et al. | Oct 2007 | B2 |
| 7287322 | Mahieu et al. | Oct 2007 | B2 |
| 7290448 | Shirasaka et al. | Nov 2007 | B2 |
| 7294920 | Chen et al. | Nov 2007 | B2 |
| 7294928 | Bang et al. | Nov 2007 | B2 |
| 7298033 | Yoo | Nov 2007 | B2 |
| 7301770 | Campbell et al. | Nov 2007 | B2 |
| 7307348 | Wood et al. | Dec 2007 | B2 |
| 7321164 | Hsu | Jan 2008 | B2 |
| 7323767 | James et al. | Jan 2008 | B2 |
| 7327038 | Kwon et al. | Feb 2008 | B2 |
| 7342803 | Inagaki et al. | Mar 2008 | B2 |
| 7344917 | Gautham | Mar 2008 | B2 |
| 7345361 | Malik et al. | Mar 2008 | B2 |
| 7355289 | Hess et al. | Apr 2008 | B2 |
| 7365416 | Kawabata et al. | Apr 2008 | B2 |
| 7368924 | Beaman et al. | May 2008 | B2 |
| 7371676 | Hembree | May 2008 | B2 |
| 7372151 | Fan et al. | May 2008 | B1 |
| 7378726 | Punzalan et al. | May 2008 | B2 |
| 7390700 | Gerber et al. | Jun 2008 | B2 |
| 7391105 | Yeom | Jun 2008 | B2 |
| 7391121 | Otremba | Jun 2008 | B2 |
| 7416107 | Chapman et al. | Aug 2008 | B2 |
| 7425758 | Corisis et al. | Sep 2008 | B2 |
| 7453157 | Haba et al. | Nov 2008 | B2 |
| 7456091 | Kuraya et al. | Nov 2008 | B2 |
| 7456495 | Pohl et al. | Nov 2008 | B2 |
| 7462936 | Haba et al. | Dec 2008 | B2 |
| 7476608 | Craig et al. | Jan 2009 | B2 |
| 7476962 | Kim | Jan 2009 | B2 |
| 7485562 | Chua et al. | Feb 2009 | B2 |
| 7495179 | Kubota et al. | Feb 2009 | B2 |
| 7495342 | Beaman et al. | Feb 2009 | B2 |
| 7495644 | Hirakata | Feb 2009 | B2 |
| 7504284 | Ye et al. | Mar 2009 | B2 |
| 7504716 | Abbott | Mar 2009 | B2 |
| 7517733 | Camacho et al. | Apr 2009 | B2 |
| 7527505 | Murata | May 2009 | B2 |
| 7535090 | Furuyama et al. | May 2009 | B2 |
| 7537962 | Jang et al. | May 2009 | B2 |
| 7538565 | Beaman et al. | May 2009 | B1 |
| 7550836 | Chou et al. | Jun 2009 | B2 |
| 7564116 | Ahn et al. | Jul 2009 | B2 |
| 7576415 | Cha et al. | Aug 2009 | B2 |
| 7576439 | Craig et al. | Aug 2009 | B2 |
| 7578422 | Lange et al. | Aug 2009 | B2 |
| 7582963 | Gerber et al. | Sep 2009 | B2 |
| 7589394 | Kawano | Sep 2009 | B2 |
| 7592638 | Kim | Sep 2009 | B2 |
| 7595548 | Shirasaka et al. | Sep 2009 | B2 |
| 7605479 | Mohammed | Oct 2009 | B2 |
| 7621436 | Mii et al. | Nov 2009 | B2 |
| 7625781 | Beer | Dec 2009 | B2 |
| 7629695 | Yoshimura et al. | Dec 2009 | B2 |
| 7633154 | Dai et al. | Dec 2009 | B2 |
| 7633765 | Scanlan et al. | Dec 2009 | B1 |
| 7642133 | Wu et al. | Jan 2010 | B2 |
| 7646102 | Boon | Jan 2010 | B2 |
| 7659612 | Hembree et al. | Feb 2010 | B2 |
| 7659617 | Kang et al. | Feb 2010 | B2 |
| 7663226 | Cho et al. | Feb 2010 | B2 |
| 7671457 | Hiner et al. | Mar 2010 | B1 |
| 7671459 | Corisis et al. | Mar 2010 | B2 |
| 7675152 | Gerber et al. | Mar 2010 | B2 |
| 7677429 | Chapman et al. | Mar 2010 | B2 |
| 7682962 | Hembree | Mar 2010 | B2 |
| 7683460 | Heitzer et al. | Mar 2010 | B2 |
| 7683482 | Nishida et al. | Mar 2010 | B2 |
| 7696631 | Beaulieu et al. | Apr 2010 | B2 |
| 7706144 | Lynch | Apr 2010 | B2 |
| 7709968 | Damberg et al. | May 2010 | B2 |
| 7719122 | Tsao et al. | May 2010 | B2 |
| 7723839 | Yano et al. | May 2010 | B2 |
| 7728443 | Hembree | Jun 2010 | B2 |
| 7737545 | Fjelstad et al. | Jun 2010 | B2 |
| 7750483 | Lin et al. | Jul 2010 | B1 |
| 7757385 | Hembree | Jul 2010 | B2 |
| 7759782 | Haba et al. | Jul 2010 | B2 |
| 7777238 | Nishida et al. | Aug 2010 | B2 |
| 7777328 | Enomoto | Aug 2010 | B2 |
| 7777351 | Berry et al. | Aug 2010 | B1 |
| 7780064 | Wong et al. | Aug 2010 | B2 |
| 7781877 | Jiang et al. | Aug 2010 | B2 |
| 7795717 | Goller | Sep 2010 | B2 |
| 7807512 | Lee et al. | Oct 2010 | B2 |
| 7808093 | Kagaya et al. | Oct 2010 | B2 |
| 7834464 | Meyer et al. | Nov 2010 | B2 |
| 7838334 | Yu et al. | Nov 2010 | B2 |
| 7842541 | Rusli et al. | Nov 2010 | B1 |
| 7850087 | Hwang et al. | Dec 2010 | B2 |
| 7851259 | Kim | Dec 2010 | B2 |
| 7855462 | Boon et al. | Dec 2010 | B2 |
| 7855464 | Shikano | Dec 2010 | B2 |
| 7857190 | Takahashi et al. | Dec 2010 | B2 |
| 7859033 | Brady | Dec 2010 | B2 |
| 7872335 | Khan et al. | Jan 2011 | B2 |
| 7880290 | Park | Feb 2011 | B2 |
| 7892889 | Howard et al. | Feb 2011 | B2 |
| 7898083 | Castro | Mar 2011 | B2 |
| 7901989 | Haba et al. | Mar 2011 | B2 |
| 7902644 | Huang et al. | Mar 2011 | B2 |
| 7902652 | Seo et al. | Mar 2011 | B2 |
| 7910385 | Kweon et al. | Mar 2011 | B2 |
| 7911805 | Haba | Mar 2011 | B2 |
| 7919846 | Hembree | Apr 2011 | B2 |
| 7919871 | Moon et al. | Apr 2011 | B2 |
| 7923295 | Shim et al. | Apr 2011 | B2 |
| 7923304 | Choi et al. | Apr 2011 | B2 |
| 7928552 | Cho et al. | Apr 2011 | B1 |
| 7932170 | Huemoeller et al. | Apr 2011 | B1 |
| 7934313 | Lin et al. | May 2011 | B1 |
| 7939934 | Haba et al. | May 2011 | B2 |
| 7944034 | Gerber et al. | May 2011 | B2 |
| 7956456 | Gurrum et al. | Jun 2011 | B2 |
| 7960843 | Hedler et al. | Jun 2011 | B2 |
| 7964956 | Bet-Shliemoun | Jun 2011 | B1 |
| 7967062 | Campbell et al. | Jun 2011 | B2 |
| 7974099 | Grajcar | Jul 2011 | B2 |
| 7977597 | Roberts et al. | Jul 2011 | B2 |
| 7990711 | Andry et al. | Aug 2011 | B1 |
| 7994622 | Mohammed et al. | Aug 2011 | B2 |
| 8004074 | Mori et al. | Aug 2011 | B2 |
| 8004093 | Oh et al. | Aug 2011 | B2 |
| 8008121 | Choi et al. | Aug 2011 | B2 |
| 8012797 | Shen et al. | Sep 2011 | B2 |
| 8017437 | Yoo et al. | Sep 2011 | B2 |
| 8017452 | Ishihara et al. | Sep 2011 | B2 |
| 8018033 | Moriya | Sep 2011 | B2 |
| 8018065 | Lam | Sep 2011 | B2 |
| 8020290 | Sheats | Sep 2011 | B2 |
| 8021907 | Pagaila et al. | Sep 2011 | B2 |
| 8035213 | Lee et al. | Oct 2011 | B2 |
| 8039316 | Chi et al. | Oct 2011 | B2 |
| 8039960 | Lin | Oct 2011 | B2 |
| 8039970 | Yamamori et al. | Oct 2011 | B2 |
| 8048479 | Hedler et al. | Nov 2011 | B2 |
| 8053814 | Chen et al. | Nov 2011 | B2 |
| 8053879 | Lee et al. | Nov 2011 | B2 |
| 8053906 | Chang et al. | Nov 2011 | B2 |
| 8058101 | Haba et al. | Nov 2011 | B2 |
| 8063475 | Choi et al. | Nov 2011 | B2 |
| 8071424 | Kang et al. | Dec 2011 | B2 |
| 8071431 | Hoang et al. | Dec 2011 | B2 |
| 8071470 | Khor et al. | Dec 2011 | B2 |
| 8076765 | Chen et al. | Dec 2011 | B2 |
| 8076770 | Kagaya et al. | Dec 2011 | B2 |
| 8080445 | Pagaila | Dec 2011 | B1 |
| 8084867 | Tang et al. | Dec 2011 | B2 |
| 8092734 | Jiang et al. | Jan 2012 | B2 |
| 8093697 | Haba et al. | Jan 2012 | B2 |
| 8106498 | Shin et al. | Jan 2012 | B2 |
| 8115283 | Bolognia et al. | Feb 2012 | B1 |
| 8119516 | Endo | Feb 2012 | B2 |
| 8120054 | Seo et al. | Feb 2012 | B2 |
| 8120186 | Yoon | Feb 2012 | B2 |
| 8138584 | Wang et al. | Mar 2012 | B2 |
| 8143141 | Sun et al. | Mar 2012 | B2 |
| 8143710 | Cho | Mar 2012 | B2 |
| 8158888 | Shen et al. | Apr 2012 | B2 |
| 8169065 | Kohl et al. | May 2012 | B2 |
| 8183682 | Groenhuis et al. | May 2012 | B2 |
| 8183684 | Nakazato | May 2012 | B2 |
| 8193034 | Pagaila et al. | Jun 2012 | B2 |
| 8194411 | Leung et al. | Jun 2012 | B2 |
| 8198716 | Periaman et al. | Jun 2012 | B2 |
| 8207604 | Haba et al. | Jun 2012 | B2 |
| 8213184 | Knickerbocker | Jul 2012 | B2 |
| 8217502 | Ko | Jul 2012 | B2 |
| 8225982 | Pirkle et al. | Jul 2012 | B2 |
| 8232141 | Choi et al. | Jul 2012 | B2 |
| 8237257 | Yang | Aug 2012 | B2 |
| 8258010 | Pagaila et al. | Sep 2012 | B2 |
| 8258015 | Chow et al. | Sep 2012 | B2 |
| 8263435 | Choi et al. | Sep 2012 | B2 |
| 8264091 | Cho et al. | Sep 2012 | B2 |
| 8269335 | Osumi | Sep 2012 | B2 |
| 8278746 | Ding et al. | Oct 2012 | B2 |
| 8288854 | Weng et al. | Oct 2012 | B2 |
| 8293580 | Kim et al. | Oct 2012 | B2 |
| 8299368 | Endo | Oct 2012 | B2 |
| 8304900 | Jang et al. | Nov 2012 | B2 |
| 8314492 | Egawa | Nov 2012 | B2 |
| 8315060 | Morikita et al. | Nov 2012 | B2 |
| 8318539 | Cho et al. | Nov 2012 | B2 |
| 8319338 | Berry et al. | Nov 2012 | B1 |
| 8324633 | McKenzie et al. | Dec 2012 | B2 |
| 8330272 | Haba | Dec 2012 | B2 |
| 8349735 | Pagaila et al. | Jan 2013 | B2 |
| 8354297 | Pagaila et al. | Jan 2013 | B2 |
| 8362620 | Pagani | Jan 2013 | B2 |
| 8372741 | Co et al. | Feb 2013 | B1 |
| 8390108 | Cho et al. | Mar 2013 | B2 |
| 8390117 | Shimizu et al. | Mar 2013 | B2 |
| 8395259 | Eun | Mar 2013 | B2 |
| 8399972 | Hoang et al. | Mar 2013 | B2 |
| 8404520 | Chau | Mar 2013 | B1 |
| 8409922 | Camacho et al. | Apr 2013 | B2 |
| 8415704 | Ivanov et al. | Apr 2013 | B2 |
| 8419442 | Horikawa et al. | Apr 2013 | B2 |
| 8435899 | Miyata et al. | May 2013 | B2 |
| 8450839 | Corisis et al. | May 2013 | B2 |
| 8476115 | Choi et al. | Jul 2013 | B2 |
| 8476770 | Shao et al. | Jul 2013 | B2 |
| 8482111 | Haba | Jul 2013 | B2 |
| 8487421 | Sato et al. | Jul 2013 | B2 |
| 8492201 | Pagaila et al. | Jul 2013 | B2 |
| 8502387 | Choi et al. | Aug 2013 | B2 |
| 8507297 | Iida et al. | Aug 2013 | B2 |
| 8508045 | Khan et al. | Aug 2013 | B2 |
| 8518746 | Pagaila et al. | Aug 2013 | B2 |
| 8520396 | Schmidt et al. | Aug 2013 | B2 |
| 8525214 | Lin et al. | Sep 2013 | B2 |
| 8525314 | Haba et al. | Sep 2013 | B2 |
| 8525318 | Kim et al. | Sep 2013 | B1 |
| 8552556 | Kim et al. | Oct 2013 | B1 |
| 8558379 | Kwon | Oct 2013 | B2 |
| 8558392 | Chua et al. | Oct 2013 | B2 |
| 8564141 | Lee et al. | Oct 2013 | B2 |
| 8567051 | Val | Oct 2013 | B2 |
| 8569892 | Mori et al. | Oct 2013 | B2 |
| 8580607 | Haba | Nov 2013 | B2 |
| 8598717 | Masuda | Dec 2013 | B2 |
| 8618646 | Sasaki et al. | Dec 2013 | B2 |
| 8618659 | Sato et al. | Dec 2013 | B2 |
| 8624374 | Ding et al. | Jan 2014 | B2 |
| 8637991 | Haba | Jan 2014 | B2 |
| 8642393 | Yu et al. | Feb 2014 | B1 |
| 8646508 | Kawada | Feb 2014 | B2 |
| 8653626 | Lo et al. | Feb 2014 | B2 |
| 8653668 | Uno et al. | Feb 2014 | B2 |
| 8653676 | Kim et al. | Feb 2014 | B2 |
| 8659164 | Haba | Feb 2014 | B2 |
| 8664780 | Han et al. | Mar 2014 | B2 |
| 8669646 | Tabatabai et al. | Mar 2014 | B2 |
| 8670261 | Crisp et al. | Mar 2014 | B2 |
| 8680662 | Haba et al. | Mar 2014 | B2 |
| 8680677 | Wyland | Mar 2014 | B2 |
| 8680684 | Haba et al. | Mar 2014 | B2 |
| 8685792 | Chow et al. | Apr 2014 | B2 |
| 8697492 | Haba et al. | Apr 2014 | B2 |
| 8723307 | Jiang et al. | May 2014 | B2 |
| 8728865 | Haba et al. | May 2014 | B2 |
| 8729714 | Meyer | May 2014 | B1 |
| 8742576 | Thacker et al. | Jun 2014 | B2 |
| 8742597 | Nickerson | Jun 2014 | B2 |
| 8766436 | Delucca et al. | Jul 2014 | B2 |
| 8772152 | Co et al. | Jul 2014 | B2 |
| 8772817 | Yao | Jul 2014 | B2 |
| 8785245 | Kim | Jul 2014 | B2 |
| 8791575 | Oganesian et al. | Jul 2014 | B2 |
| 8791580 | Park et al. | Jul 2014 | B2 |
| 8796846 | Lin et al. | Aug 2014 | B2 |
| 8802494 | Lee et al. | Aug 2014 | B2 |
| 8810031 | Chang et al. | Aug 2014 | B2 |
| 8811055 | Yoon | Aug 2014 | B2 |
| 8816404 | Kim et al. | Aug 2014 | B2 |
| 8835228 | Mohammed | Sep 2014 | B2 |
| 8836136 | Chau et al. | Sep 2014 | B2 |
| 8836140 | Ma et al. | Sep 2014 | B2 |
| 8836147 | Uno et al. | Sep 2014 | B2 |
| 8841765 | Haba et al. | Sep 2014 | B2 |
| 8846521 | Sugizaki | Sep 2014 | B2 |
| 8847376 | Oganesian et al. | Sep 2014 | B2 |
| 8853558 | Gupta et al. | Oct 2014 | B2 |
| 8878353 | Haba et al. | Nov 2014 | B2 |
| 8884416 | Lee et al. | Nov 2014 | B2 |
| 8893380 | Kim et al. | Nov 2014 | B2 |
| 8907466 | Haba | Dec 2014 | B2 |
| 8907500 | Haba et al. | Dec 2014 | B2 |
| 8912651 | Yu et al. | Dec 2014 | B2 |
| 8916781 | Haba et al. | Dec 2014 | B2 |
| 8922005 | Hu et al. | Dec 2014 | B2 |
| 8923004 | Low et al. | Dec 2014 | B2 |
| 8927337 | Haba et al. | Jan 2015 | B2 |
| 8937309 | England et al. | Jan 2015 | B2 |
| 8940630 | Damberg et al. | Jan 2015 | B2 |
| 8940636 | Pagaila et al. | Jan 2015 | B2 |
| 8946757 | Mohammed et al. | Feb 2015 | B2 |
| 8963339 | He et al. | Feb 2015 | B2 |
| 8970049 | Karnezos | Mar 2015 | B2 |
| 8975726 | Chen | Mar 2015 | B2 |
| 8978247 | Yang et al. | Mar 2015 | B2 |
| 8981559 | Hsu et al. | Mar 2015 | B2 |
| 8987132 | Gruber et al. | Mar 2015 | B2 |
| 8988895 | Mohammed et al. | Mar 2015 | B2 |
| 8993376 | Camacho et al. | Mar 2015 | B2 |
| 9006031 | Camacho et al. | Apr 2015 | B2 |
| 9012263 | Mathew et al. | Apr 2015 | B1 |
| 9041227 | Chau et al. | May 2015 | B2 |
| 9054095 | Pagaila | Jun 2015 | B2 |
| 9082763 | Yu et al. | Jul 2015 | B2 |
| 9093435 | Sato et al. | Jul 2015 | B2 |
| 9095074 | Haba et al. | Jul 2015 | B2 |
| 9105483 | Chau et al. | Aug 2015 | B2 |
| 9105552 | Yu et al. | Aug 2015 | B2 |
| 9117811 | Zohni | Aug 2015 | B2 |
| 9123664 | Haba | Sep 2015 | B2 |
| 9136254 | Zhao et al. | Sep 2015 | B2 |
| 9142586 | Wang et al. | Sep 2015 | B2 |
| 9153562 | Haba et al. | Oct 2015 | B2 |
| 9171790 | Yu et al. | Oct 2015 | B2 |
| 9177832 | Camacho | Nov 2015 | B2 |
| 9196586 | Chen et al. | Nov 2015 | B2 |
| 9196588 | Leal | Nov 2015 | B2 |
| 9214434 | Kim et al. | Dec 2015 | B1 |
| 9224647 | Koo et al. | Dec 2015 | B2 |
| 9224717 | Sato et al. | Dec 2015 | B2 |
| 9258922 | Chen et al. | Feb 2016 | B2 |
| 9263394 | Uzoh et al. | Feb 2016 | B2 |
| 9263413 | Mohammed | Feb 2016 | B2 |
| 9299670 | Yap et al. | Mar 2016 | B2 |
| 9318452 | Chen et al. | Apr 2016 | B2 |
| 9324696 | Choi et al. | Apr 2016 | B2 |
| 9349706 | Co et al. | May 2016 | B2 |
| 9362161 | Chi et al. | Jun 2016 | B2 |
| 9379074 | Uzoh et al. | Jun 2016 | B2 |
| 9379078 | Yu et al. | Jun 2016 | B2 |
| 9401338 | Magnus et al. | Jul 2016 | B2 |
| 9412661 | Lu et al. | Aug 2016 | B2 |
| 9418940 | Hoshino et al. | Aug 2016 | B2 |
| 9418971 | Chen et al. | Aug 2016 | B2 |
| 9437459 | Carpenter et al. | Sep 2016 | B2 |
| 9443797 | Marimuthu et al. | Sep 2016 | B2 |
| 9449941 | Tsai et al. | Sep 2016 | B2 |
| 9461025 | Yu et al. | Oct 2016 | B2 |
| 9496152 | Cho et al. | Nov 2016 | B2 |
| 9502390 | Caskey et al. | Nov 2016 | B2 |
| 9508622 | Higgins | Nov 2016 | B2 |
| 9559088 | Gonzalez et al. | Jan 2017 | B2 |
| 9570382 | Haba | Feb 2017 | B2 |
| 9583456 | Uzoh et al. | Feb 2017 | B2 |
| 9601454 | Zhao et al. | Mar 2017 | B2 |
| 9735084 | Katkar et al. | Aug 2017 | B2 |
| 20010042925 | Yamamoto et al. | Nov 2001 | A1 |
| 20020014004 | Beaman et al. | Feb 2002 | A1 |
| 20020125556 | Oh et al. | Sep 2002 | A1 |
| 20020171152 | Miyazaki | Nov 2002 | A1 |
| 20030006494 | Lee et al. | Jan 2003 | A1 |
| 20030048108 | Beaman et al. | Mar 2003 | A1 |
| 20030057544 | Nathan et al. | Mar 2003 | A1 |
| 20030094666 | Clayton et al. | May 2003 | A1 |
| 20030162378 | Mikami | Aug 2003 | A1 |
| 20040041757 | Yang et al. | Mar 2004 | A1 |
| 20040262728 | Sterrett et al. | Dec 2004 | A1 |
| 20050017369 | Clayton et al. | Jan 2005 | A1 |
| 20050062492 | Beaman et al. | Mar 2005 | A1 |
| 20050082664 | Funaba et al. | Apr 2005 | A1 |
| 20050095835 | Humpston et al. | May 2005 | A1 |
| 20050173807 | Zhu et al. | Aug 2005 | A1 |
| 20050176233 | Joshi et al. | Aug 2005 | A1 |
| 20060087013 | Hsieh | Apr 2006 | A1 |
| 20060255449 | Lee et al. | Nov 2006 | A1 |
| 20070010086 | Hsieh | Jan 2007 | A1 |
| 20070080360 | Mirsky et al. | Apr 2007 | A1 |
| 20070190747 | Hup | Aug 2007 | A1 |
| 20070254406 | Lee | Nov 2007 | A1 |
| 20070271781 | Beaman et al. | Nov 2007 | A9 |
| 20070290325 | Wu et al. | Dec 2007 | A1 |
| 20080006942 | Park et al. | Jan 2008 | A1 |
| 20080017968 | Choi et al. | Jan 2008 | A1 |
| 20080023805 | Howard et al. | Jan 2008 | A1 |
| 20080042265 | Merilo et al. | Feb 2008 | A1 |
| 20080047741 | Beaman et al. | Feb 2008 | A1 |
| 20080048690 | Beaman et al. | Feb 2008 | A1 |
| 20080048691 | Beaman et al. | Feb 2008 | A1 |
| 20080048697 | Beaman et al. | Feb 2008 | A1 |
| 20080054434 | Kim | Mar 2008 | A1 |
| 20080073769 | Wu et al. | Mar 2008 | A1 |
| 20080100316 | Beaman et al. | May 2008 | A1 |
| 20080100317 | Beaman et al. | May 2008 | A1 |
| 20080100318 | Beaman et al. | May 2008 | A1 |
| 20080100324 | Beaman et al. | May 2008 | A1 |
| 20080105984 | Lee et al. | May 2008 | A1 |
| 20080106281 | Beaman et al. | May 2008 | A1 |
| 20080106282 | Beaman et al. | May 2008 | A1 |
| 20080106283 | Beaman et al. | May 2008 | A1 |
| 20080106284 | Beaman et al. | May 2008 | A1 |
| 20080106285 | Beaman et al. | May 2008 | A1 |
| 20080106291 | Beaman et al. | May 2008 | A1 |
| 20080106872 | Beaman et al. | May 2008 | A1 |
| 20080111568 | Beaman et al. | May 2008 | A1 |
| 20080111569 | Beaman et al. | May 2008 | A1 |
| 20080111570 | Beaman et al. | May 2008 | A1 |
| 20080112144 | Beaman et al. | May 2008 | A1 |
| 20080112145 | Beaman et al. | May 2008 | A1 |
| 20080112146 | Beaman et al. | May 2008 | A1 |
| 20080112147 | Beaman et al. | May 2008 | A1 |
| 20080112148 | Beaman et al. | May 2008 | A1 |
| 20080112149 | Beaman et al. | May 2008 | A1 |
| 20080116912 | Beaman et al. | May 2008 | A1 |
| 20080116913 | Beaman et al. | May 2008 | A1 |
| 20080116914 | Beaman et al. | May 2008 | A1 |
| 20080116915 | Beaman et al. | May 2008 | A1 |
| 20080116916 | Beaman et al. | May 2008 | A1 |
| 20080117611 | Beaman et al. | May 2008 | A1 |
| 20080117612 | Beaman et al. | May 2008 | A1 |
| 20080117613 | Beaman et al. | May 2008 | A1 |
| 20080121879 | Beaman et al. | May 2008 | A1 |
| 20080123310 | Beaman et al. | May 2008 | A1 |
| 20080129319 | Beaman et al. | Jun 2008 | A1 |
| 20080129320 | Beaman et al. | Jun 2008 | A1 |
| 20080132094 | Beaman et al. | Jun 2008 | A1 |
| 20080156518 | Honer et al. | Jul 2008 | A1 |
| 20080164595 | Wu et al. | Jul 2008 | A1 |
| 20080169548 | Baek | Jul 2008 | A1 |
| 20080217708 | Reisner et al. | Sep 2008 | A1 |
| 20080280393 | Lee et al. | Nov 2008 | A1 |
| 20080284045 | Gerber et al. | Nov 2008 | A1 |
| 20080303153 | Oi et al. | Dec 2008 | A1 |
| 20080308305 | Kawabe | Dec 2008 | A1 |
| 20090008796 | Eng et al. | Jan 2009 | A1 |
| 20090014876 | Youn et al. | Jan 2009 | A1 |
| 20090032913 | Haba | Feb 2009 | A1 |
| 20090085185 | Byun et al. | Apr 2009 | A1 |
| 20090091009 | Corisis et al. | Apr 2009 | A1 |
| 20090102063 | Lee et al. | Apr 2009 | A1 |
| 20090127686 | Yang et al. | May 2009 | A1 |
| 20090128176 | Beaman et al. | May 2009 | A1 |
| 20090140415 | Furuta | Jun 2009 | A1 |
| 20090166664 | Park et al. | Jul 2009 | A1 |
| 20090166873 | Yang et al. | Jul 2009 | A1 |
| 20090189288 | Beaman et al. | Jul 2009 | A1 |
| 20090194829 | Chung et al. | Aug 2009 | A1 |
| 20090256229 | Ishikawa et al. | Oct 2009 | A1 |
| 20090315579 | Beaman et al. | Dec 2009 | A1 |
| 20100032822 | Liao et al. | Feb 2010 | A1 |
| 20100044860 | Haba et al. | Feb 2010 | A1 |
| 20100078795 | Dekker et al. | Apr 2010 | A1 |
| 20100193937 | Nagamatsu et al. | Aug 2010 | A1 |
| 20100200981 | Huang et al. | Aug 2010 | A1 |
| 20100258955 | Miyagawa et al. | Oct 2010 | A1 |
| 20100289142 | Shim et al. | Nov 2010 | A1 |
| 20100314748 | Hsu et al. | Dec 2010 | A1 |
| 20100327419 | Muthukumar et al. | Dec 2010 | A1 |
| 20110042699 | Park et al. | Feb 2011 | A1 |
| 20110068478 | Pagaila et al. | Mar 2011 | A1 |
| 20110084368 | Hoang | Apr 2011 | A1 |
| 20110157834 | Wang | Jun 2011 | A1 |
| 20110209908 | Lin et al. | Sep 2011 | A1 |
| 20110215472 | Chandrasekaran | Sep 2011 | A1 |
| 20120001336 | Zeng et al. | Jan 2012 | A1 |
| 20120043655 | Khor et al. | Feb 2012 | A1 |
| 20120063090 | Hsiao et al. | Mar 2012 | A1 |
| 20120080787 | Shah et al. | Apr 2012 | A1 |
| 20120086111 | Iwamoto et al. | Apr 2012 | A1 |
| 20120126431 | Kim et al. | May 2012 | A1 |
| 20120153444 | Haga et al. | Jun 2012 | A1 |
| 20120184116 | Pawlikowski et al. | Jul 2012 | A1 |
| 20130001797 | Choi et al. | Jan 2013 | A1 |
| 20130049218 | Gong et al. | Feb 2013 | A1 |
| 20130087915 | Warren et al. | Apr 2013 | A1 |
| 20130153646 | Ho | Jun 2013 | A1 |
| 20130200524 | Han et al. | Aug 2013 | A1 |
| 20130234317 | Chen et al. | Sep 2013 | A1 |
| 20130256847 | Park et al. | Oct 2013 | A1 |
| 20130323409 | Read et al. | Dec 2013 | A1 |
| 20130324069 | Chen | Dec 2013 | A1 |
| 20130328178 | Bakalski et al. | Dec 2013 | A1 |
| 20140035892 | Shenoy et al. | Feb 2014 | A1 |
| 20140103527 | Marimuthu et al. | Apr 2014 | A1 |
| 20140124949 | Paek et al. | May 2014 | A1 |
| 20140175657 | Oka et al. | Jun 2014 | A1 |
| 20140225248 | Henderson et al. | Aug 2014 | A1 |
| 20140239479 | Start | Aug 2014 | A1 |
| 20140239490 | Wang | Aug 2014 | A1 |
| 20140308907 | Chen | Oct 2014 | A1 |
| 20140312503 | Sec | Oct 2014 | A1 |
| 20150044823 | Mohammed | Feb 2015 | A1 |
| 20150076714 | Haba et al. | Mar 2015 | A1 |
| 20150130054 | Lee et al. | May 2015 | A1 |
| 20150206865 | Yu et al. | Jul 2015 | A1 |
| 20150340305 | Lo | Nov 2015 | A1 |
| 20150380376 | Mathew et al. | Dec 2015 | A1 |
| 20160043813 | Chen et al. | Feb 2016 | A1 |
| 20160200566 | Ofner et al. | Jul 2016 | A1 |
| 20160225692 | Kim et al. | Aug 2016 | A1 |
| 20170117231 | Awujoola | Apr 2017 | A1 |
| Number | Date | Country |
|---|---|---|
| 1352804 | Jun 2002 | CN |
| 1641832 | Jul 2005 | CN |
| 1877824 | Dec 2006 | CN |
| 101409241 | Apr 2009 | CN |
| 101449375 | Jun 2009 | CN |
| 101675516 | Mar 2010 | CN |
| 101819959 | Sep 2010 | CN |
| 102324418 | Jan 2012 | CN |
| 920058 | Jun 1999 | EP |
| 1449414 | Aug 2004 | EP |
| 2234158 | Sep 2010 | EP |
| S51-050661 | May 1976 | JP |
| 59189069 | Oct 1984 | JP |
| 61125062 | Jun 1986 | JP |
| S62158338 | Jul 1987 | JP |
| 32-226307 | Oct 1987 | JP |
| 1012769 | Jan 1989 | JP |
| 64-71162 | Mar 1989 | JP |
| 1118364 | May 1989 | JP |
| H04-346436 | Dec 1992 | JP |
| 06268015 | Sep 1994 | JP |
| H06333931 | Dec 1994 | JP |
| 07-122787 | May 1995 | JP |
| H1065054 | Mar 1998 | JP |
| H10135220 | May 1998 | JP |
| H10135221 | May 1998 | JP |
| 11-074295 | Mar 1999 | JP |
| 11135663 | May 1999 | JP |
| H11-145323 | May 1999 | JP |
| 11251350 | Sep 1999 | JP |
| H11260856 | Sep 1999 | JP |
| 11317476 | Nov 1999 | JP |
| 2000323516 | Nov 2000 | JP |
| 2001196407 | Jul 2001 | JP |
| 2001326236 | Nov 2001 | JP |
| 2002289769 | Oct 2002 | JP |
| 2003122611 | Apr 2003 | JP |
| 2003-174124 | Jun 2003 | JP |
| 2003307897 | Oct 2003 | JP |
| 2004031754 | Jan 2004 | JP |
| 2004-172157 | Jun 2004 | JP |
| 2004-200316 | Jul 2004 | JP |
| 2004281514 | Oct 2004 | JP |
| 2004-319892 | Nov 2004 | JP |
| 2004327855 | Nov 2004 | JP |
| 2004327856 | Nov 2004 | JP |
| 2004343030 | Dec 2004 | JP |
| 2005011874 | Jan 2005 | JP |
| 2005033141 | Feb 2005 | JP |
| 2005142378 | Jun 2005 | JP |
| 2005175019 | Jun 2005 | JP |
| 2005183880 | Jul 2005 | JP |
| 2005183923 | Jul 2005 | JP |
| 2005203497 | Jul 2005 | JP |
| 2005302765 | Oct 2005 | JP |
| 2006108588 | Apr 2006 | JP |
| 2006186086 | Jul 2006 | JP |
| 2007123595 | May 2007 | JP |
| 2007-208159 | Aug 2007 | JP |
| 2007234845 | Sep 2007 | JP |
| 2007287922 | Nov 2007 | JP |
| 2007-335464 | Dec 2007 | JP |
| 200834534 | Feb 2008 | JP |
| 2008166439 | Jul 2008 | JP |
| 2008171938 | Jul 2008 | JP |
| 2008251794 | Oct 2008 | JP |
| 2008277362 | Nov 2008 | JP |
| 2008306128 | Dec 2008 | JP |
| 2009004650 | Jan 2009 | JP |
| 2009044110 | Feb 2009 | JP |
| 2009506553 | Feb 2009 | JP |
| 2009508324 | Feb 2009 | JP |
| 2009064966 | Mar 2009 | JP |
| 2009088254 | Apr 2009 | JP |
| 2009111384 | May 2009 | JP |
| 2009528706 | Aug 2009 | JP |
| 2009260132 | Nov 2009 | JP |
| 2010103129 | May 2010 | JP |
| 2010192928 | Sep 2010 | JP |
| 2010199528 | Sep 2010 | JP |
| 2010206007 | Sep 2010 | JP |
| 2011514015 | Apr 2011 | JP |
| 100265563 | Sep 2000 | KR |
| 20010061849 | Jul 2001 | KR |
| 2001-0094894 | Nov 2001 | KR |
| 20020058216 | Jul 2002 | KR |
| 20060064291 | Jun 2006 | KR |
| 20080020069 | Mar 2008 | KR |
| 100865125 | Oct 2008 | KR |
| 20080094251 | Oct 2008 | KR |
| 100886100 | Feb 2009 | KR |
| 20090033605 | Apr 2009 | KR |
| 20090123680 | Dec 2009 | KR |
| 20100033012 | Mar 2010 | KR |
| 20100062315 | Jun 2010 | KR |
| 101011863 | Jan 2011 | KR |
| 20120075855 | Jul 2012 | KR |
| 20150012285 | Feb 2015 | KR |
| 200539406 | Dec 2005 | TW |
| 200810079 | Feb 2008 | TW |
| 200849551 | Dec 2008 | TW |
| 200933760 | Aug 2009 | TW |
| 201023277 | Jun 2010 | TW |
| 201250979 | Dec 2012 | TW |
| 02-13256 | Feb 2002 | WO |
| 03-045123 | May 2003 | WO |
| 2004077525 | Sep 2004 | WO |
| 2006050691 | May 2006 | WO |
| 2007101251 | Sep 2007 | WO |
| 2008065896 | Jun 2008 | WO |
| 2008120755 | Oct 2008 | WO |
| 2009096950 | Aug 2009 | WO |
| 2009158098 | Dec 2009 | WO |
| 2010041630 | Apr 2010 | WO |
| 2010101163 | Sep 2010 | WO |
| 2012067177 | May 2012 | WO |
| 2013059181 | Apr 2013 | WO |
| 2013065895 | May 2013 | WO |
| 2014107301 | Jul 2014 | WO |
| Entry |
|---|
| U.S. Office Action for U.S. Appl. No. 12/769,930, dated May 5, 2011. |
| 3D Plus “Wafer Level Stack—WDoD”, [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages. |
| Written Opinion for Appln. No. PCT/US2014/050125, dated Jul. 15, 2015. |
| Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D Integration,” May 2010, STATS ChipPAC Ltd. |
| Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages. |
| Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages. |
| Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages. |
| Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages. |
| Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014. |
| Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015. |
| Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015. |
| EE Times Asia “Freescale Cuts Die Area, Thickness with New Packaging Tech” [online] [Retrieved Aug. 5, 2010] Retrieved from internet: <http://www.eetasia.com/ART_8800428222_280300_NT_DEC52276.htm>, Aug. 3, 2006, 2 pages. |
| Extended European Search Report for Appln. No. EP13162975, dated Sep. 5, 2013. |
| IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com. |
| International Search Report for Appln. No. PCT/US2005/039716, dated Apr. 5, 2006. |
| International Search Report and Written Opinion for Appln. No. PCT/US2011/024143, dated Sep. 14, 2011. |
| Partial Search Report—Invitation to Pay Fees for Appln. No. PCT/US2011/024143, dated Jan. 17, 2012. |
| International Search Report and Written Opinion for Appln. No. PCT/US2011/060551, dated Apr. 18, 2012. |
| International Search Report and Written Opinion for Appln. No. PCT/US2011/044342, dated May 7, 2012. |
| International Search Report and Written Opinion for Appln. No. PCT/US2011/044346, dated May 11, 2012. |
| International Search Report and Written Opinion for Appln. No. PCT/US2012/060402, dated Apr. 2, 2013. |
| International Search Report and Written Opinion for Appln. No. PCT/US2013/026126, dated Jul. 25, 2013. |
| International Search Report and Written Opinion for Appln. No. PCT/US2013/052883, dated Oct. 21, 2013. |
| International Search Report and Written Opinion for Appln. No. PCT/US2013/041981, dated Nov. 13, 2013. |
| International Search Report and Written Opinion for Appln. No. PCT/US2013/053437, dated Nov. 25, 2013. |
| International Search Report and Written Opinion for Appln. No. PCT/US2013/075672, dated Apr. 22, 2014. |
| International Search Report and Written Opinion for Appln. No. PCT/US2014/014181, dated Jun. 13, 2014. |
| International Search Report and Written Opinion for Appln. No. PCT/US2014/050125, dated Feb. 4, 2015. |
| International Search Report and Written Opinion for Appln. No. PCT/US2014/050148, dated Feb. 9, 2015. |
| International Search Report and Written Opinion for Appln. No. PCT/US2014/055695, dated Mar. 20, 2015. |
| International Search Report and Written Opinion for Appln. No. PCT/US2015/011715, dated Apr. 20, 2015. |
| International Preliminary Report on Patentability for Appln. No. PCT/US2014/055695, dated Dec. 15, 2015. |
| International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017. |
| Japanese Office Action for Appln. No. 2013-509325, dated Oct. 18, 2013. |
| Japanese Office Action for Appln. No. 2013-520776, dated Apr. 21, 2015. |
| Japanese Office Action for Appln. No. 2013-520777, dated May 22, 2015. |
| Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/ STMicroelectronics France, May 21, 2010, 28 pages. |
| Kim et al., “Application of Through Mold Via (TMV) as PoP Base Package,” 2008, 6 pages. |
| Korean Office Action for Appn. 10-2011-0041843, dated Jun. 20, 2011. |
| Korean Office Action for Appn. 2014-7025992, dated Feb. 5, 2015. |
| Korean Search Report KR10-2010-0113271, dated Jan. 12, 2011. |
| Korean Search Report KR10-2011-0041843, dated Feb. 24, 2011. |
| Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates and 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003, 34 pages. |
| NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages. |
| Partial International Search Report from Invitation to Pay Additional Fees for Appln. No. PCT/US2012/028738, dated Jun. 6, 2012. |
| Partial International Search Report for Appln. No. PCT/US2012/060402, dated Feb. 21, 2013. |
| Partial International Search Report for Appln. No. PCT/US2013/026126, dated Jun. 17, 2013. |
| Partial International Search Report for Appln. No. PCT/US2013/075672, dated Mar. 12, 2014. |
| Partial International Search Report for Appln. No. PCT/US2014/014181, dated May 8, 2014. |
| Partial International Search Report for Appln. No. PCT/US2015/033004, dated Sep. 9, 2015. |
| Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages. |
| Taiwan Office Action for 102106326, dated Dec. 13, 2013. |
| Taiwan Office Action for 100125521, dated Dec. 20, 2013. |
| Taiwan Office Action for 100125522, dated Jan. 27, 2014. |
| Taiwan Office Action for 100141695, dated Mar. 19, 2014. |
| Taiwan Office Action for 100138311, dated Jun. 27, 2014. |
| Taiwan Office Action for 100140428, dated Jan. 26, 2015. |
| Taiwan Office Action for 103103350, dated Mar. 21, 2016. |
| North Corporation, Processed Intra-Layer Interconnection Material for PWRs [Etched Copper Bump with Copper Foil], NMBITM, Version 2001.6. |
| Taiwan Office Action for 102106326, dated Sep. 8, 2015. |
| Number | Date | Country | |
|---|---|---|---|
| 20180033764 A1 | Feb 2018 | US |
| Number | Date | Country | |
|---|---|---|---|
| 62368423 | Jul 2016 | US |