The present invention relates to a wire bonding method for making connection between a die electrode pad and an external lead and more particularly to a method for forming low wire loop during wire bonding.
In wire bonding, when, in order to bond a wire at a second bonding point, a capillary is moved to slightly above the second bonding point, excess wire hangs down from the lower end of the capillary, and a wire shape develops in which a hanging down part is formed. This hanging down part causes a repulsion to occur, when the wire is bonded at the second bonding point, so as to swell upward, resulting in that the straightness of the wire loop deteriorates. Japanese Patent Application Laid-Open Disclosure Nos. (1992) 4-370941 (Japanese Patent No. 3049515) and 2000-82717 disclose wire bonding methods for preventing wire loop from swelling at the time that bonding is made to the second bonding point.
In the method of Japanese Patent Application Laid-Open Disclosure (1992) No. 4-370941 (Japanese Patent No. 3049515), after connecting a wire to a first bonding point, the capillary is positioned slightly above the second bonding point and slightly on the first bonding point side, and then the capillary is descended diagonally in the direction of the second bonding point, thus bonding the wire at the second bonding point. In other words, in the method of Japanese Patent Application Laid-Open Disclosure (1992) No. 4-370941, by way of causing the capillary to descend diagonally, the hanging down part that hangs down from the lower end of the capillary is absorbed.
In the method disclosed in Japanese Patent Application Laid-Open Disclosure (2000) No. 2000-82717, after the wire is connected to a first bonding point, the capillary is lowered slightly from a second bonding point to the first bonding point side so that the capillary presses the hanging down part hanging down from the lower end of the capillary against a horizontal surface, then the capillary is moved to above the second bonding point and then is caused to descend, thus bonding the wire at the second bonding point. In other words, in the method of Japanese Patent Application Laid-Open Disclosure (2000) No. 2000-82717, the wire hanging down from the lower end of the capillary is pressed against a horizontal surface prior to bonding at the second bonding point; as a result, swelling of the wire loop at the time of bonding to the second bonding point is prevented.
Though not directly related to the problems the present invention would resolve, Japanese Patent Application Laid-Open Disclosure (1997) No. 9-51011 discloses a wire bonding method in which the height of the wire loop from the first bonding point is formed low. In this method, in other words, a ball is formed at the tip end of the wire, and this ball is pressure-bonded to a die electrode pad to form a pressure-bonded ball, and then, after performing loop control for moving the capillary to ascend or moving it horizontally, or the like, the wire is pressure-bonded on the pressure-bonded ball to form a wire bonding part. Thus, in Japanese Patent Application Laid-Open Disclosure (1997) No. 9-51011, by way of performing bonding to the first bonding point as described above, the wire loop height from the first bonding point can be low.
Even if the capillary is caused to descend diagonally prior to bonding to a second bonding point as disclosed in Japanese Patent Application Laid-Open Disclosure (1992) No. 4-370941 (Japanese Patent No. 3049515), the hanging down part of the wire at the lower end of the capillary, though it is less than that in the conventional method of bonding to a second bonding point, still remains nevertheless. Accordingly, the repulsion caused by plastic deformation of the hanging down part in the wire at the time of bonding at the second bonding point is not avoidable, and swelling occurs in the slanted part of the wire loop.
When the hanging down part is pressed against a horizontal surface, as in the method disclosed in Japanese Patent Application Laid-Open Disclosure (2000) No. 2000-82717, such a hanging down part disperses in the interior of the capillary and in the slanted part of the wire loop, causing those respective portions to get loosened. When the capillary ascends to a certain height in the next step, the wire that was loose inside the capillary will be pushed back downward and come out at the lower end of the capillary. Since the wire that came out at the lower end of the capillary at the next bonding to the second bonding point is pressed against the second bonding point, similar to Japanese Patent Application Laid-Open Disclosure No. 9-51011, repulsion caused by plastic deformation in the wire occurs, and swelling does occur in the slanted part of the wire loop though the amount thereof is smaller than with the conventional method of bonding to the second bonding point.
Accordingly, the object of the present invention is to provide a wire bonding method in which wire loop is prevented from swelling, thus improving the wire loop straightness.
The above object is accomplished by a set of unique steps of the present invention for a wire bonding method for connecting a wire, which passes through a capillary, between an electrode pad that is a first bonding point and an external lead that is a second bonding point with a use of the capillary; and in the present invention,
after finishing bonding to the electrode pad (first bonding point), the capillary is, together with a clamper, moved to above the external lead (second bonding point);
then the capillary (and the clamper) is, with the damper opened, caused to descend from above the external lead, so that the wire is pressed to such extent as that the wire is not completely connected to the external lead, thus forming a thin part in the wire;
next the damper is closed, and the capillary (and the closed clamper) is caused to ascend, together with the thin part, to substantially the same height as the first bonding point;
the capillary (and the clamper) is next moved in a direction away from (or opposite from) the first bonding point, thus pulling the wire bonded to the first bonding point, so that the pulled wire is made into a linear wire portion, and in conjunction therewith, is cut (separated) at the thin part;
then the capillary (and the clamper) is moved back in the direction toward the first bonding point and then caused to descend so that the end of the linear wire portion, or the thin part at the end of the linear wire portion, is pressed by the capillary and bonded to the external lead (second bonding point) and, in conjunction therewith, the wire tip end at the lower end of the capillary is bonded also to the external lead; and
further, the damper is opened, and the capillary (and the clamper) is caused to ascend; and during this ascending motion of the capillary, the damper is closed so that the wire tip end at the lower end of the capillary peeled away (separated) from the external lead, thus forming a tail portion on the wire extending out of the lower end of the capillary, such a tail portion to be used for the next first bonding.
The above object is accomplished by another set of unique steps of the present invention for a wire bonding method for connecting a wire, which passes through a capillary, between an electrode pad that is a first bonding point and an external lead that is a second bonding point with a use of the capillary; and in the present invention,
after finishing bonding to the electrode pad (first bonding point), the capillary is, together with a clamper, moved to above the external lead (second bonding point);
then the capillary (and the clamper) is, with the damper opened, caused to descend from above the external lead, so that the wire is pressed to such extent as that the wire is not completely connected to the external lead, thus forming a thin part in the wire;
next the damper is closed, and the capillary (and the closed clamper) is caused to ascend, together with the thin part, to substantially the same height as the first bonding point;
the capillary (and the clamper) is next moved in a direction away from (or opposite from) the first bonding point, thus pulling the wire bonded to the first bonding point, so that the pulled wire is made into a linear wire portion, and in conjunction therewith, is cut (separated) at the thin part;
next, the capillary (and the clamper) is caused to descend, and the wire tip end at the lower end of the capillary is bonded to the external lead;
then, the damper is opened, and the capillary (and the clamper) is caused to ascend; and during this ascending motion of the capillary, the damper is closed so that the wire tip end at the lower end of the capillary peeled away (separated) from the external lead, thus forming a tail portion on the wire extending out of the lower end of the capillary;
after forming a ball in this tail portion, the damper is opened, and the capillary (and the clamper) is moved back in the direction toward the first bonding point and then caused to descend so that the ball is pressed against the end of the above-described linear wire portion, and the ball, together with the end of the linear wire portion, is bonded to the external lead, thus forming a pressure-bonded ball; and
then the capillary (and the clamper) is caused to ascend, and during this ascending motion of the capillary, the damper is closed, so that the wire is cut from the pressure-bonded ball, thus forming a tail portion extending out of the lower end of the capillary, such a tail portion to be used for the next first bonding.
As seen from the above, in the present invention, the capillary is, after the bonding at the first bonding point, moved in a direction away from the first bonding point, thus pulling the wire connected to the first bonding point and making it a linear wire portion, and then this linear wire portion is cut (separated) from the wire at the thin part. Thus, with this step, a spring-up part is formed in the wire bonded to the first bonding point and is then pulled and cut at the thin part to make a one-side supported linear wire portion, and the end of this one-side supported linear wire portion is pressed by the capillary and bonded to the external lead, wherefore wire loop straightness is enhanced.
FIGS. 1(a) through 1(c) show the steps of the wire bonding method according to the first embodiment of the present invention;
FIGS. 2(a) through 2(c) show the steps continuing from
FIGS. 3(a) and 3(b) show the steps continuing from
FIGS. 4(a) through 4(c) show the steps of the wire bonding method according to the second embodiment of the present invention;
FIGS. 5(a) through 5(c) show the steps continuing from
FIGS. 6(a) and 6(b) show the steps continuing from
A first embodiment of the wire bonding method of the present invention will be described with reference to FIGS. 1(a) through 3((b).
On a lead frame 2 on which an external lead 1 is formed, a die 4 having thereon an electrode pad 3 is formed is mounted. As seen from
First of all, bonding is performed at the first bonding point A (first bonding) shown in
In other words, as seen from
Next, the damper 6 attains its open condition, the capillary 5 (and the damper 6) descends after moving above the first bonding point A, and the ball 14 is bonded to the first bonding point A, and then, as seen from
Then, after performing loop control for moving the capillary 5 (and the damper 6) so as to ascend or moving it horizontally, or the like, the wire 10 is pressure-bonded on the pressure-bonded ball 11 to form the wire bonding part 12.
After that, the capillary 5 (and the damper 6) is moved so that the capillary 5 is positioned slightly above the second bonding point B of the external lead 1. In this case, a hanging down part 15 of the wire resulting from the excess wire 10 hanging down from the lower end of the capillary 5 is formed.
Next, as shown in
Next, the damper 6 closes and, as shown in
Then, as shown in
Next, as shown in
In the next step (second bonding) shown in
Then, the damper 6 opens as shown in
As seen from the above, in the steps shown in
A second embodiment of the wire bonding method of the present invention will be described with reference to FIGS. 4(a) to 6(b). The second embodiment takes the same steps as in the above-described first embodiment shown in
In the above-described first embodiment, after the step shown in
After the step shown in
Then, the damper 6 next opens as shown in
Next, with the damper 6 attaining its open condition, and the capillary 5 (and the damper 6) is moved back in the direction toward the first bonding point A and to above the end 19 of the linear wire portion 18.
Then, as shown in the step (second bonding) of
Next, as shown in FIGS. 6(a) and 6(b), the capillary S (and the damper 6) is caused to ascend. During the ascending motion of the capillary 5 (and the damper 6), that is, when the capillary S (and the damper 6) is ascending in
In this second embodiment of the present invention as well, since the end 19 of the one-side supported linear wire portion 18 is bonded to the second bonding point B, wire loop straightness is enhanced as in the above-described first embodiment. In this second embodiment, moreover, since the pressure-bonded ball 27 is formed in the end 19 bonded to the second bonding point B, the thickness of the bonding to the second bonding point B is thick (or thicker than in the first embodiment), and the strength at the second bonding point B is enhanced.
In the embodiments described above, the bonding to the first bonding point A is performed in accordance with the method disclosed in Japanese Patent Application Laid-Open Disclosure (1997) No. 9-51011; however, the present invention is not limited to use this method, and any ordinary bonding method can be used in the present invention. However, with the bonding method of Japanese Patent Application Laid-Open Disclosure (1997) No. 9-51011, it is possible to keep the rise from the first bonding point A low, which is preferable.
Number | Date | Country | Kind |
---|---|---|---|
2005-328291 | Nov 2005 | JP | national |