Anchoring structure of fine pitch bva

Information

  • Patent Grant
  • 10332854
  • Patent Number
    10,332,854
  • Date Filed
    Monday, October 24, 2016
    8 years ago
  • Date Issued
    Tuesday, June 25, 2019
    5 years ago
Abstract
A microelectronic package can include a substrate having a first surface and a second surface opposite therefrom, the substrate having a first conductive element at the first surface, and a plurality of wire bonds, each of the wire bonds having a base electrically connected to a corresponding one of the first conductive elements and having a tip remote from the base, each wire bond having edge surfaces extending from the tip toward the base. The microelectronic package can also include an encapsulation having a major surface facing away from the first surface of the substrate, the encapsulation having a recess extending from the major surface in a direction toward the first surface of the substrate, the tip of a first one of the wire bonds being disposed within the recess, and an electrically conductive layer overlying an inner surface of the encapsulation exposed within the recess, the electrically conductive layer overlying and electrically connected with the tip of the first one of the wire bonds.
Description
BACKGROUND OF THE INVENTION

Embodiments of the invention herein relate to various structures and ways of making microelectronic packages which can be used in package on package assemblies, and more particularly, to such structures that incorporate wire bonds for as part of the package-on-package connections.


Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


Packaged semiconductor chips are often provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board, and another package is mounted on top of the first package. These arrangements can allow a number of different chips to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between packages. Often, this interconnect distance is only slightly larger than the thickness of the chip itself. For interconnection to be achieved within a stack of chip packages, it is necessary to provide structures for mechanical and electrical connection on both sides of each package (except for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the chip is mounted, the pads being connected through the substrate by conductive vias or the like. Solder balls or the like have been used to bridge the gap between the contacts on the top of a lower substrate to the contacts on the bottom of the next higher substrate. The solder balls must be higher than the height of the chip in order to connect the contacts. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129 (“the '129 Publication”), the disclosure of which is incorporated by reference herein in its entirety.


Microcontact elements in the form of elongated posts or pins may be used to connect microelectronic packages to circuit boards and for other connections in microelectronic packaging. In some instances, microcontacts have been formed by etching a metallic structure including one or more metallic layers to form the microcontacts. The etching process limits the size of the microcontacts. Conventional etching processes typically cannot form microcontacts with a large ratio of height to maximum width, referred to herein as “aspect ratio”. It has been difficult or impossible to form arrays of microcontacts with appreciable height and very small pitch or spacing between adjacent microcontacts. Moreover, the configurations of the microcontacts formed by conventional etching processes are limited.


Despite all of the above-described advances in the art, still further improvements in making and testing microelectronic packages would be desirable.


BRIEF SUMMARY OF THE INVENTION

A microelectronic package can include a substrate having a first surface and a second surface opposite therefrom, the substrate having a first conductive element at the first surface, and a plurality of wire bonds, each of the wire bonds having a base electrically connected to a corresponding one of the first conductive elements and having a tip remote from the base, each wire bond having edge surfaces extending from the tip toward the base. The microelectronic package can also include an encapsulation having a major surface facing away from the first surface of the substrate, the encapsulation having a recess extending from the major surface in a direction toward the first surface of the substrate, the tip of a first one of the wire bonds being disposed within the recess, and an electrically conductive layer overlying an inner surface of the encapsulation exposed within the recess, the electrically conductive layer overlying and electrically connected with the tip of the first one of the wire bonds. In a particular example, a system including any of the microelectronic packages described herein can further include one or more other electronic components electrically connected to the microelectronic package. In one embodiment, the system can also include a housing, the microelectronic package and the one or more other electronic components being assembled with the housing.


A method of forming a microelectronic assembly can include placing a mold frame onto tips of wire bonds extending from a surface of a first substrate, the mold frame having a contact surface and protrusions extending from the contact surface, the tips of the wire bonds contacting the protrusions, and depositing an encapsulation onto the surface of the first substrate, the encapsulation separating adjacent ones of the wire bonds from one another, the protrusions defining recesses extending into the encapsulation from a major surface thereof. The method can also include forming an electrically conductive layer overlying an inner surface of the encapsulation exposed within the recesses, the electrically conductive layer overlying and electrically connected with the tips of the wire bonds, and forming joining units at least partially extending within the recesses, the joining units electrically connected to the wire bonds, the joining units separated from the inner surfaces of the recesses and the tips of the wire bonds by the electrically conductive layer.


A method of forming a microelectronic assembly can include forming barrier layers overlying and electrically connected with respective tips of wire bonds extending from a surface of a first substrate, and forming joining units overlying respective ones of the barrier layers and electrically connected to corresponding ones of the wire bonds, the joining units separated from the tips of the wire bonds by the barrier layers. The method can also include placing a mold frame onto tips of the joining units, the tips of the wire bonds partially extending into a mold film defining a lower surface of the mold frame, and depositing an encapsulation onto the surface of the first substrate, the encapsulation separating adjacent ones of the wire bonds from one another, the joining units each having a first portion disposed in recesses extending into the encapsulation below a major surface thereof, the tips of the joining units extending above the major surface of the encapsulation.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a partial side sectional view of a microelectronic assembly including a first microelectronic package that can be formed using a wire bond interconnect process according to an embodiment of the invention, the wire bonds of the first microelectronic package electrically connected to corresponding conductive elements of a second microelectronic package.



FIG. 1B illustrates a top view of the first microelectronic package of FIG. 1A.



FIGS. 1C-1E illustrate partial top views of potential recess shapes extending into the major surface of the encapsulation of the first microelectronic package of FIG. 1A.



FIGS. 2A-2F illustrate partial side sectional views of in-process structures corresponding to stages of formation of the first microelectronic package of FIG. 1A.



FIGS. 3A-3D illustrates side sectional views of various potential film and mold frame designs that can be used in place of the film or mold frame shown in FIGS. 2A-2C.



FIG. 4 illustrates exemplary wire bond structures having ends coated by a barrier metal layer, according to an embodiment of the invention.



FIG. 5 illustrates a partial side sectional view of a microelectronic assembly including a first microelectronic package that can be formed using a wire bond interconnect process according to another embodiment of the invention, the wire bonds of the first microelectronic package electrically connected to corresponding conductive elements of a second microelectronic package.



FIGS. 6A-6F illustrate partial side sectional views of in-process structures corresponding to stages of formation of the first microelectronic package of FIG. 1A.



FIG. 7 illustrates a side sectional view of a variation of an in-process structure corresponding to one of the middle stages of the interconnect processes shown in FIGS. 2A-2F, the structure having a compliant layer disposed between the film and/or mold frame and the encapsulation.



FIG. 8 is a schematic depiction of a system according to one embodiment of the invention.





DETAILED DESCRIPTION

Disclosed herein is a structure and process that can improve interconnect quality and reliability of wire bonds that can have a thickness of less than 2 mils (˜51 microns), less than 1.5 mils (˜38 microns), or even less than 1 mil (˜25 microns). Some of the following advantages can be achieved: (i) reliable wire bonds with greater I/O, smaller pitch and smaller PoP thickness; (ii) improved mechanical reliability (e.g., by eliminating the conventional underfill requirement); (iii) improved heat dissipation by eliminating underfill; and (iv) improved wire barrier coating to reduce intermetallic compound (“IMC”) formation/diffusion rate and to enhance the thermal cycle and interface stress reliability.


As used in this disclosure, terms such as “upper,” “lower,” “top,” “bottom,” “above,” “below,” and similar terms denoting directions, refer to the frame of reference of the components themselves, rather than to the gravitational frame of reference. With the parts oriented in the gravitational frame of reference in the directions shown in the figures, with the top of drawing being up and the bottom of the drawing being down in the gravitational frame of reference, the top surface of the microelectronic element is, indeed, above the bottom surface of the microelectronic element in the gravitational frame of reference. However, when the parts are turned over, with the top of the drawing facing downwardly in the gravitational frame of reference, the top surface of the microelectronic element is below the bottom surface of the microelectronic element in the gravitational frame of reference.


As used in this disclosure with reference to a component, e.g., an interposer, microelectronic element, circuit panel, substrate, etc., a statement that an electrically conductive element is “at” a surface of a component indicates that, when the component is not assembled with any other element, the electrically conductive element is available for contact with a theoretical point moving in a direction perpendicular to the surface of the component toward the surface of the component from outside the component. Thus, a terminal or other conductive element which is at a surface of a substrate may project from such surface; may be flush with such surface; or may be recessed relative to such surface in a hole or depression in the substrate. As used herein, the terms “about” and “approximately” with respect to a given numerical value means that the actual value is within a typical manufacturing tolerance known to one skilled in the relevant art of the given numerical value.



FIG. 1A illustrates a particular type of microelectronic assembly 5 including a first microelectronic package 10 and a second microelectronic package 12 joined thereto. The microelectronic package 10 can include packaging structure, for example, a generally planar element in the form of a substrate 20 having a first surface 21 and a second surface 22 opposite the first surface. The substrate 20 may include a dielectric element, which in some cases can consist essentially of polymeric material, e.g., a resin or polyimide, among others, and which may be substantially flat. The substrate 20 may be sheet-like and may be thin. Alternatively, the substrate 20 can include a dielectric element having a composite construction such as glass-reinforced epoxy, e.g., of BT resin or FR-4 construction. In particular embodiments, the dielectric element can include one or more layers of organic dielectric material or composite dielectric materials, such as, without limitation: polyimide, polytetrafluoroethylene (“PTFE”), epoxy, epoxy-glass, FR-4, BT resin, thermoplastic, or thermoset plastic materials.


In one example, the substrate can include a supporting element of material having a coefficient of thermal expansion (“CTE”) of less than 12 parts per million per degree Celsius (“ppm/° C.”), on which the contacts 24, terminals 25, and other conductive structure can be disposed. For example, such low CTE element can consist essentially of glass, ceramic, semiconductor material, or liquid crystal polymer material, or a combination of such materials. Alternatively, the substrate 20 can be a circuit panel or circuit board. In one example thereof, the substrate 20 can be a module board of a dual-inline memory module (“DIMM”). In one example, the substrate 20 can include a supporting element of material having a CTE of less than 30 ppm/° C. in the plane of the dielectric element, i.e., in a direction along its surface.


The first surface 21 and second surface 22 can be substantially parallel to each other and spaced apart at a distance perpendicular to the surfaces defining the thickness of the substrate T. The thickness of the substrate 20 can be within a range of generally acceptable thicknesses for the present application. In one embodiment, the distance between the first surface 21 and the second surface 22 is between about 10-500 μm. For purposes of this discussion, the first surface 21 may be described as being positioned opposite or remote from the second surface 22. Such a description, as well as any other description of the relative position of elements used herein that refers to a vertical or horizontal position of such elements is made for illustrative purposes only to correspond with the position of the elements within the drawings, and is not limiting.


First and second transverse directions D1, D2 (shown in FIG. 1B) parallel to the first surface 21 of the substrate 20 are referred to herein as “horizontal” or “lateral” directions, whereas the directions (e.g., D3 shown in FIG. 1A) perpendicular to the first surface are referred to herein as upward or downward directions and are also referred to herein as the “vertical” directions. The directions referred to herein are in the frame of reference of the structures referred to. Thus, these directions may lie at any orientation to the normal “up” or “down” directions in a gravitational frame of reference. A statement that one feature is disposed at a greater height “above a surface” than another feature means that the one feature is at a greater distance in the same orthogonal direction away from the surface than the other feature. Conversely, a statement that one feature is disposed at a lesser height “above a surface” than another feature means that the one feature is at a smaller distance in the same orthogonal direction away from the surface than the other feature.


Electrically conductive contacts 23 and electrically conductive terminals 24, in the form of conductive pads, lands, or conductive posts, can be arranged, respectively, at the first and second surfaces 21, 22. The contacts 23 and the terminals 24 can be flat, thin electrically conductive elements. The contacts 23 and the terminals 24 can be a solid metal material, such as copper, gold, nickel, palladium, or other materials that are acceptable for such an application, including various alloys including one or more of copper, gold, nickel, palladium or combinations thereof. At least some of the contacts 23 can be interconnected to corresponding terminals 24. Such an interconnection may be completed using vias 25 formed in the substrate 20 that can be lined or filled with conductive metal that can be formed of the same material as the contacts 23 and the terminals 24. Optionally, the contacts 23 and the terminals 24 can be further interconnected to one another by traces (not shown) on the substrate 20.


The terminals 24 can be configured for connecting the microelectronic package 10 to at least one component external to the microelectronic package. The terminals 24 can function as endpoints for the connection of the microelectronic package 10 with corresponding electrically conductive elements of an external component such as the contacts of a circuit panel, e.g., printed wiring board, flexible circuit panel, socket, other microelectronic assembly or package, interposer, or passive component assembly, among others.


The microelectronic package 10 can include joining elements 11 attached to the terminals 24 for connection with an external component. The joining elements 11 can be, for example, masses of a bond metal such as solder, tin, indium, a eutectic composition or combination thereof, or another joining material such as an electrically conductive paste, an electrically conductive adhesive or electrically conductive matrix material or a combination of any or all of such bond metals or electrically conductive materials. In a particular embodiment, the joints between the terminals 24 and contacts of an external component can include an electrically conductive matrix material such as described in U.S. Pat. Nos. 8,890,304 and 9,117,811, the disclosures of which are hereby incorporated herein by reference. In a particular embodiment, the joints can have a similar structure or be formed in a manner as described therein.


The microelectronic package 10 can include a microelectronic element 30 joined to the first surface 21 of the substrate 20. The microelectronic element 30 can be mechanically coupled to the first surface 21 of the substrate 20, e.g., with an adhesive material, with a bottom surface 31 of the microelectronic element confronting the first surface of the substrate. The microelectronic element 30 can have a top surface 32 opposite the bottom surface 31. The microelectronic element can have element contacts (not shown) at either or both of the bottom and top surfaces 31, 32. As described herein, the element contacts of the microelectronic element 30 can also be referred to as “chip contacts.” In one example, the element contacts of the microelectronic element 30 can be at one of the bottom or top surfaces 31 or 32 within a central region thereof. For example, the element contacts can be arranged in one or two parallel rows adjacent the center of the bottom or top surface 31 or 32.


Although in the figures, the particular electrical connection between the microelectronic element 30 and the substrate 20 is not shown, the invention contemplates various types of electrical connections between the microelectronic element and the substrate, including, for example, a “flip-chip” configuration, where element contacts (not shown) at the bottom surface 31 of the microelectronic element 30 can be connected to conductive elements at the first surface 21 of the substrate 20, such as by conductive joining elements (not shown) that are positioned beneath the microelectronic element. In some embodiments, such conductive joining elements can be, for example, masses of a bond metal such as solder, tin, indium, a eutectic composition or combination thereof, or another joining material such as an electrically conductive paste, an electrically conductive adhesive or electrically conductive matrix material or a combination of any or all of such bond metals or electrically conductive materials.


In one example, element contacts at the bottom surface 31 of the microelectronic element 30 can be electrically connected with contacts at the second surface 22 of the substrate 20 by conductive structure (e.g., wire bonds or lead bonds) extending through an aperture in the substrate. In another example, element contacts at the top surface 32 of the microelectronic element 30 can be electrically connected with contacts at the first surface 21 of the substrate 20 by conductive structure (e.g, wire bonds) extending above the top surface of the microelectronic element.


In some embodiments, the microelectronic element 30 can each be a semiconductor chip, a wafer, or the like. For example, the microelectronic element 30 can each comprise a memory storage element such as a dynamic random access memory (“DRAM”) storage array or that is configured to predominantly function as a DRAM storage array (e.g., a DRAM integrated circuit chip). As used herein, a “memory storage element” refers to a multiplicity of memory cells arranged in an array, together with circuitry usable to store and retrieve data therefrom, such as for transport of the data over an electrical interface. In one example, the microelectronic element 30 can have memory storage array function. In a particular embodiment, the microelectronic element 30 can embody a greater number of active devices to provide memory storage array function than any other function.


The microelectronic element 30 can embody a plurality of active devices (e.g., transistors, diodes, etc.), a plurality of passive devices (e.g., resistors, capacitors, inductors, etc.), or both active devices and passive devices. In a particular embodiment, the microelectronic element 30 can be configured to have a predominant function as a logic chip, e.g., a programmable general or special purpose processor, a microcontroller, a field programmable gate array (“FPGA”) device, an application specific integrated circuit (“ASIC”), a digital signal processor, among others, or a predominant function other than as a logic chip, such as a memory, for example, a volatile memory storage area, e.g., dynamic random access memory (“DRAM”), static random access memory (“SRAM”), a nonvolatile memory storage array such as flash memory or magnetic random access memory (“MRAM”). As such, the embodiment of FIG. 1 is in the form of an in-process packaged microelectronic element such as a semiconductor chip assembly that is used in computer or other electronic applications.


Although in the figures, a single microelectronic element 30 is shown in the microelectronic package 10 (and in the other microelectronic packages herein), each microelectronic package in this disclosure can include a plurality of microelectronic elements, arranged either adjacent to one another along the first surface 21 of the substrate 20, in a vertical stack overlying the first surface of the substrate, or in other configurations known in the art.


The microelectronic package 10 can include a plurality of wire bonds 40 that can be joined with at least some of the contacts 23. Each of the wire bonds 40 can be bonded at a base 41 thereof, such as a ball bond or a wedge bond, to a respective contact 23. Each of the wire bonds 40 can extend to a tip 42 (i.e., end surface) remote from the base 41 of such wire bond and remote from the substrate 20, and can include an edge surface 43 extending from the tip 42 to the base 41. In particular examples, the wire bonds 40 can have a diameter of 2 mils (˜51 microns), less than 2 mils, 1.5 mils (˜38 microns), less than 1.5 mils, 1 mil (˜25 microns), or less than 1 mil.


The tips 42 of the wire bonds 40 can be available for electrical connection, either directly or indirectly as through a joining element 13 (e.g., a solder ball or other conductive joining material), electrically conductive contact, or other features discussed herein, to conductive elements 14 of another component external to the first microelectronic package 10, shown in FIG. 1A, for example, as the second microelectronic package 12. The tips 42 or the unencapsulated ends 44 of the wire bonds 40 and/or the joining elements 13 can therefore function as upper terminals of the first microelectronic package 10.


The particular size and shape of bases 41 of the wire bonds 40 can vary according to the type of material used to form the wire bonds, the desired strength of the connection between the wire bonds and the contacts 23, or the particular process used to form the wire bonds. The wire bonds 40 can have a construction and can be formed on the substrate 20 extending from the contacts 23 in any suitable manner, such as described in U.S. Patent Application Pub. No. 2013/0093087, filed Feb. 24, 2012, which is hereby incorporated by reference herein.


As shown in FIG. 1A, each wire bond 40 extends substantially vertically (parallel to the direction D3) between the base 41 and the tip 42. However, that need not always be the case. Any of the embodiments of the invention described herein contemplate having wire bonds 40 extend in a variety of directions and having one or more bends in the wire bonds that change the direction in which the wire bonds extend along its length between the base 41 and the tip 42. For example, the wire bonds 40 can have shapes and bends as shown and described in pending U.S. patent application Ser. No. 15/086,899, filed Mar. 31, 2016, which is hereby incorporated by reference herein.


The invention also contemplates the use of a stiffening or reinforcing dielectric layer that can extend between adjacent ones of the individual wire bonds, formed over lower portions of the edge surfaces 43 of the wire bonds 40. Such a reinforcing dielectric layer can improve the stiffness of the wire bonds, so that the position of the tips 42 can be maintained when a molding film is placed over the tips while the encapsulation 50 is formed. Such a reinforcing dielectric layer that may be added to the embodiments described herein is shown and described in pending U.S. patent application Ser. No. 15/086,899, filed Mar. 31, 2016, which is hereby incorporated by reference herein.


The microelectronic package 10 can include an encapsulation 50 that can be formed extending between the individual wire bonds 40 and overlying the top surface 32 of the microelectronic element 30 and the first surface 21 of the substrate 20. The encapsulation 50 can be formed from a dielectric material, such as those materials known in the art as being typically used for encapsulations or overmolds. In the embodiment of FIG. 1A, the encapsulation 50 can be formed, for example, by film-assisted molding or like techniques, over the portions of the first surface 21 of the substrate 20 that are not otherwise covered by or occupied by the microelectronic element 30, or the contacts 23.


The encapsulation 50, desirably an integral, continuous dielectric layer, can serve to protect the conductive elements within the microelectronic package 10, particularly the wire bonds 40. The encapsulation 50 can also substantially cover the microelectronic element 30, the wire bonds 40, including the bases 41 and at least a portion of edge surfaces 43 thereof. In addition, the encapsulation 50 can be formed over side surfaces 33 of the microelectronic element 30 that extend between the bottom and top surfaces 31, 32. The encapsulation 50 can protect the microelectronic element 30 to avoid electrical short circuiting between the wire bonds 40, and to help avoid malfunction or possible damage due to unintended electrical contact between a wire bond and the microelectronic element.


The encapsulation 50 can allow for a more robust structure that is less likely to be damaged by testing thereof or during transportation or assembly to other microelectronic structures. The encapsulation 50 can be formed from a dielectric material with insulating properties such as that described in U.S. Patent Application Pub. No. 2010/0232129, which is hereby incorporated by reference herein.


In some embodiments, portions of the wire bonds 40 can remain uncovered by the encapsulation 50, which can also be referred to as unencapsulated portions 44, thereby making the wire bonds available for electrical connection to a conductive feature or element located above a portion of the encapsulation 50. In some embodiments, at least the tips 42 of the wire bonds 40 and optionally portions of the edge surfaces 43 can remain uncovered by the encapsulation 50, such as described in U.S. Patent Application Pub. No. 2013/0093087, which is hereby incorporated by reference herein. In other words, the encapsulation 50 can cover the entire microelectronic package 30 from the first surface 21 and above, with the exception of a portion of the wire bonds 40, such as the tips 42, portions of the edge surfaces 43, or combinations thereof.


The encapsulation can have an exposed major surface 51 that can define a top surface of the first microelectronic package 10. The encapsulation can have one or more shaped recesses 52 that can extend downward from the major surface 51 in the third direction D3 by a distance R, and the unencapsulated portions 44 of the wire bonds 40 can be exposed within the recesses 52. As shown in FIG. 1A, a particular first microelectronic package 10 can include recesses 52, 52a, 52b having different shapes from one another. The tips 42 of the wire bonds 40 and portions of the edge surfaces 43 can remain uncovered by the encapsulation 50.


The tips 42 of the wire bonds 40 can extend within the recesses 52 to a location below a plane P defined by the major surface 51 of the encapsulation 50. In other embodiments, the tips 42 of the wire bonds 40 may extend to a location at the plane P defined by the major surface 51 of the encapsulation, or the tips of the wire bonds may extend to a location above the plane P defined by the major surface of the encapsulation. The shaped recesses 52 can each define a respective inner surface 53, which is a surface of the encapsulation exposed within each respective shaped recess. Although FIG. 1A shows the tips 42 and portions of the edge surfaces 43 being exposed within each of the corresponding recesses, that need not always be the case. In one example, only the tips 42 of the wire bonds 40 may be exposed within the recesses 52 and may be uncovered by the encapsulation 50, while the entire length of the edge surfaces 43 may be in contact with the encapsulation.


As can be seen in FIG. 1A, one or more of the shaped recesses 52 can have an electrically conductive adhesion and/or electrically conductive barrier layer 54 deposited (e.g., by plating) onto the inner surface 53 of the encapsulation exposed within the respective recess, and deposited onto the tips 42 of the wire bonds 40 and the edge surfaces 43 of the wire bonds adjacent to the tips. The barrier layer 54 can comprise a diffusion barrier layer comprising, for example, one or more of nickel, gold, silver, and palladium.


It is desirable that the conductive barrier layer 54 only partially fill the volume within the shaped recesses 52, so that a portion of the corresponding joining units 13 may extend into the recesses and fill the remaining volume therein. In variations of all of the embodiments herein, an electrically conductive barrier layer such as the barrier layer 54 may be used with or without an electrically conductive adhesion layer, and alternatively, an electrically conductive adhesion layer may be used without an electrically conductive barrier layer. In such variations, the barrier layer 54 may be referring to at least one of an electrically conductive barrier layer and/or an electrically conductive adhesion layer.


Although the conductive barrier layer 54 is shown as coating the entire inner surface 53 of the encapsulation 50 exposed within the respective recess 52, that need not always be the case. In a particular example, the barrier layer 54 may only cover the unencapsulated portions 44 of the wire bonds 40. In another example, the barrier layer 54 may cover the unencapsulated portions 44 of the wire bonds 40 and a portion of the inner surface 53 of the encapsulation 50 within the recess 52, leaving another portion of the inner surface of the encapsulation within the recess uncovered by the barrier layer.


Although FIG. 1A shows the barrier layer 54 covering the tips 42 and portions of the edge surfaces 43 being exposed within each of the corresponding recesses 52, that need not always be the case. In one example, only the tips 42 of the wire bonds 40 may be exposed within the recesses 52 and may be covered by the barrier layer 54, while the entire length of the edge surfaces 43 may be in contact with the encapsulation and may not be covered by the barrier layer.


The presence of the conductive barrier layer 54 at the unencapsulated portion 44 of the wire bond 40 (e.g., the tips 42 of the wire bonds and the edge surfaces 43 of the wire bonds adjacent to the tips) can protect the tip of the wire bond from forming intermetallic compounds with the material of the joining unit 13, thereby preventing or reducing potential weakening of the structure of the tip of the wire bond that may result from forming such intermetallic compounds.


Such growth of intermetallic compounds at the tips 42 and/or the unencapsulated portions 44 of the sure bonds 40 can be a significant problem for BVA and BGA interconnects comprising wire bonds that are about 1 mil or less in diameter (about 25 microns or less). The structures described herein (e.g., the conductive barrier layer 54 or other barrier layers described below) can result in reduced stress at the BVA and BGA interconnection interface, which can reduce the metal crystal formation rate. Such structures also permit joining of microelectronic structures with a reduced joining unit size (e.g., the size of the joining units 13), which can reduce diffusion kinetics and the thickness of joined PoP structures.


In one embodiment, such as when the barrier layer 54 includes Nickel, the barrier layer may completely separate the material of the electrically conductive joining unit 13 from the inner surface 53 of the recess 52 and from the tip 42 of the wire bond 40, thereby preventing the formation of intermetallic compounds between the joining unit (e.g., comprising tin solder) and the wire bond (e.g., comprising copper). For example, in an embodiment in which the barrier layer 54 includes a layer of nickel overlying the unencapsulated portion 44 of the wire bond 40 and a layer of gold overlying the layer of nickel to prevent or minimize oxidation of the nickel, the nickel portion of the barrier layer may separate the joining unit 13 from the inner surface 53 of the recess 52 and from the unencapsulated portion of the wire bond (the gold layer may diffuse into the solder of the joining unit).


In an alternative embodiment, such as when the barrier layer 54 includes palladium, the barrier layer may completely diffuse into the material of the electrically conductive joining unit 13 (e.g., comprising tin solder), such that a layer of palladium in its original form will not separate material of the joining unit from inner surface 53 of the recess 52 and from the tip 42 of the wire bond 40 (e.g., comprising copper). In such an embodiment, intermetallic compounds of tin/copper/palladium would form around the unencapsulated portion 44 of the wire bond 40, and intermetallic compounds of tin/palladium would form at the inner surface 53 within the recess 52, so the original material of the joining unit 13 would not be fully separated from the inner surface of the recess or from the tip 42 or unencapsulated portion of the wire bond. However, the tin/copper/palladium and tin/palladium intermetallic compounds could together be described as an electrically conductive layer overlying the inner surface 53 of the encapsulation 50 exposed within the recess 52, the electrically conductive layer overlying and electrically connected with the tip 42 (and/or the unencapsulated portion 44) of the wire bond 40.


Compared to conventional structures, the shaped recesses of FIG. 1A can permit increased surface area of contact of a joining unit such as the solder ball 13 and the inner surface 53 of the encapsulation exposed within the shaped recess 52, and/or increased surface area of contact of a joining unit such as the solder ball 13 and a top surface 55 of the barrier layer 54 exposed within the shaped recess 52. The structure of the shaped recesses 52 with the tips 42 of the wire bonds 40 and portions of the joining units 13 therein can reduce stress experienced by the unencapsulated portions 44 of the wire bonds, for example, due to differential thermal expansion between the first and second microelectronic packages 10, 12 bonded together by the joining units. Such a reduced stress on the unencapsulated portions 44 of the wire bonds 40 can reduce cracking near the tip 42 of the wire bond and/or at the joint between the joining unit 13 and the corresponding conductive element 14 of the second microelectronic package 12, thereby improving reliability of the electrical connections between the joined first and second microelectronic packages 10, 12.


The shaped recesses 52 can aid in reliability of the bonds between the wire bonds 40 and the conductive elements 14 joined with the wire bonds via a joining material 13 such as solder. These shaped recesses 52 can also permit the wire bonds 40 of the first microelectronic package 10 to be joined with the conductive elements 14 of the second microelectronic package 12 with a decreased standoff distance between the confronting surfaces 51, 62 of the two microelectronic packages. The structures described herein (e.g., the shaped recesses 52) can result in reduced stress at the BVA and BGA interconnection interface. Such structures also permit joining of microelectronic structures with a reduced joining unit size (e.g., the size of the joining units 13), which can reduce diffusion kinetics and the thickness of joined microelectronic structures.


The shaped recess 52 can have various shapes, as illustrated in examples shown in FIGS. 1A, 1C, 1D, and 1E. In one embodiment, the shaped recesses 52 can have a shape that is a section of a sphere, such as the lower half of a sphere, for example. In a particular example shown on the left side of FIG. 1A and in FIG. 1C, a shaped recess 52a can have extended portions 56 that penetrate further into the encapsulation 50 at a significant angle beyond the smoothly-varying contour of the rest of the inner surface 53 of the recess. The shaped recess 52a has four extended portions 56 disposed at 90° intervals about a central axis A of the recess that extends parallel to the vertical direction D3. Although four extended portions are shown in FIG. 1C, the shaped recesses 52 can have any number of extended portions 56, the extended portions can extend from any portion of the inner surface 53 of the recess, and the extended portions can have any geometric distribution along the inner surface of the recess.


Although in FIG. 1A, the conductive barrier layer 54 is shown as extending within the extended portions 56 of the recess 52a, that need not always be the case. In one example, the conductive barrier layer 54 may only cover the unencapsulated portions 44 of the wire bonds 40, leaving the extended portions 56 uncovered by the barrier layer. In another example, the barrier layer 54 may cover the unencapsulated portions 44 of the wire bonds 40 and at least a part of one or more of the extended portions 56 of the recess 52, leaving other portions of the inner surface of the encapsulation within the recess uncovered by the barrier layer, and/or other parts of one or more of the extended portions of the recess uncovered by the barrier layer.


In another example shown on the left side of FIGS. 1A and 1n FIG. 1D, a shaped recess 52b can have a rectangular cross section, such as that shown in FIG. 1A. The shaped recess 52b can have a bottom surface 53a and a sidewall 53b, the sidewalls extending away from the bottom surface at a substantial angle. As shown in FIG. 1D, the sidewall 53b of the recess 52b may have a circular top view. In other embodiments, the top view of the sidewall 53b can have any other shape, such as an oval, ellipse, or another smoothly-varying curve, or other regular or irregular polygons, such as a square, rectangle, hexagon, octagon, or the like.


Although the example shaped recesses 52a and 52b shown in FIGS. 1C and 1D have a single unencapsulated portion 44 of a wire bond 40 exposed within each recess, that need not be the case. As can be seen in FIG. 1E, a single recess 52 may have a plurality of unencapsulated portions 44 of wire bonds 40 exposed therein or extending therethrough, and such recesses may have any shape. For example, the recess 52c has an oblong or channel shape having a long dimension extending in the lateral direction D1, and the recess has three unencapsulated portions 44 of wire bonds 40 exposed therein. In another example, the recess 52d has an oblong or channel shape having a long dimension extending in the lateral direction D2, and the recess has three unencapsulated portions 44 of wire bonds 40 exposed therein.


In yet another example, the recess 52e has an oblong or channel-shaped lobes, one lobe having a long dimension extending in the lateral direction D1, and another lobe having a long dimension extending in the lateral direction D1, and the recess has five unencapsulated portions 44 of wire bonds 40 exposed therein. In still another example, the recess 52f has a square shape, extending across a plurality of unencapsulated portions 44 of wire bonds 40 exposed therein in both the D1 and D2 lateral directions, such that the tips 42 of the wire bonds form a three-by-three array within a single recess. The invention contemplates other shapes of recesses 52 having any number of unencapsulated portions 44 of wire bonds 40 exposed therein in one or both of the D1 and D2 lateral directions.



FIG. 1B shows one exemplary configuration of upper terminals comprising solder balls or other joining units 13 exposed at the major surface 51 of the encapsulation 50 of the first microelectronic element 10, each joining unit being electrically connected with a corresponding one of the wire bonds 40. As can be seen in FIG. 1B, the upper terminals are disposed in an array having a plurality of terminals extending in each of the first and second lateral directions D1, D2. As shown, the upper terminals are generally disposed at the periphery of the major surface 51, and a central region 15 of the major surface overlying the microelectronic element 30 is depopulated (i.e., devoid of upper terminals). In other embodiments, the invention contemplates any configuration of upper terminals across the major surface 51 of the encapsulation 50, and the central region 15 may be populated or unpopulated by upper terminals.


The second microelectronic package 12 shown in FIG. 1A can have any structure. In the example shown, the second microelectronic package 12 has a substrate 60 having opposed first and second surfaces 61, 62. The second microelectronic package 12 has a microelectronic element 63 joined to the first surface 61 of the substrate 60 and electrically conductive elements 14 at the second surface 62. The second microelectronic package 12 has an encapsulation 64 overlying the first surface 61 and the microelectronic element 63.


A method of fabrication of the microelectronic assembly 5 of FIG. 1A will now be described in accordance with FIGS. 2A-2F. As can be seen in FIG. 2A, an exemplary mold frame 70 can be made with protrusions 71 having different shapes extending from its lower surface 72. As shown in FIG. 2A, a particular mold frame 70 can include protrusions 71 having different shapes from one another. Portions of the protrusions 71 that are intended to be placed over the tips 42 of the wire bonds 40 can be portions of a molding film 73 that are configured to be penetrated by the tips of the wire bonds. In one embodiment, the molding film 73 can be made from a water soluble plastic material such that it can be removed by exposure to water without affecting the other components of the in-process unit or the microelectronic package 10. In another embodiment, the molding film 70 can be removed from the encapsulation 50 (FIGS. 2C and 2D) after exposure to ultraviolet light. The conductive contacts 43 at the first surface 21 of the substrate 20, from which the wire bonds 40 extend, are not shown in FIGS. 2A-2F.


Referring to FIG. 2B, the protrusions 71 can be placed over the tips 42 of the wire bonds 40, to secure the locations of the wire bonds while the encapsulation 50 is formed (FIG. 2C). The mold frame 70 can be lowered onto the tips 42 of the wire bonds 40 extending from the first surface 21 of the substrate 20, such that the tips of the wire bonds that will later become the unencapsulated portions 44 penetrate into portions of the molding film 73. Then, as can be seen in FIG. 2C, the encapsulation 50 can be formed within the mold frame 70, surrounding the exposed edge portions 43 of the wire bonds 40 and filling the space between the first surface 21 of the substrate 20 and the lower surface 72 of the mold frame.


Then, referring to FIG. 2D, the mold frame 70 can be removed, leaving the recesses 52 extending below the major surface 51 of the encapsulation 50 at the location of the tips 42 of the wire bonds 40, with the unencapsulated portions 44 of the wire bonds disposed within the recesses. After the mold frame 70 is removed, the molding film 73 can be removed from the encapsulation 50, such as by applying a suitable chemical to detach or dissolve the molding film. After removal of the molding film 70, the unencapsulated portions 44 of the wire bonds 40 can remain uncovered by the encapsulation 50.


Next, referring to FIG. 2E, an electrically conductive adhesion material can be deposited within the recesses 52, and an electrically conductive barrier material can be deposited into the recesses, overlying the conductive adhesion material. Excess conductive adhesion and barrier material can be removed from portions of the major surface 51 of the encapsulation extending between adjacent ones of the recesses 52. Removal of the excess conductive adhesion and barrier material can leave behind a conductive adhesion and/or conductive barrier layer 54 deposited onto the inner surfaces 53 of the encapsulation 50 exposed within the shaped recesses 52, and deposited onto the unencapsulated portions 44 of the wire bonds 40 (i.e., the tips 42 of the wire bonds and the edge surfaces 43 of the wire bonds adjacent to the tips).


Then, referring to FIG. 2F, the joining units 13 (e.g., solder balls) can be deposited into the recesses 52 overlying the remaining portions of the conductive adhesion and/or barrier layer 54 and overlying the unencapsulated portions 44 of the wire bonds 40, which have been coated by the conductive adhesion and/or barrier layer. Next, referring again to FIG. 1A, the second microelectronic package 12 can be joined with the first microelectronic package 10 by joining the conductive elements 14 of the second microelectronic package with corresponding ones of the joining units 13.


The design of the mold frame 70 and the molding film 73 can be replaced with any of the alternative designs shown and described with respect to FIGS. 3A-3D. For simplicity, only a single protrusion 71a-71d is shown in each of FIGS. 3A-3D, but the mold frames 70a-70d may include any number of protrusions. As shown in FIG. 3A, a mold frame 70a can have a plurality of protrusions 71a partially or entirely formed by material of the molding film 73a. Such protrusions 71a formed by material of the molding film 73a can be partially disposed in corresponding recesses 75a extending below the lower surface 72 of the mold frame 70a.


As shown in FIG. 3B, a mold frame 70b can have one or more regions each formed by material of the molding film 73b, each such region including one or more protrusions 71b. Such regions formed by material of the molding film 73b can be partially disposed in corresponding recesses 75b extending below the lower surface 72 of the mold frame 70a. Each of the regions formed by material of the molding film 73b can define corresponding portions of the lower surface 72 of the mold frame 70a. As shown in FIG. 3C, a mold frame 70c can have one or more protrusions 71c formed partially of the material of the mold frame and extending from the lower surface 72. Each of the protrusions 71c can have one or more portions thereof formed by material of the molding film 73c, each portion either extending from a surface of the respective protrusion or disposed at least partially in a recess 75c extending below a surface of the protrusion.



FIG. 3D shows a mold frame 70d that is a variant of the mold frame 70b of FIG. 3B. The mold frame 70d can have one or more regions each formed by material of the molding film 73d, each such region including one or more protrusions 71d. Each of the regions formed by material of the molding film 73d can define corresponding portions of the lower surface 72 of the mold frame 70d. Each region of the molding film 73d can have one or more cavities 75d therein that can be filled by a compliant material 76 having a Young's modulus lower than the Young's modulus of the material of the molding film. As shown in the example of FIG. 3D, one or more of the protrusions 71d can have a portion thereof formed by material of the molding film 73d, and a portion thereof formed by material of the compliant material 76.



FIG. 4 shows an exemplary microelectronic package 400 having a substrate 420, a microelectronic element 430 joined to a first surface 421 of the substrate, an encapsulation 450 overlying the first surface and the microelectronic element, and a plurality of wire bonds 440 extending away from electrically conductive contacts 423 through the encapsulation. The wire bonds 440 have unencapsulated portions 444 at the tips 442 and portions of the edge surfaces 443 adjacent the tips that are not covered by the encapsulation 450 and that extend above the major surface 451 of the encapsulation.


In this embodiment, the unencapsulated portions 444 of the wire bonds 440 are coated by a barrier layer 445 that can comprise a diffusion barrier layer comprising, for example, one or more of nickel, gold, and silver. Such a barrier layer 445 can prevent intermetallic structures from forming between the metal of the wire bonds 440 and the material of joining units such as solder balls. The barrier layer 445 can be, for example, an electrolytically coated barrier on exposed copper material of the wire bonds 440. Such a barrier layer 445 can be deposited onto the unencapsulated portions 444 or the entire edge surfaces 443 of any of the wire bonds of any of the embodiments described herein.



FIG. 5 illustrates a particular type of microelectronic assembly 500 that is a variation of the microelectronic assembly 5 of FIG. 1A. All features and variations of the microelectronic assembly 500 are identical to those described above with reference to the microelectronic assembly 5, except as otherwise noted below. It should be understood that any features and variations described above with reference to the microelectronic assembly 5 can also be applied to and/or combined with the features of the microelectronic assembly 500.


The microelectronic assembly 500 can include a first microelectronic package 510 and a second microelectronic package 512 joined thereto. The microelectronic package 510 can include packaging structure, for example, a generally planar element in the form of a substrate 20 having a first surface 21 and a second surface 22 opposite the first surface. The microelectronic package 510 can include a microelectronic element 530 joined to the first surface 521 of the substrate 520. The microelectronic element 530 can be an active or passive microelectronic component.


The microelectronic package 510 can include a plurality of wire bonds 540 that can be joined with at least some electrically conductive contacts at the first surface 521 (not shown in FIG. 5 for simplicity). Each of the wire bonds 540 can be bonded at a base 541 thereof, such as a ball bond or a wedge bond, to a respective conductive contact at the first surface 521. Each of the wire bonds 540 can extend to a tip 542 remote from the base 541 of such wire bond and remote from the substrate 520, and can include an edge surface 543 extending from the tip 542 to the base 541.


The tips 542 of the wire bonds 540 can be available for electrical connection, either directly or indirectly as through a joining element 513, to conductive elements 514 of another component external to the first microelectronic package 510, shown in FIG. 5, for example, as the second microelectronic package 512. The tips 542 or the unencapsulated ends 544 of the wire bonds 540 and/or the joining elements 513 can therefore function as upper terminals of the first microelectronic package 510. The microelectronic package 510 can include an encapsulation 550 that can be formed extending between the individual wire bonds 540 and overlying the microelectronic element 530 and the first surface 521 of the substrate 520. The encapsulation can have an exposed major surface 551 that can define a top surface of the first microelectronic package 510.


In some embodiments, portions of the wire bonds 540 can remain uncovered by the encapsulation 550, which can also be referred to as unencapsulated portions 544, thereby making the wire bonds available for electrical connection to a conductive feature or element located above a portion of the encapsulation 550. In some embodiments, at least the tips 542 of the wire bonds 540 and optionally portions of the edge surfaces 543 can remain uncovered by the encapsulation 550. The encapsulation 550 can have one or more recesses 552 that can extend downward from the major surface 551 in the third direction D3, and the unencapsulated portions 544 of the wire bonds 540 can be exposed within the recesses.


As can be seen in FIG. 5, in some embodiments, each of the recesses 552 can define a maximum width (or maximum diameter) in the direction D1 in a plane P1 parallel to and below the major surface 551, and a surface width (or surface diameter) in a plane P2 coincident with the major surface, the maximum width (or maximum diameter) being greater than the surface width (or surface diameter). Likewise, in some embodiments, the portion of each of the joining units 513 extending within the recesses 552 can define a maximum width (or maximum diameter) in the direction D1 in the plane P1 parallel to and below the major surface 551, and a surface width (or surface diameter) in the plane P2 coincident with the major surface, the maximum width (or maximum diameter) being greater than the surface width (or surface diameter).


Similar to the wire bonds 440 of FIG. 4, the unencapsulated portions 544 of the wire bonds 540 of FIG. 5 can be coated by a barrier layer 545 (visible in FIG. 6B) that can comprise a diffusion barrier layer comprising, for example, one or more of nickel, gold, and silver. Such a barrier layer 545 can prevent intermetallic structures from forming between the metal of the wire bonds 540 and the material of the joining units 513. Such a barrier layer 545 can be deposited onto the unencapsulated portions 544 (as shown in FIG. 6B) or the entire edge surfaces 443 of any of the wire bonds of any of the embodiments described herein.


The second microelectronic package 512 shown in FIG. 5 can have any structure. In the example shown, the second microelectronic package 512 has a substrate 560 having opposed first and second surfaces 561, 562. The second microelectronic package 512 has a microelectronic element 563 joined to the first surface 561 of the substrate 560 and electrically conductive elements 514 at the second surface 562. The second microelectronic package 512 may also include an encapsulation (not shown in FIG. 5) overlying the first surface 561 and the microelectronic element 563.


A method of fabrication of the microelectronic assembly 500 of FIG. 5 will now be described in accordance with FIGS. 6A-6F. As can be seen in FIG. 6A, the substrate 520 has a plurality of wire bonds 540 extending from electrically conductive contacts (not shown) at the first surface 521 from bases 541 to tips 542 remote from the bases. One or more microelectronic elements 530 may optionally be provided and attached to the first surface 521 of the substrate 520. The substrate 520 can be a substrate, frame or film, and the substrate may include one or more active or passive microelectronic components therein.


Next, referring to FIG. 6B, the tips 542 and edge surfaces 543 of the wire bonds 540 adjacent to the tips (which will later become the unencapsulated portions 544) can be coated by a barrier layer 545 that can comprise a diffusion barrier layer comprising, for example, one or more of nickel, gold, and silver. In one example, the barrier layer 545 can be an electroless nickel immersion gold (“ENIG”) coating.


Then, referring to FIG. 6C, the tips 542 and edge surfaces 543 of the wire bonds 540 adjacent to the tips (which will later become the unencapsulated portions 544) can have the joining units 513 applied thereto, overlying the barrier layer 545. In one example, the in-process assembly can be inverted, and the tips 542 and edge surfaces 543 of the wire bonds 540 adjacent to the tips can be dipped into a liquid solder bath and then removed, leaving behind solder balls 513 overlying the barrier layer 545.


Next, referring to FIG. 6D, the in-process assembly can be inverted again and placed into a molding chamber. A mold frame 570 having a molding film 573 defining the lower surface 572 of the mold frame can be lowered onto the in-process assembly, with tips 515 of the joining units 513 at least partially penetrating into portions of the molding film, thereby creating recesses 575 extending below the lower surface 572. Then, as can be seen in FIG. 6E, the encapsulation 550 can be formed within the mold frame 570, surrounding the exposed edge portions 543 of the wire bonds 540 and filling the space between the first surface 521 of the substrate 520 and the lower surface 572 of the mold frame.


Then, referring to FIG. 6F, the mold frame 570 can be removed, leaving the recesses 552 extending below the major surface 551 of the encapsulation 550 at the location of the joining units 513, with the unencapsulated portions or tips 515 of the joining units extending out of the recesses above the major surface 551. The tips 515 of the joining units 513 are exposed at the major surface 551 of the encapsulation 550 after the molding is completed. At this point, the tips 542 of the wire bonds 540 and portions of the edge surfaces 543 adjacent to the tips are unencapsulated portions 544 that are surrounded by the solder 513 and not contacted by the encapsulation 550. After the mold frame 570 is removed, the molding film 573 can be removed from the encapsulation 550, such as by applying a suitable chemical to detach or dissolve the molding film. Next, referring again to FIG. 5, the second microelectronic package 512 can be joined with the first microelectronic package 510 by joining the conductive elements 514 of the second microelectronic package with tips 515 of corresponding ones of the joining units 513.


Similar to the embodiment of FIG. 1A, the ends 542 of the wire bonds 540 and portions of the joining units 513 can be disposed within shaped recesses 552 extending into the encapsulation. The resulting structure of the two joined microelectronic packages can have a reduced standoff height between confronting surfaces of the two joined microelectronic packages 510, 512. Other advantages such as those described above with reference to FIG. 1A can also be realized by the structure produced by the process of FIGS. 6A-6F, such as increased surface area of contact of a joining unit 513 such as a solder ball and the inner surface 553 of the encapsulation 550 exposed within the shaped recess 552, and reduced stress experienced by the tips 542 of the wire bonds, for example, due to differential thermal expansion between the two microelectronic packages 510, 512 bonded by the joining units.


The presence of the conductive barrier layer 545 (FIG. 6B) at the tip of the wire bond (e.g., the tip surfaces 542 of the wire bonds 540 and the edge surfaces 543 of the wire bonds adjacent to the tips) can protect the tips of the wire bond from forming intermetallic compounds with the material of the joining unit 513, thereby preventing weakening of the structure of the tip of the wire bond that may result from forming such intermetallic compounds. The reduced stress on the tips 542 and/or unencapsulated portions 544 of the wire bonds 540 and the reduction in formation of intermetallic compounds between the wire bonds and the joining units 513 can result in increased reliability of the electrical connections between the joined microelectronic packages 510, 512. Also, the structure produced by the process of FIGS. 6A-6F can accomplish joining of the two microelectronic packages with less solder volume and with a smaller pitch (distance between centers of adjacent ones of the wire bonds 540) compared to conventional BVA structures.



FIG. 7 shows an exemplary in-process microelectronic package 700 having a substrate 720, a microelectronic element 730 joined to a first surface 721 of the substrate, an encapsulation 750 overlying the first surface and the microelectronic element, and a plurality of wire bonds 740 extending from bases 741 joined to electrically conductive contacts (not shown) at the first surface to tips 742 remote therefrom, through the encapsulation. The wire bonds 740 have unencapsulated portions 744 at the tips 742 and portions of the edge surfaces 743 adjacent the tips that are not covered by the encapsulation 750 and that extend above the major surface 751 of the encapsulation.


The in-process microelectronic package 700 is shown in a mold frame 770 that is a variant of the mold frames 70a-d of FIGS. 3A-3D. The mold frame 770 can have one or more regions each formed by material of the molding film 773, and layer 776 made of a compliant material having a Young's modulus lower than the Young's modulus of the material of the encapsulation 750. The compliant layer 776 defines the lower surface 772 of the mold frame 770. Similar to the methods described above with reference to FIGS. 2A-2F and 6A-6F, the mold frame 770 is lowered onto the tips 742 of the wire bonds 740, so that the tips of the wire bonds penetrate completely through the complaint layer 776 in the direction D4 and into the molding film 773.


After the encapsulation 750 is formed between the lower surface 772 of the mold frame 770 and the first surface 721 of the substrate, the mold frame 770 can be removed, leaving both the compliant layer 776 and the molding film 773 overlying the major surface 751 of the encapsulation 750. After the mold frame 770 is removed, the molding film 773 can be removed from the encapsulation 750, such as by applying a suitable chemical to detach or dissolve the molding film. After removal of the molding film 773, the compliant layer 776 remains in the microelectronic package 700, in contact with and overlying the first surface 551 of the encapsulation.


The unencapsulated portions 744 of the wire bonds 740 can remain uncovered by both the encapsulation 750 and the compliant layer 776. Such a compliant layer 776 can help distribute stress (e.g., from differential thermal expansion of the microelectronic package 700 relative to an external component) across among the wire bonds, so that once the unencapsulated portions 744 of the wire bonds 740 are joined with corresponding conductive contacts of an external component by joining units (e.g., solder balls) there will be a reduced chance of the wire bonds cracking at the locations of the unencapsulated portions. Any of the features of the embodiment of FIG. 7, e.g., depositing a compliant layer 776 onto the major surface of the encapsulation to distribute stress among the wire bonds, can be incorporated into any of the microelectronic package embodiments described above (e.g., FIGS. 1A, 4, 5).


The microelectronic packages, circuit panels, and microelectronic assemblies described above with reference to FIGS. 1A through 7 above can be utilized in construction of diverse electronic systems, such as the system 800 shown in FIG. 8. For example, the system 800 in accordance with a further embodiment of the invention includes a plurality of modules or components 806 such as the packages, circuit panels, and assemblies as described above, in conjunction with other electronic components 808, 810 and 811.


In the exemplary system 800 shown, the system can include a circuit panel, motherboard, or riser panel 802 such as a flexible printed circuit board, and the circuit panel can include numerous conductors 804, of which only one is depicted in FIG. 8, interconnecting the modules or components 806, 808, 810 with one another. Such a circuit panel 802 can transport signals to and from each of the microelectronic packages and/or microelectronic assemblies included in the system 800. However, this is merely exemplary; any suitable structure for making electrical connections between the modules or components 806 can be used.


In a particular embodiment, the system 800 can also include a processor such as the semiconductor chip 808, such that each module or component 806 can be configured to transfer a number N of data bits in parallel in a clock cycle, and the processor can be configured to transfer a number M of data bits in parallel in a clock cycle, M being greater than or equal to N. In the example depicted in FIG. 8, the component 808 is a semiconductor chip and component 810 is a display screen, but any other components can be used in the system 800. Of course, although only two additional components 808 and 811 are depicted in FIG. 8 for clarity of illustration, the system 800 can include any number of such components.


Modules or components 806 and components 808 and 811 can be mounted in a common housing 801, schematically depicted in broken lines, and can be electrically interconnected with one another as necessary to form the desired circuit. The housing 801 is depicted as a portable housing of the type usable, for example, in a cellular telephone or personal digital assistant, and screen 810 can be exposed at the surface of the housing. In embodiments where a structure 806 includes a light-sensitive element such as an imaging chip, a lens 811 or other optical device also can be provided for routing light to the structure. Again, the simplified system shown in FIG. 8 is merely exemplary; other systems, including systems commonly regarded as fixed structures, such as desktop computers, routers and the like can be made using the structures discussed above.


It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A microelectronic package, comprising: a substrate having a first surface and a second surface opposite therefrom and having first conductive elements at the first surface;a plurality of wire bonds each having a base electrically connected to a corresponding one of the first conductive elements, a tip remote from the base corresponding thereto, and an edge surface extending between the tip and the base corresponding thereto;an encapsulation having a major surface facing away from the first surface of the substrate, the encapsulation having defined therein a plurality of recesses extending from the major surface in a direction toward the first surface of the substrate;the plurality of recesses in the encapsulation layer each including a plurality of extended portions extending into the encapsulation layer and spaced apart from one another at an interval;tips of the plurality of wire bonds being disposed within the plurality of recesses;an electrically conductive barrier layer overlying at least a portion of an inner surface of the encapsulation defined by the plurality of recesses including the plurality of extended portions for partially filling thereof and overlying the tips of the plurality of wire bonds, wherein the electrically conductive barrier layer provides barrier and adhesion properties in a single layer with only the single layer between the encapsulation and the plurality of wire bonds; andjoining units at least partially extending within the plurality of recesses, the joining units respectively filling remaining volumes of the plurality of recesses for electrical conductivity between the plurality of wire bonds and the second conductive elements, wherein the joining units are interconnected to the at least the portion of the inner surface of the plurality of recesses and the tips of the wire bonds responsive to intermetallic compounds formed between the joining units and the electrically conductive barrier layer for electrical conductivity between the joining units and the tips.
  • 2. The microelectronic package of claim 1, wherein a portion of the edge surface-adjacent to the tip corresponding thereto is disposed within a recess of the plurality of recesses with the electrically conductive barrier layer overlying the portion of the edge surface.
  • 3. The microelectronic package of claim 1, wherein the plurality of recesses of the encapsulation defining the inner surface provide a contour with the extended portions thereof penetrating into the encapsulation layer at a 90 degree angle relative to a portion of the contour of the inner surface closer to the major surface.
  • 4. The microelectronic package of claim 1, wherein the tips of the plurality of wire bonds are respectively disposed within the plurality of recesses except for at least two tips thereof being disposed within a same one of the plurality of recesses.
  • 5. The microelectronic package of claim 4, wherein the electrically conductive barrier layer overlies the at least two tips for electrical conductivity therebetween.
  • 6. The microelectronic package of claim 1, further comprising a microelectronic element joined to the first surface of the substrate, the microelectronic element having a top surface facing away from the first surface of the substrate, wherein the major surface of the encapsulation overlies a top surface of the microelectronic element.
  • 7. A microelectronic assembly, comprising: the microelectronic package of claim 1, wherein the microelectronic package is a first microelectronic package having a first substrate and first conductive elements at the first surface thereof; anda second microelectronic package having a second substrate and second conductive elements at a surface thereof.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/245,573 filed Oct. 23, 2015, the disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (847)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4867267 Carlson Sep 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 Difrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5977640 Bertin et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Faraci et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6472743 Huang et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6550666 Chew et al. Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth et al. Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6780746 Kinsman et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabrizi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
6933608 Fujisawa Aug 2005 B2
6946380 Takahashi Sep 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276785 Bauer et al. Oct 2007 B2
7276799 Lee et al. Oct 2007 B2
7287322 Mahieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7344917 Gautham Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7378726 Punzalan et al. May 2008 B2
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7485969 Corisis et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7517733 Camacho et al. Apr 2009 B2
7528474 Lee May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7560360 Cheng et al. Jul 2009 B2
7564116 Ahn et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7612638 Chung et al. Nov 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7670940 Mizukoshi et al. Mar 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7692931 Chong et al. Apr 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7800233 Kawano et al. Sep 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7808439 Yang et al. Oct 2010 B2
7815323 Saeki Oct 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7876180 Uchimura Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7902644 Huang et al. Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Roberts et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8071424 Kang et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8120054 Seo et al. Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8174119 Pendse May 2012 B2
8198716 Perlaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8237257 Yang Aug 2012 B2
8264091 Cho et al. Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau Mar 2013 B1
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8492201 Pagaila et al. Jul 2013 B2
8507297 Iida et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558392 Chua et al. Oct 2013 B2
8567051 Val Oct 2013 B2
8618659 Sato et al. Dec 2013 B2
8633059 Do et al. Jan 2014 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8686570 Semmelmeyer et al. Apr 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson Jun 2014 B2
8766436 Delucca et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8796135 Oganesian et al. Aug 2014 B2
8802494 Lee et al. Aug 2014 B2
8810031 Chang et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8816505 Mohammed et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836140 Ma et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8878353 Haba et al. Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8975726 Chen Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9012263 Mathew et al. Apr 2015 B1
9054095 Pagaila Jun 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9128123 Liu et al. Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9167710 Mohammed et al. Oct 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9318449 Hasch et al. Apr 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9405064 Herbsommer et al. Aug 2016 B2
9412661 Lu et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9484291 Dhandapani Nov 2016 B1
9496152 Cho Nov 2016 B2
9508622 Higgins Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9653442 Yu et al. May 2017 B2
9659877 Bakalski et al. May 2017 B2
9663353 Ofner et al. May 2017 B2
9735084 Katkar et al. Aug 2017 B2
9788466 Chen Oct 2017 B2
9812402 Awujoola Nov 2017 B2
20010002607 Sugiura et al. Jun 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010007370 Distefano Jul 2001 A1
20010021541 Akram et al. Sep 2001 A1
20010028114 Hosomi Oct 2001 A1
20010040280 Funakura et al. Nov 2001 A1
20010042925 Yamamoto et al. Nov 2001 A1
20010045012 Beaman et al. Nov 2001 A1
20010048151 Chun Dec 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020066952 Taniguchi et al. Jun 2002 A1
20020096787 Fjelstad Jul 2002 A1
20020117330 Eldridge et al. Aug 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020125571 Corisis et al. Sep 2002 A1
20020153602 Tay et al. Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020171152 Miyazaki Nov 2002 A1
20020185735 Sakurai et al. Dec 2002 A1
20020190738 Beaman et al. Dec 2002 A1
20030002770 Chakravorty et al. Jan 2003 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030068906 Light et al. Apr 2003 A1
20030094666 Clayton et al. May 2003 A1
20030094685 Shiraishi et al. May 2003 A1
20030094700 Aiba et al. May 2003 A1
20030106213 Beaman et al. Jun 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030124767 Lee et al. Jul 2003 A1
20030162378 Mikami Aug 2003 A1
20030164540 Lee et al. Sep 2003 A1
20030234277 Dias et al. Dec 2003 A1
20040014309 Nakanishi Jan 2004 A1
20040036164 Koike et al. Feb 2004 A1
20040038447 Corisis et al. Feb 2004 A1
20040041757 Yang et al. Mar 2004 A1
20040075164 Pu et al. Apr 2004 A1
20040090756 Ho et al. May 2004 A1
20040110319 Fukutomi et al. Jun 2004 A1
20040119152 Karnezos et al. Jun 2004 A1
20040124518 Karnezos Jul 2004 A1
20040148773 Beaman et al. Aug 2004 A1
20040152292 Babinetz et al. Aug 2004 A1
20040160751 Inagaki et al. Aug 2004 A1
20040164426 Pai et al. Aug 2004 A1
20040188499 Nosaka Sep 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20040262734 Yoo Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050062173 Vu et al. Mar 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050116326 Haba et al. Jun 2005 A1
20050121764 Mallik et al. Jun 2005 A1
20050133916 Karnezos Jun 2005 A1
20050133932 Pohl et al. Jun 2005 A1
20050140265 Hirakata Jun 2005 A1
20050146008 Miyamoto et al. Jul 2005 A1
20050151235 Yokoi Jul 2005 A1
20050151238 Yamunan Jul 2005 A1
20050161814 Mizukoshi et al. Jul 2005 A1
20050173805 Damberg et al. Aug 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20050181544 Haba et al. Aug 2005 A1
20050181655 Haba et al. Aug 2005 A1
20050212109 Cherukuri et al. Sep 2005 A1
20050253213 Jiang et al. Nov 2005 A1
20050266672 Jeng et al. Dec 2005 A1
20050285246 Haba et al. Dec 2005 A1
20060087013 Hsieh Apr 2006 A1
20060118641 Hwang et al. Jun 2006 A1
20060139893 Yoshimura et al. Jun 2006 A1
20060166397 Lau et al. Jul 2006 A1
20060197220 Beer Sep 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060228825 Hembree Oct 2006 A1
20060255449 Lee et al. Nov 2006 A1
20060278682 Lange et al. Dec 2006 A1
20060278970 Yano et al. Dec 2006 A1
20070010086 Hsieh Jan 2007 A1
20070013067 Nishida et al. Jan 2007 A1
20070015353 Craig et al. Jan 2007 A1
20070035015 Hsu Feb 2007 A1
20070045803 Ye et al. Mar 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070090524 Abbott Apr 2007 A1
20070126091 Wood et al. Jun 2007 A1
20070148822 Haba et al. Jun 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070181989 Corisis et al. Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070235850 Gerber et al. Oct 2007 A1
20070235856 Haba et al. Oct 2007 A1
20070241437 Kagaya et al. Oct 2007 A1
20070246819 Hembree et al. Oct 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080029849 Hedler et al. Feb 2008 A1
20080032519 Murata Feb 2008 A1
20080042265 Merilo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048309 Corisis et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080073771 Seo et al. Mar 2008 A1
20080076208 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080211084 Chow et al. Sep 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080230887 Sun et al. Sep 2008 A1
20080246126 Bowles et al. Oct 2008 A1
20080277772 Groenhuis et al. Nov 2008 A1
20080277776 Enomoto Nov 2008 A1
20080280393 Lee Nov 2008 A1
20080284001 Mori et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080299757 Wen Dec 2008 A1
20080303132 Mohammed et al. Dec 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20080315385 Gerber et al. Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090026609 Masuda Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090039523 Jiang et al. Feb 2009 A1
20090045497 Kagaya et al. Feb 2009 A1
20090050994 Ishihara et al. Feb 2009 A1
20090079094 Lin Mar 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090085205 Sugizaki Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090091022 Meyer et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090104736 Haba et al. Apr 2009 A1
20090115044 Hoshino et al. May 2009 A1
20090121351 Endo May 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090146301 Shimizu et al. Jun 2009 A1
20090146303 Kwon Jun 2009 A1
20090160065 Haba et al. Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090206461 Yoon Aug 2009 A1
20090212418 Gurrum et al. Aug 2009 A1
20090212442 Chow et al. Aug 2009 A1
20090236700 Moriya Sep 2009 A1
20090236753 Moon et al. Sep 2009 A1
20090239336 Lee et al. Sep 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090261466 Pagaila et al. Oct 2009 A1
20090302445 Pagaila et al. Dec 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20090316378 Haba et al. Dec 2009 A1
20100000775 Shen et al. Jan 2010 A1
20100003822 Miyata et al. Jan 2010 A1
20100006963 Brady Jan 2010 A1
20100007009 Chang et al. Jan 2010 A1
20100007026 Shikano Jan 2010 A1
20100025835 Oh et al. Feb 2010 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100052135 Shim et al. Mar 2010 A1
20100052187 Lee et al. Mar 2010 A1
20100078789 Choi et al. Apr 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100087035 Yoo et al. Apr 2010 A1
20100090330 Nakazato Apr 2010 A1
20100109138 Cho May 2010 A1
20100117212 Corisis et al. May 2010 A1
20100133675 Yu et al. Jun 2010 A1
20100148360 Lin Jun 2010 A1
20100148374 Castro Jun 2010 A1
20100171205 Chen et al. Jul 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100213560 Wang et al. Aug 2010 A1
20100224975 Shin et al. Sep 2010 A1
20100232129 Haba et al. Sep 2010 A1
20100237471 Pagaila et al. Sep 2010 A1
20100246141 Leung et al. Sep 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100320585 Jiang et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110057308 Choi et al. Mar 2011 A1
20110068453 Cho et al. Mar 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110115081 Osumi May 2011 A1
20110140259 Cho et al. Jun 2011 A1
20110147911 Kohl et al. Jun 2011 A1
20110157834 Wang Jun 2011 A1
20110175213 Mori et al. Jul 2011 A1
20110177643 Chiu Jul 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20110220395 Cho et al. Sep 2011 A1
20110223721 Cho et al. Sep 2011 A1
20110237027 Kim et al. Sep 2011 A1
20110241192 Ding et al. Oct 2011 A1
20110241193 Ding et al. Oct 2011 A1
20110272449 Pirkle et al. Nov 2011 A1
20110272798 Lee et al. Nov 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120007232 Haba Jan 2012 A1
20120015481 Kim Jan 2012 A1
20120018885 Lee et al. Jan 2012 A1
20120020026 Oganesian et al. Jan 2012 A1
20120025365 Haba Feb 2012 A1
20120034777 Pagaila et al. Feb 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120056312 Pagaila et al. Mar 2012 A1
20120061814 Camacho et al. Mar 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120086130 Sasaki et al. Apr 2012 A1
20120088332 Lee Apr 2012 A1
20120104595 Haba et al. May 2012 A1
20120104624 Choi et al. May 2012 A1
20120119380 Haba May 2012 A1
20120126431 Kim et al. May 2012 A1
20120145442 Gupta et al. Jun 2012 A1
20120146235 Choi et al. Jun 2012 A1
20120153444 Haga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20120280374 Choi et al. Nov 2012 A1
20120280386 Sato et al. Nov 2012 A1
20120326337 Camacho et al. Dec 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130032944 Sato et al. Feb 2013 A1
20130037802 England et al. Feb 2013 A1
20130040423 Tung Feb 2013 A1
20130049218 Gong et al. Feb 2013 A1
20130049221 Han et al. Feb 2013 A1
20130069222 Camacho Mar 2013 A1
20130082399 Kim et al. Apr 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130093087 Chau Apr 2013 A1
20130093088 Chau et al. Apr 2013 A1
20130095610 Chau et al. Apr 2013 A1
20130105979 Yu et al. May 2013 A1
20130134588 Yu et al. May 2013 A1
20130153646 Ho Jun 2013 A1
20130182402 Chen et al. Jul 2013 A1
20130200524 Han et al. Aug 2013 A1
20130200533 Chau et al. Aug 2013 A1
20130224914 Co Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130241083 Yu et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130323409 Read et al. Dec 2013 A1
20140021605 Yu et al. Jan 2014 A1
20140035892 Shenoy et al. Feb 2014 A1
20140036454 Caskey et al. Feb 2014 A1
20140103527 Marimuthu et al. Apr 2014 A1
20140124949 Paek et al. May 2014 A1
20140210101 Lin Jul 2014 A1
20140220744 Damberg et al. Aug 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140264945 Yap et al. Sep 2014 A1
20140312503 Seo Oct 2014 A1
20150017765 Co et al. Jan 2015 A1
20150044823 Mohammed Feb 2015 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee May 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20160043813 Chen et al. Feb 2016 A1
20160225692 Kim et al. Aug 2016 A1
20170117231 Awujoola et al. Apr 2017 A1
20170117243 Katkar Apr 2017 A1
20170229432 Lin Aug 2017 A1
Foreign Referenced Citations (147)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10-135221 May 1998 JP
H10135220 May 1998 JP
1118364 Jan 1999 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11-260856 Sep 1999 JP
11317476 Nov 1999 JP
2000156461 Jun 2000 JP
2000323516 Nov 2000 JP
3157134 Apr 2001 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003197668 Jul 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
200447702 Feb 2004 JP
2004047702 Feb 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004-200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
2007335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009-508324 Feb 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001-0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
101215271 Dec 2012 KR
20130048810 May 2013 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200721327 Jun 2007 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
20130048810 Nov 2017 TW
9615458 May 1996 WO
0213256 Feb 2002 WO
03045123 May 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007101251 Sep 2007 WO
2007116544 Oct 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (71)
Entry
International Search Report and Written Opinion for Application No. PCT/US2014/055695 dated Mar. 20, 2015.
International Preliminary Report on Patentability, Chapter II, for Application No. PCT/US2014/055695 dated Dec. 15, 2015.
International Search Report and Written Opinion for Application No. PCT/US2014/050148 dated Feb. 9, 2015.
Partial International Search Report for Application No. PCT/US2014/014181 dated May 8, 2014.
International Search Report and Written Opinion for Application No. PCT/US2014/014181 dated Jun. 13, 2014.
Taiwanese Office Action for Application No. 103103350 dated Mar. 21, 2016.
U.S. Appl. No. 13/477,532, filed May 22, 2012.
International Search Report and Written Opinion for Application No. PCT/US2014/050125 dated Feb. 4, 2015.
Written Opinion for Application No. PCT/US2014/050125 dated Jul. 15, 2015.
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking, IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, “Processed Intra-layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version 2001.6.
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 6 pages (2008).
International Search Report, PCT/US2005/039716, dated Apr. 5, 2006.
International Search Report Application No. PCT/US2011/024143, dated Sep. 14, 2011.
Korean Search Report KR10-2011-0041843 dated Feb. 24, 2011.
International Search Report and Written Opinion PCT/US2011/044342 dated May 7, 2012.
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003.
International Search Report and Written Opinion for Application No. PCT/US2011/044346 dated May 11, 2012.
Partial International Search Report from Invitation to Pay Additional Fees for Application No. PCT/US2012/028738 dated Jun. 6, 2012.
Korean Office Action for Application No. 10-2011-0041843 dated Jun. 20, 2011.
“EE Times Asia” [online]. [Retrieved Aug. 5, 2010]. Retrieved from internet. <http://www.eetasia.com/ART_8800428222_480300_nt_dec52276.HTM>, 4 pages.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
“Wafer Level Stack—WDoD”, [online]. [Retrieved Aug. 5, 2010]. Retrieved from the internet. <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France May 21, 2010.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D integration,” May 2010, STATS ChipPAC LTD.
Search Report from Korean Patent Applicatin No. 10-2010-0113271 dated Jan. 12, 2011.
International Search Report and Written Opinion for PCT/US2011/060551 dated Apr. 18, 2012.
Mieser S, “Klein und Komplex”, Elektronik, IRL Press Limited, DE, vol. 41, No. 1, Jan. 7, 1992 (Jan. 7, 1992), pp. 72-77, XP000277326. (International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise statement of relevance.).
Partial International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013.
International Search Report and Written Opinion for Application No. PCT/US2012/060402 dated Apr. 2, 2011.
Partial International Search Report for Application No. PCT/US2013/026126 dated Jun. 17, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/026126 dated Jul. 25, 2013.
Extended European Search Report for Application No. EP13162975 dated Sep. 5, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/052883 dated Oct. 21, 2013.
Japanese Office Action for Application No. 2013-509325 dated Oct. 18, 2013.
Office Action from U.S. Appl. No. 12/769,930 dated May 5, 2011.
International Search Report and Written Opinion for Application No. PCT/US2013/053437 dated Nov. 25, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/041981 dated Nov. 13, 2013.
Office Action for Taiwan Application No. 100125521 dated Dec. 20, 2013.
Office Action from Taiwan for Application No. 100125522 dated Jan. 27, 2014.
Partial International Search Report for Application No. PCT/US2013/075672 dated Mar. 12, 2014.
Taiwanese Office Action for Application No. 100141695 dated Mar. 19, 2014.
International Search Report and Written Opinion for Application No. PCT/US2013/075672 dated Apr. 22, 2014.
Taiwanese Office Action for Application No. 101138311 dated Jun. 27, 2014.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
International Search Report and Written Opinion for Application No. PCT/US2011/024143 dated Jan. 17, 2012.
Taiwanese Office Action for Application No. 100140428 dated Jan. 26, 2015.
Korean Office Action for Application No. 2014-7025992 dated Feb. 5, 2015.
Japanese Office Action for Application No. 2013-520776 dated Apr. 21, 2015.
International Search Report and Written Opinion for Application No. PCT/US2015/011715 dated Apr. 20, 2015.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Japanese Office Action for Application No. 2013-520777 dated May 22, 2015.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
Partial International Search Report for Application No. PCT/US2015/033004 dated Sep. 9, 2015.
Taiwanese Office Action for Application No. 102106326 dated Sep. 18, 2015.
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pag.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report and Written Opinion for Appln. No. PCT/US2015/032679, dated Nov. 11, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056402, dated Jan. 31, 2017.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report for Appln. No. PCT/US2015/032679, dated Sep. 4, 2015.
International Search Report and Written Opinion for Appln. No. PCT/US2016/056526, dated Jan. 20, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2016/068297, dated Apr. 17, 2017.
Taiwan Search Report for 105128420, dated Sep. 26, 2017.
International Search Report and Written Opinion for Appln. No. PCT/US2017/064437, dated Mar. 29, 2018.
Chinese Office Action Search Report for Application No. 2014800551784 dated Jan. 23, 2018.
European Search Report for Appln. No. EP12712792, dated Feb. 27, 2018, 2 pages.
Related Publications (1)
Number Date Country
20170117243 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62245573 Oct 2015 US