This application relates generally to semiconductor devices and device fabrication and, more particularly, to dielectric layers and their method of fabrication.
The semiconductor device industry has a market driven need to reduce the size of devices such as transistors. To reduce transistor size, the thickness of the silicon dioxide, SiO2, gate dielectric is reduced in proportion to the shrinkage of the gate length. For example, a metal-oxide-semiconductor field effect transistor (MOSFET) would use a 1.5 nm thick SiO2 gate dielectric for a gate length of 70 nm. A goal is to fabricate increasingly smaller and more reliable integrated circuits (ICs) for use in products such as processor chips, mobile telephones, and memory devices such as dynamic random access memories (DRAMs).
Currently, the semiconductor industry relies on the ability to reduce or scale the dimensions of its basic devices, primarily, the silicon based MOSFET. This device scaling includes scaling the gate dielectric, which has primarily been fabricated using silicon dioxide. A thermally grown amorphous SiO2 layer provides an electrically and thermodynamically stable material, where the interface of the SiO2 layer with underlying silicon provides a high quality interface as well as superior electrical isolation properties. However, increased scaling and other requirements in microelectronic devices have created the need to use other dielectric materials as gate dielectrics.
The following detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The various embodiments are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.
The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form an integrated circuit (IC) structure. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to generally include n-type and p-type semiconductors and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors or as semiconductors.
The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
A gate dielectric in a transistor has both a physical gate dielectric thickness and an equivalent oxide thickness (teq). The equivalent oxide thickness quantifies the electrical properties, such as capacitance, of the gate dielectric in terms of a representative physical thickness. teq is defined as the thickness of a theoretical SiO2 layer that would be required to have the same capacitance density as a given dielectric, ignoring leakage current and reliability considerations.
A SiO2 layer of thickness, t, deposited on a Si surface as a gate dielectric will have a teq larger than its thickness, t. This teq results from the capacitance in the surface channel on which the SiO2 is deposited due to the formation of a depletion/inversion region. This depletion/inversion region can result in teq being from 3 to 6 Angstroms (Å) larger than the SiO2 thickness, t. Thus, with the semiconductor industry driving to someday scale the gate dielectric equivalent oxide thickness to under 10 Å, the physical thickness requirement for a SiO2 layer used for a gate dielectric would be need to be approximately 4 to 7 Å.
Additional requirements on a SiO2 layer would depend on the gate electrode used in conjunction with the SiO2 gate dielectric. Using a conventional polysilicon gate would result in an additional increase in teq for the SiO2 layer. This additional thickness could be eliminated by using a metal gate electrode, though metal gates are not currently used in typical complementary metal-oxide-semiconductor field effect transistor (CMOS) technology. Thus, future devices would be designed towards a physical SiO2 gate dielectric layer of about 5 Å or less. Such a small thickness requirement for a SiO2 oxide layer creates additional problems.
Silicon dioxide is used as a gate dielectric, in part, due to its electrical isolation properties in a SiO2—Si based structure. This electrical isolation is due to the relatively large band gap of SiO2 (8.9 eV) making it a good insulator from electrical conduction. Signification reductions in its band gap would eliminate it as a material for a gate dielectric. As the thickness of a SiO2 layer decreases, the number of atomic layers, or monolayers of the material in the thickness decreases. At a certain thickness, the number of monolayers will be sufficiently small that the SiO2 layer will not have a complete arrangement of atoms as in a larger or bulk layer. As a result of incomplete formation relative to a bulk structure, a thin SiO2 layer of only one or two monolayers will not form a full band gap. The lack of a full band gap in a SiO2 gate dielectric would cause an effective short between an underlying Si channel and an overlying polysilicon gate. This undesirable property sets a limit on the physical thickness to which a SiO2 layer can be scaled. The minimum thickness due to this monolayer effect is thought to be about 7-8 Å. Therefore, for future devices to have a teq less than about 10 Å, other dielectrics than SiO2 need to be considered for use as a gate dielectric.
For a typical dielectric layer used as a gate dielectric, the capacitance is determined as one for a parallel plate capacitance: C=κ∈0A/t, where κ is the dielectric constant, ∈0 is the permittivity of free space, A is the area of the capacitor, and t is the thickness of the dielectric. The thickness, t, of a material is related to its teq for a given capacitance, with SiO2 having a dielectric constant κOX=3.9, as
t=(κ/κox)teq=(κ/3.9)teq.
Thus, materials with a dielectric constant greater than that of SiO2, 3.9, will have a physical thickness that can be considerably larger than a desired teq, while providing the desired equivalent oxide thickness. For example, an alternate dielectric material with a dielectric constant of 10 could have a thickness of about 25.6 Å to provide a teq of 10 Å, not including any depletion/inversion layer effects. Thus, a reduced equivalent oxide thickness for transistors can be realized by using dielectric materials with higher dielectric constants than SiO2.
The thinner equivalent oxide thickness required for lower transistor operating voltages and smaller transistor dimensions may be realized by a significant number of materials, but additional fabricating requirements makes determining a suitable replacement for SiO2 difficult. The current view for the microelectronics industry is still for Si based devices. This requires that the gate dielectric employed be grown on a silicon substrate or silicon layer, which places significant constraints on the substitute dielectric material. During the formation of the dielectric on the silicon layer, there exists the possibility that a small layer of SiO2 could be formed in addition to the desired dielectric. The result would effectively be a dielectric layer consisting of two sublayers in parallel with each other and the silicon layer on which the dielectric is formed. In such a case, the resulting capacitance would be that of two dielectrics in series. As a result, the teq of the dielectric layer would be the sum of the SiO2 thickness and a multiplicative factor of the thickness, t, of the dielectric being formed, written as
teq=tSiO
Thus, if a SiO2 layer is formed in the process, the teq is again limited by a SiO2 layer. In the event that a barrier layer is formed between the silicon layer and the desired dielectric in which the barrier layer prevents the formation of a SiO2 layer, the teq would be limited by the layer with the lowest dielectric constant. However, whether a single dielectric layer with a high dielectric constant or a barrier layer with a higher dielectric constant than SiO2 is employed, the layer interfacing with the silicon layer must provide a high quality interface to maintain a high channel carrier mobility.
One of the advantages using SiO2 as a gate dielectric has been that the formation of the SiO2 layer results in an amorphous gate dielectric. Having an amorphous structure for a gate dielectric provides for reducing problems of leakage current associated with grain boundaries in polycrystalline gate dielectrics that provide high leakage paths. Additionally, grain size and orientation changes throughout a polycrystalline gate dielectric can cause variations in the film's dielectric constant, along with uniformity and surface topography problems. Typically, materials having the advantage of a high dielectric constant relative to SiO2 also have the disadvantage of a crystalline form, at least in a bulk configuration. The best candidates for replacing SiO2 as a gate dielectric are those with high dielectric constant, which can be fabricated as a thin layer with an amorphous form.
Candidates to replace SiO2 include high-κ dielectric materials. High-κ materials include materials having a dielectric constant greater than silicon dioxide, for example, dielectrics materials having a dielectric constant greater than about twice the dielectric constant of silicon dioxide. An appropriate high-κ gate dielectric should have a large energy gap (Eg) and large energy barrier heights with Si for both electrons and holes. Generally, the bandgap is inversely related to the dielectric constant for a high-κ material, which lessens some advantages of the high-κ material. A set of high-κ dielectric candidates for replacing silicon oxide as the dielectric material in electronic components in integrated circuit includes lanthanide oxides, HfO2, ZrO2, TiO2, and other binary metal oxides.
Embodiments of dielectric layers containing an atomic layer deposited lanthanum aluminum oxide layer have a larger dielectric constant than silicon dioxide. Such dielectric layers provide a significantly thinner equivalent oxide thickness compared with a silicon oxide layer having the same physical thickness. Alternately, such dielectric layers provide a significantly thicker physical thickness than a silicon oxide layer having the same equivalent oxide thickness. This increased physical thickness aids in reducing leakage current.
In an embodiment, a lanthanum-metal oxide layer is formed in an integrated circuit by atomic layer deposition using a trisethylcyclopentadionatolanthanum (La(EtCp)3) precursor to provide the lanthanum. In an embodiment, a lanthanum-metal oxide layer is formed in an integrated circuit by atomic layer deposition using a trisdipyvaloylmethanatolanthanum (La(DPM)3) precursor to provide the lanthanum. In an embodiment, the lanthanum-metal oxide is a lanthanum aluminum oxide. A number of aluminum containing precursors may be used to provide aluminum for the lanthanum aluminum oxide layer. In an embodiment, a trimethylaluminum (TMA), Al(CH3)3, precursor may be used to deposit aluminum by atomic layer deposition. In an embodiment, a DMEAA (an adduct of alane (AlH3) and dimethylethylamine [N(CH3)2(C2H5)]) precursor may be used to deposit aluminum by atomic layer deposition. In an embodiment, the lanthanum aluminum oxide may be formed substantially as stoichiometric lanthanum aluminum oxide. In an embodiment, the lanthanum aluminum oxide may be formed substantially as a non-stoichiometric lanthanum aluminum oxide or a combination of non-stoichiometric lanthanum aluminum oxide and stoichiometric lanthanum aluminum oxide. In an embodiment, the lanthanum aluminum oxide may be formed substantially as a compound of lanthanum oxide and aluminum oxide.
Another consideration for selecting the material and method for forming a dielectric film for use in electronic devices and systems concerns the roughness of a dielectric film on a substrate. Surface roughness of the dielectric film has a significant effect on the electrical properties of the gate oxide, and the resulting operating characteristics of the transistor. The leakage current through a physical 1.0 nm gate oxide increases by a factor of 10 for every 0.1 increase in the root-mean-square (RMS) roughness.
During a conventional sputtering deposition process stage, particles of the material to be deposited bombard the surface at a high energy. When a particle hits the surface, some particles adhere, and other particles cause damage. High energy impacts remove body region particles creating pits. The surface of such a deposited layer can have a rough contour due to the rough interface at the body region.
In an embodiment, a lanthanum aluminum oxide dielectric film having a substantially smooth surface relative to other processing techniques is formed using atomic layer deposition (ALD). Further, forming such a dielectric film using atomic layer deposition can provide for controlling transitions between material layers. As a result of such control, atomic layer deposited lanthanum aluminum oxide dielectric films can have an engineered transition with a substrate surface.
ALD, also known as atomic layer epitaxy (ALE), is a modification of chemical vapor deposition (CVD) and is also called “alternatively pulsed-CVD.” In ALD, gaseous precursors are introduced one at a time to the substrate surface mounted within a reaction chamber (or reactor). This introduction of the gaseous precursors takes the form of pulses of each gaseous precursor. In a pulse of a precursor gas, the precursor gas is made to flow into a specific area or region for a short period of time. Between the pulses, the reaction chamber is purged with a gas, which in many cases is an inert gas, and/or evacuated.
In a chemisorption-saturated ALD (CS-ALD) process, during the first pulsing phase, reaction with the substrate occurs with the precursor saturatively chemisorbed at the substrate surface. Subsequent pulsing with a purging gas removes precursor excess from the reaction chamber.
The second pulsing phase introduces another precursor on the substrate where the growth reaction of the desired film takes place. Subsequent to the film growth reaction, reaction byproducts and precursor excess are purged from the reaction chamber. With favourable precursor chemistry where the precursors adsorb and react with each other on the substrate aggressively, one ALD cycle can be performed in less than one second in properly designed flow type reaction chambers. Typically, precursor pulse times range from about 0.5 sec to about 2 to 3 seconds.
In ALD, the saturation of all the reaction and purging phases makes the growth self-limiting. This self-limiting growth results in large area uniformity and conformality, which has important applications for such cases as planar substrates, deep trenches, and in the processing of porous silicon and high surface area silica and alumina powders. Significantly, ALD provides for controlling film thickness in a straightforward manner by controlling the number of growth cycles.
ALD was originally developed to manufacture luminescent and dielectric films needed in electroluminescent displays. Significant efforts have been made to apply ALD to the growth of doped zinc sulfide and alkaline earth metal sulfide films. Additionally, ALD has been studied for the growth of different epitaxial II-V and II-VI films, nonepitaxial crystalline or amorphous oxide and nitride films and multilayer structures of these. There also has been considerable interest towards the ALD growth of silicon and germanium films, but due to the difficult precursor chemistry, this has not been very successful.
The precursors used in an ALD process may be gaseous, liquid or solid. However, liquid or solid precursors should be volatile. The vapor pressure should be high enough for effective mass transportation. In addition, solid and some liquid precursors may need to be heated inside the reaction chamber and introduced through heated tubes to the substrates. The necessary vapor pressure should be reached at a temperature below the substrate temperature to avoid the condensation of the precursors on the substrate. Due to the self-limiting growth mechanisms of ALD, relatively low vapor pressure solid precursors can be used though evaporation rates may somewhat vary during the process because of changes in their surface area.
There are several other characteristics for precursors used in ALD. The precursors should be thermally stable at the substrate temperature because their decomposition would destroy the surface control and accordingly the advantages of the ALD method that relies on the reaction of the precursor at the substrate surface. A slight decomposition, if slow compared to the ALD growth, can be tolerated.
The precursors should chemisorb on or react with the surface, though the interaction between the precursor and the surface as well as the mechanism for the adsorption is different for different precursors. The molecules at the substrate surface should react aggressively with the second precursor to form the desired solid film. Additionally, precursors should not react with the film to cause etching, and precursors should not dissolve in the film. Using highly reactive precursors in ALD contrasts with the selection of precursors for conventional CVD.
The by-products in the reaction should be gaseous in order to allow their easy removal from the reaction chamber. Further, the by-products should not react or adsorb on the surface.
In a reaction sequence ALD (RS-ALD) process, the self-limiting process sequence involves sequential surface chemical reactions. RS-ALD relies on chemistry between a reactive surface and a reactive molecular precursor. In an RS-ALD process, molecular precursors are pulsed into the ALD reaction chamber separately. The metal precursor reaction at the substrate is typically followed by an inert gas pulse to remove excess precursor and by-products from the reaction chamber prior to pulsing the next precursor of the fabrication sequence.
By RS-ALD, films can be layered in equal metered sequences that are all identical in chemical kinetics, deposition per cycle, composition, and thickness. RS-ALD sequences generally deposit less than a full layer per cycle. Typically, a deposition or growth rate of about 0.25 to about 2.00 Å per RS-ALD cycle can be realized.
The advantages of RS-ALD include continuity at an interface avoiding poorly defined nucleating regions that are typical for chemical vapor deposition (<20 Å) and physical vapor deposition (<50 Å), conformality over a variety of substrate topologies due to its layer-by-layer deposition technique, use of low temperature and mildly oxidizing processes, lack of dependence on the reaction chamber, growth thickness dependent solely on the number of cycles performed, and ability to engineer multilayer laminate films with resolution of one to two monolayers. RS-ALD processes allows for deposition control on the order on monolayers and the ability to deposit monolayers of amorphous films.
Herein, a sequence refers to the ALD material formation based on an ALD reaction of a precursor followed by its reactant precursor. For example, forming lanthanum oxide from a La(thd)3 (thd=2,2,6,6-tetramethyl-3,5-heptanedione) precursor and ozone, as its reactant precursor, forms an embodiment of a lanthanum/oxygen sequence, which can also be referred to as a lanthanum sequence. A cycle of a sequence includes pulsing a precursor, pulsing a purging gas for the precursor, pulsing a reactant precursor, and pulsing the reactant's purging gas. However, in forming a layer of a metal species, an ALD sequence deals with reacting a precursor containing the metal species with a substrate surface. A cycle for such a metal forming sequence includes pulsing a purging gas after pulsing the precursor containing the metal species.
An embodiment for a method of forming an electronic device includes forming a dielectric layer containing a lanthanum-metal oxide layer formed by atomic layer deposition, in which the lanthanum-metal oxide includes one or more metals other than lanthanum. In various embodiments, the atomic layer deposition process uses a trisethylcyclopentadionatolanthanum precursor and/or a trisdipyvaloylmethanatolanthanum precursor to deposit lanthanum. Embodiments include a lanthanum aluminum oxide layer. Embodiments include structures for capacitors, transistors, memory devices, and electronic systems with dielectric layers containing an atomic layer deposited lanthanum aluminum oxide layer, and methods for forming such structures.
In an embodiment, a layer of lanthanum aluminum oxide is formed on a substrate mounted in a reaction chamber using ALD in repetitive sequences using precursor gases individually pulsed into the reaction chamber. An embodiment includes forming the lanthanum aluminum oxide using a La(EtCp)3 precursor gas. Alternately, the lanthanum aluminum oxide layer may be formed by atomic layer deposition using a La(DPM)3 precursor gas. Other solid or liquid precursors may be used in an appropriately designed reaction chamber.
Also included in the ALD system are purging gas sources 161, 162, each of which is coupled to mass-flow controllers 166, 167, respectively. Furthermore, additional purging gas sources can be constructed in ALD system 100, one purging gas source for each precursor gas, for example. For a process that uses the same purging gas for multiple precursor gases less purging gas sources are required for ALD system 100. Gas sources 151-154 and purging gas sources 161-162 are coupled by their associated mass-flow controllers to a common gas line or conduit 170, which is coupled to the gas-distribution fixture 140 inside the reaction chamber 120. Gas conduit 170 is also coupled to vacuum pump, or exhaust pump, 181 by mass-flow controller 186 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the gas conduit.
Vacuum pump, or exhaust pump, 182 is coupled by mass-flow controller 187 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from reaction chamber 120. For convenience, control displays, mounting apparatus, temperature sensing devices, substrate maneuvering apparatus, and necessary electrical connections as are known to those skilled in the art are not shown in
The use, construction and fundamental operation of reaction chambers for deposition of films are understood by those of ordinary skill in the art of semiconductor fabrication. Embodiments may be practiced on a variety of such reaction chambers without undue experimentation. Furthermore, one of ordinary skill in the art will comprehend the necessary detection, measurement, and control techniques in the art of semiconductor fabrication upon reading the disclosure.
The elements of ALD system 100 can be controlled by a computer. To focus on the use of ALD system 100 in the various embodiments, the computer is not shown. Those skilled in the art can appreciate that the individual elements such as pressure control, temperature control, and gas flow within ALD system 100 can be under computer control.
At 220, an aluminum containing precursor is pulsed. In an embodiment, an TMA precursor may be used to deposit aluminum by atomic layer deposition. In an embodiment, a DMEAA precursor may be used to deposit aluminum by atomic layer deposition. The aluminum may be deposited before depositing lanthanum in an atomic layer deposition process for forming a lanthanum aluminum oxide. In addition, the pulsing of the aluminum precursor may use a pulsing period that provides uniform coverage of a monolayer on the surface or may use a pulsing period that provides partial formation of a monolayer on the surface during an aluminum sequence.
In an alternate embodiment, a lanthanum-metal oxide may be formed by atomic layer deposition in which the lanthanum-metal oxide includes lanthanum and one or more other metals. Such an oxide may be in a stoichiometric form, a non-stoichiometric form, or a combination of stoichiometric and non-stoichiometric form. The lanthanum-metal oxide made be formed by pulsing a La(EtCp)3 precursor and/or La(DPM)3 precursor, as at 210, which is followed by pulsing a precursor containing the metal for the lanthanum-metal oxide. If multiple metal species are to be formed in the lanthanum-metal oxide, multiple ALD sequences may be performed using a different metal containing precursor for each of the different metal species sequences.
In an embodiment, a lanthanum aluminum oxide may be formed substantially as stoichiometric lanthanum aluminum oxide such as LaAlO3. In an embodiment, a lanthanum aluminum oxide may be formed substantially as a non-stoichiometric lanthanum aluminum oxide (represented as LaxAl1-xOy) or a combination of non-stoichiometric lanthanum aluminum oxide and stoichiometric lanthanum aluminum oxide. In an embodiment, a lanthanum aluminum oxide may be formed substantially as a compound of lanthanum oxide and aluminum oxide such as (La2O3)x(Al2O3)1-x. In an embodiment, a dielectric layer containing a lanthanum aluminum oxide layer may be formed substantially as a lanthanum aluminum oxide layer. Alternately, the dielectric layer may be forming containing the atomic layer deposited lanthanum aluminum oxide layer and one or more layers of other dielectric materials including, but not limited to, dielectric nitrides, dielectric metal silicates, dielectric metal oxides including Al2O3, La2O3, and other lanthanide oxides such as La2O3, Pr2O3, Nd2O3, Sm2O3, Gd2O3, Dy2O3, Ce2O3, Tb2O3, Er2O3, Eu2O3, Lu2O3, Tm2O3, Ho2O3, Pm2O3, and Yb2O3. These one or more other layers of lanthanide oxides may be provided in stoichiometric form, in non-stoichiometric form, or a combination of stoichiometric lanthanide oxides and non-stoichiometric lanthanide oxides. In an embodiment, a dielectric layer containing a lanthanum aluminum oxide may include dielectric layers of non-lanthanide oxides.
Cleaning immediately preceding atomic layer deposition aids in reducing an occurrence of silicon oxide as an interface between a silicon based substrate and a lanthanum aluminum oxide dielectric formed using the atomic layer deposition process. The material composition and its properties of an interface layer are typically dependent on process conditions and the condition of the substrate before forming the dielectric layer. Though the existence of an interface layer may effectively reduce the dielectric constant associated with the dielectric layer and its substrate interface layer, a SiO2 interface layer or other composition interface layer, may improve the interface density, fixed charge density, and channel mobility of a device having this interface layer.
The sequencing of the formation of the regions of the transistor being processed may follow typical sequencing that is generally performed in the fabrication of a MOS transistor as is well known to those skilled in the art. Included in the processing prior to forming a gate dielectric is the masking of substrate regions to be protected during the gate dielectric formation, as is typically performed in MOS fabrication. In this embodiment, the unmasked region includes a body region of a transistor, however one skilled in the art will recognize that other semiconductor device structures may utilize this process. Additionally, the substrate 110 in its ready for processing form is conveyed into a position in reaction chamber 120 for ALD processing.
At 310, a lanthanum containing precursor such as a La(EtCp)3 precursor is pulsed into reaction chamber 120. The La(EtCp)3 is pulsed into reaction chamber 120 through the gas-distribution fixture 140 onto substrate 110. The flow of the La(EtCp)3 is controlled by mass-flow controller 156 from gas source 151, where the La(EtCp)3 is maintained. In an embodiment, the substrate temperature is maintained at temperature ranging from about 400° C. to about 650° C. In an embodiment, the substrate temperature is maintained at about 650° C. Alternately, the substrate temperature may be maintained at temperatures less than 650° C. by heating element 130. The La(EtCp)3 reacts with the surface of the substrate 110 in the desired region defined by the unmasked areas of the substrate 110. In other embodiments, La(DPM)3 is used as a lanthanum containing precursor. In an embodiment, H2 may be pulsed along with the La(EtCp)3 precursor or the La(DPM)3 precursor to reduce carbon contamination in the deposited film.
At 315, a first purging gas is pulsed into the reaction chamber 120. In an embodiment, nitrogen is used as a purging gas and a carrier gas. The nitrogen flow is controlled by mass-flow controller 166 from the purging gas source 161 into the gas conduit 170. Using the pure nitrogen purge avoids overlap of the precursor pulses and possible gas phase reactions. In an embodiment, argon gas or other inert gas may be used as the purging gas. Following the purge, an first oxygen containing precursor is pulsed into the reaction chamber 120, at 320.
For the lanthanum sequence using La(EtCp)3 or La(DPM)3 as the precursor, water vapor may be selected as the precursor acting as a reactant to deposit lanthanum and oxygen on the substrate 110. The H2O vapor is pulsed into the reaction chamber 120 through gas conduit 170 from gas source 152 by mass-flow controller 157. The water vapor aggressively reacts at the surface of substrate 110.
Following the pulsing of the first oxygen containing precursor, a second purging gas is injected into the reaction chamber 120, at 325. Nitrogen gas may be used to purge the reaction chamber after pulsing each precursor gas in the lanthanum/oxygen sequence. In an embodiment, argon gas or other inert gas may be used as the purging gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 120 using vacuum pump 182 through mass-flow controller 187, and exhausting of the gas conduit 170 by the vacuum pump 181 through mass-flow controller 186.
At 330, a precursor containing aluminum is pulsed into reaction chamber 120. In an embodiment, TMA is used as the aluminum containing precursor. The TMA is pulsed to the surface of the substrate 110 through gas-distribution fixture 140 from gas source 153 by mass-flow controller 158. The TMA is introduced onto the lanthanum and oxygen formed during the lanthanum sequence. As an alternate aluminum sequence, a DMEAA precursor may be employed. During pulsing of the aluminum containing precursor, the substrate may be held between about 350° C. and about 450° C. by the heating element 130.
At 335, a third purging gas is introduced into the system. In an embodiment following a TMA precursor, purified argon may be used as a purging and carrier gas. Alternately, nitrogen may be used as a purging gas. The flow of the third purging gas is controlled by mass-flow controller 167 from the purging gas source 162 into the gas conduit 170 and subsequently into the reaction chamber 120. In an embodiment, hydrogen may be used as the purging and carrier gas for DMEAA as the aluminum containing precursor.
At 340, a second oxygen containing precursor is pulsed into the reaction chamber 120. For the aluminum sequence using TMA or DMEAA as the precursor, water vapor may be used as the precursor acting as an oxidizing reactant to interact at the substrate 110. The water vapor is pulsed into the reaction chamber 120 through gas conduit 170 from gas source 154 by mass-flow controller 159. The water vapor aggressively reacts at the surface of substrate 110 to form a lanthanum aluminum oxide.
At 345, a fourth purging gas is injected into the reaction chamber 200. In an embodiment, argon gas is used as the fourth purging gas to purge the reaction chamber. Alternately, nitrogen or hydrogen may be used as the fourth purging gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 120 using vacuum pump 182 through mass-flow controller 187, and exhausting of the gas conduit 170 by the vacuum pump 181 through mass-flow controller 186.
At 350, it is determined whether the lanthanum aluminum oxide film is of the desired thickness, t. The thickness of a lanthanum aluminum oxide film after one cycle is determined by the pulsing periods used in the lanthanum sequence and the aluminum sequence at a given temperature. Typically, at a given temperature, the pulsing periods can vary over a significant range above some minimum pulse time for the precursors, without substantially altering the growth rate. Once a set of periods for one cycle is determined, the growth rate for the lanthanum aluminum oxide film will be set at a value such as N nm/cycle. For a desired lanthanum aluminum oxide film thickness in an application such as forming a gate dielectric of a MOS transistor, the ALD process should be repeated for t/N cycles. The desired thickness should be completed after t/N cycles. If less than t/N cycles have been completed, the process starts over at 310 with the pulsing of the precursor containing lanthanum. If t/N cycles have completed, no further ALD processing is requires and the lanthanum aluminum oxide film is completed. Once the total number of cycles to form the desired thickness has been completed, the dielectric film containing the lanthanum aluminum oxide layer may optionally be annealed.
At 360, after forming the lanthanum aluminum oxide layer, processing the device having the dielectric layer containing lanthanum aluminum oxide layer is completed. In an embodiment, completing the device includes further processing of the dielectric layer to include layers of other dielectric materials. In an embodiment, completing the device includes completing the formation of a transistor. In another embodiment, completing the device includes completing the formation of a capacitor. Alternately, completing the process includes completing the construction of a memory device having an array with access transistors formed with gate dielectrics containing atomic layer deposited lanthanum aluminum oxide layer. Further, in another embodiment, completing the process includes the formation of an electronic system including an information handling device that uses electronic devices with transistors formed with dielectric films containing an atomic layer deposited lanthanum aluminum oxide layer. Typically, information handling devices such as computers include many memory devices, having many access transistors.
Embodiments for methods having elements similar to the embodiment of
In an embodiment, the lanthanum aluminum oxide layer may be doped with other lanthanides such as Pr, N, Sm, Gd, Dy, Ce, Tb, Er, Eu, Lu, Tm, Ho, Pm, and Yb. The doping may be employed to enhance the leakage current characteristics of the dielectric layer containing the lanthanum aluminum oxide by providing a disruption or perturbation of the lanthanum aluminum oxide structure. Such doping may be realized by substituting a sequence of one of these lanthanides for a lanthanum sequence or an aluminum sequence. The choice for substitution may depend on the form of the lanthanum aluminum oxide structure with respect to the ratio of lanthanum atoms to aluminum desired in the oxide. To maintain a substantially lanthanum aluminum oxide, the amount of alternate lanthanides doped into the oxide may be limited to a relatively small fraction of the total number of lanthanum and aluminum atoms. Such a fraction may be 10 percent or less. In an embodiment, to maintain a substantially lanthanum aluminum oxide, the amount of alternate lanthanides doped into the oxide may be limited to a relatively small fraction of the lanthanum or the aluminum atoms based on which material is selected to have the smallest number of atoms. Such a fraction may be 10 percent or less.
The embodiments described herein provide a process for growing a dielectric film having a wide range of useful equivalent oxide thickness, teq, associated with a dielectric constant in the range from about 9 to about 30. This range of dielectric constants provides for a teq ranging from about 13% to about 43% relative to a given silicon dioxide thickness. In an embodiment, a dielectric layer containing a lanthanum aluminum oxide layer has a teq ranging from about 5 Å to about 20 Å. In an embodiment, a dielectric layer containing a lanthanum aluminum oxide layer has a teq of less than 5 Å. Alternately, for an acceptable silicon dioxide thickness, an embodiment for a lanthanum aluminum oxide may include a thickness ranging from greater than two to less than eight times that of the acceptable silicon dioxide thickness providing enhanced probability for reducing leakage current. In an embodiment, a lanthanum aluminum oxide film is formed with a thickness ranging from two to three monolayers to a hundred angstroms. Further, dielectric films of lanthanum aluminum oxide layer formed by atomic layer deposition can provide not only thin teq films, but also films with relatively low leakage current. Additionally, the novel process can be implemented to form transistors, capacitors, memory devices, and other electronic systems including information handling devices.
A transistor 400 as depicted in
An interfacial layer 433 may form between body region 432 and gate dielectric 440. In an embodiment, interfacial layer 433 may be limited to a relatively small thickness compared to gate dielectric 440, or to a thickness significantly less than gate dielectric 440 as to be effectively eliminated. Interfacial layer 433 may be formed as a lanthanum silicate, an aluminum silicate, or a lanthanum aluminum silicate. Forming the substrate, the gate, and the source and drain regions may be performed using standard processes known to those skilled in the art. Additionally, the sequencing of the various elements of the process for forming a transistor may be conducted with standard fabrication processes, also as known to those skilled in the art. In an embodiment, gate dielectric 440 may be realized as a gate insulator in a silicon CMOS transistor. Transistor 400 is not limited to silicon based substrates, but may be used with a variety of semiconductor substrates.
Gate dielectric 540 includes a dielectric containing an atomic layer deposited lanthanum aluminum oxide layer formed in embodiments similar to those described herein. Gate dielectric 540 may be realized as a dielectric layer formed substantially of lanthanum aluminum oxide. Gate dielectric 540 may include one or more dielectric layers in which at least one layer is a lanthanum aluminum oxide layer. In an embodiment, floating gate 552 is formed over and contacts gate dielectric 540.
In an embodiment, floating gate dielectric 542 includes a dielectric containing an atomic layer deposited lanthanum aluminum oxide layer formed in embodiments similar to those described herein. Floating gate dielectric 542 may be realized as a dielectric layer formed substantially of lanthanum aluminum oxide. Floating gate dielectric 542 may be include one or more insulating layers in which at least one layer is a lanthanum aluminum oxide layer. In an embodiment, control gate 550 is formed over and contacts floating gate dielectric 542.
Alternately, both gate dielectric 540 and floating gate dielectric 542 may be formed as dielectric layers containing an atomic layer deposited lanthanum aluminum oxide layer. Floating gate 552 and floating gate dielectric 542 may be realized by embodiments similar to those described herein with the remaining elements of the transistor 500 formed using processes known to those skilled in the art. In an embodiment, gate dielectric 540 forms a tunnel gate insulator and floating gate dielectric 542 forms an inter-gate insulator in flash memory devices, where gate dielectric 540 and/or floating gate dielectric 542 include an atomic layer deposited lanthanum aluminum oxide film. Use of dielectric layers containing an atomic layer deposited lanthanum aluminum oxide layer for a gate dielectric and/or floating gate dielectric is not limited to silicon based substrates, but may be used with a variety of semiconductor substrates.
Embodiments of methods for forming dielectric layers containing an atomic layer deposited lanthanum aluminum oxide layer may also be applied to forming capacitors in various integrated circuits, memory devices, and electronic systems. In an embodiment for forming a capacitor 600 illustrated in
Dielectric layer 620 may be realized as a dielectric layer formed substantially of lanthanum aluminum oxide. Dielectric layer 620 may include one or more insulating layers in which at least one layer is substantially lanthanum aluminum oxide. In an embodiment, dielectric layer 620 containing a lanthanum aluminum oxide layer may include a lanthanide oxide layer contacting first conductive layer 610 or second conductive layer 630. Alternately, dielectric layer 620 containing a lanthanum aluminum oxide layer may include two lanthanide oxide layers, one contacting first conductive layer 610 and one contacting second conductive layer 630. However, lanthanide oxide dielectrics on a silicon substrate tend to lead to large flatband voltage shifts, which may be attributed to fixed oxide charges located near the interface between the lanthanide oxide layer and the silicon. The source of this fixed oxide charge may be due to an interface reaction of a metal gate, such as aluminum, with the lanthanum aluminum oxide on which the metal gate is disposed. This metal gate interface reaction may induce a portion of the fixed oxide charges. In an embodiment, a ruthenium metal layer, such as for a capacitor electrode, may be used to avoid or prevent a reaction between the gate metal and the lanthanide oxide layer used as a top layer or a bottom layer of dielectric layer 620. Generally, ruthenium is more inert than polysilicon and metals such as aluminum and tantalum, has a resistivity as low as 7.5 μΩcm, and has a melting point of 2450° C. In an embodiment, a conductive ruthenium oxide layer may be used as a conductive contact layer. The ruthenium metal layer and/or conductive ruthenium oxide layer may be deposited using physical vapor deposition, evaporation, sputtering, chemical vapor deposition, or metalorganic chemical vapor deposition. In an embodiment, second conductive layer 630 and/or first conductive layer 610 contain ruthenium and/or conductive ruthenium oxide. In an embodiment, second conductive layer 630 and/or first conductive layer 610 are formed substantially of a ruthenium metal. Alternately, second conductive layer 630 and/or first conductive layer 610 are formed substantially of conductive ruthenium oxide.
Embodiments for dielectric layer 620 containing an atomic layer deposited lanthanum aluminum oxide layer in a capacitor includes, but is not limited to, dielectrics in DRAM capacitors and dielectrics in capacitors in analog, radio frequency (RF), and mixed signal integrated circuits. As can be understood by those skilled in the art, in various embodiments for dielectric layer containing an atomic layer deposited lanthanum aluminum oxide layer and outer lanthanide layers, a ruthenium metal layer may be disposed on an outer lanthanide oxide layer as an electrode, gate, or direct conductive contact depending on the application of the lanthanum aluminum oxide dielectric as a various components of an electronic device in an integrated circuit and not limited to capacitors.
Various embodiments for a dielectric film containing atomic layer deposited lanthanum aluminum oxide may provide for enhanced device performance by providing devices with reduced leakage current. Such improvements in leakage current characteristics may be attained by forming one or more layers of an atomic layer deposited lanthanum aluminum oxide in a nanolaminate structure with other metal oxides including other lanthanide oxides and/or with other non-metal containing dielectrics. The transition from one layer of the nanolaminate to another layer of the nanolaminate provides further disruption to a tendency for an ordered structure in the nanolaminate stack. The term “nanolaminate” means a composite film of ultra thin layers of two or more materials in a layered stack, where the layers are alternating layers of materials of the composite film. Typically, each layer in a nanolaminate has a thickness of an order of magnitude in the nanometer range. Further, each individual material layer of the nanolaminate can have a thickness as low as a monolayer of the material or as high as 20 nanometers. In an embodiment, a nanolaminate contains alternating layers of lanthanum aluminum oxide and a lanthanide oxide. In an embodiment, a nanolaminate contains alternating layers of lanthanum aluminum oxide and aluminum oxide. In an embodiment, a nanolaminate contains alternating layers of lanthanum aluminum oxide, a lanthanide oxide, and aluminum lanthanum oxide.
Transistors, capacitors, and other devices having dielectric films containing atomic layer deposited lanthanum aluminum oxide layer formed by the methods described above may be implemented into memory devices and electronic systems including information handling devices. Embodiments of these information handling devices may include wireless systems, telecommunication systems, and computers. Further, embodiments of electronic devices having dielectric films containing an atomic layer deposited lanthanum aluminum oxide layer may be realized as integrated circuits.
Peripheral devices 945 may include displays, additional storage memory, or other control devices that may operate in conjunction with controller 905. Alternately, peripheral devices 945 may include displays, additional storage memory, or other control devices that may operate in conjunction with controller 905 and/or memory 925.
Memory 925 may be realized as a memory device containing an atomic layer deposited lanthanum aluminum oxide layer. It will be understood that embodiments are equally applicable to any size and type of memory circuit and are not intended to be limited to a particular type of memory device. Memory types include a DRAM, SRAM (Static Random Access Memory) or Flash memories. Additionally, the DRAM could be a synchronous DRAM commonly referred to as SGRAM (Synchronous Graphics Random Access Memory), SDRAM (Synchronous Dynamic Random Access Memory), SDRAM II, and DDR SDRAM (Double Data Rate SDRAM), as well as Synchlink or Rambus DRAMs and other emerging DRAM technologies.
Formation of lanthanum aluminum oxide layers by an atomic layer deposition can be realized using a trisethylcyclopentadionatolanthanum precursor and/or a trisdipyvaloylmethanatolanthanum precursor to provide the lanthanum for the layer. Further, lanthanum aluminum oxide films formed by atomic layer deposition processed in relatively low temperatures can be amorphous and possess smooth surfaces. Such lanthanum aluminum oxide films can provide enhanced electrical properties due to their smoother surface resulting in reduced leakage current. Additionally, such dielectric layers provide a significantly thicker physical thickness than a silicon oxide layer having the same equivalent oxide thickness, where the increased thickness would also reduce leakage current. These properties of layers containing atomic layer deposited lanthanum aluminum oxide films allow for application as dielectric layers in numerous electronic devices and systems.
Capacitors, transistors, higher level ICs or devices including memory devices, and electronic systems are constructed utilizing the novel process for forming a dielectric film having an ultra thin equivalent oxide thickness, teq. Gate dielectric layers or films containing atomic layer deposited lanthanum aluminum oxide are formed having a dielectric constant (κ) substantially higher than that of silicon oxide, such that these dielectric films are capable of a teq thinner than SiO2 gate dielectrics of the same physical thickness. Alternately, the high dielectric constant relative to silicon dioxide allows the use of much larger physical thickness of these high-κ dielectric materials for the same teq of SiO2. Forming the relatively larger thickness aids in processing gate dielectrics and other dielectric layers in electronic devices and systems.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of embodiments of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive, and that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Combinations of the above embodiments and other embodiments will be apparent to those of skill in the art upon studying the above description. The scope of the present invention includes any other applications in which embodiment of the above structures and fabrication methods are used. The scope of the embodiments of the present invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. application Ser. No. 11/608,286 filed Dec. 8, 2006 now U.S. Pat. No. 7,867,919, which is a divisional of U.S. application Ser. No. 10/930,167 filed Aug. 31, 2004, now issued as U.S. Pat. No. 7,494,939, which applications are incorporated herein by reference, each in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3488633 | King et al. | Jan 1970 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4641313 | Tobin et al. | Feb 1987 | A |
4693211 | Ogami et al. | Sep 1987 | A |
4870923 | Sugimoto | Oct 1989 | A |
5049516 | Arima | Sep 1991 | A |
5055319 | Bunshah et al. | Oct 1991 | A |
5119329 | Evans et al. | Jun 1992 | A |
5192871 | Ramakrishnan et al. | Mar 1993 | A |
5223001 | Saeki | Jun 1993 | A |
5426603 | Nakamura et al. | Jun 1995 | A |
5439524 | Cain et al. | Aug 1995 | A |
5445699 | Kamikawa et al. | Aug 1995 | A |
5478653 | Guenzer | Dec 1995 | A |
5496597 | Soininen et al. | Mar 1996 | A |
5562952 | Nakahigashi et al. | Oct 1996 | A |
5572052 | Kashihara et al. | Nov 1996 | A |
5674563 | Tarui et al. | Oct 1997 | A |
5698022 | Glassman et al. | Dec 1997 | A |
5739524 | Fally | Apr 1998 | A |
5749937 | Detering et al. | May 1998 | A |
5751021 | Teraguchi | May 1998 | A |
5777923 | Lee et al. | Jul 1998 | A |
5792269 | Deacon et al. | Aug 1998 | A |
5801105 | Yano et al. | Sep 1998 | A |
5810923 | Yano et al. | Sep 1998 | A |
5814584 | Tauber et al. | Sep 1998 | A |
5827571 | Lee et al. | Oct 1998 | A |
5828080 | Yano et al. | Oct 1998 | A |
5840897 | Kirlin et al. | Nov 1998 | A |
5916365 | Sherman | Jun 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
5958140 | Arami et al. | Sep 1999 | A |
5981350 | Geusic et al. | Nov 1999 | A |
5998264 | Wu | Dec 1999 | A |
5999454 | Smith | Dec 1999 | A |
6010969 | Vaartstra | Jan 2000 | A |
6019848 | Frankel et al. | Feb 2000 | A |
6020024 | Maiti et al. | Feb 2000 | A |
6020243 | Wallace et al. | Feb 2000 | A |
6025225 | Forbes et al. | Feb 2000 | A |
6025627 | Forbes et al. | Feb 2000 | A |
6027961 | Maiti et al. | Feb 2000 | A |
6034015 | Lin et al. | Mar 2000 | A |
6059885 | Ohashi et al. | May 2000 | A |
6060755 | Ma et al. | May 2000 | A |
6075691 | Duenas et al. | Jun 2000 | A |
6090636 | Geusic et al. | Jul 2000 | A |
6110529 | Gardiner et al. | Aug 2000 | A |
6110544 | Yang et al. | Aug 2000 | A |
6134175 | Forbes et al. | Oct 2000 | A |
6146976 | Stecher et al. | Nov 2000 | A |
6150188 | Geusic et al. | Nov 2000 | A |
6150724 | Wenzel et al. | Nov 2000 | A |
6173379 | Poplingher et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6191448 | Forbes et al. | Feb 2001 | B1 |
6198168 | Geusic et al. | Mar 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6207522 | Hunt et al. | Mar 2001 | B1 |
6207589 | Ma et al. | Mar 2001 | B1 |
6210999 | Gardner et al. | Apr 2001 | B1 |
6211035 | Moise et al. | Apr 2001 | B1 |
6217645 | Vaartstra | Apr 2001 | B1 |
6225237 | Vaartstra | May 2001 | B1 |
6230651 | Ni et al. | May 2001 | B1 |
6270835 | Hunt et al. | Aug 2001 | B1 |
6273951 | Vaartstra | Aug 2001 | B1 |
6274937 | Ahn et al. | Aug 2001 | B1 |
6281042 | Ahn et al. | Aug 2001 | B1 |
6289842 | Tompa | Sep 2001 | B1 |
6294420 | Tsu et al. | Sep 2001 | B1 |
6294813 | Forbes et al. | Sep 2001 | B1 |
6297103 | Ahn et al. | Oct 2001 | B1 |
6297539 | Ma et al. | Oct 2001 | B1 |
6313035 | Sandhu et al. | Nov 2001 | B1 |
6317357 | Forbes | Nov 2001 | B1 |
6323081 | Marsh | Nov 2001 | B1 |
6323511 | Marsh | Nov 2001 | B1 |
6329286 | Vaartstra | Dec 2001 | B1 |
6331465 | Forbes et al. | Dec 2001 | B1 |
6342445 | Marsh | Jan 2002 | B1 |
6350704 | Ahn et al. | Feb 2002 | B1 |
6352591 | Yieh et al. | Mar 2002 | B1 |
6365470 | Maeda | Apr 2002 | B1 |
6368398 | Vaartstra | Apr 2002 | B2 |
6380579 | Nam et al. | Apr 2002 | B1 |
6381124 | Whitcher et al. | Apr 2002 | B1 |
6381168 | Forbes | Apr 2002 | B2 |
6383861 | Gonzalez et al. | May 2002 | B1 |
6387712 | Yano et al. | May 2002 | B1 |
6392257 | Ramdani et al. | May 2002 | B1 |
6395650 | Callegari et al. | May 2002 | B1 |
6399979 | Noble et al. | Jun 2002 | B1 |
6403414 | Marsh | Jun 2002 | B2 |
6404027 | Hong et al. | Jun 2002 | B1 |
6407427 | Oh | Jun 2002 | B1 |
6417537 | Yang et al. | Jul 2002 | B1 |
6418050 | Forbes | Jul 2002 | B2 |
6420279 | Ono et al. | Jul 2002 | B1 |
6423613 | Geusic | Jul 2002 | B1 |
6426292 | Vaartstra | Jul 2002 | B2 |
6429065 | Forbes | Aug 2002 | B2 |
6433993 | Hunt et al. | Aug 2002 | B1 |
6434041 | Forbes et al. | Aug 2002 | B2 |
6441417 | Zhang et al. | Aug 2002 | B1 |
6444592 | Ballantine et al. | Sep 2002 | B1 |
6451641 | Halliyal et al. | Sep 2002 | B1 |
6451695 | Sneh | Sep 2002 | B2 |
6452119 | Gessner | Sep 2002 | B1 |
6452229 | Krivokapic | Sep 2002 | B1 |
6454912 | Ahn et al. | Sep 2002 | B1 |
6455330 | Yao et al. | Sep 2002 | B1 |
6455717 | Vaartstra | Sep 2002 | B1 |
6458701 | Chae et al. | Oct 2002 | B1 |
6465298 | Forbes et al. | Oct 2002 | B2 |
6465334 | Buynoski et al. | Oct 2002 | B1 |
6465853 | Hobbs et al. | Oct 2002 | B1 |
6476434 | Noble et al. | Nov 2002 | B1 |
6482740 | Soininen et al. | Nov 2002 | B2 |
6486027 | Noble et al. | Nov 2002 | B1 |
6486703 | Noble et al. | Nov 2002 | B2 |
6492233 | Forbes et al. | Dec 2002 | B2 |
6495436 | Ahn et al. | Dec 2002 | B2 |
6495437 | Yu | Dec 2002 | B1 |
6495458 | Marsh | Dec 2002 | B2 |
6498065 | Forbes et al. | Dec 2002 | B1 |
6500499 | Senzaki et al. | Dec 2002 | B1 |
6504214 | Yu et al. | Jan 2003 | B1 |
6506666 | Marsh | Jan 2003 | B2 |
6509234 | Krivokapic | Jan 2003 | B1 |
6509280 | Choi | Jan 2003 | B2 |
6514808 | Samavedam | Feb 2003 | B1 |
6514820 | Ahn et al. | Feb 2003 | B2 |
6514828 | Ahn et al. | Feb 2003 | B2 |
6515510 | Noble et al. | Feb 2003 | B2 |
6518615 | Geusic et al. | Feb 2003 | B1 |
6518634 | Nguyen | Feb 2003 | B1 |
6526191 | Geusic et al. | Feb 2003 | B1 |
6527866 | Matijasevic et al. | Mar 2003 | B1 |
6528858 | Yu et al. | Mar 2003 | B1 |
6531324 | Hsu et al. | Mar 2003 | B2 |
6531354 | Maria et al. | Mar 2003 | B2 |
6534357 | Basceri | Mar 2003 | B1 |
6534420 | Ahn et al. | Mar 2003 | B2 |
6537613 | Senzaki et al. | Mar 2003 | B1 |
6538330 | Forbes | Mar 2003 | B1 |
6540214 | Barber | Apr 2003 | B2 |
6541079 | Bojarczuk, Jr. et al. | Apr 2003 | B1 |
6541280 | Kaushik et al. | Apr 2003 | B2 |
6542229 | Kalal et al. | Apr 2003 | B1 |
6544846 | Ahn et al. | Apr 2003 | B2 |
6551929 | Kori et al. | Apr 2003 | B1 |
6552383 | Ahn et al. | Apr 2003 | B2 |
6552388 | Wilk et al. | Apr 2003 | B2 |
6555879 | Krivokapic et al. | Apr 2003 | B1 |
6559014 | Jeon | May 2003 | B1 |
6562491 | Jeon | May 2003 | B1 |
6570248 | Ahn et al. | May 2003 | B1 |
6586792 | Ahn et al. | Jul 2003 | B2 |
6590252 | Kutsunai et al. | Jul 2003 | B2 |
6596583 | Agarwal et al. | Jul 2003 | B2 |
6597037 | Forbes et al. | Jul 2003 | B1 |
6602720 | Hsu et al. | Aug 2003 | B2 |
6608378 | Ahn et al. | Aug 2003 | B2 |
6613656 | Li | Sep 2003 | B2 |
6617634 | Marsh et al. | Sep 2003 | B2 |
6617639 | Wang et al. | Sep 2003 | B1 |
6632279 | Ritala et al. | Oct 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6638859 | Sneh et al. | Oct 2003 | B2 |
6642573 | Halliyal et al. | Nov 2003 | B1 |
6645882 | Halliyal et al. | Nov 2003 | B1 |
6646307 | Yu et al. | Nov 2003 | B1 |
6652924 | Sherman | Nov 2003 | B2 |
6653209 | Yamagata | Nov 2003 | B1 |
6656764 | Wang et al. | Dec 2003 | B1 |
6660660 | Haukka et al. | Dec 2003 | B2 |
6661058 | Ahn et al. | Dec 2003 | B2 |
6673701 | Marsh et al. | Jan 2004 | B1 |
6686212 | Conley, Jr. et al. | Feb 2004 | B1 |
6689660 | Noble et al. | Feb 2004 | B1 |
6690055 | Uhlenbrock et al. | Feb 2004 | B1 |
6699747 | Ruff et al. | Mar 2004 | B2 |
6709978 | Geusic et al. | Mar 2004 | B2 |
6709989 | Ramdani et al. | Mar 2004 | B2 |
6710538 | Ahn et al. | Mar 2004 | B1 |
6713846 | Senzaki | Mar 2004 | B1 |
6723577 | Geusic et al. | Apr 2004 | B1 |
6728092 | Hunt et al. | Apr 2004 | B2 |
6730163 | Vaartstra | May 2004 | B2 |
6730164 | Vaartstra et al. | May 2004 | B2 |
6730575 | Eldridge | May 2004 | B2 |
6754108 | Forbes | Jun 2004 | B2 |
6756298 | Ahn et al. | Jun 2004 | B2 |
6764901 | Noble | Jul 2004 | B2 |
6767582 | Elers | Jul 2004 | B1 |
6767795 | Ahn et al. | Jul 2004 | B2 |
6768175 | Morishita et al. | Jul 2004 | B1 |
6770536 | Wilk et al. | Aug 2004 | B2 |
6774050 | Ahn et al. | Aug 2004 | B2 |
6777353 | Putkonen | Aug 2004 | B2 |
6777715 | Geusic et al. | Aug 2004 | B1 |
6778441 | Forbes et al. | Aug 2004 | B2 |
6780704 | Raaijmakers et al. | Aug 2004 | B1 |
6784049 | Vaartstra | Aug 2004 | B2 |
6787370 | Forbes | Sep 2004 | B2 |
6787413 | Ahn | Sep 2004 | B2 |
6787421 | Gilmer et al. | Sep 2004 | B2 |
6790791 | Ahn et al. | Sep 2004 | B2 |
6794284 | Vaartstra | Sep 2004 | B2 |
6794315 | Klemperer et al. | Sep 2004 | B1 |
6794709 | Ahn et al. | Sep 2004 | B2 |
6800567 | Cho | Oct 2004 | B2 |
6803311 | Choi | Oct 2004 | B2 |
6803326 | Ahn et al. | Oct 2004 | B2 |
6804136 | Forbes | Oct 2004 | B2 |
6806211 | Shinriki et al. | Oct 2004 | B2 |
6808978 | Kim | Oct 2004 | B2 |
6812100 | Ahn et al. | Nov 2004 | B2 |
6812513 | Geusic et al. | Nov 2004 | B2 |
6812516 | Noble, Jr. et al. | Nov 2004 | B2 |
6818937 | Noble et al. | Nov 2004 | B2 |
6831315 | Raaijmakers et al. | Dec 2004 | B2 |
6833285 | Ahn et al. | Dec 2004 | B1 |
6833308 | Ahn et al. | Dec 2004 | B2 |
6835111 | Ahn et al. | Dec 2004 | B2 |
6844203 | Ahn et al. | Jan 2005 | B2 |
6844260 | Sarigiannis et al. | Jan 2005 | B2 |
6844604 | Lee et al. | Jan 2005 | B2 |
6852167 | Ahn | Feb 2005 | B2 |
6858120 | Ahn et al. | Feb 2005 | B2 |
6858444 | Ahn et al. | Feb 2005 | B2 |
6863725 | Vaartstra et al. | Mar 2005 | B2 |
6864191 | Yoon | Mar 2005 | B2 |
6878624 | Bruley et al. | Apr 2005 | B1 |
6884739 | Ahn et al. | Apr 2005 | B2 |
6888739 | Forbes | May 2005 | B2 |
6893984 | Ahn et al. | May 2005 | B2 |
6900122 | Ahn et al. | May 2005 | B2 |
6914800 | Ahn et al. | Jul 2005 | B2 |
6919266 | Ahn et al. | Jul 2005 | B2 |
6921702 | Ahn et al. | Jul 2005 | B2 |
6930059 | Conley, Jr. et al. | Aug 2005 | B2 |
6930346 | Ahn et al. | Aug 2005 | B2 |
6950340 | Bhattacharyya | Sep 2005 | B2 |
6952032 | Forbes et al. | Oct 2005 | B2 |
6953730 | Ahn et al. | Oct 2005 | B2 |
6958300 | Vaartstra et al. | Oct 2005 | B2 |
6958302 | Ahn et al. | Oct 2005 | B2 |
6960538 | Ahn et al. | Nov 2005 | B2 |
6967159 | Vaartstra | Nov 2005 | B2 |
6979855 | Ahn et al. | Dec 2005 | B2 |
6982230 | Cabral et al. | Jan 2006 | B2 |
6984592 | Vaartstra | Jan 2006 | B2 |
6989565 | Aronowitz et al. | Jan 2006 | B1 |
6989573 | Ahn et al. | Jan 2006 | B2 |
6995081 | Vaartstra | Feb 2006 | B2 |
7026694 | Ahn et al. | Apr 2006 | B2 |
7030042 | Vaartstra et al. | Apr 2006 | B2 |
7041609 | Vaartstra | May 2006 | B2 |
7045430 | Ahn et al. | May 2006 | B2 |
7049192 | Ahn et al. | May 2006 | B2 |
7064058 | Ahn et al. | Jun 2006 | B2 |
7068544 | Forbes et al. | Jun 2006 | B2 |
7077902 | Vaartstra | Jul 2006 | B2 |
7081421 | Ahn et al. | Jul 2006 | B2 |
7084078 | Ahn et al. | Aug 2006 | B2 |
7087481 | Vaartstra et al. | Aug 2006 | B2 |
7101813 | Ahn et al. | Sep 2006 | B2 |
7102875 | Lee et al. | Sep 2006 | B2 |
7112485 | Vaartstra | Sep 2006 | B2 |
7112841 | Eldridge et al. | Sep 2006 | B2 |
7115166 | Vaartstra et al. | Oct 2006 | B2 |
7115528 | Vaartstra et al. | Oct 2006 | B2 |
7122464 | Vaartstra | Oct 2006 | B2 |
7125815 | Vaartstra | Oct 2006 | B2 |
7129553 | Ahn et al. | Oct 2006 | B2 |
7135369 | Ahn et al. | Nov 2006 | B2 |
7135421 | Ahn et al. | Nov 2006 | B2 |
7135734 | Eldridge et al. | Nov 2006 | B2 |
7148546 | Visokay et al. | Dec 2006 | B2 |
7148548 | Doczy et al. | Dec 2006 | B2 |
7160577 | Ahn et al. | Jan 2007 | B2 |
7169673 | Ahn et al. | Jan 2007 | B2 |
7183186 | Ahn et al. | Feb 2007 | B2 |
7192824 | Ahn et al. | Mar 2007 | B2 |
7192892 | Ahn et al. | Mar 2007 | B2 |
7195999 | Forbes et al. | Mar 2007 | B2 |
7196007 | Vaartstra | Mar 2007 | B2 |
7199023 | Ahn et al. | Apr 2007 | B2 |
7205218 | Ahn et al. | Apr 2007 | B2 |
7205620 | Ahn et al. | Apr 2007 | B2 |
7208804 | Ahn et al. | Apr 2007 | B2 |
7211492 | Forbes et al. | May 2007 | B2 |
7214994 | Forbes et al. | May 2007 | B2 |
7217643 | Liang | May 2007 | B2 |
7221017 | Forbes et al. | May 2007 | B2 |
7221586 | Forbes et al. | May 2007 | B2 |
7235501 | Ahn et al. | Jun 2007 | B2 |
7235854 | Ahn et al. | Jun 2007 | B2 |
7250367 | Vaartstra et al. | Jul 2007 | B2 |
7253122 | Vaartstra | Aug 2007 | B2 |
7259434 | Ahn et al. | Aug 2007 | B2 |
7271077 | Vaartstra et al. | Sep 2007 | B2 |
7294556 | Vaartstra | Nov 2007 | B2 |
7300870 | Vaartstra | Nov 2007 | B2 |
7312494 | Ahn et al. | Dec 2007 | B2 |
7323424 | Ahn et al. | Jan 2008 | B2 |
7326980 | Ahn et al. | Feb 2008 | B2 |
7332442 | Vaartstra et al. | Feb 2008 | B2 |
7365027 | Ahn et al. | Apr 2008 | B2 |
7368402 | Vaartstra | May 2008 | B2 |
7374617 | Vaartstra | May 2008 | B2 |
7374964 | Ahn et al. | May 2008 | B2 |
7388246 | Ahn et al. | Jun 2008 | B2 |
7390756 | Ahn et al. | Jun 2008 | B2 |
7399666 | Ahn et al. | Jul 2008 | B2 |
7402876 | Ahn et al. | Jul 2008 | B2 |
7405454 | Ahn et al. | Jul 2008 | B2 |
7410668 | Ahn | Aug 2008 | B2 |
7410910 | Ahn et al. | Aug 2008 | B2 |
7410917 | Ahn et al. | Aug 2008 | B2 |
7410918 | Vaartstra | Aug 2008 | B2 |
7411237 | Ahn et al. | Aug 2008 | B2 |
7420256 | Chae et al. | Sep 2008 | B2 |
7432548 | Forbes et al. | Oct 2008 | B2 |
7433237 | Forbes et al. | Oct 2008 | B2 |
7439194 | Ahn et al. | Oct 2008 | B2 |
7473956 | Eldridge et al. | Jan 2009 | B2 |
7485544 | Forbes et al. | Feb 2009 | B2 |
7489545 | Forbes et al. | Feb 2009 | B2 |
7494873 | Forbes et al. | Feb 2009 | B2 |
7494939 | Ahn et al. | Feb 2009 | B2 |
7498230 | Ahn et al. | Mar 2009 | B2 |
7508025 | Eldridge et al. | Mar 2009 | B2 |
7508648 | Ahn et al. | Mar 2009 | B2 |
7511326 | Ahn et al. | Mar 2009 | B2 |
7517783 | Ahn et al. | Apr 2009 | B2 |
7518246 | Ahn et al. | Apr 2009 | B2 |
7531869 | Ahn et al. | May 2009 | B2 |
7544604 | Forbes et al. | Jun 2009 | B2 |
7554161 | Ahn et al. | Jun 2009 | B2 |
7560395 | Ahn | Jul 2009 | B2 |
7560793 | Derderian et al. | Jul 2009 | B2 |
7563730 | Forbes et al. | Jul 2009 | B2 |
7572695 | Ahn et al. | Aug 2009 | B2 |
7582549 | Ahn et al. | Sep 2009 | B2 |
7583534 | Forbes et al. | Sep 2009 | B2 |
7588988 | Ahn et al. | Sep 2009 | B2 |
7589029 | Derderian et al. | Sep 2009 | B2 |
7601649 | Ahn et al. | Oct 2009 | B2 |
7602030 | Ahn et al. | Oct 2009 | B2 |
7605030 | Forbes et al. | Oct 2009 | B2 |
7611959 | Ahn et al. | Nov 2009 | B2 |
7615438 | Ahn et al. | Nov 2009 | B2 |
7625794 | Ahn et al. | Dec 2009 | B2 |
7662729 | Ahn et al. | Feb 2010 | B2 |
7670646 | Ahn et al. | Mar 2010 | B2 |
7687409 | Ahn et al. | Mar 2010 | B2 |
7719065 | Ahn et al. | May 2010 | B2 |
7727905 | Ahn et al. | Jun 2010 | B2 |
7915174 | Ahn et al. | Mar 2011 | B2 |
20010002280 | Sneh | May 2001 | A1 |
20010009695 | Saanila et al. | Jul 2001 | A1 |
20010030352 | Ruf et al. | Oct 2001 | A1 |
20020001971 | Cho | Jan 2002 | A1 |
20020004276 | Ahn et al. | Jan 2002 | A1 |
20020004277 | Ahn et al. | Jan 2002 | A1 |
20020024080 | Derderian et al. | Feb 2002 | A1 |
20020025628 | Derderian et al. | Feb 2002 | A1 |
20020046705 | Sandhu et al. | Apr 2002 | A1 |
20020053869 | Ahn et al. | May 2002 | A1 |
20020068466 | Lee et al. | Jun 2002 | A1 |
20020086507 | Park et al. | Jul 2002 | A1 |
20020086521 | Ahn et al. | Jul 2002 | A1 |
20020086555 | Ahn et al. | Jul 2002 | A1 |
20020089023 | Yu et al. | Jul 2002 | A1 |
20020089063 | Ahn et al. | Jul 2002 | A1 |
20020094632 | Agarwal et al. | Jul 2002 | A1 |
20020100418 | Sandhu et al. | Aug 2002 | A1 |
20020102818 | Sandhu et al. | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020111001 | Ahn | Aug 2002 | A1 |
20020122885 | Ahn | Sep 2002 | A1 |
20020130338 | Ahn et al. | Sep 2002 | A1 |
20020135048 | Ahn et al. | Sep 2002 | A1 |
20020142536 | Zhang et al. | Oct 2002 | A1 |
20020146916 | Irino et al. | Oct 2002 | A1 |
20020155688 | Ahn | Oct 2002 | A1 |
20020155689 | Ahn | Oct 2002 | A1 |
20020164420 | Derderian et al. | Nov 2002 | A1 |
20020167057 | Ahn et al. | Nov 2002 | A1 |
20020167089 | Ahn et al. | Nov 2002 | A1 |
20020170671 | Matsuhita et al. | Nov 2002 | A1 |
20020177244 | Hsu et al. | Nov 2002 | A1 |
20020177282 | Song | Nov 2002 | A1 |
20020192974 | Ahn et al. | Dec 2002 | A1 |
20020192975 | Ahn | Dec 2002 | A1 |
20020192979 | Ahn | Dec 2002 | A1 |
20020195056 | Sandhu et al. | Dec 2002 | A1 |
20030001241 | Chakrabarti et al. | Jan 2003 | A1 |
20030003635 | Paranjpe et al. | Jan 2003 | A1 |
20030003702 | Ahn | Jan 2003 | A1 |
20030003722 | Vaartstra | Jan 2003 | A1 |
20030003730 | Li | Jan 2003 | A1 |
20030008243 | Ahn | Jan 2003 | A1 |
20030017717 | Ahn et al. | Jan 2003 | A1 |
20030020180 | Ahn et al. | Jan 2003 | A1 |
20030027360 | Hsu et al. | Feb 2003 | A1 |
20030032238 | Kim et al. | Feb 2003 | A1 |
20030032270 | Snyder et al. | Feb 2003 | A1 |
20030042527 | Forbes et al. | Mar 2003 | A1 |
20030043633 | Forbes et al. | Mar 2003 | A1 |
20030043637 | Forbes et al. | Mar 2003 | A1 |
20030045060 | Ahn et al. | Mar 2003 | A1 |
20030045078 | Ahn et al. | Mar 2003 | A1 |
20030045082 | Eldridge et al. | Mar 2003 | A1 |
20030048666 | Eldridge et al. | Mar 2003 | A1 |
20030049942 | Haukka et al. | Mar 2003 | A1 |
20030059535 | Luo et al. | Mar 2003 | A1 |
20030068848 | Hsu et al. | Apr 2003 | A1 |
20030072882 | Ninisto et al. | Apr 2003 | A1 |
20030104666 | Bojarczuk, Jr. et al. | Jun 2003 | A1 |
20030119246 | Ahn | Jun 2003 | A1 |
20030119291 | Ahn et al. | Jun 2003 | A1 |
20030119313 | Yang et al. | Jun 2003 | A1 |
20030124748 | Summerfelt et al. | Jul 2003 | A1 |
20030124791 | Summerfelt et al. | Jul 2003 | A1 |
20030132491 | Ahn | Jul 2003 | A1 |
20030136995 | Geusic et al. | Jul 2003 | A1 |
20030137019 | Maria et al. | Jul 2003 | A1 |
20030139039 | Ahn et al. | Jul 2003 | A1 |
20030157764 | Ahn et al. | Aug 2003 | A1 |
20030161081 | Girardie | Aug 2003 | A1 |
20030170389 | Sandhu | Sep 2003 | A1 |
20030170450 | Stewart et al. | Sep 2003 | A1 |
20030175411 | Kodas et al. | Sep 2003 | A1 |
20030176065 | Vaartstra | Sep 2003 | A1 |
20030179521 | Girardie | Sep 2003 | A1 |
20030181039 | Sandhu et al. | Sep 2003 | A1 |
20030181060 | Asai et al. | Sep 2003 | A1 |
20030183156 | Dando et al. | Oct 2003 | A1 |
20030185980 | Endo | Oct 2003 | A1 |
20030200917 | Vaartstra | Oct 2003 | A1 |
20030205742 | Hsu et al. | Nov 2003 | A1 |
20030207032 | Ahn et al. | Nov 2003 | A1 |
20030207540 | Ahn et al. | Nov 2003 | A1 |
20030222300 | Basceri et al. | Dec 2003 | A1 |
20030227033 | Ahn et al. | Dec 2003 | A1 |
20030228747 | Ahn et al. | Dec 2003 | A1 |
20040004244 | Ahn et al. | Jan 2004 | A1 |
20040004245 | Forbes et al. | Jan 2004 | A1 |
20040004247 | Forbes et al. | Jan 2004 | A1 |
20040004859 | Forbes et al. | Jan 2004 | A1 |
20040007171 | Ritala et al. | Jan 2004 | A1 |
20040009679 | Yeo et al. | Jan 2004 | A1 |
20040013009 | Tsunoda et al. | Jan 2004 | A1 |
20040016944 | Ahn et al. | Jan 2004 | A1 |
20040023461 | Ahn et al. | Feb 2004 | A1 |
20040028811 | Cho et al. | Feb 2004 | A1 |
20040033661 | Yeo et al. | Feb 2004 | A1 |
20040033681 | Ahn et al. | Feb 2004 | A1 |
20040033701 | Ahn et al. | Feb 2004 | A1 |
20040036129 | Forbes et al. | Feb 2004 | A1 |
20040038554 | Ahn | Feb 2004 | A1 |
20040040501 | Vaartstra | Mar 2004 | A1 |
20040041591 | Forbes | Mar 2004 | A1 |
20040043151 | Vaartstra | Mar 2004 | A1 |
20040043541 | Ahn et al. | Mar 2004 | A1 |
20040043569 | Ahn et al. | Mar 2004 | A1 |
20040043578 | Marsh | Mar 2004 | A1 |
20040043600 | Vaartstra | Mar 2004 | A1 |
20040043604 | Vaartstra | Mar 2004 | A1 |
20040043625 | Vaartstra et al. | Mar 2004 | A1 |
20040043630 | Vaartstra et al. | Mar 2004 | A1 |
20040043632 | Vaartstra | Mar 2004 | A1 |
20040043633 | Vaartstra | Mar 2004 | A1 |
20040043634 | Vaartstra | Mar 2004 | A1 |
20040043635 | Vaartstra | Mar 2004 | A1 |
20040043636 | Vaartstra et al. | Mar 2004 | A1 |
20040076035 | Saito et al. | Apr 2004 | A1 |
20040094801 | Liang et al. | May 2004 | A1 |
20040106249 | Huotari | Jun 2004 | A1 |
20040110348 | Ahn et al. | Jun 2004 | A1 |
20040110391 | Ahn et al. | Jun 2004 | A1 |
20040126954 | Vaartstra et al. | Jul 2004 | A1 |
20040135186 | Yamamoto | Jul 2004 | A1 |
20040140513 | Forbes et al. | Jul 2004 | A1 |
20040144980 | Ahn et al. | Jul 2004 | A1 |
20040152254 | Vaartstra et al. | Aug 2004 | A1 |
20040156578 | Geusic et al. | Aug 2004 | A1 |
20040159863 | Eldridge et al. | Aug 2004 | A1 |
20040161899 | Luo et al. | Aug 2004 | A1 |
20040164357 | Ahn et al. | Aug 2004 | A1 |
20040164365 | Ahn et al. | Aug 2004 | A1 |
20040168627 | Conley, Jr. et al. | Sep 2004 | A1 |
20040169453 | Ahn et al. | Sep 2004 | A1 |
20040171280 | Conley, Jr. et al. | Sep 2004 | A1 |
20040175882 | Ahn et al. | Sep 2004 | A1 |
20040183108 | Ahn | Sep 2004 | A1 |
20040185654 | Ahn | Sep 2004 | A1 |
20040187968 | Vaartstra | Sep 2004 | A1 |
20040189175 | Ahn et al. | Sep 2004 | A1 |
20040197946 | Vaartstra et al. | Oct 2004 | A1 |
20040203254 | Conley, Jr. et al. | Oct 2004 | A1 |
20040214399 | Ahn et al. | Oct 2004 | A1 |
20040219746 | Vaartstra et al. | Nov 2004 | A1 |
20040219783 | Ahn et al. | Nov 2004 | A1 |
20040222476 | Ahn et al. | Nov 2004 | A1 |
20040233010 | Akram et al. | Nov 2004 | A1 |
20040235313 | Frank et al. | Nov 2004 | A1 |
20040248398 | Ahn et al. | Dec 2004 | A1 |
20040262700 | Ahn et al. | Dec 2004 | A1 |
20040264236 | Chae et al. | Dec 2004 | A1 |
20040266217 | Kim et al. | Dec 2004 | A1 |
20050009266 | Vaartstra | Jan 2005 | A1 |
20050009368 | Vaartstra | Jan 2005 | A1 |
20050009370 | Ahn | Jan 2005 | A1 |
20050019978 | Vaartstra et al. | Jan 2005 | A1 |
20050023574 | Forbes et al. | Feb 2005 | A1 |
20050023594 | Ahn et al. | Feb 2005 | A1 |
20050023595 | Forbes et al. | Feb 2005 | A1 |
20050023602 | Forbes et al. | Feb 2005 | A1 |
20050023603 | Eldridge et al. | Feb 2005 | A1 |
20050023624 | Ahn et al. | Feb 2005 | A1 |
20050023625 | Ahn et al. | Feb 2005 | A1 |
20050023626 | Ahn et al. | Feb 2005 | A1 |
20050023627 | Ahn et al. | Feb 2005 | A1 |
20050024092 | Forbes | Feb 2005 | A1 |
20050026349 | Forbes et al. | Feb 2005 | A1 |
20050026360 | Geusic et al. | Feb 2005 | A1 |
20050026458 | Basceri et al. | Feb 2005 | A1 |
20050028733 | Vaartstra | Feb 2005 | A1 |
20050029547 | Ahn et al. | Feb 2005 | A1 |
20050029604 | Ahn et al. | Feb 2005 | A1 |
20050029605 | Ahn et al. | Feb 2005 | A1 |
20050030825 | Ahn | Feb 2005 | A1 |
20050032292 | Ahn et al. | Feb 2005 | A1 |
20050032342 | Forbes et al. | Feb 2005 | A1 |
20050032360 | Vaartstra | Feb 2005 | A1 |
20050034662 | Ahn | Feb 2005 | A1 |
20050037563 | Ahn | Feb 2005 | A1 |
20050051828 | Park et al. | Mar 2005 | A1 |
20050054165 | Ahn et al. | Mar 2005 | A1 |
20050070098 | Bruley | Mar 2005 | A1 |
20050077519 | Ahn et al. | Apr 2005 | A1 |
20050087134 | Ahn | Apr 2005 | A1 |
20050124171 | Vaartstra | Jun 2005 | A1 |
20050124174 | Ahn et al. | Jun 2005 | A1 |
20050124175 | Ahn et al. | Jun 2005 | A1 |
20050136689 | Vaartstra | Jun 2005 | A9 |
20050138262 | Forbes | Jun 2005 | A1 |
20050140462 | Akram et al. | Jun 2005 | A1 |
20050145957 | Ahn et al. | Jul 2005 | A1 |
20050145959 | Forbes | Jul 2005 | A1 |
20050151184 | Lee et al. | Jul 2005 | A1 |
20050156256 | Kim et al. | Jul 2005 | A1 |
20050158973 | Ahn et al. | Jul 2005 | A1 |
20050160981 | Vaartstra et al. | Jul 2005 | A9 |
20050164521 | Ahn et al. | Jul 2005 | A1 |
20050215015 | Ahn et al. | Sep 2005 | A1 |
20050218462 | Ahn et al. | Oct 2005 | A1 |
20050221006 | Vaartstra et al. | Oct 2005 | A1 |
20050227442 | Ahn et al. | Oct 2005 | A1 |
20050260357 | Olsen et al. | Nov 2005 | A1 |
20050277256 | Ahn et al. | Dec 2005 | A1 |
20050280067 | Ahn et al. | Dec 2005 | A1 |
20050287804 | Vaaartstra | Dec 2005 | A1 |
20050287819 | Vaartstra et al. | Dec 2005 | A1 |
20060000412 | Ahn et al. | Jan 2006 | A1 |
20060001151 | Ahn et al. | Jan 2006 | A1 |
20060003517 | Ahn et al. | Jan 2006 | A1 |
20060023513 | Forbes et al. | Feb 2006 | A1 |
20060024975 | Ahn et al. | Feb 2006 | A1 |
20060028867 | Forbes et al. | Feb 2006 | A1 |
20060028869 | Forbes et al. | Feb 2006 | A1 |
20060043492 | Ahn et al. | Mar 2006 | A1 |
20060043504 | Ahn et al. | Mar 2006 | A1 |
20060046505 | Ahn et al. | Mar 2006 | A1 |
20060046521 | Vaartstra et al. | Mar 2006 | A1 |
20060046522 | Ahn et al. | Mar 2006 | A1 |
20060048711 | Vaartstra | Mar 2006 | A1 |
20060125030 | Ahn et al. | Jun 2006 | A1 |
20060128168 | Ahn et al. | Jun 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060172485 | Vaartstra | Aug 2006 | A1 |
20060176645 | Ahn et al. | Aug 2006 | A1 |
20060177975 | Ahn et al. | Aug 2006 | A1 |
20060183272 | Ahn et al. | Aug 2006 | A1 |
20060189154 | Ahn et al. | Aug 2006 | A1 |
20060223337 | Ahn et al. | Oct 2006 | A1 |
20060228868 | Ahn et al. | Oct 2006 | A1 |
20060231017 | Vaartstra | Oct 2006 | A1 |
20060237764 | Ahn et al. | Oct 2006 | A1 |
20060244082 | Ahn et al. | Nov 2006 | A1 |
20060244100 | Ahn et al. | Nov 2006 | A1 |
20060246741 | Ahn et al. | Nov 2006 | A1 |
20060252211 | Ahn et al. | Nov 2006 | A1 |
20060252244 | Vaartstra et al. | Nov 2006 | A1 |
20060252279 | Vaartstra | Nov 2006 | A1 |
20060255470 | Ahn et al. | Nov 2006 | A1 |
20060258175 | Vaartstra et al. | Nov 2006 | A1 |
20060261389 | Vaartstra | Nov 2006 | A1 |
20060261397 | Ahn et al. | Nov 2006 | A1 |
20060263972 | Ahn et al. | Nov 2006 | A1 |
20060264064 | Ahn et al. | Nov 2006 | A1 |
20060270147 | Ahn et al. | Nov 2006 | A1 |
20060281330 | Ahn et al. | Dec 2006 | A1 |
20060284246 | Forbes et al. | Dec 2006 | A1 |
20060292788 | Vaartstra | Dec 2006 | A1 |
20070006798 | Vaartstra et al. | Jan 2007 | A1 |
20070007560 | Forbes et al. | Jan 2007 | A1 |
20070007635 | Forbes et al. | Jan 2007 | A1 |
20070010060 | Forbes et al. | Jan 2007 | A1 |
20070010061 | Forbes et al. | Jan 2007 | A1 |
20070018214 | Ahn | Jan 2007 | A1 |
20070020835 | Ahn et al. | Jan 2007 | A1 |
20070037415 | Ahn et al. | Feb 2007 | A1 |
20070045676 | Forbes et al. | Mar 2007 | A1 |
20070045752 | Forbes et al. | Mar 2007 | A1 |
20070048926 | Ahn | Mar 2007 | A1 |
20070049023 | Ahn et al. | Mar 2007 | A1 |
20070049051 | Ahn et al. | Mar 2007 | A1 |
20070049054 | Ahn et al. | Mar 2007 | A1 |
20070059881 | Ahn et al. | Mar 2007 | A1 |
20070090440 | Ahn et al. | Apr 2007 | A1 |
20070090441 | Ahn et al. | Apr 2007 | A1 |
20070099366 | Ahn et al. | May 2007 | A1 |
20070101929 | Ahn et al. | May 2007 | A1 |
20070107661 | Ahn | May 2007 | A1 |
20070111544 | Ahn | May 2007 | A1 |
20070131169 | Ahn | Jun 2007 | A1 |
20070144438 | Vaartstra | Jun 2007 | A1 |
20070155190 | Vaartstra et al. | Jul 2007 | A1 |
20070158765 | Ahn et al. | Jul 2007 | A1 |
20070161260 | Vaartstra | Jul 2007 | A1 |
20070166999 | Vaartstra | Jul 2007 | A1 |
20070178643 | Forbes et al. | Aug 2007 | A1 |
20070181931 | Ahn et al. | Aug 2007 | A1 |
20070187772 | Ahn et al. | Aug 2007 | A1 |
20070187831 | Ahn et al. | Aug 2007 | A1 |
20070234949 | Ahn et al. | Oct 2007 | A1 |
20070295273 | Vaartstra | Dec 2007 | A1 |
20080029790 | Ahn et al. | Feb 2008 | A1 |
20080032424 | Ahn et al. | Feb 2008 | A1 |
20080032465 | Ahn et al. | Feb 2008 | A1 |
20080048225 | Ahn et al. | Feb 2008 | A1 |
20080057659 | Forbes | Mar 2008 | A1 |
20080057690 | Forbes | Mar 2008 | A1 |
20080064210 | Vaartstra | Mar 2008 | A1 |
20080087890 | Ahn et al. | Apr 2008 | A1 |
20080087945 | Forbes et al. | Apr 2008 | A1 |
20080099829 | Forbes et al. | May 2008 | A1 |
20080102629 | Vaartstra | May 2008 | A1 |
20080121962 | Forbes et al. | May 2008 | A1 |
20080124907 | Forbes et al. | May 2008 | A1 |
20080124908 | Forbes et al. | May 2008 | A1 |
20080191350 | Ahn et al. | Aug 2008 | A1 |
20080191351 | Ahn et al. | Aug 2008 | A1 |
20080193791 | Ahn et al. | Aug 2008 | A1 |
20080194094 | Ahn et al. | Aug 2008 | A1 |
20080217676 | Ahn et al. | Sep 2008 | A1 |
20080220618 | Ahn et al. | Sep 2008 | A1 |
20080248618 | Ahn et al. | Oct 2008 | A1 |
20080274625 | Ahn et al. | Nov 2008 | A1 |
20090002025 | Forbes et al. | Jan 2009 | A1 |
20090004801 | Ahn et al. | Jan 2009 | A1 |
20090032910 | Ahn et al. | Feb 2009 | A1 |
20090108363 | Forbes et al. | Apr 2009 | A1 |
20090155976 | Ahn et al. | Jun 2009 | A1 |
20090173979 | Ahn et al. | Jul 2009 | A1 |
20090218612 | Forbes et al. | Sep 2009 | A1 |
20090236650 | Forbes et al. | Sep 2009 | A1 |
20090294924 | Forbes et al. | Dec 2009 | A1 |
20100029054 | Ahn et al. | Feb 2010 | A1 |
20100044771 | Ahn et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1096042 | May 2001 | EP |
1124262 | Aug 2001 | EP |
WO-0197257 | Dec 2001 | WO |
WO-0231875 | Apr 2002 | WO |
WO-0243115 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20110037117 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10930167 | Aug 2004 | US |
Child | 11608286 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11608286 | Dec 2006 | US |
Child | 12915578 | US |