This application relates to deformable electronic devices, particularly, to spiral-shaped electrical interconnects to be used in island-interconnect deformable electronic devices.
Recent years have witnessed the rapid development of deformable electronic devices, which are emerging as an attractive and promising new technology. Such electronics can be incorporated into wearable devices, such as flexible displays, stretchable circuits, hemispherical electronic eyes, and epidermal devices, to name a few. With deformable electronics, devices can be made to fit into a variety of physical spaces without the standard geometric constraints of non-deformable electronic devices. Indeed, such devices may be developed on the nano-, micro-, centi-, or meter level scale for various applications.
Many methods have been utilized to form deformable electronic devices and there are generally two conventional approaches. The first approach is to use organic materials that are intrinsically stretchable to form the electronic devices; however, such organic materials are undesirable for use in high-performance electronics because they have low electrical mobility (i.e., ability for charged particles to move through a medium in response to an electric field). The second approach utilizes an “island-interconnect” structure where multiple inorganic electronic devices are each placed on a rigid island (e.g., substrate) and electrically connected by interconnects that are stretchable, thus making the entire island-interconnect system stretchable. The island-interconnect structures are typically supported by elastomeric substrates, and recent developments in foldable electronics utilize the concept of paper folding (i.e., origami) to increase the flexibility and deformability of the resulting structures. Indeed, one major objective is to improve the flexibility and deformability of stretchable electronic devices to allow them to be used in an even wider variety of applications than was previously possible. With the island-interconnect method, known interconnects are patterned to form a serpentine shape or a semi-similar serpentine shape to improve deformability. The serpentine-based design utilizes the concept of kirigami (i.e., paper-cutting) to make non-straight lines from a two-dimensional plane, such that in-plane stretching is compensated by out-of-plane deformation. However, even the serpentine-based design is limited in its stretchability capacity.
Accordingly, additional methods of forming interconnects that improve stretchability are desired, such that electronic devices with wide functionality and improved portability may be developed.
To improve deformability of island-interconnect structures, the invention is directed to spiral-based interconnects, which are more stretchable than conventional serpentine-based interconnects.
Accordingly, one aspect of the invention is directed to an electronic device which includes a first functional body, a second functional body, and at least one connection member connecting the first functional body to the second functional body, wherein the at least one connection member has a spiral pattern and is suspended in air to allow for stretching, flexing or compressing.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
These and other features of the preferred embodiments of the invention will become more apparent in the detailed description in which reference is made to the appended drawings wherein:
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
The invention is directed generally to spiral-based interconnect geometries for use in island-interconnect deformable electronic devices. Deformable electronic devices typically include a plurality of individual electronic devices which are electrically connected by connection member(s), also known as interconnects. The connection members are electrically conductive so as to allow electrical signals to be conducted between the individual devices. The electronic devices are not particularly limited and may be, for example, energy storage and energy source devices (e.g., batteries, solar cells, and supercapacitors), consumer products (e.g., foldable displays, illumination devices, antenna, and foldable toys), and wearable electronics (e.g., health monitoring systems and communication systems). The interconnect geometries of the invention allow these products to be made more compact, portable and durable without sacrificing performance.
As set forth herein, and without being bound by any particular theory, it is believed that a spiral-shaped interconnect allows for increased stretchability of the island-interconnect device. It is believed that a uniform and small curvature in a spiral pattern used for the interconnect contributes to a greater stretchability. Instead of applying a periodic pattern to the design of the interconnect, a non-periodic pattern provides a higher degree of freedom during the design process, especially under certain extreme conditions.
As set forth herein, the spiral interconnect geometries have a higher stretchability as compared to known serpentine-based interconnect geometries. The spiral interconnects are stretchable up to 250% under elastic deformation and up to 325% without failure.
Exemplary in-plane shapes of three interconnect patterns (also referred to as “connection members”) are shown in
The interconnects of
In another example, the interconnect can be formed from a plurality of layers, such as a first layer forming a top or bottom of the interconnect, or double layers on both the top and bottom of the interconnect, and/or multiple layers as necessary depending on the requirements of a particular application.
Each of the geometries illustrated in
In one exemplary embodiment, the Archimedean spiral structure 100 may be prescribed by an analytical function in the polar coordinate as r=A·θq, wherein r is the radius of the spiral pattern. θ=[0, 3π], A is a geometrical pre-factor, and q is the power which determines the shape of the function. There is no limit on the value of variables A or q, which are related and which dictate the shape of the spiral pattern. In another exemplary embodiment, the Archimedean spiral structure 100 is prescribed by an analytical function in the polar coordinate as r=±60θ1/1.7, θ=[0,3π] wherein r is the radius of the spiral pattern. In one embodiment, the body width (w) of the spiral structure 100 is about 40 microns. In this way, all three patterns (
To compare the interconnect geometries of
To analyze the stretchability of each interconnect geometry illustrated in
The results of the stretchability tests are illustrated in
As shown in
The strain behavior of each of the interconnect patterns tested above is provided in the graphs of
The comparisons set forth in
According to another embodiment, as illustrated in
In another embodiment, two Archimedean spiral structures 100 are used to form an interconnect. To make the spiral-based structure more versatile so that it can better fit into a non-square area, a modified Archimedean spiral structure 100′ may be used, as illustrated in
The stretchability of the modified Archimedean spiral structure 100′ was analyzed by applying a prescribed displacement force at one end while the other end is fixed, as set forth herein. The results of this stretchability test are provided in
In one aspect, the spiral structure 100 is coupled to and positioned between opposing functional bodies 700 to form an island-interconnect structure 702, as illustrated in
Although several embodiments of the invention have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the invention will come to mind to which the invention pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the invention is not limited to the specific embodiments disclosed hereinabove, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
Various features and advantages of the invention are set forth in the following claims.
This application is a continuation of International Application No. PCT/US2015/068038 filed on Dec. 30, 2015, which claims priority to U.S. Provisional Patent Application No. 62/099,324, filed on Jan. 2, 2015. The entire content of these disclosures are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4922059 | Walker et al. | May 1990 | A |
5008496 | Schmidt et al. | Apr 1991 | A |
5115344 | Jaskie | May 1992 | A |
5121297 | Haas | Jun 1992 | A |
5168384 | Genba | Dec 1992 | A |
5519596 | Woolverton | May 1996 | A |
5648771 | Halgren et al. | Jul 1997 | A |
5903440 | Blazier et al. | May 1999 | A |
5969783 | Takiar et al. | Oct 1999 | A |
6050962 | Kramer et al. | Apr 2000 | A |
6299337 | Bachl et al. | Oct 2001 | B1 |
6384890 | Takiar et al. | May 2002 | B1 |
6455931 | Hamilton, Jr. et al. | Sep 2002 | B1 |
6461762 | Yang et al. | Oct 2002 | B1 |
6476733 | Amiri | Nov 2002 | B1 |
6482540 | Gozdz et al. | Nov 2002 | B1 |
6584857 | Furlani et al. | Jul 2003 | B1 |
6695457 | van Drieenhuizen et al. | Feb 2004 | B2 |
6880955 | Lin | Apr 2005 | B2 |
6936855 | Harrah | Aug 2005 | B1 |
7201511 | Moriyama et al. | Apr 2007 | B2 |
7215547 | Chang et al. | May 2007 | B2 |
7265719 | Moosbrugger et al. | Sep 2007 | B1 |
7513664 | Chou | Apr 2009 | B2 |
8080736 | DeNatale et al. | Dec 2011 | B2 |
8658904 | Naganuma et al. | Feb 2014 | B2 |
8685201 | O'Rourke et al. | Apr 2014 | B2 |
9706646 | Jiang et al. | Jul 2017 | B2 |
10153519 | Jiang et al. | Dec 2018 | B2 |
10418664 | Jiang et al. | Sep 2019 | B2 |
10502991 | Yu et al. | Dec 2019 | B2 |
20020094701 | Biegelsen et al. | Jul 2002 | A1 |
20030070833 | Barth | Apr 2003 | A1 |
20030091896 | Watanabe et al. | May 2003 | A1 |
20030122476 | Wang et al. | Jul 2003 | A1 |
20030129488 | Gross | Jul 2003 | A1 |
20040118595 | Flammer et al. | Jun 2004 | A1 |
20040119442 | Lee et al. | Jun 2004 | A1 |
20040172820 | Lopez | Sep 2004 | A1 |
20050099361 | Majer | May 2005 | A1 |
20050110702 | Aoki et al. | May 2005 | A1 |
20050280157 | Roush et al. | Dec 2005 | A1 |
20060063351 | Jain | Mar 2006 | A1 |
20060073383 | Han et al. | Apr 2006 | A1 |
20060082298 | Becken et al. | Apr 2006 | A1 |
20060113279 | Little | Jun 2006 | A1 |
20070090457 | Lee et al. | Apr 2007 | A1 |
20070166845 | Yokokawa | Jul 2007 | A1 |
20070270315 | Saruwatari et al. | Nov 2007 | A1 |
20080093110 | Bagung | Apr 2008 | A1 |
20080093118 | Takahashi et al. | Apr 2008 | A1 |
20080101070 | Chou | May 2008 | A1 |
20080125510 | Crosby et al. | May 2008 | A1 |
20080158498 | Chang et al. | Jul 2008 | A1 |
20080179079 | Ishii et al. | Jul 2008 | A1 |
20080289859 | Mikado et al. | Nov 2008 | A1 |
20090009046 | Oh et al. | Jan 2009 | A1 |
20090103295 | Wang | Apr 2009 | A1 |
20090167171 | Jung et al. | Jul 2009 | A1 |
20090207560 | Lee | Aug 2009 | A1 |
20090283891 | Dekker et al. | Nov 2009 | A1 |
20090297776 | Crosby et al. | Dec 2009 | A1 |
20090310209 | Aschwanden et al. | Dec 2009 | A1 |
20090310221 | Aschwanden | Dec 2009 | A1 |
20090317639 | Axisa et al. | Dec 2009 | A1 |
20100011529 | Won et al. | Jan 2010 | A1 |
20100053207 | Cohen et al. | Mar 2010 | A1 |
20100116526 | Arora et al. | May 2010 | A1 |
20100143677 | Lee et al. | Jun 2010 | A1 |
20100149640 | Paek et al. | Jun 2010 | A1 |
20100298895 | Ghaffari et al. | Nov 2010 | A1 |
20100307705 | Rahm et al. | Dec 2010 | A1 |
20110096545 | Chang | Apr 2011 | A1 |
20110227822 | Shai | Sep 2011 | A1 |
20110228536 | Im et al. | Sep 2011 | A1 |
20120143525 | Chen et al. | Jun 2012 | A1 |
20120146050 | Adam et al. | Jun 2012 | A1 |
20120168009 | Chen et al. | Jul 2012 | A1 |
20120170244 | Kwon et al. | Jul 2012 | A1 |
20120202101 | Jeda | Aug 2012 | A1 |
20120212820 | Jiang et al. | Aug 2012 | A1 |
20120292504 | Nojima | Nov 2012 | A1 |
20130115512 | Jiang et al. | May 2013 | A1 |
20130171490 | Rothkopf et al. | Jul 2013 | A1 |
20130290647 | Maeda et al. | Oct 2013 | A1 |
20140204300 | Park et al. | Jul 2014 | A1 |
20140220422 | Rogers | Aug 2014 | A1 |
20150342050 | Jiang et al. | Nov 2015 | A1 |
20160050750 | Rogers et al. | Feb 2016 | A1 |
20160313478 | Lee et al. | Oct 2016 | A1 |
20170338453 | Yu et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1610168 | Apr 2005 | CN |
20100131593 | Dec 2010 | KR |
I488750 | Jun 2015 | TW |
WO 2001094253 | Dec 2001 | WO |
WO 03-021679 | Mar 2003 | WO |
2009126544 | Oct 2009 | WO |
2011113038 | Sep 2011 | WO |
WO 2014029908 | Feb 2014 | WO |
WO 2014113489 | Jul 2014 | WO |
2015100414 | Jul 2015 | WO |
2016049444 | Mar 2016 | WO |
2016073584 | May 2016 | WO |
2018212871 | Nov 2018 | WO |
2019152643 | Aug 2019 | WO |
Entry |
---|
Hu, L.; Cui, H. Energy Environ. Sci. 2012, 6423-6435. |
Huang, J.; Zhu, H.; Chen, Y.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. ACS Nano 2013, 2106-2113. |
Dragoman, M.; Flahaut, E.; Dragoman, D.; Al Ahmad, M.; Plana, R. Nanotechnology 2009, 375203. |
Liu, H.; Crooks, R. M. Anal. Chem. 2012, 2528-2532. |
Lankelma, J.; Nie, Z.; Carrilho, E.; Whitesides, G. M. Anal. Chem. 2012, 4147-4152. |
Liu, H.; Crooks, R. M. J. Am. Chem. Soc. 2011, 17564-17566. |
Dungchai, W.; Chailapakul, O.; Henry, C. S. Anal. Chem. 2009, 5821-5826. |
Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Anal. Chem. 2010, 3-10. |
Siegel, A. C.; Phillips, S. T.; Wiley, B. J.; Whitesides, G. M. Lab Chip 2009, 2775-2781. |
Hu, L.; Zheng, G.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Kambulut, E.; Ruan, Z.; Fan, S.; Bloking, J. T.; McGehee, M. D.; Wagberg, L.; Cui, Y. Energy Environ. Sci. 2013, 513-518. |
Russo, A.; Ahn, B. Y.; Adams, J. J.; Duoss, E. B.; Bernhard, J. T.; Lewis, J. A. Adv. Mater. 2011, 3426-3430. |
Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Energy Environ. Sci. 2013, 470-476. |
Olsson, H.; Carlsson, D. O.; Nystrom, G.; Sjodin, M.; Nyholm, L.; Stromme, M. J. Mater. Sci. 2012, 5317-5325. |
Razaq, A.; Nyholm, L.; Sjödin, M.; Strømme, M.; Mihranyan, A. Adv. Energy Mater. 2012, 445-454. |
Jabbour, L.; Destro, M.; Chaussy, D.; Gerbaldi, C.; Penazzi, N.; Bodardo, S.; Beneventi, D. Cellulose 2013, 571-582. |
Chun, S. J.; Choi, E. S.; Lee, E. H.; Kim, J. H.; Lee, S. Y.; Lee, S. Y. J. Mater. Chem. 2012, 16618-16626. |
Xu, S.; Zhang, Y.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H.; Cheng, H.; Lu, B.; Yu, C.; Chuang, C.; Kim, T. I.; Song, T.; Shigeta, K.; Kang, S.; Dagdeviren, C.; Petrov, I.; Braun, P. V.; Huang, Y.; Paik, U.; Rogers, R. A. Nat. Commun. 2013, 1543. |
Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Energy Environ. Sci. 2011, 5060-5067. |
Sun, C.; Zhu, H.; Baker, E. B., III; Okada, M.; Wan, J.; Ghemes, A.; Inoue, Y.; Hu, L.; Wang, Y. Nano Energy 2013, DOI: 10.1016/ j.nanoen.2013.03.020. |
Liu, Y.; Gorgutsa, S.; Santato, C.; Skorobogatiy, M. J. Electrochem. Soc. 2012, A349-A356. |
Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; LaMantia, F ; Cui, L. F.; Cui, Y. Proc. Natl. Acad. Sci. U.S.A. 2009, 21490. |
Hu, L.; Wu, H.; LaMantia, F.; Yang, Y.; Cui, Y. ACS Nano 2011, 5843-5848. |
Gui, Z.; Zhu, H.; Gillette, E.; Han, X.; Rubloff, G. W.; Hu, L.; Lee, S. B. ACS Nano 2013, 6037-6046. |
Kang, Y. J.; Chun, S. J.; Lee, S. S.; Kim, B. Y.; Kim, J. H.; Chung, H.; Lee, S. Y.; Kim, W. ACS Nano 2012, 6400-6406. |
Kang, Y. R.; Li, Y. L.; Hou, F.; Wen, Y. Y.; Su, D. Nanoscale 2012, 3248-3253. |
Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. Adv. Energy Mater. 2011, 917-922. |
Zheng, G.; Hu, L.; Wu, H.; Xie, X.; Cui, Y. Energy Environ. Sci. 2011, 3368-3373. |
Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Nano Res. 2010, 594-603. |
Zhong, Q.; Zhong, J.; Hu, B.; Hu, Q.; Zhou, J.; Wang, Z. L. Energy Environ. Sci. 2013, 1779-1784. |
Fan, K.; Peng, T.; Chen, J.; Zhang, X.; Li, R. J. Mater. Chem. 2012, 16121-16126. |
Zhang, L.; Zhou, M.; Wen, D.; Bai, L.; Lou, B.; Dong, S. Biosens. Bioelectron. 2012, 155-159. |
Xie, X.; Pasta, M.; Hu, L.; Yang, Y.; McDonough, Y.; Cha, J.; Criddle, C. S.; Cui, Y. Energy Environ. Sci. 2011, 1293-1297. |
Gardner, J. P.; Mather, J. C.; Clampin, M.; Doyon, R.; Greenhouse, M. A.; Hammel, H. B.; Hutchings, J. B.; Jakobsen, P.; Lilly, S. J.; Long, K. S.; Lunine, J. I.; McCaughrean, M. J.; Mountain, M.; Nella, J.; Rieke, G. H.; Rieke, M. J.; Rix, H. W.; Smith, E. P.; Sonneborn, G.; Stiavelli, M.; Stockman, H. S.; Windhorst, R. A.; Wright, G. S. Space Sci. Rev. 2006, 485-606. |
Ahn, B. Y.; Shoji, D.; Hansen, C. J.; Hong, E.; Dunand, D. C.; Lewis, J. A. Adv. Mater. 2010, 2251-2254. |
Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mandevan, L. Phys. Rev. Lett. 2013, 215501. |
Schenk, M.; Guest, S. D. Proc. Natl. Acad. Sci. U.S.A. 2013, 3276. |
An, B.; Benbernou, N.; Demaine, E. D.; Rus, D. Robotica 2011, 87-102. Nano Letters Letter 4973 dx.doi.org/10.1021/n14030374 | Nano Lett. 2013, 13, 4969-4974. |
Wang, C.; Nosaka, T.; Yost, B.; Zimmerman, B.; Sutton, E. D.; Kincaid, E.; Keberle, K.; Iqbal, Q. A.; Mendez, R.; Markowitz, S.; Liu, P.; Alford, T. L.; Chan, C. K.; Chan, K. S.; O'Connell, M. J. Mater. Res. Lett. 2013, 13-18. |
Hawkes, E.; An, B.; Benbernou, N. M.; Tanaka, H.; Kim, S.; Demaine, E. D.; Rus, D.; Wood, R. J. Proc. Natl. Acad. Sci. U.S.A. 2010, 12441-12445. |
Onal, C. D.; Wood, R. J.; Rus, D. IEEE Int. Conf. Rob. Autom. 2011, 4608-4613. |
Paik, J. K. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2011, 414-420. |
Miura, K. Map fold a la miura style, its physical characteristics and application to the space science. In Research of Pattern Formation; Takaki, R., Ed.; KTK Scientific Publishers: Tokyo, 1994; pp. 77-90. |
Nishiyama, Y. Int. J. Pure Appl. Math. 2012, 269-279. |
Miura, K. Method of packaging and deployment of large membranes in space; Technical Report for The Institute of Space and Astronautical Science. Report No. 618, Dec. 1985. |
Gaynor, J. F.; Senkevich, J. J.; Desu, S. B. J. Mater. Res. 1996, 1842-1850. |
John, J.; Li, Y.; Zhang, J.; Loeb, J. A.; Xu, Y. J. Micromech. Microeng. 2011, 105011. |
Kim, E.; Tu, H.; Lv, C.; Jiang, H.; Yu, H.; Xu, Y. Appl. Phys. Lett. 2013, 033506. |
Katragadda, R. B.; Xu, Y. Sens. Actuators, A 2008, 169-174. |
Lunnon, W. F. Math. Comp. 1968, 192-199. |
Demaine, E. D.; O'Rourke, J. A survey of folding and unfolding in computational geometry. In Combinatorial and computational geometry; Goodman, J. E., Pach, J., Welzl, E., Eds.; Mathematical Sciences Research Institute Publications: Cambridge University Press: New York, 2005; pp. 167-211. |
Balkcom, D. J.; Mason, M. T. Int. J. Robot. Res. 2008, 613-627. |
Song, Z. et al. ‘Origami Lithium-ion batteries’. Nature Communications. Jan. 28, 2014. vol. 5. Article No. 3140. pp. 1-6. |
Long, J. W. et al. ‘Three-dimensional battery architectures’. Chemical Reviews. 2004. vol. 104. No. 10. pp. 4463-4492. |
Cheng, Q. et al. ‘Folding paper-based lithium batteries for higher areal energy densities’. Nano Letters. Sep. 23, 2013. vol. No. 10. pp. 4969-4974. |
Chen Y, Au J, Kazlas P, Ritenour A, Gates H, McCreary M. Flexible active-matrix electronic ink display. Nature 423, 136-136 (2003). |
Gelinck GH, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3, 106-110 (2004). |
Kim S, et al. Low-Power Flexible Organic Light-Emitting Diode Display Device. Adv Mater 23, 3511-+ (2011). |
Yoon B, Ham DY, Yarimaga O, An H, Lee CW, Kim JM. Inkjet Printing of Conjugated Polymer Precursors on Paper Substrates for Colorimetric Sensing and Flexible Electrothermochromic Display. Adv Mater 23, 5492-+ (2011). |
Kim DH, et al. Stretchable and foldable silicon integrated circuits. Science 320, 507-511 (2008). |
Ko HC, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748-753 (2008). |
Kim DH, et al. Epidermal Electronics. Science 333, 838-843 (2011). |
Pushparaj VL, et al. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104, 13574-13577 (2007). |
Scrosati B. Nanomaterials—Paper powers battery breakthrough. Nat Nanotechnol 2, 598-599 (2007). |
Gao KZ, et al. Paper-based transparent flexible thin film supercapacitors. Nanoscale 5, 5307-5311 (2013). |
Wang JZ, et al. Highly flexible and bendable free-standing thin film polymer for battery application. Mater Lett 63, 2352-2354 (2009). |
Hu LB, Wu H, La Mantia F, Yang YA, Cui Y. Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano 4, 5843-5848 (2010). |
Ihlefeld JF, Clem PG, Doyle BL, Kotula PG, Fenton KR, Apblett CA. Fast Lithium-Ion Conducting Thin-Film Electrolytes Integrated Directly on Flexible Substrates for High-Power Solid-State Batteries. Adv Mater 23, 5663-+ (2011). |
Koo M, et al. Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Lett 12, 4810-4816 (2012). |
Yu CJ, Masarapu C, Rong JP, Wei BQ, Jiang HQ. Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms. Advanced Materials 21, 4793-+ (2009). |
Li X, Gu TL, Wei BQ. Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Lett 12, 6366-6371 (2012). |
Hu LB, et al. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett 10, 708-714 (2010). |
Kuribayashi K, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater Sci Eng A-Struct Mater Prop Microstruct Process 419, 131-137 (2006). |
Belcastro S-M, Hull TC. Modeling the folding of paper into three dimensions using affine transformations. Linear Algebra and its Applications 348, 273-282 (2002). |
PCT/US2014/072354 International Search Report and Written Opinion of the International Searching Authority dated Apr. 13, 2015 (15 pages). |
PCT/US2014/011710 International Search Report and Written Opinion of the International Searching Authority dated May 12, 2014 (7 pages). |
PCT/US2015/059006 International Search Report and Written Opinion of the International Searching Authority dated Feb. 17, 2016 (7 pages). |
Sant et al., “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 2. 085-39 (2010). |
Yang et al., “A latchable microvalve using phase change of paraffin wax,” Sensors and Actuators A 134, pp. 194-200 (2007). |
Äyräs P. et al., “Diffraction Gratings in Sol-gel Films by Direct Contact Printing Using a UV-mercury Lamp” 162 Opt. Comms. 215-218 (1999). |
Fang Y. et al., “Resonant Waveguild Grating Biosensor for Living Cell Sensing” 91 Biophys. J. 1925-940 (2006). |
Gudeman CS. et al., “Using the Grating Lite Valve Device as a Multichannel Variable Optical Attenuator (VOA) for the 1.55-μm Spectral Region” 4653 Proc. SPIE 56-61 (2002). |
Albert K. Harris et al., “Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion” 208 Science 177-179 (1980). |
Huang R., “Kinetic Wrinkling of an Elastic Film on a Viscoelastic Substrate” 53 J. Mech. Phys. Solids 63-89 (2005). |
Z. Y. Huang et al., “Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate” 53 J. Mech. Phys. Solids 2101-118 (2005). |
Wilhelm T. S. Huck et al., “Ordering of Spontaneously Formed Buckles on Planar Surfaces” 16 Langmuir 3497-501 (2000). |
Hanqing Jiang et al., “Finite Width Effect of Thin-films Buckling on Compliant substrate: Experimental and Theoretical Studies” 56 J. Mech. Phys. Solids 2585-598 (2008). |
Cunjiang Yu et al., “Thermoresponsiveness of Integrated Ultra-Thin Silicon with Poly(N-isopropylacrylamide) Hydrogels” 32 Macromol. Rapid Commun. 820 (2011). |
Cunjiang Yu et al., “Silicon Thin Films as Anodes for High-Performance Lithium-Ion batteries with Effective Stress Relaxation” 2 Adv. Energy Mater. 68 (2012). |
David C. Duffy et al., “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)” 70 Anal. Chem. 4974 (1998). |
Daniel H. Raguin and G. Michael Morris, “Antireflection Structured Surfaces for the Infrared Spectral Region” 32 Appl. Opt. 1154-167 (1993). |
Christopher M. Stafford et al., “A Buckling-based Metrology for Measuring the Elastic Moduli of Polymetric Thin Films” 3 Nat. Mater. 545-550 (2004). |
Chee Wei Wong et al., “Analog Tunable Gratings Driven by Thin-film Piezoelectric Microelectromechanical Actuators” 42 Appl. Opt. 621-626 (2003). |
A. Azzam Yasseen et al., “Diffraction Grating Scanners Using Polysilicon Micromotors” 5 IEEE J. Sel. Top. Quantum Electron. 75-82 (1999). |
M. Ouyang et al., “Conversion of Some Siloxane Polymers to Silicon Oxide by UV/Ozone Photochemical Processes” 12 Chem. Mater. 1591 (2000). |
E. Cerda et al., “Thin Films: Wrinkling of an Elastic Sheet Under Tension” 419 Nature 579 (2002). |
Christopher Harrison et al., “Sinusoidal Phase Grating Created by a Tunably Buckled Surface” 85 Appl. Phys. Lett. 4016-4018 (2004). |
Ned Bowden et al., “Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer” 393 Nature 146-149 (1998). |
Takuya Ohzono and Masatsugu Shimomura, “Geometry-dependent Stripe Rearrangement Processes Induced by Strain on Preordered Microwrinkle Patterns” 21 Langmuir 7230-7237 (2005). |
Kevin Chen et al., “Facile Large-area Photolithography of Periodic Sub-micron Structures Using a Self-formed Polymer Mask” 100 App. Phys. Lett 233503 (2012). |
F.S. Chen et al., “Holographic Storage in Lithium Niobate” 13 Appl. Phys. Lett. 223 (1968). |
Kahp Y. Suh et al., “A Simple Soft Lithographic Route to Fabrication of Poly(ethylene glycol) Microstructures for Protein and Cell Patterning” 25 Biomaterials 557 (2004). |
Anne Horn et al., “Ordering and Printing Virus Arrays: A straightforward Way to Functionalize Surfaces” 6 Small 2122 (2010). |
Jonathan G. C. Veinot et al., “Fabrication and Properties of Organic Light-Emitting “Nanodiode” Arrays” 2 Nano.Lett. 333 (2002). |
Yoshihiro Koide et al., “Hot Microcontact Printing for Patterning ITO Surfaces. Methodology, Morphology, Microstructure, and OLED Charge Injection Barrier Imaging” 19 Langmuir 86 (2003). |
Cunjiang Yu et al., “Tunable Optical Gratings Based on Buckled Nanoscale Thin Films on Transparent Elastomeric Substrates” 96 Appl. Phys. Lett. 041111 (2010). |
Zhiyong Fan et al., “Three-dimensional Nanopillar-array Photovoltaics on Low-cost and Flexible Substrates” 8 Nat. Mat. 648 (2009). |
C. Vieu et al., “electron Beam Lithography: Resolution Limits and Applications” 164 Appl. Surf. Sci. 111 (2000). |
Burn Jeng Lin, “Deep UV Lithography” 12 J. Vac. Sci. Technol. 1317 (1975). |
Leon A. Woldering et al., “Periodic Arrays of Deep Nanopores Made in Silicon with Reactive Ion Etching and Deep UV Lithography” 19 Nanotechnology 145304 (2008). |
Dong Sik Kim et al., “Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays” 3 Small 76 (2007). |
Johannes de Boor et al., “Three-beam Interference Lithography: Upgrading a Lloyd's Interferometer for Single-exposure Hexagonal Patterning” 34 Opt. Lett. 1783 (2009). |
Ampere A Tseng et al., “Nanofabrication by Scanning Probe Microscope Lithography: A Review” 23 J. Vac. Sci. Technol. B 877 (2005). |
Younan Xia et al., “Unconventional Methods for Fabricating and Patterning Nanostructures” 99 Chem. Rev. 1823 (1999). |
L. Jay Guo, “Nanoimprint Lithography: Methods and Material Requirements” 19 Adv. Mater. 495 (2007). |
Helmut Schift, “Nanoimprint Lithography: An Old Story in Modern Times? A Review” 26 J. Vac. Sci. Technol. B 458 (2008). |
J. Y. Cheng et al., “Fabrication of Nanostructures with Long-range Order Using Block Copolymer Lithography” 81 Appl. Phys. Lett. 3657 (2002). |
Tae-Woo Lee et al., “Soft-Contact Optical Lithography Using Transparent Elastomeric Stamps: Application to Nanopatterned Organic Light-Emitting Devices” 15 Adv. Funct. Mater. 1435 (2005). |
John A. Rogers et al., “Using an Elastomeric Phase Mask for Sub-100nm Photolithography in the Optical Near Field” 70 Appl. Phys. Lett. 2658 (1997). |
Dong Qin et al., “Photolithography with Transparent Reflective Photomasks” 16 J. Vac. Sci. Technol. B 98 (1998). |
Zhi-Yuan Li et al., “Optimization of Elastomeric Phase Masks for Near-field Photolithography” 78 Appl. Phys. Lett. 2431 (2001). |
John A. Rogers et al., “Generating ˜90 Nanometer Features Using Near-field Contact-mode Photolithography with an Elastomeric Phase Mask” 16 J. Vac. Sci. Technol. B 59 (1998). |
Daniel J. Shir et al., “Three-Dimensional Nanofabrication with Elastomeric Phase Masks” 111 J. Phys. Chem. B 12945 (2007). |
Alexandra Schweikart and Andreas Fery, “Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces” 165 Microchim. Acta 249 (2009). |
Won Mook Choi et al., “Biaxially Stretchable “Wavy” Silicon Nanomembranes” 7 Nano Lett. 1655 (2007). |
Kirill Efimenko et al., “Nested Self-similar Wrinkling Patterns in Skins” 4 Nat. Mater. 293 (2005). |
Byung-Ho Jo et al., “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer” 9 J. Microelectromech. Syst. 76 (2000). |
Conghua Lu et al., “A Lithography-free Method for Directed Colloidal Crystal Assembly Based on Wrinkling” 3 Soft Matter 1530 (2007). |
Heinz Schmid et al., “Preparation of Metallic Films on Elastomeric Stamps and their Application for Contact Processing and Contact Printing” 13 Adv. Funct. Mater. 145 (2003). |
Cheryl S. Selvanayagam et al., “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps” 32 III Trans. Adv. Pack. 720 (2009). |
James S. Sharp and Richard. A. L. Jones, “Micro-buckling as a Route Towards Surface Patterning” 14 Adv. Mater. 799 (2002). |
Pimpon Uttayarat et al., “Topographic Guidance of endothelial Cells on Silicone Sufraces with Micro- to Nanogrooves: Orientation of Actin Filaments and Focal Adhesions” 75 J. Biomed. Mater. Res. A 668 (2005). |
Cunjiang Yu and Hanquing Jiang, “Forming Wrinkled Stiff Films on Polymeric Substrates at Room Temperature for Stretchable Interconnects Applications” 519 Thin Solid Films 818 (2010). |
C. Yu et al., “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms”, Adv. Mater., 21, pp. 4793-4797 (2009). |
C. Yu et al., “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates”, Appl. Phys. Lett. 95, 141902 (2009). |
H. Jiang et al., “Finite deformation mechanics in buckled thin films on compliant supports”, PNAS, vol. 104., No. 40, pp. 15607-15612 (2007). |
D.-Y. Khang et al., “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates”, Science, vol. 311 pp. 208-212 (2006). |
S.P. Lacour et al., “Stretchable Interconnects for Elastic Electronic Surfaces”, Proc. IEEE, vol. 93, No. 8, pp. 1459-1467 (2005). |
International Search Report and Written Opinion for PCT/US2014/065776, dated Apr. 22, 2015. |
T Ma et al., “Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating”, Optics Express, vol. 21, No. 10, pp. 11994-12001 (2013). |
X. Jiang et al., “Controlling Mammalian Cell Spreading and Cytoskeletal Arrangement with Conveniently Fabricated Continuous Wavy Features on Poly(dimethylsiloxane)”, Langmuir 18(8), 3273-3280 (2002). |
S. Wagner et al., “Electronic skin: architecture and components,” Physica E 25(2-3), 326-334 (2004). |
S. P. Lacour et al., “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179-181 (2004). |
S. P. Lacour et al., “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404-2406 (2003). |
S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006). |
H. Q. Jiang et al., “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007). |
K.M. Choi et al., “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc. 125(14), 4060-4061 (2003). |
Song et al., “Origami 1 ithiwn-ion batteries,” brochure, Nature Communications, Jan. 8, 2014, vol. 5, article No. 3140, pp. 1-6 see pp. 2-3; Methods in p. 6; figure 1. |
Xu et al., “Stretchable batteries with self-similar serpentine interconn.ects and integrated wireless recharging systems”, Nature Communications, Feb. 26, 2013, vol. 4, article No. 1543, pp. 1-8 see abstract; pp. 2-4; Methods in p. 7; figures 1-3. |
PCT/US2015/052205 International Search Report and Written Opinion of the International Searching Authority dated Dec. 23, 2015 (9 pages). |
PCT/US2015/068038 International Search Report and Written Opinion of the International Searching Authority dated May 4, 2016 (9 pages). |
Asundi et al., “Optical strain sensor using position-sensitive detector and diffraction grating: error analysis,” Optical Engineering 39.6 (2000): 1645-1651. |
Chinese Patent Office Action for Application No. 201580077410.9 dated Jul. 26, 2019 (14 pages, English translation included). |
Crone, B. et al., “Large-scale complementary integrated circuits based on organic transistors”, Nature, Feb. 2000, vol. 403, No. 6769, pp. 521-523 <DOI:10.1038/35000530>. |
Fan, J. et al., “Fractal design concepts for stretchable electronics”, Nature Communications, Feb. 2014, vol. 5, article 3266, 9 pages <DOI:10.1038/ncomms4266>. |
Garnier, F. et al., “All-polymer field-effect transistor realized by printing tec”, Science, Sep. 1994, vol. 265, No. 5179, pp. 1684-1685. |
Ghaedi, M., “The Wonderfuls of Fibonacci Numbers in the Hidden Nature,” Proceedings of Fifth IRAJ International Conference (Pune, India, Sep. 15, 2013), 2013, pp. 90-96. |
Kelley, T. et al., “Recent Progress in Organic Electronics: Materials, Devices, and Processes”, Chemistry of Materials, Nov. 2004 (available online Jul. 2004), vol. 16, No. 23, pp. 4413-4422 <DOI:10.1021/cm049614j>. |
Kim, D-H. et al., “Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations”, Proceedings of the National Academy of Sciences, Dec. 2008, vol. 105, No. 48, pp. 18675-18680 <DOI:10.1073/pnas.0807476105>. |
Kim, K et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, Feb. 2009, vol. 457, No. 7230, pp. 706-710 <DOI:10.1038/nature07719>. |
LV, C. et al., “Archimedean spiral design for extremely stretchable interconnects”, Extreme Mechanics Letters, Dec. 2014, vol. 1, pp. 29-34 <DOI:10.1016/j.eml.2014.12.008>. |
LV, C. et al., “Origami based Mechanical Metamaterials”, Scientific Reports, Aug. 2014, vol. 4, No. 5979, 6 pages <DOI:10.1038/srep05979>. |
Song, J. et al., “Mechanics of noncoplanar mesh design for stretchable electronic circuits”, Journal of Applied Physics, Jun. 2009, vol. 105, No. 123516, 6 pages <DOI:10.1063/1.3148245>. |
Song, Z. et al., “Kirigami-based stretchable lithiumion batteries”, Scientific Reports, Jun. 2015, vol. 5, No. 10988, 9 pages <DOI:10.1038/srep10988>. |
Tang, R. et al., “Origami-enabled deformable silicon solar cells”, Applied Physics Letters, Feb. 2014, vol. 104, article 083501, 5 pages <DOI:10.1063/1.4866145>. |
Widlund, T. et al., “Stretchability and compliance of freestanding serpentine-shaped ribbons”, International Journal of Solids and Structures, Nov. 2014 (available online Aug. 2014), vol. 51, No. 23-24, pp. 4026-4037 DOI:10.1016/j.ijsolstr.2014.07.025>. |
Yamada, T. et al., “A stretchable carbon nanotube strain sensor for human-motion detection”, Nature Nanotechnology, May 2011 (published online Mar. 2011), vol. 6, No. 5, pp. 296-301 <DOI:10.1038/nnano.2011.36>. |
Zhang, Y. et al., “A hierarchical computational model for stretchable interconnects with fractal-inspired designs”, Journal of the Mechanics and Physics of Solids, Dec. 2014 (available online Aug. 2014), vol. 72, pp. 115-130 <DOI:10.1016/j.jmps.2014.07.011>. |
Zhang, Y. et al., “Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage”, Soft Matter, Jun. 2013, vol. 9, No. 33, pp. 8062-8070 <DOI:10.1039/C3SM51360B>. |
Zhang, Y. et al., “Mechanics of ultra-stretchable self-similar serpentine interconnects”, Acta Materialia, Dec. 2013 (available online Oct. 2013), vol. 61, No. 20, pp. 7816-7827 <DOI:10.1016/j.actamat.2013.09.020>. |
Sun, Y. et al., “Controlled buckling of semiconductor nanoribbons for stretchable electronics”, Nature Nanotechnology, Dec. 2006, vol. 1, pp. 201-206 <DOI:10.1038/nnano.2006.131>. |
Tu, H. et al., “Hybrid silicon-polymer platform for self-locking and self-deploying origami”, Applied Physics Letters, Dec. 2013, vol. 103, article 241902, 4 pages <DOI:10.1063/1.4842235>. |
Gonzalez, M. et al., “Design of metal interconnects for stretchable electronic circuits”, Microelectronics Reliability, Jun. 2008, vol. 48, No. 6, pp. 825-832 <DOI:10.1016/j.microrel.2008.03.025>. |
Gaikwad, A. et al., “A flexible high potential printed battery for powering printed electronics”, Applied Physics Letters, Jun. 2013, vol. 102, No. 23, article 233302, 5 pages <DOI:10.1063/1.4810974>. |
Bainbridge, I et al., “The Surface Tension of Pure Aluminum and Aluminum Alloys”, Metallurgical and Materials Transactions A, Aug. 2013 [available online Mar. 2013], vol. 44A, pp. 3901-3909 <DOI:10.1007/s11661-013-1696-9>. |
Number | Date | Country | |
---|---|---|---|
20170290151 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62099324 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2015/068038 | Dec 2015 | US |
Child | 15625924 | US |