1. Field of the Invention
The present invention relates to deposition of oxide and oxynitride films and, in particular, to deposition of oxide and oxynitride films by pulsed DC reactive sputtering.
2. Discussion of Related Art
Deposition of insulating materials and especially optical materials is technologically important in several areas including production of optical devices and production of semiconductor devices. In semiconductor devices, doped alumina silicates can be utilized as high dielectric insulators.
The increasing prevalence of fiber optic communications systems has created an unprecedented demand for devices for processing optical signals. Planar devices such as optical waveguides, couplers, splitters, and amplifiers, fabricated on planar substrates, like those commonly used for integrated circuits, and configured to receive and process signals from optical fibers are highly desirable. Such devices hold promise for integrated optical and electronic signal processing on a single semiconductor-like substance.
The basic design of planar optical waveguides and amplifiers is well known, as described, for example, in U.S. Pat. Nos. 5,119,460 and 5,563,979 to Bruce et al., 5,613,995 to Bhandarkar et al., 5,900,057 to Buchal et al., and 5,107,538 to Benton et al., to cite only a few. These devices, very generally, include a core region, typically bar shaped, of a certain refractive index surrounded by a cladding region of a lower refractive index. In the case of an optical amplifier, the core region includes a certain concentration of a dopant, typically a rare earth ion such as an erbium or praseodymium ion which, when pumped by a laser, fluoresces, for example, in the 1550 nm and 1300 nm wavelength ranges used for optical communication, to amplify the optical signal passing through the core.
As described, for example in the patents by Bruce et al., Bhandarkar et al, and Buchal et al., planar optical devices may be fabricated by process sequences including forming a layer of cladding material on a substrate; forming a layer of core material on the layer of cladding mater; patterning the core layer using a photolighotgraphic mask and an etching process to form a core ridge; and covering the core ridge with an upper cladding layer.
The performance of these planar optical devices depends sensitively on the value and uniformity of the refractive index of the core region and of the cladding region, and particularly on the difference in refractive index, Δn, between the regions. Particularly for passive devices such as waveguides, couplers, and splitters, Δn should be carefully controlled, for example to values within about 1%, and the refractive index of both core and cladding need to be highly uniform, for some applications at the fewer than parts per thousand level. In the case of doped materials forming the core region of planar optical amplifiers, it is important that the dopant be uniformly distributed so as to avoid non-radiative quenching or radiative quenching, for example by upconversion. The refractive index and other desirable properties of the core and cladding regions, such as physical and chemical uniformity, low stress, and high density, depend, of course, on the choice of materials for the devices and on the processes by which they are fabricated.
Because of their optical properties, silica and refractory oxides such as Al2O3, are good candidate materials for planar optical devices. Further, these oxides serve as suitable hosts for rare earth dopants used in optical amplifiers. A common material choice is so-called low temperature glasses, doped with alkali metals, boron, or phosphorous, which have the advantage of requiring lower processing temperatures. In addition, dopants are used to modify the refractive index. Methods such as flame hydrolysis, ion exchange for introducing alkali ions in glasses, sputtering, and various chemical vapor deposition processes (CVD) have been used to form films of doped glasses. However, dopants such as phosphorous and boron are hygroscopic, and alkalis are undesirable for integration with electronic devices. Control of uniformity of doping in CVD processes can be difficult and CVD deposited films can have structural defects leading to scattering losses when used to guide light. In addition, doped low temperature glasses may require further processing after deposition. A method for eliminating bubbles in thin films of sodium-boro-silicate glass by high temperature sintering is described, for example, in the '995 patent to Bhandarkar et al.
Typically, RF sputtering has been utilized for deposition of oxide dielectric films. However, RF sputtering utilizes ceramic targets which are typically formed of multiple smaller tiles. Since the tiles can not be made very large, there may be a large problem of arcing between tiles and therefore contamination of the deposited film due to this arcing. Further, the reactors required for RF sputtering tend to be rather complicated. In particular, the engineering of low capacitance efficient RF power distribution to the cathode is difficult in RF systems. Routing of low capacitance forward and return power into a vacuum vessel of the reaction chamber often exposes the power path in such a way that diffuse plasma discharge is allowed under some conditions of impedance tuning of the matching networks.
Therefore, there is a need for new methods of depositing oxide and oxynitride films and for forming planar optical devices.
In accordance with the present invention, a sputtering reactor apparatus for depositing oxide and oxynitride films is presented. Further, methods for depositing oxide and oxynitride films for optical waveguide devices are also presented. A sputtering reactor according to the present invention includes a pulsed DC power supply coupled through a filter to a target and a substrate electrode coupled to an RF power supply. A substrate mounted on the substrate electrode is therefore supplied with a bias from the RF power supply.
The target can be a metallic target made of a material to be deposited on the substrate. In some embodiments, the metallic target is formed from Al, Si and various rare-earth ions. A target with an erbium concentration, for example, can be utilized to deposit a film that can be formed into a waveguide optical amplifier.
A substrate can be any material and, in some embodiments, is a silicon wafer. In some embodiments, RF power can be supplied to the wafer. In some embodiments, the wafer and the electrode can be separated by an insulating glass.
In some embodiments, up to about 10 kW of pulsed DC power at a frequency of between about 40 kHz and 350 kHz and a reverse pulse time of up to about 5 μs is supplied to the target. The wafer can be biased with up to about several hundred watts of RF power. The temperature of the substrate can be controlled to within about 10° C. and can vary from about −50° C. to several hundred degrees C. Process gasses can be fed into the reaction chamber of the reactor apparatus. In some embodiments, the process gasses can include combinations of Ar, N2, O2, C2F6, CO2, CO and other process gasses.
Several material properties of the deposited layer can be modified by adjusting the composition of the target, the composition and flow rate of the process gasses, the power supplied to the target and the substrate, and the temperature of the substrate. For example, the index of refraction of the deposited layer depends on deposition parameters. Further, in some embodiments stress can be relieved on the substrate by depositing a thin film of material on a back side of the wafer. Films deposited according to the present invention can be utilized to form optical waveguide devices such as multiplexers and rare-earth doped amplifiers.
These and other embodiments, along with examples of material layers deposited according to the present invention, are further described below with respect to the following figures.
In the figures, elements having the same designation have the same or similar function.
Reactive DC magnetron sputtering of nitrides and carbides is a widely practiced technique, but the reactive dc magnetron sputtering of nonconducting oxides is done rarely. Films such as aluminum oxide are almost impossible to deposit by conventional reactive DC magnetron sputtering due to rapid formation of insulating oxide layers on the target surface. The insulating surfaces charges up and result in arcing during process. This arcing can damage the power supply, produce particles and degrade the properties of deposited oxide films.
RF sputtering of oxide films is discussed in application Ser. No. 09/903,050 (the '050 application) (now U.S. Pat. No. 6,506,289) by Demaray et al., entitled “Planar Optical Devices and Methods for Their Manufacture,” assigned to the same assignee as is the present invention, herein incorporated by reference in its entirety. Further, targets that can be utilized in a reactor according to the present invention are discussed in U.S. application Ser. No. 10/101,341 (the '341 application), filed concurrently with the present disclosure, assigned to the same assignee as is the present invention, herein incorporated by reference in its entirety. A gain-flattened amplifier formed of films deposited according to the present invention are described in U.S. application Ser. No. 10/101,493 (the '493 application), filed concurrently with the present disclosure, assigned to the same assignee as is the present invention, herein incorporated by reference in its entirety. Further, a mode size converter formed with films deposited according to the present invention is described in U.S. application Ser. No. 10/101,492 (the '492 application), filed concurrently with the present disclosure, assigned to the same assignee as is the present invention, herein incorporated by reference in its entirety.
Apparatus 10 includes a target 12 which is electrically coupled through a filter 15 to a pulsed DC power supply 14. In some embodiments, target 12 is a wide area sputter source target, which provides material to be deposited on substrate 16. Substrate 16 is positioned parallel to and opposite target 12. Target 12 functions as a cathode when power is applied to it and is equivalently termed a cathode. Application of power to target 12 creates a plasma 53. Substrate 16 is capacitively coupled to an electrode 17 through an insulator 54. Electrode 17 can be coupled to an RF power supply 18. Magnet 20 is scanned across the top of target 12.
For pulsed reactive dc magnetron sputtering, as performed by apparatus 10, the polarity of the power supplied to target 12 by power supply 14 oscillates between negative and positive potentials. During the positive period, the insulating layer on the surface of target 12 is discharged and arcing is prevented. To obtain arc free deposition, the pulsing frequency exceeds a critical frequency that depend on target material, cathode current and reverse time. High quality oxide films can be made using reactive pulse DC magnetron sputtering in apparatus 10.
Pulsed DC power supply 14 can be any pulsed DC power supply, for example an AE Pinnacle plus 10K by Advanced Energy, Inc. With this example supply, up to 10 kW of pulsed DC power can be supplied at a frequency of between 0 and 350 KHz. The reverse voltage is 10% of the negative target voltage. Utilization of other power supplies will lead to different power characteristics, frequency characteristics and reverse voltage percentages. The reverse time on this embodiment of power supply 14 can be adjusted between 0 and 5 μs.
Filter 15 prevents the bias power from power supply 18 from coupling into pulsed DC power supply 14. In some embodiments, power supply 18 is a 2 MHz RF power supply, for example can be a Nova-25 power supply made by ENI, Colorado Springs, Co.
Therefore, filter 15 is a 2 MHz band rejection filter. In some embodiments, the band width of the filter can be approximately 100 kHz. Filter 15, therefore, prevents the 2 MHz power from the bias to substrate 16 from damaging power supply 18.
However, both RF and pulsed DC deposited films are not fully dense and most likely have columnar structures. These columnar structures are detrimental for optical wave guide applications due to the scattering loss caused by the structure. By applying a RF bias on wafer 16 during deposition, the deposited film can be dandified by energetic ion bombardment and the columnar structure can be substantially eliminated.
In the AKT-1600 based system, for example, target 12 can have an active size of about 675.70×582.48 by 4 mm in order to deposit films on substrate 16 that have dimension about 400×500 mm. The temperature of substrate 16 can be held at between −50C and 500C. The distance between target 12 and substrate 16 can be between about 3 and about 9 cm. Process gas can be inserted into the chamber of apparatus 10 at a rate up to about 200 sccm while the pressure in the chamber of apparatus 10 can be held at between about 0.7 and 6 millitorr. Magnet 20 provides a magnetic field of strength between about 400 and about 600 Gauss directed in the plane of target 12 and is moved across target 12 at a rate of less than about 20-30 sec/scan. In some embodiments utilizing the AKT 1600 reactor, magnet 20 can be a race-track shaped magnet with dimension about 150 mm by 600 mm.
A top down view of magnet 20 and wide area target 12 is shown in
In some embodiments, magnet 20 extends beyond area 52 in one direction, the Y direction in
The combination of a uniform target 12 with a target area 52 larger than the area of substrate 16 can provide films of highly uniform thickness. Further, the material properties of the film deposited can be highly uniform. The conditions of sputtering at the target surface, such as the uniformity of erosion, the average temperature of the plasma at the target surface and the equilibration of the target surface with the gas phase ambient of the process are uniform over a region which is greater than or equal to the region to be coated with a uniform film thickness. In addition, the region of uniform film thickness is greater than or equal to the region of the film which is to have highly uniform optical properties such as index of refraction, density, transmission or absorptivity.
Target 12 can be formed of any materials, but is typically metallic materials such as, for example, combinations of Al and Si. Therefore, in some embodiments, target 12 includes a metallic target material formed from intermetallic compounds of optical elements such as Si, Al, Er and Yb. Additionally, target 12 can be formed, for example, from materials such as La, Yt, Ag, Au, and Eu. To form optically active films on substrate 16, target 12 can include rare-earth ions. In some embodiments of target 12 with rare earth ions, the rare earth ions can be pre-alloyed with the metallic host components to form intermetallics. See the '341 application.
In several embodiments of the invention, material tiles are formed. These tiles can be mounted on a backing plate to form a target for apparatus 10.
Several useful examples of target 12 that can be utilized in apparatus 10 according to the present invention include the following targets compositions: (Si/Al/Er/Yb) being about (57.0/41.4/0.8/0.8), (48.9/49/1.6/0.5), (92/8/0/0), (60/40/0/0), (50/50/0/0), (65/35/0/0), (70/30/0,0), and (50,48.5/1.5/0) cat. %, to list only a few. These targets can be referred to as the 0.8/0.8 target, the 1.6/0.5 target, the 92-8 target, the 60-40 target, the 50-50 target, the target, the 70-30 target, and the 1.5/0 target, respectively. The 0.8/0.8, 1.6/0.5, and 1.5/0 targets can be made by pre-alloyed targets formed from an atomization and hot-isostatic pressing (HIPing) process as described in the '341 application. The remaining targets can be formed, for example, by HIPing. Targets formed from Si, Al, Er and Yb can have any composition. In some embodiments, the rare earth content can be up to 10 cat. % of the total ion content in the target. Rare earth ions are added to form active layers for amplification. Targets utilized in apparatus 10 can have any composition and can include ions other than Si, Al, Er and Yb, including: Zn, Ga, Ge, P, As, Sn, Sb, Pb, Ag, Au, and rare earths: Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm Yb and Lu.
Optically useful materials to be deposited onto substrate 16 include oxides, fluorides, sulfides, nitrides, phosphates, sulfates, and carbonates, as well as other wide band gap semiconductor materials. To achieve uniform deposition, target 12, itself can be chemically uniform and of uniform thickness over an extended area.
Target 12 can be a composite target fabricated from individual tiles, precisely bonded together on a backing plate with minimal separation, as is discussed further with respect to
Substrate 16 can be a solid, smooth surface. Typically, substrate 16 can be a silicon wafer or a silicon wafer coated with a layer of silicon oxide formed by a chemical vapor deposition process or by a thermal oxidation process. Alternatively, substrate 16 can be a glass, such as Corning 1737 (Corning Inc., Elmira, N.Y.), a glass-like material, quartz, a metal, a metal oxide, or a plastic material. Substrate 16 can be supported on a holder or carrier sheet that may be larger than substrate 16. Substrate 16 can be electrically biased by power supply 18.
In some embodiments, the area of wide area target 12 can be greater than the area on the carrier sheet on which physically and chemically uniform deposition is accomplished. Secondly, in some embodiments a central region on target 12, overlying substrate 16, can be provided with a very uniform condition of sputter erosion of the target material. Uniform target erosion is a consequence of a uniform plasma condition. In the following discussion, all mention of uniform condition of target erosion is taken to be equivalent to uniform plasma condition. Uniform target erosion is evidenced by the persistence of film uniformity throughout an extended target life. A uniformly deposited film can be defined as a film having a nonuniformity in thickness, when measured at representative points on the entire surface of a substrate wafer, of less than about 5% or 10%. Thickness nonuniformity is defined, by convention, as the difference between the minimum and maximum thickness divided by twice the average thickness. If films deposited from a target from which more than about 20% of the weight of the target has been removed continue to exhibit thickness uniformity, then the sputtering process is judged to be in a condition of uniform target erosion for all films deposited during the target life.
As shown in
In addition, region 52 in which deposition provides uniformity of deposited film can be larger than the area in which the deposition provides a film with uniform physical or optical properties such as chemical composition or index of refraction. In some embodiments, target 12 is substantially planar in order to provide uniformity in the film deposited on substrate 16. In practice, planarity of target 12 can mean that all portions of the target surface in region 52 are within a few millimeters of a planar surface, and can be typically within 0.5 mm of a planar surface.
Other approaches to providing a uniform condition of sputter erosion rely on creating a large uniform magnetic field or a scanning magnetic field that produces a time-averaged, uniform magnetic field. For example, rotating magnets or electromagnets can be utilized to provide wide areas of substantially uniform target erosion. For magnetically enhanced sputter deposition, a scanning magnet magnetron source can be used to provide a uniform, wide area condition of target erosion.
As illustrated in
The process gas utilized in reactor 10 includes an inert gas, typically argon, used as the background sputtering gas. Additionally, with some embodiments of target 12, reactive components such as, for example, oxygen may be added to the sputtering gas. Other gasses such as N2, NH3, CO, NO, CO2, halide containing gasses other gas-phase reactants can also be utilized. The deposition chamber can be operated at low pressure, often between about 0.5 millitorr and 8-10 millitorr. Typical process pressure is below about 3-5 millitorr where there are very few collisions in the gas phase, resulting in a condition of uniform “free molecular” flow. This ensures that the gas phase concentration of a gaseous component is uniform throughout the process chamber. For example, background gas flow rates in the range of up to about 200 sccm, used with a pump operated at a fixed pumping speed of about 50 liters/second, result in free molecular flow conditions.
The distance d, in
The speed at which a scanning magnet 20 can be swept over the entire target can be determined such that a layer thickness less than about 5 to 10 Å, corresponding roughly to two to four monolayers of material, is deposited on each scan. Magnet 20 can be moved at rates up to about 30 sec/one-way scan and typically is moved at a rate of about 4 sec/one-way scan. The rate at which material is deposited depends on the applied power and on the distance d, in
Substrate bias has been used previously to planarize RF sputtered deposited quartz films. A theoretical model of the mechanism by which substrate bias operates, has been put forward by Ting et al. (J. Vac. Sci. Technol. 15, 1105 (1978)). When power is applied to the substrate, a so-called plasma sheath is formed about the substrate and ions are coupled from the plasma. The sheath serves to accelerate ions from the plasma so that they bombard the film as it is deposited, sputtering the film, and forward scattering surface atoms, densifying the film and eliminating columnar structure. The effects of adding substrate bias are akin to, but more dramatic than, the effects of adding the low frequency RF component to the sputter source.
Biasing substrate 16 results in the deposited film being simultaneously deposited and etched. The net accumulation of film at any point on a surface depends on the relative rates of deposition and etching, which depend respectively, on the power applied to the target and to the substrate, and to the angle that the surface makes with the horizontal. The rate of etching is greatest for intermediate angles, on the order of 45 degrees, that is between about 30 and 60 degrees.
Powers to target 12 and substrate 16 can be adjusted such that the rates of deposition and etching are approximately the same for a range of intermediate angles. In this case, films deposited with bias sputtering have the following characteristics. At a step where a horizontal surface meets a vertical surface, the deposited film makes an intermediate angle with the horizontal. On a surface at an intermediate angle, there will be no net deposition since the deposition rate and etch rate are approximately equal. There is net deposition on a vertical surface.
Target 12 can have an active size of about 675.70×582.48 by 4 mm, for example, in a AKT-1600 based system in order to deposit films on a substrate 16 that is about 400×500 mm. The temperature of substrate 16 can be held at between −50C and 500C. The distance between target 12 and substrate 16 can be between 3 and 9 cm. Process gas can be inserted into the chamber of apparatus 10 at a rate of between about 30 to about 100 sccm while the pressure in the chamber of apparatus 10 can be held at below about 2 millitorr. Magnet 20 provides a magnetic field of strength between about 400 and about 600 Gauss directed in the plane of target 12 and is moved across target 12 at a rate of less than about 20-30 sec/scan.
Therefore, any given process utilizing apparatus 10 can be characterized by providing the power supplied to target 12, the power supplied to substrate 16, the temperature of substrate 16, the characteristics and constituents of the reactive gasses, the speed of the magnet, and the spacing between substrate 16 and target 12.
Sputtered oxide films according to some embodiments of the present invention can be deposited onto a Si wafer or thermal oxide wafers at pressure of between about 3 and about 6 mTorr. The ratio of O2/Ar gas flow can be set at a value to ensure that target 12 is operating within a poison mode. The poison mode is defined as the ratio where the oxide is etched from the surface of target 12 as fast as the oxide layer is formed. Operating in the poison mode results in the stoichiometric film. Sub-stoichiometric oxides may not be optically transparent. The pulsing frequency range for power supply 14 can be from about up to about 250 KHz. The frequency 40 KHz is approximately the lowest frequency at which no arcing will occur during deposition in, for example, the AKT 1600 based system. The reverse pulsing time is determined by the amount of arcing generated during the process. Longer reverse time means longer discharge time and thus less arcs. However, if the reverse time is too long, the deposition rate will decrease. Power supply 18 is a 2 MHz RF power supply operated at powers up to several hundred Watts.
Reactive sputtering from a metal or metallic alloy target 12 can be characterized by two modes of operation. In the first mode, which is sometimes referred to as the ‘metallic mode’ the surface of target 12 is substantially metallic. This mode is characterized by a small addition of reactive gas to the inert gas flow of apparatus 10 as well as a higher impedance magnetron discharge. It is also characterized by incomplete oxidation of film deposited on substrate 16 and therefore higher index films. As the proportion of reactive to inert gas is increased, the sputter voltage at target 12 begins to fall at constant power.
As shown in
At slightly higher oxygen flow during deposition, the oxide layer on target 12 forms a continuous layer and the voltage of target 12 during deposition falls rapidly to the range of about 190 to about 270 Volts, indicating complete coverage of the surface of target 12 with an oxide that is at least as thick as the material removed during one scan of the magnetron. Under this condition, the rate of oxide formation on the surface of target 12 equals or exceeds the rate of sputter removal of the surface of target 12 by the moving magnetron 20. This condition is sometimes referred to as the ‘poisoned mode’.
Under steady state DC voltage conditions, the oxide layer on target 12 soon charges up, leading to reduced rate of sputtering and increased micro-arc discharging in apparatus 10. This discharging leads to particulation of the oxide layer on target 12, which degrades the quality of a film deposited on substrate 16. In the example shown with
In the case of a magnetron configuration of magnet 20 having a significant deep local target erosion (rather than a configuration of magnet 20 described above which yields uniform target erosion), the change in the target voltage of target 12 is more gradual with increasing oxygen flow since it is more difficult to establish an oxide condition at the center of an intense region of local erosion. The resulting deposited film, however, will be rich in metallic sputtered flux to the substrate in the region of higher sputter erosion, leading to non uniform stoicheometry and non-uniform indices of refraction in a film deposited on substrate 16. In the case of a scanning magnetron 20 with uniform target erosion, the change in the surface condition from metallic to poisoned is more abrupt, as the formation rate of the oxide increases to equal the sputter removal of the oxide over a wide area of the target. In this case, there is uniform distribution of sputtered oxide from the target. Uniform stoicheometry and uniform indices of refraction result for the film deposited on substrate 16.
At the opposite extreme, a pure aluminum embodiment of target 12 (100% Al) can be utilized to deposit films on substrate 16 under similar process conditions as is utilized to deposit pure silica films on substrate 16. In the case of the pure aluminum reactive deposition, the dependence of the index of refraction of the film deposited on substrate 16 on oxygen flow as well as on the frequency of the pulsed DC process can be examined. As a result, a larger range of effective index of refraction is achieved together with a reduced or zero dependence of the index on the subsequent anneal process. Six targets having differing aluminum composition were utilized to evaluate the index of refraction of sputtered films on substrate 16 of related composition. The largest change of index with the sputtering conditions is achieved for composition near the middle of the Al/Si composition range (about 50% Al and 50% Si).
In step 402 of
In step 404, the substrate temperature is set. Substrate 16 may be brought to temperature over a period of time. In step 405, the scan characteristics of magnet 20 are fixed. In step 406, the power setting for power supply 18 is set. Finally, in step 407, the parameters of pulsed DC power supply 14 is set, including the power, frequency, and reverse pulsing time. In step 408, then, a film that depends on the parameters of reactor apparatus 10 is deposited on substrate 16. In some embodiments, films deposited by procedure 400 are thermally annealed after deposition.
In some embodiments, films deposited by a pulsed DC biased method according to the present invention are uniformly amorphous throughout their thickness. As has been discussed above, biasing of substrate 16 leads to densification and uniformity in the deposited film.
Deposition of films according to the present invention can be utilized to deposit cladding layers, active core layers, and passive core layers of an optical amplifier structure or optical waveguide structure. In some applications, for example multiplexer structures, the separation between adjacent waveguides can be small, for example about 8 μm. In some embodiments, the deposition parameters of the upper cladding layer can be adjusted to not only adjust the index of refraction of the layer, but also to insure that the spacing between adjacent waveguides is small.
The time for planarization can be estimated as
where W is the width of structure 2201, H is the height of structure 2201, aflat refers to the accumulation rate on the flat surface, amin refers to the accumulation rate on the minimum accumulation slope, and a is the surface angle from the horizontal plane of the minimum accumulation slope.
Therefore, as illustrated in
Therefore, depositions of various films in embodiments of apparatus 10 according to the present invention with several embodiments of target 12 and the effects on index of refraction, uniformity of films, and fill characteristics of varying several of the process parameters has been discussed above. In some embodiments, stress effects due to wafer bowing of substrate 16 can also be reduced. Wafer bowing of substrate 16 can be reduced, reducing the stress in a film deposited on substrate 16, by, for example, depositing a film on the backside of substrate 16 before deposition of a film on substrate 16. In some embodiments, a film having a similar thickness of a similar layer of material can be deposited on backside of substrate 16 prior to deposition of the film on substrate 16 according to the present invention. The wafer bowing resulting from differing thermal expansions of the film and substrate 16 is therefore countered by a similar stress from another film deposited on the backside of substrate 16.
Several specific examples film depositions utilizing apparatus 10 are discussed below. Further, examples of optical amplifiers produced utilizing the ceramic tiles according to the present invention are presented. These examples are provided for illustrative purposes only and are not intended to be limiting. Unless otherwise specified, apparatus 10 utilized in the following examples was based on the AKT 1600 reactor. Further, unless otherwise specified, the temperature of substrate 16 was held at about 200° C. and the distance between substrate 16 and target 12 was 4 s/scan. The separation between substrate 16 and target 12 is about 6 cm.
An AKT 1600 based reactor can be utilized to deposit a film. In this example, a wide area metallic target of dimension 550×650 mm with composition (Si/Al/Er/Yb) being about 57.0 cat. % Si, 41.4 cat. % Al, 0.8 cat. % Er, and 0.8 cat. % Yb (a “0.8/0.8” target) was fabricated as described in the '341 patent.
In step 402, a 150 mm P-type silicon wafer substrate was placed in the center of a 400×500 mm glass carrier sheet 17. Power supply 14 was set to supply 6000 watts of pulse DC power at a frequency of 120 KHz with a reverse pulsing time of about 2.3 us. Magnet 20, which is a race-track shaped magnet of approximate dimension 150 mm×600 mm, was swept over the backside of the target at a rate of about 4 seconds per one-way scan. The temperature of substrate 16 was held at 200C and 100 W of 2 MHz RF power was applied to substrate 16. The target 12 to substrate 16 distance was about 6.5 cm. The sputtering gas was a mixture of Argon and Oxygen. Substrate 16 and carrier 17 was preheated to 350° C. for at least 30 min prior to deposition. The active film was deposited in the poison mode. Deposition efficiency was approximately 1 um/hr.
Tables 1A through 1C shows some effects on the deposited films of depositions with the 0.8/0.8 target under different operating conditions. Table 1A includes photoluminescence (pumped at 532 nm) and index of refraction for films deposited on substrate 16 with different Ar/O2 gas flow ratios with no bias power applied to substrate 16.
Table 1B shows the variation in photoluminescence (pumped at 532 nm) and index of refraction of the film deposited on substrate 16 with deposition processes having with the same Ar/O2 ratios but different pulsed DC power frequencies from power supply 14.
Table 1C shows the photoluinescence and index as deposited where the bias power to substrate 16 is varied.
The photoluminescence values can be measured with a Phillips PL-100. The deposited film can be pumped with a 532 nm laser and the luminescence at 980 is measured. The index is the index of refraction. Typically, films deposited are annealed in order to activate the erbium.
A waveguide amplifier can be deposited according to the present invention. An embodiment of target 12 having composition 57.4 cat. % Si, 41.0 cat. % Al, 0.8 cat. % Er 0.8 cat. % Yb (the “0.8/0.8 target”) can be formed as disclosed in the '341 application. The Er—Yb (0.8/0.8) co-doped Alumino-Silicate film was deposited onto a 6 inch wafer of substrate 16 which includes a 10 μm thick thermal oxide substrate, which can be purchased from companies such as Silicon Quest International, Santa Clara, CA. Target 12 was first cleaned by sputtering with Ar (80 sccm) only in the metallic mode. Target 12 was then conditioned in poison mode by flowing 60 sccm of Argon and 40 sccm of oxygen respectively. The power supplied to target 12 during conditioning was kept at about 6 kW.
An active core film was then deposited on substrate 16. The thickness of the deposited film is approximately 1.2 μm. The deposition parameters are shown in Table 2.
A straight waveguide pattern can then formed by standard photolithography techniques. The active core was etched using reactive ion etch followed by striping and cleaning. Next, a 10 μm top cladding layer is deposited using a similar deposition process according to the present invention. An embodiment of target 12 with composition 92 cat. % Si and 8 cat. % Al as shown in
The erbium excited-state lifetime and the up-conversion coefficient were measured to be 3 ms and 4.5×10−18 cm3/s, respectively. A net gain of about 4 dB for small signal (about −20 dBm) with fiber to waveguide and to fiber coupling was obtained. Waveguide length was 10 cm and the width was about 1.5 to 8 μm. The coupling loss between the fiber and the waveguide is 3-4 dB/facet, and passive excess loss is 0.1-0.2 dB/cm for 3 um waveguide. The waveguide was both co- and counter pumped with 150 mW 980 nm laser per facet.
This example describes production of a dual core Erbium/Yttrbium co-doped amplifier according to the present invention. In one example, substrate 16 is a silicon substrate with an undercladding layer of thermally oxidized SiO2 of about 15 μm thick. Substrate 16 with the thermal oxide layer can be purchased from companies such as Silicon Quest International, Santa Clara, Calif. A layer of active core material is then deposited on substrate 16 with a Shadow Mask as described in the '492 application. Use of a shadow mask results in a vertical taper on each side of a finished waveguide which greatly enhances the coupling of light into and out of the waveguide.
Active core layer is deposited from a 0.8/0.8 target as described in the '247 application having composition 57.4 cat. % Si, 41.0 cat. % Al, 0.8 cat. % Er, and 0.8 cat. % Yb. The deposition parameters are identical to that of Example 2 described above. The active layer is deposited to a thickness of about 1.2 μm.
A passive layer of aluminasilicate is then deposited over the active layer. A passive layer of about 4.25 μm thickness can be deposited with an embodiment of target 12 having composition of Si/Al of about 87 cat. % Si and about 13 cat. % Al. The passive layer and active layer are then patterned by standard lithography techniques to form a core that has a width of about 5.0 μm for the active core and tapering to about 3.5 μm at the top of the passive core with an effective length of about 9.3 cm.
Upper cladding layer is then deposited from a Si/Al target of 92 cat. % Si and 8 cat. % Al. Deposition of the upper cladding layer is shown in
The as-deposited Erbium and Ytterbium concentrations in the active layer of core 303 is 2.3×1020 cm−3 Erbium concentration and 2.3×1020 cm−1 Ytterbium concentration. The index of the core is 1.508 and the index of cladding layers are 1.4458 for undercladding layer 302 and 1.452 for uppercladding layer 304. The parameter Δn/n is therefore about 5.0%.
A reverse taper mode size converter, see the '492 application, is utilized for coupling light into waveguide amplifier 300. The insertion loss at 1310 nm is about 2 dB.
Another example of production of a waveguide amplifier is described here. Again, substrate 16 can be a Si wafer with about a 15 μm thick thermal oxide as can be purchased from Silicon Quest International, Santa Clara, Calif. The embodiment of target 12 for the deposition of the active core can have a composition of about 50 cat. % Si, 48.5 cat. % Al, 1.5 cat. % Er (the “1.5/0” target), which can be fabricated as discussed in the '138 application. Target 12 was first cleaned by sputtering with Ar (80 sccm) only in the metallic mode. Target 12 was then conditioned in poison mode by flowing 60 sccm of Argon and 40 sccm of oxygen respectively.
The pulsed DC power supplied to target 12 was about 6 kW. Whenever a brand new target was used or when the target has been expose to atmosphere, a long time of condition (for example more than 30 hrs of conditioning) may be necessary to ensure films with the best active core property (longest life time and highest photoluminescence) are deposited. Substrate 16 is then preheat at about 350° C. for about 30 min before deposition.
The active core film was deposited onto a 6 inch thermal oxide wafer, which has been previously discussed, from the 1.5/0 target. The thermal oxide thickness was about 10 μm as described in previous examples. The active core is deposited to a thickness of about 1.2 μm with a deposition time of approximately 1 hr. The process condition are as listed in Table 4 below.
A straight waveguide pattern can then be formed by a standard photolithography procedure. The active core was etched using reactive ion etch followed by striping and cleaning. Finally, a 10 μm top cladding layer is deposited using a similar process. A target having composition 92 cat. % Si and 8 cat. % Al with deposition parameters as described in
In this example, annealing of the amplifier structure was performed at various anneal temperatures. The results of the various anneals are shown graphically in
One of the problems encountered during the reactive sputtering from an alloy metallic target is that the film composition drifts from run to run due to the difference in sputtering yields from the elements that forms the target alloy. For example, with Ar as a sputtering gas, the sputtering yield of Aluminum is about 3-4 times that of Silicon, while sputtering yield of Alumina is only about 50% that of Silica. Therefore, during the metal burn in, more Aluminum is sputtered from the target, resulting in a Si rich target surface. When sputtering in the poison mode, more Silica will be removed from target. Thus, as deposition goes on, the composition of the film deposited on substrate 16 will drift from lower Alumina concentration to higher Alumina concentration. This results in the index of refraction of a film drifting up with subsequent depositions from a target 12, as is shown for the deposition described in Example 4 in
The drift can be stabilized by recondition target 12 prior to deposition. The recondition process (or burn in) consists of both sputtering in metallic mode and then sputtering in poison mode to condition target 12. The burn in time in metallic mode needs to be as short as possible and at the same time insure no arcing during the poison mode deposition.
This example describes the fabrication of another Er-Yb codoped waveguide amplifier according to the present invention. The active core is deposited with an embodiment of target 12 with composition about 49 cat. % Si, 48 cat. % Al, 1.6 cat. % Er and 0.5 cat. % Yb, which can be fabricated as described in the '341 application. Target 12 was first cleaned by sputtering with Ar (80 sccm) only in the metallic mode. Target 12 was then conditioned in poison mode by flowing 60 sccm of Argon and 40 sccm of oxygen respectively. The pulsed DC power supplied to target 12 was kept at 5 kW. Table 4 shows photoluminescence and index of refraction of as-deposited films from this example at some typical process conditions. The units for photoluminescence are the number of counts per micron. Lifetime and photoluminescence measured after annealing at various different temperatures are shown in Table 5.
A waveguide amplifier was fabricated using this material in the similar fashion as described in examples 2-4. The active core was first deposited on substrate 16, which includes a 10 um thermal oxide layer, using the following deposition parameters: target power 5 KW, pulsing frequency 120 KHz, bias 100 W, reverse time 2.3 us, Argon and Oxygen flow are 60 sccm and 30 sccm respectively. The active core thickness is deposited to a thickness about 1.2 μm, which takes approximately 1 hr. All wafers are preheated at about 350° C. for 30 min before deposition. A straight waveguide pattern is then formed by standard photolithography procedure. The active core was etched using reactive ion etch following by striping and cleaning. Next, a 10 μm top cladding layer is deposited using similar process. The “92/8” (92 cat. % Si and 8 cat. % Al) metallic target was used to deposit top clad according to deposition parameters shown in
This waveguide was tested for gain using the method described in previous examples. However no net gain was observed from this waveguide since the passive loss was too high.
In addition to active material layers (i.e., layers having rare-earth ion concentrations), passive layers can also be deposited.
Apparatus 10 can be based on an AKT 1600 reactor and deposited with about 1 to 3 kW of pulsed DC target power supplied to target 12. Particular depositions have been accomplished at 2.5 kW and 1.5 kW. The frequency of the pulsed DC power is between about 100 and 200 Khz. Some depositions were performed at 200 kHz while others were performed at 100 kHz. The reverse time was varied between about 2 μs and about 4 μs with particular depositions performed at 2.3 μs and 3.5 μs. The bias power to substrate 16 was set to zero.
Index variation of SiO2 films with bias to substrate 16 and deposition rates as a function of bias power to substrate 16 is shown in
The process gas included a mixture of Ar, N2 and O2. The Ar flow rates was set at 20 sccm while the O2 flow rate was varied between about 5 and about 20 sccm and the N2 flow rate was varied from about 2 to about 35 sccm.
Alternatively, films can be deposited on substrate 16 from a pure alumina target. In an example deposition with an embodiment of target 12 of alumina in an embodiment of apparatus 10 based on the AKT 1600 reactor, the pulsed DC target power was set at 3 kW and the frequency was varied between about 60 kHz and 200 kHz. The reverse time was set at 2.5 μs. Again, no bias power was supplied to substrate 16. The O2 flow rate was varied from about 20 to about 35 sccm, with particular depositions performed at 22 and 35 sccm. The Ar flow rate was set at 26 sccm. A post deposition anneal of substrate 16 at 800° C. for 30 min. was performed.
Additionally, passive films can be deposited from targets having a composition of Si and Al. For example, layers have been deposited from embodiments of target 12 with composition 83% Si and 17% Al. About 4.5 kW of pulsed DC power at about 200 kHz frequency was supplied to target 12. The reverse time was about 2.2 μs. A bias power of about 150 W was supplied to substrate 16 during deposition.
The examples and embodiments discussed above are exemplary only and are not intended to be limiting. One skilled in the art can vary the processes specifically described here in various ways. Further, the theories and discussions of mechanisms presented above are for discussion only. The invention disclosed herein is not intended to be bound by any particular theory set forth by the inventors to explain the results obtained. As such, the invention is limited only by the following claims.
This is a continuation of application Ser. No. 10/101,863, filed Mar. 16, 2002 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3309302 | Heil | Mar 1967 | A |
3616403 | Collins et al. | Oct 1971 | A |
3850604 | Klein | Nov 1974 | A |
4082569 | Evans, Jr. | Apr 1978 | A |
4111523 | Kaminow et al. | Sep 1978 | A |
4437966 | Hope et al. | Mar 1984 | A |
4587225 | Tsukuma et al. | May 1986 | A |
4619680 | Nourshargh et al. | Oct 1986 | A |
RE32449 | Claussen | Jun 1987 | E |
4710940 | Sipes, Jr. | Dec 1987 | A |
4785459 | Baer | Nov 1988 | A |
4915810 | Kestigian et al. | Apr 1990 | A |
4978437 | Wirz | Dec 1990 | A |
5085904 | Deak et al. | Feb 1992 | A |
5107538 | Benton et al. | Apr 1992 | A |
5119460 | Bruce et al. | Jun 1992 | A |
5173271 | Chen et al. | Dec 1992 | A |
5174876 | Buchal et al. | Dec 1992 | A |
5196041 | Tumminelli et al. | Mar 1993 | A |
5200029 | Bruce et al. | Apr 1993 | A |
5206925 | Nakazawa et al. | Apr 1993 | A |
5225288 | Beeson et al. | Jul 1993 | A |
5237439 | Misono et al. | Aug 1993 | A |
5252194 | Demaray et al. | Oct 1993 | A |
5287427 | Atkins et al. | Feb 1994 | A |
5296089 | Chen et al. | Mar 1994 | A |
5303319 | Ford et al. | Apr 1994 | A |
5306569 | Hiraki | Apr 1994 | A |
5309302 | Vollmann | May 1994 | A |
5338625 | Bates et al. | Aug 1994 | A |
5355089 | Treger | Oct 1994 | A |
5381262 | Arima et al. | Jan 1995 | A |
5427669 | Drummond | Jun 1995 | A |
5435826 | Sakakibara et al. | Jul 1995 | A |
5457569 | Liou et al. | Oct 1995 | A |
5472795 | Atita | Dec 1995 | A |
5475528 | LaBorde | Dec 1995 | A |
5478456 | Humpal et al. | Dec 1995 | A |
5483613 | Bruce et al. | Jan 1996 | A |
5499207 | Miki et al. | Mar 1996 | A |
5512147 | Bates et al. | Apr 1996 | A |
5538796 | Schaffer | Jul 1996 | A |
5555127 | Abdelkader et al. | Sep 1996 | A |
5561004 | Bates et al. | Oct 1996 | A |
5563979 | Bruce et al. | Oct 1996 | A |
5565071 | Demaray et al. | Oct 1996 | A |
5569520 | Bates | Oct 1996 | A |
5591520 | Migliorini et al. | Jan 1997 | A |
5597660 | Bates et al. | Jan 1997 | A |
5603816 | Demaray et al. | Feb 1997 | A |
5607560 | Hirabayashi et al. | Mar 1997 | A |
5607789 | Treger et al. | Mar 1997 | A |
5612152 | Bates | Mar 1997 | A |
5613995 | Bhandarkar et al. | Mar 1997 | A |
5645626 | Edlund et al. | Jul 1997 | A |
5654054 | Tropsha et al. | Aug 1997 | A |
5654984 | Hershbarger et al. | Aug 1997 | A |
5686360 | Harvey, III et al. | Nov 1997 | A |
5689522 | Beach | Nov 1997 | A |
5693956 | Shi et al. | Dec 1997 | A |
5702829 | Paidassi et al. | Dec 1997 | A |
5718813 | Drummond | Feb 1998 | A |
5719976 | Henry et al. | Feb 1998 | A |
5731661 | So et al. | Mar 1998 | A |
5738731 | Shindo | Apr 1998 | A |
5755938 | Fukui et al. | May 1998 | A |
5757126 | Harvey, III et al. | May 1998 | A |
5762768 | Goy et al. | Jun 1998 | A |
5771562 | Harvey, III et al. | Jun 1998 | A |
5792550 | Phillips et al. | Aug 1998 | A |
5811177 | Shi et al. | Sep 1998 | A |
5830330 | Lantsman | Nov 1998 | A |
5831262 | Greywall et al. | Nov 1998 | A |
5841931 | Foresi et al. | Nov 1998 | A |
5847865 | Gopinath et al. | Dec 1998 | A |
5849163 | Ichikawa et al. | Dec 1998 | A |
5853830 | McCaulley et al. | Dec 1998 | A |
5855744 | Halsey et al. | Jan 1999 | A |
5870273 | Sogabe et al. | Feb 1999 | A |
5882946 | Otani | Mar 1999 | A |
5900057 | Buchal et al. | May 1999 | A |
5909346 | Malhotra et al. | Jun 1999 | A |
5930046 | Solberg et al. | Jul 1999 | A |
5930584 | Sun et al. | Jul 1999 | A |
5942089 | Sproul et al. | Aug 1999 | A |
5948215 | Lantsman | Sep 1999 | A |
5952778 | Haskal et al. | Sep 1999 | A |
5961682 | Lee et al. | Oct 1999 | A |
5966491 | DiGiovanni | Oct 1999 | A |
5977582 | Fleming et al. | Nov 1999 | A |
6000603 | Koskenmaki et al. | Dec 1999 | A |
6001224 | Drummond | Dec 1999 | A |
6004660 | Topolski et al. | Dec 1999 | A |
6024844 | Drummond et al. | Feb 2000 | A |
6045626 | Yano et al. | Apr 2000 | A |
6046081 | Kuo | Apr 2000 | A |
6051114 | Yao et al. | Apr 2000 | A |
6051296 | McCaulley et al. | Apr 2000 | A |
6052397 | Jeon et al. | Apr 2000 | A |
6057557 | Ichikawa | May 2000 | A |
6058233 | Dragone | May 2000 | A |
6071323 | Kawaguchi | Jun 2000 | A |
6077642 | Ogata et al. | Jun 2000 | A |
6080643 | Noguchi et al. | Jun 2000 | A |
6088492 | Kaneko et al. | Jul 2000 | A |
6093944 | VanDover | Jul 2000 | A |
6106933 | Nagai et al. | Aug 2000 | A |
6117279 | Smolanoff et al. | Sep 2000 | A |
6133670 | Rodgers et al. | Oct 2000 | A |
6146225 | Sheats et al. | Nov 2000 | A |
6154582 | Bazylenko et al. | Nov 2000 | A |
6157765 | Bruce et al. | Dec 2000 | A |
6162709 | Raux et al. | Dec 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6168884 | Neudecker et al. | Jan 2001 | B1 |
6176986 | Watanabe et al. | Jan 2001 | B1 |
6197167 | Tanaka | Mar 2001 | B1 |
6198217 | Suzuki et al. | Mar 2001 | B1 |
6204111 | Uemoto et al. | Mar 2001 | B1 |
6210544 | Sasaki | Apr 2001 | B1 |
6214660 | Uemoto et al. | Apr 2001 | B1 |
6232242 | Hata et al. | May 2001 | B1 |
6236793 | Lawrence et al. | May 2001 | B1 |
6242129 | Johnson | Jun 2001 | B1 |
6242132 | Neudecker et al. | Jun 2001 | B1 |
6248291 | Nakagama et al. | Jun 2001 | B1 |
6248640 | Nam | Jun 2001 | B1 |
6261917 | Quek et al. | Jul 2001 | B1 |
6280585 | Obinata et al. | Aug 2001 | B1 |
6280875 | Kwak et al. | Aug 2001 | B1 |
6281142 | Basceri et al. | Aug 2001 | B1 |
6287986 | Mihara | Sep 2001 | B1 |
6288835 | Nilsson et al. | Sep 2001 | B1 |
6290821 | McLeod | Sep 2001 | B1 |
6290822 | Fleming et al. | Sep 2001 | B1 |
6300215 | Shin | Oct 2001 | B1 |
6302939 | Rabin et al. | Oct 2001 | B1 |
6306265 | Fu et al. | Oct 2001 | B1 |
6344419 | Forster et al. | Feb 2002 | B1 |
6350353 | Gopalraja et al. | Feb 2002 | B2 |
6356694 | Weber | Mar 2002 | B1 |
6358810 | Dornfest et al. | Mar 2002 | B1 |
6361662 | Chiba et al. | Mar 2002 | B1 |
6365300 | Ota et al. | Apr 2002 | B1 |
6365319 | Heath et al. | Apr 2002 | B1 |
6376027 | Lee et al. | Apr 2002 | B1 |
6391166 | Wang | May 2002 | B1 |
6409965 | Nagata et al. | Jun 2002 | B1 |
6413382 | Wang et al. | Jul 2002 | B1 |
6413645 | Graff et al. | Jul 2002 | B1 |
6416598 | Sircar | Jul 2002 | B1 |
6423776 | Akkapeddi et al. | Jul 2002 | B1 |
6433380 | Shin | Aug 2002 | B2 |
6444750 | Touhsaent | Sep 2002 | B1 |
6452717 | Endo | Sep 2002 | B1 |
6488822 | Moslehi | Dec 2002 | B1 |
6506289 | Demaray et al. | Jan 2003 | B2 |
6511615 | Dawes et al. | Jan 2003 | B1 |
6533907 | Demaray et al. | Mar 2003 | B2 |
6537428 | Xiong et al. | Mar 2003 | B1 |
6563998 | Farah et al. | May 2003 | B1 |
6576546 | Gilbert et al. | Jun 2003 | B2 |
6602338 | Chen et al. | Aug 2003 | B2 |
6605228 | Kawaguchi et al. | Aug 2003 | B1 |
6615614 | Makikawa et al. | Sep 2003 | B1 |
6632563 | Krasnov et al. | Oct 2003 | B1 |
6673716 | D'Couto et al. | Jan 2004 | B1 |
6683244 | Fujimori et al. | Jan 2004 | B2 |
6683749 | Daby et al. | Jan 2004 | B2 |
6750156 | Le et al. | Jun 2004 | B2 |
6760520 | Medin et al. | Jul 2004 | B1 |
6768855 | Bakke et al. | Jul 2004 | B1 |
6818356 | Bates | Nov 2004 | B1 |
6827826 | Demaray et al. | Dec 2004 | B2 |
6846765 | Imamura et al. | Jan 2005 | B2 |
6884327 | Pan et al. | Apr 2005 | B2 |
7262131 | Narasimhan et al. | Aug 2007 | B2 |
20010027159 | Kaneyoshi | Oct 2001 | A1 |
20010031122 | Lackritz et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010041460 | Wiggins | Nov 2001 | A1 |
20020001746 | Jenson | Jan 2002 | A1 |
20020014406 | Takashima | Feb 2002 | A1 |
20020033330 | Demaray et al. | Mar 2002 | A1 |
20020076133 | Li et al. | Jun 2002 | A1 |
20020106297 | Ueno et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020134671 | Demaray et al. | Sep 2002 | A1 |
20020140103 | Kloster et al. | Oct 2002 | A1 |
20020170821 | Sandlin et al. | Nov 2002 | A1 |
20020191916 | Frish et al. | Dec 2002 | A1 |
20030019326 | Han et al. | Jan 2003 | A1 |
20030022487 | Yoon et al. | Jan 2003 | A1 |
20030035906 | Memarian et al. | Feb 2003 | A1 |
20030042131 | Johnson | Mar 2003 | A1 |
20030044118 | Zhou et al. | Mar 2003 | A1 |
20030063883 | Demaray et al. | Apr 2003 | A1 |
20030077914 | Le et al. | Apr 2003 | A1 |
20030079838 | Brcka | May 2003 | A1 |
20030097858 | Strohhofer et al. | May 2003 | A1 |
20030127319 | Demaray et al. | Jul 2003 | A1 |
20030134054 | Demaray et al. | Jul 2003 | A1 |
20030141186 | Wang et al. | Jul 2003 | A1 |
20030143853 | Celii et al. | Jul 2003 | A1 |
20030173207 | Zhang et al. | Sep 2003 | A1 |
20030173208 | Pan et al. | Sep 2003 | A1 |
20030174391 | Pan et al. | Sep 2003 | A1 |
20030175142 | Milonopoulou et al. | Sep 2003 | A1 |
20030178637 | Chen et al. | Sep 2003 | A1 |
20030185266 | Henrichs | Oct 2003 | A1 |
20040043557 | Haukka et al. | Mar 2004 | A1 |
20040077161 | Chen et al. | Apr 2004 | A1 |
20040105644 | Dawes | Jun 2004 | A1 |
20040259305 | Demaray et al. | Dec 2004 | A1 |
20050000794 | Demaray et al. | Jan 2005 | A1 |
20050006768 | Narasimhan et al. | Jan 2005 | A1 |
20050175287 | Pan et al. | Aug 2005 | A1 |
20050183946 | Pan et al. | Aug 2005 | A1 |
20060054496 | Zhang et al. | Mar 2006 | A1 |
20060057283 | Zhang et al. | Mar 2006 | A1 |
20060057304 | Zhang et al. | Mar 2006 | A1 |
20060071592 | Narasimhan et al. | Apr 2006 | A1 |
20060134522 | Zhang et al. | Jun 2006 | A1 |
20070053139 | Zhang et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
37 38 738 | Jan 1989 | DE |
0 510 883 | Oct 1992 | EP |
0 652 308 | Oct 1994 | EP |
0 639 655 | Feb 1995 | EP |
0 820 088 | Jan 1998 | EP |
0 867 985 | Sep 1998 | EP |
1068899 | Jan 2001 | EP |
1 092 689 | Apr 2001 | EP |
1 189 080 | Mar 2002 | EP |
2-054764 | Feb 1990 | JP |
5-230642 | Sep 1993 | JP |
6-010127 | Jan 1994 | JP |
6-100333 | Dec 1994 | JP |
7-224379 | Aug 1995 | JP |
7-233469 | Sep 1995 | JP |
2002-26187 | Apr 2002 | KR |
WO 9623085 | Aug 1996 | WO |
WO 9735044 | Sep 1997 | WO |
WO 9961674 | Dec 1999 | WO |
WO 0021898 | Apr 2000 | WO |
WO 0022742 | Apr 2000 | WO |
WO 0036665 | Jun 2000 | WO |
WO 0182297 | Nov 2001 | WO |
WO 0212932 | Feb 2002 | WO |
WO 2004021532 | Mar 2004 | WO |
WO 2004077519 | Sep 2004 | WO |
WO 2004106581 | Dec 2004 | WO |
WO 2004106582 | Dec 2004 | WO |
WO 2006063308 | Jun 2006 | WO |
WO 2007027535 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20050048802 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10101863 | Mar 2002 | US |
Child | 10954182 | US |