The field generally relates to bonded structures, and in particular, to bonded structures having a getter material for sealing an internal portion of the bonded structures.
In semiconductor device fabrication and packaging, some integrated devices are sealed from the outside environs in order to, e.g., reduce contamination or prevent damage to the integrated device. For example, some microelectromechanical systems (MEMS) devices include a cavity defined by a cap attached to a substrate with an adhesive such as solder. However, some adhesives may be permeable to gases, such that the gases can, over time, pass through the adhesive and into the cavity. Moisture or some gases, such as hydrogen or oxygen gas, can damage sensitive integrated devices. Other adhesives, such as solder, may have other long-term reliability issues. Accordingly, there remains a continued need for improved seals for integrated devices.
Specific implementations of the invention will now be described with reference to the following drawings, which are provided by way of example, and not limitation.
Various embodiments disclosed herein relate to bonded structures that connect two elements (which may comprise semiconductor elements) in a manner that effectively seals interior portions and/or integrated devices of the semiconductor elements from the outside environs. For example, in some embodiments, a bonded structure can comprise a plurality of semiconductor elements bonded to one another along a bonding interface. An integrated device can be coupled to or formed with a semiconductor element. For example, in some embodiments, the bonded structure can comprise a microelectromechanical systems (MEMS) device in which a cap (a first semiconductor element) is bonded to a carrier (a second semiconductor element). A MEMS element (the integrated device) can be disposed in a cavity defined at least in part by the cap and the carrier. In other embodiments, the element(s) can comprise other types of elements, such as optical elements, etc.
In some arrangements, the bonded structure can comprise a getter material disposed between the first and second elements. In some embodiments, the getter material may absorb and/or occlude incident moisture or gases. In some embodiments, the getter material can prevent gases (or significantly reduce an amount of the gas(es)) from reaching interior regions and/or integrated devices of the bonded structure. In some embodiments, the getter material can be disposed in a space provided along the bonding surface. In some embodiments, the first and second elements can be directly bonded without an intervening adhesive, e.g., such that bonding interfaces of the first and second elements contact one another.
In some embodiments, the second element 12 can comprise a carrier to which the first element 10 is bonded. In some embodiments, the carrier can comprise an integrated device die, such as a processor die configured to process signals transduced by the integrated device 15. In some embodiments, the integrated device 15 can comprise a MEMS element, such as a MEMS switch, an accelerometer, a gyroscope, etc. The integrated device 15 can be coupled to or formed with the first semiconductor element 10 or the second semiconductor element 12. In some embodiments, the carrier can comprise a substrate, such as a semiconductor substrate (e.g., a silicon interposer with conductive interconnects), a printed circuit board (PCB), a ceramic substrate, a glass substrate, or any other suitable carrier. In such embodiments, the carrier can transfer signals between the integrated device 15 and a larger packaging structure or electronic system (not shown). In some embodiments, the carrier can comprise an integrated device die, such as a processor die configured to process signals transduced by the integrated device 15. In some embodiments, the integrated device 15 can comprise a MEMS element, such as a MEMS switch, an accelerometer, a gyroscope, etc. The integrated device 15 can be coupled to or formed with the first semiconductor element 10 or the second semiconductor element 12.
In some configurations, it can be important to isolate or separate the integrated device die 15 from the outside environs, e.g., from exposure to gases and/or contaminants. For example, for some integrated devices, exposure to moisture or gases (such as hydrogen or oxygen gas) can damage the integrated device 15 or other components. In other examples, leakage of any other gases from the outside environment (e.g., oxygen, nitrogen, etc.) may not be desired, as it may change the pressure inside the cavity, effectively altering the device performance. Accordingly, it can be important to provide a seal that effectively or substantially seals (e.g., hermetically or near-hermetically seals) the integrated device 15 (
In some embodiments, the space 22 can comprise a first opening 18 in the first element 10 and a second opening 20 in the second element 12, such as in the embodiments of
The disclosed embodiments can utilize getter materials that can collect free gases incident to them by, for example, absorption and/or occlusion. Different getter materials can have different properties. For example, aluminum (Al) can have a getter capacity of about 1 Pa-l/mg against oxygen (O2). Barium (Ba) can have a getter capacity of about 0.69 Pa-l/mg against carbon dioxide (CO2), about 11.5 Pa-l/mg against hydrogen (H2), and about 2 Pa-l/mg against (O2). Titanium (Ti) can have about 4.4 Pa-l/mg against (O2). Thus, in some embodiments, the getter material 24 can be selected based on the types of gases that are likely be present in the environment of which the bonded structure 1 would be used. Accordingly, the getter material 24 in the space 22 disposed along the bonding surface 32 can effectively provide seals for preserving hermetical or near-hermetical property for the integrated device 15 and/or the cavity 26. In some embodiments, for example, the getter material 24 can comprise one of or any two or more combination of Al, Ba, Ti, magnesium (Mg), niobium (Cb), zirconium (Zr), thorium (Th), phosphorus (P), vanadium (V), iron (Fe), and/or any other getter materials suitable. The getter material 24 can fill the space 22 completely or partially. In some embodiments, the getter material 24 can be coated around an inner periphery of the space 22. In some embodiments, the getter material 24 can comprise a powder form, solid form, liquid form, or any other suitable form for targeted purposes. In some embodiments, the openings 18, 20 can receive two distinct types of getter material. Such embodiments can beneficially act on different gases at the bonding surface 32. In some embodiments, the same getter material 24 can be provided in each element 10, 12. In other embodiments, each element 10, 12 may utilize different getter materials.
The first and second elements can be bonded in any suitable manner, including by direct bonding. In some embodiments, the direct bond between the first element 10 and the second element 12 can include a direct bond between the first bonding surface 28 of the first element 10 and the second bonding surface 30 of the second element 12. Preparation for bonding top surfaces of respective substrates 11, 13 can include provision of nonconductive layers 14, 16, such as silicon oxide, with exposed openings 18, 20. The bonding surfaces of the first element 10 and the second element 12 can be polished to a very high degree of smoothness (e.g., less than 20 nm surface roughness, or more particularly, less than 5 nm surface roughness) for example, by chemical mechanical polishing (CMP). In some embodiments, the surfaces to be bonded may be terminated with a suitable species and activated prior to bonding. For example, in some embodiments, the bonding surfaces 28, 30 of the bonding layer to be bonded, such as silicon oxide material, may be very slightly etched for activation and exposed to a nitrogen-containing solution and terminated with a nitrogen-containing species. As one example, the surfaces 28, 30 to be bonded may be exposed to an ammonia dip after a very slight etch, and/or a nitrogen-containing plasma (with or without a separate etch). Once the respective surfaces are prepared, the bonding surfaces 28, 30 (such as silicon oxide) of the first and second elements 10, 12 can be brought into contact. The interaction of the activated surfaces can cause the first bonding surface 28 of the first element 10 to directly bond with the second surface 30 of the second element 12 without an intervening adhesive, without application of external pressure, without application of voltage, and at room temperature. In various embodiments, the bonding forces of the nonconductive regions can include covalent bonds that are greater than Van der Waals bonds and exert significant forces between the conductive features 33. Prior to any heat treatment, the bonding energy of the dielectric-dielectric surface can be in a range from 150-300 mJ/m2, which can increase to 1500-4000 mJ/m2 after a period of heat treatment. Additional details of the direct bonding processes used in conjunction with each of the disclosed embodiments may be found throughout U.S. Pat. Nos. 7,126,212; 8,153,505; 7,622,324; 7,602,070; 8,163,373; 8,389,378; and 8,735,219, and throughout U.S. Patent Application Publication Nos. 2017/0062366; 2016/0314346; 2017/0200711, the contents of each of which are hereby incorporated by reference herein in their entirety and for all purposes. In still other embodiments, the elements 10, 12 can be bonded with an adhesive.
In some embodiments, the bonding surface 32 can have a dimension d from an outer edge 17 to the integrated device 15 or the cavity 26, for example, in a range of 10 μm to 600 μm, in a range of 10 μm to 80 μm, in a range of 40 μm to 60 μm, in a range of 100 μm to 600 μm, in a range of 200 μm to 300 μm, etc.
In some embodiments, the bonded structure of
In one aspect, a bonded structure is disclosed. The bonded structure can include a first element having a first bonding surface, a second element having a second bonding surface. The first and second bonding surfaces can be bonded to one another along a bonding interface. The bonded structure can further include an integrated device that is coupled to or formed with the first element or the second element. The bonded structure can also include a channel that is disposed along the bonding interface around the integrated device.
In some embodiments, the bonded structure can also include a getter material disposed in the channel. The getter material can be configured to reduce the diffusion of gas into an interior region of the bonded structure. The first and second bonding surfaces can be directly bonded without an intervening adhesive. In some embodiments, the bonding surface can have a dimension from an outer edge to the integrated device in a range of 10 μm to 600 μm. The channel can include a first trench disposed through the first bonding surface and a second trench disposed through the second bonding surface.
In some embodiments, the bonded structure can include a cavity and the integrated device can be disposed in the cavity. The channel and the getter material can be disposed around the cavity.
In some embodiments, the channel can comprise a continuous channel surrounding the integrated device. A first group of the channel portions can be filled with the getter material and a second group of the channel portions can be filled with a second getter material.
In some embodiments, the getter material can comprise at least one of titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), thorium (Th), niobium (Cb), zirconium (Zr), and phosphorus (P).
In some embodiments, the channel can be formed in only one of the first and second elements.
In some embodiments, the channel can comprise a first trench disposed through the first bonding surface and a second trench disposed through the second bonding surface. The channel can comprise a plurality of trenches that are offset laterally along the bonding interface.
In another aspect, a bonded structure is disclosed. The bonded structure can include a first element, a second element that is directly bonded to the first element along a bonding interface without an intervening adhesive, and a getter material that is disposed in a space along the bonding surface. The getter material is configured to reduce the diffusion of gas into an interior region of the bonded structure.
In some embodiments, the space can comprise a channel. In some embodiments, the space is enclosed. The bonded structure can also include an integrated device that is coupled to or formed with the first element or the second element. The channel can be disposed around the integrated device to define an effectively closed profile.
In another aspect a method of forming a bonded structure is disclosed. The method can include providing a first element that has a first bonding surface. An opening is disposed through a portion of the first bonding surface. The method also includes disposing a getter material in the opening. The method further includes bonding a second bonding surface of a second element to the first bonding surface of the first element. The first and second bonding surfaces are bonded such that the opening and a portion of the second element cooperate to define a space configured to receive the getter material.
In some embodiments, the opening can comprise a trench and the space can comprise a channel. In some embodiments, the opening can be provided by etching the first element from the first bonding surface to form a plurality of opening portions around the integrated device.
In some embodiments, the method can also include forming the opening and forming a second opening in the first element. The second opening are laterally offset from the opening. After the bonding, the second opening and a second portion of the second element can cooperate to define a second space configured to receive a second getter material.
In some embodiments, the method can also include forming the opening in the first element and forming a second opening in the second element through a portion of the second bonding surface. The opening and the second opening can cooperate to define the space.
In some embodiments, the method can also include forming the opening by removing a portion of the first element from a back surface of the first element opposite the first bonding surface. The method can also include filling at least a portion of the opening from the back surface after disposing the getter material to form the for the getter material.
In some embodiments, the method can also include defining a cavity between the first element and the second element. The integrated device can be disposed in the cavity.
For purposes of summarizing the disclosed embodiments and the advantages achieved over the prior art, certain objects and advantages have been described herein. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosed implementations may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of this disclosure. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the claims not being limited to any particular embodiment(s) disclosed. Although this certain embodiments and examples have been disclosed herein, it will be understood by those skilled in the art that the disclosed implementations extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations have been shown and described in detail, other modifications will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed implementations. Thus, it is intended that the scope of the subject matter herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a continuation of U.S. application Ser. No. 16/011,525, filed Jun. 18, 2018, entitled “BONDED STRUCTURES” which claims the benefit of U.S. Provisional Application No. 62/609,683 entitled “BONDED STRUCTURES,” filed Dec. 22, 2017, the entire disclosure of which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4998665 | Hayashi | Mar 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6265775 | Seyyedy | Jul 2001 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6872984 | Leung | Mar 2005 | B1 |
6876062 | Lee et al. | Apr 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6998712 | Okada et al. | Feb 2006 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7057274 | Heschel | Jun 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7359591 | Vandentop et al. | Apr 2008 | B2 |
7388281 | Krueger et al. | Jun 2008 | B2 |
7467897 | Hauffe et al. | Dec 2008 | B2 |
7622324 | Enquist et al. | Nov 2009 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
7972683 | Gudeman et al. | Jul 2011 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8191756 | Coppeta et al. | Jun 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8269671 | Chen et al. | Sep 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8357931 | Schieck et al. | Jan 2013 | B2 |
8377798 | Peng et al. | Feb 2013 | B2 |
8395229 | Garcia-Blanco et al. | Mar 2013 | B2 |
8411444 | Gaynes et al. | Apr 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8530997 | Yang et al. | Sep 2013 | B1 |
8546928 | Merz et al. | Oct 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8669602 | Hayashi | Mar 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8916448 | Cheng et al. | Dec 2014 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9119313 | Zhang et al. | Aug 2015 | B2 |
9142517 | Liu et al. | Sep 2015 | B2 |
9142532 | Suga et al. | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9318471 | Kabe et al. | Apr 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9386688 | MacDonald et al. | Jul 2016 | B2 |
9391143 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9601454 | Zhao et al. | Mar 2017 | B2 |
9620464 | Baks et al. | Apr 2017 | B2 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9768307 | Yamazaki et al. | Sep 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9834435 | Liu et al. | Dec 2017 | B1 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katkar | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10522499 | Enquist et al. | Dec 2019 | B2 |
10615133 | Kamgaing et al. | Apr 2020 | B2 |
10658312 | Kamgaing et al. | May 2020 | B2 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10727219 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11205600 | Shen et al. | Dec 2021 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11257727 | Katkar et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
11380597 | Katkar et al. | Jul 2022 | B2 |
11417576 | Katkar et al. | Aug 2022 | B2 |
11485670 | Ruben et al. | Nov 2022 | B2 |
11600542 | Huang et al. | Mar 2023 | B2 |
11670615 | Wang et al. | Jun 2023 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020094608 | Brooks | Jul 2002 | A1 |
20020179921 | Cohr | Dec 2002 | A1 |
20030098060 | Yoshimi | May 2003 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040259325 | Gan | Dec 2004 | A1 |
20050009246 | Enquist et al. | Jan 2005 | A1 |
20050082653 | McWilliams et al. | Apr 2005 | A1 |
20050263866 | Wan | Dec 2005 | A1 |
20060001123 | Heck et al. | Jan 2006 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20060097335 | Kim et al. | May 2006 | A1 |
20060115323 | Coppeta et al. | Jun 2006 | A1 |
20060197215 | Potter | Sep 2006 | A1 |
20060208326 | Nasiri et al. | Sep 2006 | A1 |
20070029562 | Koizumi | Feb 2007 | A1 |
20070045781 | Carlson et al. | Mar 2007 | A1 |
20070045795 | McBean | Mar 2007 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070134891 | Adetutu et al. | Jun 2007 | A1 |
20070188054 | Hasken et al. | Aug 2007 | A1 |
20070222048 | Huang | Sep 2007 | A1 |
20070295456 | Gudeman et al. | Dec 2007 | A1 |
20080080832 | Chen et al. | Apr 2008 | A1 |
20080124835 | Chen et al. | May 2008 | A1 |
20080283995 | Bucki et al. | Nov 2008 | A1 |
20080290490 | Fujii et al. | Nov 2008 | A1 |
20080296709 | Haba et al. | Dec 2008 | A1 |
20090053855 | Summers | Feb 2009 | A1 |
20090186446 | Kwon et al. | Jul 2009 | A1 |
20090267165 | Okudo et al. | Oct 2009 | A1 |
20100078786 | Maeda | Apr 2010 | A1 |
20100096713 | Jung | Apr 2010 | A1 |
20100148341 | Fuji et al. | Jun 2010 | A1 |
20100181676 | Montez et al. | Jul 2010 | A1 |
20100288525 | Basavanhally et al. | Nov 2010 | A1 |
20100301432 | Kittilsland et al. | Dec 2010 | A1 |
20110031633 | Hsu et al. | Feb 2011 | A1 |
20110115092 | Tago | May 2011 | A1 |
20110147859 | Tanaka et al. | Jun 2011 | A1 |
20110156242 | Sakaguchi et al. | Jun 2011 | A1 |
20110180921 | Loiselet | Jul 2011 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
20120061776 | Cheng et al. | Mar 2012 | A1 |
20120097733 | Ebefors et al. | Apr 2012 | A1 |
20120100657 | Di Cioccio et al. | Apr 2012 | A1 |
20120112335 | Ebefors et al. | May 2012 | A1 |
20120142144 | Taheri | Jun 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20120267730 | Renard et al. | Oct 2012 | A1 |
20120286380 | Yazdi et al. | Nov 2012 | A1 |
20120326248 | Daneman et al. | Dec 2012 | A1 |
20130099331 | Chen et al. | Apr 2013 | A1 |
20130122702 | Volant et al. | May 2013 | A1 |
20130187245 | Chien et al. | Jul 2013 | A1 |
20130271066 | Signorelli et al. | Oct 2013 | A1 |
20130277774 | Frey et al. | Oct 2013 | A1 |
20130277777 | Chang et al. | Oct 2013 | A1 |
20130293428 | Souriau et al. | Nov 2013 | A1 |
20140042593 | Mauder | Feb 2014 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140197534 | Partosa et al. | Jul 2014 | A1 |
20140217557 | Chen et al. | Aug 2014 | A1 |
20140225206 | Lin et al. | Aug 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140264653 | Cheng et al. | Sep 2014 | A1 |
20140361413 | Chapelon | Dec 2014 | A1 |
20150001632 | Liu et al. | Jan 2015 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150068666 | Abe et al. | Mar 2015 | A1 |
20150091153 | Liu et al. | Apr 2015 | A1 |
20150097215 | Chu et al. | Apr 2015 | A1 |
20150137345 | Choi et al. | May 2015 | A1 |
20150298965 | Tsai et al. | Oct 2015 | A1 |
20150336790 | Geen et al. | Nov 2015 | A1 |
20150336792 | Huang et al. | Nov 2015 | A1 |
20160002029 | Nasiri et al. | Jan 2016 | A1 |
20160107881 | Thompson et al. | Apr 2016 | A1 |
20160137492 | Cheng et al. | May 2016 | A1 |
20160146851 | Kamisuki | May 2016 | A1 |
20160229685 | Boysel | Aug 2016 | A1 |
20160240495 | Lachner et al. | Aug 2016 | A1 |
20160318757 | Chou et al. | Nov 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20170001858 | Adams et al. | Jan 2017 | A1 |
20170008757 | Cheng et al. | Jan 2017 | A1 |
20170062366 | Enquist | Mar 2017 | A1 |
20170081181 | Zhang et al. | Mar 2017 | A1 |
20170137281 | Favier et al. | May 2017 | A1 |
20170186732 | Chu et al. | Jun 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170200711 | Uzoh et al. | Jul 2017 | A1 |
20170305738 | Chang et al. | Oct 2017 | A1 |
20170338214 | Uzoh et al. | Nov 2017 | A1 |
20180044175 | Ogashiwa et al. | Feb 2018 | A1 |
20180047682 | Chang et al. | Feb 2018 | A1 |
20180096931 | Huang et al. | Apr 2018 | A1 |
20180174995 | Wang et al. | Jun 2018 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180191047 | Huang et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180269161 | Wu et al. | Sep 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180286805 | Huang et al. | Oct 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20180337157 | Wang et al. | Nov 2018 | A1 |
20190051628 | Liu et al. | Feb 2019 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190164914 | Hu et al. | May 2019 | A1 |
20190198407 | Huang et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190348336 | Katkar et al. | Nov 2019 | A1 |
20190363079 | Thei et al. | Nov 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20190385966 | Gao et al. | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200043817 | Shen et al. | Feb 2020 | A1 |
20200075520 | Gao et al. | Mar 2020 | A1 |
20200075534 | Gao et al. | Mar 2020 | A1 |
20200075553 | DeLaCruz et al. | Mar 2020 | A1 |
20200118973 | Wang et al. | Apr 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200131028 | Cheng et al. | Apr 2020 | A1 |
20200140267 | Katkar et al. | May 2020 | A1 |
20200140268 | Katkar et al. | May 2020 | A1 |
20200144217 | Enquist et al. | May 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200243380 | Uzoh et al. | Jul 2020 | A1 |
20200279821 | Haba et al. | Sep 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200335408 | Gao et al. | Oct 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20200411483 | Uzoh et al. | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210134689 | Huang et al. | May 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | Katkar et al. | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210193625 | DeLaCruz et al. | Jun 2021 | A1 |
20210202428 | Wang et al. | Jul 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210265227 | Katkar et al. | Aug 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20220415734 | Katkar et al. | Dec 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
20230100032 | Haba et al. | Mar 2023 | A1 |
20230115122 | Uzoh et al. | Apr 2023 | A1 |
20230122531 | Uzoh | Apr 2023 | A1 |
20230123423 | Gao et al. | Apr 2023 | A1 |
20230125395 | Gao et al. | Apr 2023 | A1 |
20230130259 | Haba et al. | Apr 2023 | A1 |
20230132632 | Katkar et al. | May 2023 | A1 |
20230140107 | Uzoh et al. | May 2023 | A1 |
20230142680 | Guevara et al. | May 2023 | A1 |
20230154816 | Haba et al. | May 2023 | A1 |
20230154828 | Haba et al. | May 2023 | A1 |
20230187264 | Uzoh et al. | Jun 2023 | A1 |
20230187317 | Uzoh | Jun 2023 | A1 |
20230187412 | Gao et al. | Jun 2023 | A1 |
20230197453 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230197496 | Theil | Jun 2023 | A1 |
20230197559 | Haba et al. | Jun 2023 | A1 |
20230197560 | Katkar et al. | Jun 2023 | A1 |
20230197655 | Theil et al. | Jun 2023 | A1 |
20230207402 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230207437 | Haba | Jun 2023 | A1 |
20230207474 | Uzoh et al. | Jun 2023 | A1 |
20230207514 | Gao et al. | Jun 2023 | A1 |
20230215836 | Haba et al. | Jul 2023 | A1 |
20230245950 | Haba et al. | Aug 2023 | A1 |
20230260858 | Huang et al. | Aug 2023 | A1 |
20230268300 | Uzoh et al. | Aug 2023 | A1 |
20230343734 | Uzoh et al. | Oct 2023 | A1 |
20230360950 | Gao | Nov 2023 | A1 |
20230361072 | Wang et al. | Nov 2023 | A1 |
20230361074 | Uzoh et al. | Nov 2023 | A1 |
20230369136 | Uzoh et al. | Nov 2023 | A1 |
20230375613 | Haba et al. | Nov 2023 | A1 |
Number | Date | Country |
---|---|---|
101554988 | Oct 2009 | CN |
109390305 | Feb 2019 | CN |
2813465 | Dec 2014 | EP |
H10-112517 | Apr 1998 | JP |
2000-100679 | Apr 2000 | JP |
2001-102479 | Apr 2001 | JP |
2001-148436 | May 2001 | JP |
2002-353416 | Dec 2002 | JP |
2008-130915 | Jun 2008 | JP |
2009-039843 | Feb 2009 | JP |
2009-238905 | Oct 2009 | JP |
2010-199608 | Sep 2010 | JP |
2011-131309 | Jul 2011 | JP |
2013-33786 | Feb 2013 | JP |
2013-513227 | Apr 2013 | JP |
2013-243333 | Dec 2013 | JP |
2014-219321 | Nov 2014 | JP |
2015-100886 | Jun 2015 | JP |
2015-153791 | Aug 2015 | JP |
2016-099224 | May 2016 | JP |
2018-160519 | Oct 2018 | JP |
10-2005-0101324 | Oct 2005 | KR |
10-2015-0097798 | Aug 2015 | KR |
10-2017-0108143 | Sep 2017 | KR |
201210098 | Mar 2012 | TW |
I533399 | May 2016 | TW |
WO 2005043584 | May 2005 | WO |
WO 2006100444 | Sep 2006 | WO |
WO 2007103224 | Sep 2007 | WO |
WO 2012130730 | Oct 2012 | WO |
WO 2014-074403 | May 2014 | WO |
WO 2017100256 | Jun 2017 | WO |
WO 2017151442 | Sep 2017 | WO |
Entry |
---|
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of the Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698. |
Beer et al., “Coplanar 122GHz Antenna Array With Air Cavity Reflector for Integration in Plastic Packages”, IEEE Antennas and Wireless Propagation Letters, 11:160-163, Jan. 2012. |
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206. |
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812. |
Daneman, “Applying the CMOS Test Flow to MEMS Manufacturing”, InvenSense, Inc., accessed on Apr. 5, 2020. |
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955. |
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77. |
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32. |
Gu et al., “A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication”, IBM Research, pp. 1-3, 2017. |
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258. |
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. and Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206. |
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7-pp. |
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference on, pp. 272-275. |
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066. |
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118. |
Inertial MEMS Manufacturing Trends 2014 Report by Yole Developpement Sample Report, Slide 11, https://www.slideshare.net/Yole_Developpement/yole-inertial-memsmanufacturingtrends2014sample. |
International Search Report and Written Opinion dated Apr. 13, 2018 in International Application No. PCT/US2017/067742, 14 pages. |
International Search Report and Written Opinion dated Apr. 16, 2018 in International Application No. PCT/US2017/067741, 17 pages. |
International Search Report and Written Opinion dated May 31, 2018 in International Application No. PCT/US2018/022688, 2 pages. |
International Search Report and Written Opinion dated Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages. |
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages. |
International Search Report and Written Opinion dated Aug. 26, 2019 in International Application No. PCT/US2019/031113, 14 pages. |
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224. |
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467. |
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318. |
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195. |
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453. |
Kim et al., “Wafer-scale activated bonding of Cu—Cu, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247. |
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Norton, Francis, “Permeation of gases through solids,” Journal of Applied Physics, Jan. 1957, vol. 28, No. 1. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(l), 6 pages. |
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444. |
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606. |
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852. |
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760. |
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Tranducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525. |
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151. |
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256. |
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80. |
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331. |
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111. |
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089. |
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197. |
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660. |
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387. |
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196. |
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348. |
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59. |
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996). |
Takagi et al, “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63. |
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102. |
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35. |
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938. |
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919. |
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756. |
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106. |
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483. |
Zhang et al., “Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications”, IEEE Transactions on Antennas and Propagation, 57(10):2830-2841, Oct. 2009. |
Zhou et al., “A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications”, Wireless Engineering and Technology, 3:97-105, 2012. |
Zoschke, K. et al., “Hermetic wafer level packaging of MEMS components using through silicon via and wafer to wafer bonding technologies,” 2013 Electronic Components & Technology Conference, 2013 IEEE, pp. 1500-1507. |
“The Advantages of Integrated MEMS to Enable the Internet of Moving Things”, mCube, White Paper Jan. 2018. |
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389. |
Android Wiki, “Samsung Galaxy S2,” indicating that the Samsung Galaxy S2 was unveiled on Feb. 13, 2011 at the Mobile World Congress (MWC) in Barcelona, https://android.fandom.com/wiki/Samsung_Galaxy_S2 (downloaded Nov. 20, 2023). |
Bush, Steve, “Electronica: Automotive power modules from On Semi,” ElectronicsWeekly.com, indicating an Onsemi AR0820 product was to be demonstrated at a Nov. 2018 trade show, https://www.electronicsweekly.com/news/products/power-supplies/electronica-automotive-power-modules-semi-2018-11/ (published Nov. 8, 2018; downloaded Jul. 26, 2023). |
GADGETS360, “Sony Xperia S,” indicating that the Sony Xperia LT26i product was released on Feb. 12, 2012, https://www.gadgets360.com/sony-xperia-s-609 (downloaded Nov. 20, 2023). |
Morrison, Jim et al., “Samsung Galaxy S7 Edge Teardown,” Tech Insights (posted Apr. 24, 2016), includes description of hybrid bonded Sony IMX260 dual-pixel sensor, https://www.techinsights.com/blog/samsung-galaxy-s7-edge-teardown, downloaded Jul. 11, 2023, 9 pages. |
Omnivision OV20880 image, cross section of Omnivision product labeled OV20880, showing a hybrid bonded back side illuminated CMOS image sensor device with a pad opening to expose an aluminum bond pad. The part in the image was received on Sep. 24, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Omnivision Technologies, Inc. in PR Newswire (“PR Newswire article”); however the imaged part and the part shown in the PR Newsire article share the part name “OV20880.” |
OmniVision Technologies, Inc., “OmniVision Announces New Family of 20-Megapixel PureCel® Plus-S Sensors for High-End Smartphones,” PR Newswire, https://www.prnewswire.com/news-releases/omnivision-announces-new-family-of-20-megapixel-purecelplus-s-sensors-for-high-end-smartphones-300358733.html (dated Nov. 7, 2016; downloaded Nov. 20, 2023). |
Onsemi AR0820 image, cross section of a CMOS image sensor product. The part in the image was shipped on Sep. 16, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Bush, Nov. 8, 2018, ElectronicsWeekly.com (“BUSH article”); however, the imaged part and the part shown in the Bush article share the part No. “Onsemi AR0820.” |
Samsung S5K3H2YX03 image, cross section of a back side illuminated CMOS image sensor (CIS) product, taken from Samsung Galaxy S2 phone. The part in the image was shipped on Nov. 25, 2011. The cross section shows tungsten and aluminum lining a trench formed in the back side of the sensor connecting a wire bond with a contact in the image sensor. The second image is a top-down view showing the wire bond pad and the trench that are depicted in the cross section. Applicant makes no representation that the part in the images is identical to image sensor products in the Galaxy S2 product identified in the separately submitted Android Wiki reference https://android.fandom.com/wiki/Samsung_Galaxy_S2 (“Android Wiki article”); however, the imaged sensor was obtained from a product named “Galaxy S2.” |
Sony IMX260 image, a first cross section of Sony product labeled IMX260, showing a hybrid bonded back side illuminated CMOS image sensor with a pad opening for a wire bond. The second image shows a second cross-section with peripheral probe and wire bond pads in the bonded structure. The part in the images was shipped in Apr. 2016. Applicant makes no representation that the part in the images is identical to the part identified in the separately submitted reference Morrison et al. (Tech Insights article dated Apr. 24, 2016), describing and showing a similar sensor product within the Samsung Galaxy S7; however the imaged part and the part shown in the Morrison et al. article share the part name “Sony IMX260 image.” |
Sony Xperia LT26i Sensor image, cross-section of a front side illuminated CMOS image sensor obtained from a Sony Xperia LT26i phone. The part in the image was received on Mar. 29, 2012. The cross section shows a metal line connecting a solder bump at the back side to a contact at the front side of the sensor, with non-conductive epoxy covering the metal. The second image is a bottom-up view of the image sensor. The third image is a bottom-up closeup view showing the edge of the sensor, with the solder bumps and metal line of the cross-section visible. Applicant makes no representation that the part in the images is identical to image sensor products in the Sony Xperia LT26i product identified in the separately submitted Gadgets360 reference https://www.gadgets360.com/sony-xperia-s-609 (“Gadgets360 article”); however, the imaged sensor was obtained from a product named “Sony Xperia LT26i.” |
Number | Date | Country | |
---|---|---|---|
20220367302 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62609683 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16011525 | Jun 2018 | US |
Child | 17829185 | US |