Bonded structures

Information

  • Patent Grant
  • 11948847
  • Patent Number
    11,948,847
  • Date Filed
    Tuesday, May 31, 2022
    a year ago
  • Date Issued
    Tuesday, April 2, 2024
    a month ago
Abstract
A bonded structure is disclosed. The bonded structure can include a first element that has a first bonding surface. The bonded structure can further include a second element that has a second bonding surface. The first and second bonding surfaces are bonded to one another along a bonding interface. The bonded structure can also include an integrated device that is coupled to or formed with the first element or the second element. The bonded structure can further include a channel that is disposed along the bonding interface around the integrated device to define an effectively closed profile The bonded structure can also include a getter material that is disposed in the channel. The getter material is configured to reduce the diffusion of gas into an interior region of the bonded structure.
Description
BACKGROUND
Field

The field generally relates to bonded structures, and in particular, to bonded structures having a getter material for sealing an internal portion of the bonded structures.


Description of the Related Art

In semiconductor device fabrication and packaging, some integrated devices are sealed from the outside environs in order to, e.g., reduce contamination or prevent damage to the integrated device. For example, some microelectromechanical systems (MEMS) devices include a cavity defined by a cap attached to a substrate with an adhesive such as solder. However, some adhesives may be permeable to gases, such that the gases can, over time, pass through the adhesive and into the cavity. Moisture or some gases, such as hydrogen or oxygen gas, can damage sensitive integrated devices. Other adhesives, such as solder, may have other long-term reliability issues. Accordingly, there remains a continued need for improved seals for integrated devices.





BRIEF DESCRIPTION OF THE DRAWINGS

Specific implementations of the invention will now be described with reference to the following drawings, which are provided by way of example, and not limitation.



FIG. 1 is a schematic cross-sectional view of a portion of a bonded structure including a first element and a second element.



FIG. 2 is a schematic cross-sectional view of a portion of a bonded structure having a cavity.



FIG. 3 is a sectional plan view of the bonded structure of FIG. 2.



FIG. 4 is a schematic cross-sectional view of the bonded structure having a plurality of spaces for receiving getter material(s) disposed in the first and second elements.



FIG. 5 is a schematic cross-sectional view of a bonded structure having a first space comprising a first opening in the first element and a second space comprising a second opening in the second element, with the first and second spaces being laterally or horizontally spaced from one another.



FIG. 6 is a schematic cross-sectional view of a bonded structure in which a first space comprising a first opening in the second element and a second space comprising a second opening in the second element, with the first and second spaces being horizontally spaced.



FIG. 7 is a schematic cross-sectional view of a bonded structure in which an element has a plurality of spaces that are horizontally spaced from one another.



FIG. 8 is a sectional plan view of the bonded structure having a plurality of channels disposed around an interior region of the bonded structure.



FIG. 9 is a schematic side cross-sectional view of a bonded structure with a getter layer disposed in the cavity.



FIG. 10A is a cross sectional view of the first element prior to forming an opening for receiving a getter material.



FIG. 10B is a cross sectional view of the first element of FIG. 10A after forming the opening and prior to receiving the getter material.



FIG. 10C is a cross sectional view of the first element of FIG. 10B after disposing the getter material in the opening.



FIG. 11A is a cross sectional view of a bonded structure, according to an embodiment.



FIG. 11B is a cross sectional view of the bonded structure of FIG. 11A after forming an opening in the bonded structure.



FIG. 11C is a cross sectional view of the bonded structure of FIG. 11B after disposing a getter material in the opening.



FIG. 11D is a cross sectional view of the bonded structure of FIG. 11C after plugging the opening.



FIG. 12 is a schematic diagram of an electronic system incorporating one or more bonded structures.





DETAILED DESCRIPTION

Various embodiments disclosed herein relate to bonded structures that connect two elements (which may comprise semiconductor elements) in a manner that effectively seals interior portions and/or integrated devices of the semiconductor elements from the outside environs. For example, in some embodiments, a bonded structure can comprise a plurality of semiconductor elements bonded to one another along a bonding interface. An integrated device can be coupled to or formed with a semiconductor element. For example, in some embodiments, the bonded structure can comprise a microelectromechanical systems (MEMS) device in which a cap (a first semiconductor element) is bonded to a carrier (a second semiconductor element). A MEMS element (the integrated device) can be disposed in a cavity defined at least in part by the cap and the carrier. In other embodiments, the element(s) can comprise other types of elements, such as optical elements, etc.


In some arrangements, the bonded structure can comprise a getter material disposed between the first and second elements. In some embodiments, the getter material may absorb and/or occlude incident moisture or gases. In some embodiments, the getter material can prevent gases (or significantly reduce an amount of the gas(es)) from reaching interior regions and/or integrated devices of the bonded structure. In some embodiments, the getter material can be disposed in a space provided along the bonding surface. In some embodiments, the first and second elements can be directly bonded without an intervening adhesive, e.g., such that bonding interfaces of the first and second elements contact one another.



FIG. 1 is a schematic cross sectional view of a portion of a bonded structure 1 according to various embodiments. The bonded structure can include a first element 10, a second element 12, a getter material 24 disposed in a space or void 22 and an integrated device 15. The integrated device 15 can comprise any suitable type of device, such as an integrated circuit, a micro electro mechanical systems (MEMS) device, etc. In some embodiments, a first bonding surface 28 of the first element 10 and a second bonding surface 30 of the second element 12 can be bonded at a bonding interface 32 by way of direct bonding, e.g., without an intervening adhesive.



FIG. 2 is a schematic side cross sectional view of a portion of the bonded structure 1 according to another embodiment. Unlike the bonded structure 1 of FIG. 1, the bonded structure 1 of FIG. 2 includes a cavity 26 for receiving an integrated device. For example, the integrated device 15 shown in FIG. 1 can be disposed in the cavity 26 in FIG. 2. FIG. 3 is a sectional plan view of the bonded structure 1 of FIG. 2. It should be understood that the bonded structure 1 can include more than one integrated device 15 and/or more than one cavity 26, in some embodiments.


In some embodiments, the second element 12 can comprise a carrier to which the first element 10 is bonded. In some embodiments, the carrier can comprise an integrated device die, such as a processor die configured to process signals transduced by the integrated device 15. In some embodiments, the integrated device 15 can comprise a MEMS element, such as a MEMS switch, an accelerometer, a gyroscope, etc. The integrated device 15 can be coupled to or formed with the first semiconductor element 10 or the second semiconductor element 12. In some embodiments, the carrier can comprise a substrate, such as a semiconductor substrate (e.g., a silicon interposer with conductive interconnects), a printed circuit board (PCB), a ceramic substrate, a glass substrate, or any other suitable carrier. In such embodiments, the carrier can transfer signals between the integrated device 15 and a larger packaging structure or electronic system (not shown). In some embodiments, the carrier can comprise an integrated device die, such as a processor die configured to process signals transduced by the integrated device 15. In some embodiments, the integrated device 15 can comprise a MEMS element, such as a MEMS switch, an accelerometer, a gyroscope, etc. The integrated device 15 can be coupled to or formed with the first semiconductor element 10 or the second semiconductor element 12.


In some configurations, it can be important to isolate or separate the integrated device die 15 from the outside environs, e.g., from exposure to gases and/or contaminants. For example, for some integrated devices, exposure to moisture or gases (such as hydrogen or oxygen gas) can damage the integrated device 15 or other components. In other examples, leakage of any other gases from the outside environment (e.g., oxygen, nitrogen, etc.) may not be desired, as it may change the pressure inside the cavity, effectively altering the device performance. Accordingly, it can be important to provide a seal that effectively or substantially seals (e.g., hermetically or near-hermetically seals) the integrated device 15 (FIG. 1) and/or the cavity 26 (FIG. 2) from gases.


In some embodiments, the space 22 can comprise a first opening 18 in the first element 10 and a second opening 20 in the second element 12, such as in the embodiments of FIGS. 1 to 3. Even though the first and second openings 18, 20 shown in FIG. 1 may be generally aligned to define the space 22, in practice, there can be offsets between positions of the first and second openings 18, 20. In some embodiments, the space 22 can be enclosed. However, as shown in some other embodiments, the space 22 may only comprise one opening in either the first or the second elements 10, 12 (see FIGS. 6 and 7). The openings 18, 20 can comprise trenches formed at the bonding surface(s) 28, 30 of the first and/or second elements 10, 12. The space or void 22 with the getter material 24 can extend around the device in an effectively closed profile. In some embodiments, the space or void 22 can comprise a continuous channel around the integrated device 15 and/or the cavity 26, as shown in FIG. 3. However, in other embodiments, the space 22 may not comprise a continuous channel. Rather, the space 22 can comprise a plurality of space portions and/or a plurality of channel portions around the integrated device 15 and/or the cavity 26, which collectively define an effectively closed profile around the device 15 and/or cavity 26. Thus, the space 22 with getter material 24 can define an effectively closed profile around the device 15 and/or cavity 26 to seal the device 15 and/or cavity 26 from the outside environs, regardless of whether the space 20 is continuous or includes gaps.


The disclosed embodiments can utilize getter materials that can collect free gases incident to them by, for example, absorption and/or occlusion. Different getter materials can have different properties. For example, aluminum (Al) can have a getter capacity of about 1 Pa-l/mg against oxygen (O2). Barium (Ba) can have a getter capacity of about 0.69 Pa-l/mg against carbon dioxide (CO2), about 11.5 Pa-l/mg against hydrogen (H2), and about 2 Pa-l/mg against (O2). Titanium (Ti) can have about 4.4 Pa-l/mg against (O2). Thus, in some embodiments, the getter material 24 can be selected based on the types of gases that are likely be present in the environment of which the bonded structure 1 would be used. Accordingly, the getter material 24 in the space 22 disposed along the bonding surface 32 can effectively provide seals for preserving hermetical or near-hermetical property for the integrated device 15 and/or the cavity 26. In some embodiments, for example, the getter material 24 can comprise one of or any two or more combination of Al, Ba, Ti, magnesium (Mg), niobium (Cb), zirconium (Zr), thorium (Th), phosphorus (P), vanadium (V), iron (Fe), and/or any other getter materials suitable. The getter material 24 can fill the space 22 completely or partially. In some embodiments, the getter material 24 can be coated around an inner periphery of the space 22. In some embodiments, the getter material 24 can comprise a powder form, solid form, liquid form, or any other suitable form for targeted purposes. In some embodiments, the openings 18, 20 can receive two distinct types of getter material. Such embodiments can beneficially act on different gases at the bonding surface 32. In some embodiments, the same getter material 24 can be provided in each element 10, 12. In other embodiments, each element 10, 12 may utilize different getter materials.


The first and second elements can be bonded in any suitable manner, including by direct bonding. In some embodiments, the direct bond between the first element 10 and the second element 12 can include a direct bond between the first bonding surface 28 of the first element 10 and the second bonding surface 30 of the second element 12. Preparation for bonding top surfaces of respective substrates 11, 13 can include provision of nonconductive layers 14, 16, such as silicon oxide, with exposed openings 18, 20. The bonding surfaces of the first element 10 and the second element 12 can be polished to a very high degree of smoothness (e.g., less than 20 nm surface roughness, or more particularly, less than 5 nm surface roughness) for example, by chemical mechanical polishing (CMP). In some embodiments, the surfaces to be bonded may be terminated with a suitable species and activated prior to bonding. For example, in some embodiments, the bonding surfaces 28, 30 of the bonding layer to be bonded, such as silicon oxide material, may be very slightly etched for activation and exposed to a nitrogen-containing solution and terminated with a nitrogen-containing species. As one example, the surfaces 28, 30 to be bonded may be exposed to an ammonia dip after a very slight etch, and/or a nitrogen-containing plasma (with or without a separate etch). Once the respective surfaces are prepared, the bonding surfaces 28, 30 (such as silicon oxide) of the first and second elements 10, 12 can be brought into contact. The interaction of the activated surfaces can cause the first bonding surface 28 of the first element 10 to directly bond with the second surface 30 of the second element 12 without an intervening adhesive, without application of external pressure, without application of voltage, and at room temperature. In various embodiments, the bonding forces of the nonconductive regions can include covalent bonds that are greater than Van der Waals bonds and exert significant forces between the conductive features 33. Prior to any heat treatment, the bonding energy of the dielectric-dielectric surface can be in a range from 150-300 mJ/m2, which can increase to 1500-4000 mJ/m2 after a period of heat treatment. Additional details of the direct bonding processes used in conjunction with each of the disclosed embodiments may be found throughout U.S. Pat. Nos. 7,126,212; 8,153,505; 7,622,324; 7,602,070; 8,163,373; 8,389,378; and 8,735,219, and throughout U.S. Patent Application Publication Nos. 2017/0062366; 2016/0314346; 2017/0200711, the contents of each of which are hereby incorporated by reference herein in their entirety and for all purposes. In still other embodiments, the elements 10, 12 can be bonded with an adhesive.


In some embodiments, the bonding surface 32 can have a dimension d from an outer edge 17 to the integrated device 15 or the cavity 26, for example, in a range of 10 μm to 600 μm, in a range of 10 μm to 80 μm, in a range of 40 μm to 60 μm, in a range of 100 μm to 600 μm, in a range of 200 μm to 300 μm, etc.



FIGS. 4-9 show alternative embodiments of the bonded structure 1. FIG. 4 is a schematic cross sectional view of the bonded structure 1 having the space 22 and a second space 23 disposed horizontally adjacent to each other for receiving the getter material 24 and a second getter material 25, respectively. Unless otherwise noted, the components of FIG. 4 may be the same as or generally similar to like-numbered components of FIGS. 1-3. The space 22 can comprise the first and second openings 18, 20 formed in the respective first and second elements 10, 12, and the second space 23 can comprise third and fourth openings 19, 21 formed in the respective first and second elements 10, 12. In some embodiments, the space 22 and the second space 23 can comprise the same or different shapes and/or sizes. In other embodiments, the openings 18, 20, 19 and 21 can comprise the same or different shapes and/or sizes. In some embodiments, the getter material 24 and the second getter material 25 can comprise the same or different getter materials. It can be beneficial to have different getter materials 24, 25, in some embodiments. For example, different getter materials can act on different types gases to more effectively seal the integrated device and/or the cavity 26 within the bonded structure 1.



FIG. 5 is a schematic cross sectional view of the bonded structure 1 having the space 22 comprising the first opening 18 in the first element 10 and the second space 23 comprising the second opening 20 in the second element 12 disposed horizontally adjacent to each other for receiving the getter material 24 and the second getter material 25 respectively. Unless otherwise noted, the components of FIG. 5 may be the same as or generally similar to like-numbered components of FIGS. 1-4. Unlike the bonded structure 1 of FIGS. 1-4, the first opening 18 can be formed in the first element 10 and the second opening 20 can be formed in the second element 12. In some embodiments, the first opening 18 and the second opening 20 can comprise the same or different shapes and/or sizes. Further, as shown, the first and second openings 18, 20 can be horizontally mismatched, for example, such that they do not together cooperate to define a common space to receive the getter material. Therefore, the first opening 18 and a portion of the second bonding surface 30 can define the space 22, and the second opening 20 and a portion of the first bonding surface 28 can define the second space 23. Such embodiments that physically separate the spaces 22, 23 can be beneficial because, different getter materials 24, 25 may react with one another, which can affect the performance of the getter materials 24, 25 when the spaces 22, 23 are not separated from one another. Moreover, getter filling processes may limit the type of these reactive getter materials that are to be received within the elements (e.g., within the die or wafer (top or bottom)) e.g. screen printing methods. For example, some filling processes may be suitable for use with some devices or material sets (e.g., with one type of die, carrier, or substrate), and may be unsuitable for other types of devices. By separating the spaces 22, 23 in FIG. 5, different processes and materials may be used to fill the spaces in the first and second elements 10, 12, respectively.



FIG. 6 is a schematic cross sectional view of the bonded structure 1 in which the space 22 comprises the opening 18 formed in the first element 10 and the second space 23 comprises the opening 19 formed in the first element 10. As shown, the first and second spaces 22, 23 can be disposed horizontally adjacent to each other for receiving the getter material 24 and the second getter material 25 respectively. Unless otherwise noted, the components of FIG. 6 may be the same as or generally similar to like-numbered components of FIGS. 1-5. In FIG. 6, the opening 18 formed in the first element 10 and a first portion of the second bonding surface 30 can comprise the first space 22, and the opening 19 formed in the first element 10 and a second portion of the second bonding surface 30 can comprise the second space 23. This embodiment can be beneficial because the openings may be formed only on the first element such that formation of the openings can be simpler (e.g., fewer steps in a forming process, etc.) than forming openings in both the first and second elements 10, 12. In some embodiments, having the openings 18, 19 only in the first element 10 can be beneficial since the first element can serve as a dummy element acting as a cap to form a cavity 26. The second element 12 can comprise a functional chip or device die; in such embodiments, providing the openings in only the first element 10 may obviate the use of openings in the second element 12, e.g., an active chip or device die, which can beneficially avoid complications related to the wiring in second element 12. However, it should be understood that, in some embodiments, openings can be formed in the second element 12 as well.



FIG. 7 is a schematic cross sectional view of the bonded structure 1 in which the space 22 comprises the opening 20 formed in the second element 12, the second space 23 comprises the opening 21 formed in the second element 12, and the third space 40 comprises an opening 41 formed in the second element 12. In should be understood that the openings can be formed in the first element 10, in some embodiments. As shown, the first, second and third spaces, 22, 23, 41 can be disposed horizontally adjacent to each other for receiving the getter material 24, the second getter material 25 and a third getter material 42 respectively. Unless otherwise noted, the components of FIG. 7 may be the same as or generally similar to like-numbered components of FIGS. 1-6. The embodiment shown in FIGS. 6 and 7 are similar except in the embodiment in FIG. 7 the third space 40 can be provided for receiving the third getter material 42. The opening 23 formed in the second element 12 and a third portion of the first bonding surface 28 can form the third space 40. In some embodiments, increasing the number of spaces for receiving different getter materials can be beneficial because, as explained above, different getter materials can act on different types of gases making the seal of the bonded structure 1 more hermetical.



FIG. 8 is a sectional plan view of the bonded structure 1 having the spaces 22, 23 separated by gaps. Unless otherwise noted, the components of FIG. 8 may be the same as or generally similar to like-numbered components of FIGS. 1-7. As illustrated in FIG. 8, the spaces 22, 23 are disposed to form channels comprising channel portions 52, 53. As shown, the channel portions 52 can be provided around the channel portions 53. Although there are gaps between adjacent channel portions 52, 53, the illustrated embodiment can nevertheless provide an effectively closed profile for the cavity 26. It should be understood that the channel portions 52, 53 can have different shapes and/or sizes. In some embodiments, one of the spaces 22, 23 can comprise a continuous channel and the other can comprise a discontinuous channel. In some embodiments, different channel portions 52, 53 of the spaces 22, 23 can comprise different getter materials suitable for an environment that the bonded structure 1 is to be used in. It should also be appreciated that any of the embodiments disclosed herein can utilize discontinuous channels to define the effectively closed profile. In some embodiments, the bonded structure 1 can have one or more electrical connections (e.g., wiring) between the channel portions 52, 53. In such embodiments, the integrated device and/or the cavity 26 can be accessed from outside of the bonded structure 1 through the connections. In the illustrated embodiment, the channel portions 52 can at least partially cover or overlap the gaps between the channel portions 53 that are disposed within the channel portions 52. For example, the channel portions 52 may be positioned so as to block gases from passing through the gaps between the channel portions 53. Similarly, the channel portions 53 may be positioned so as to block gases that pass through the gaps between the channel portions 52 from entering the cavity 26.



FIG. 9 is a schematic cross sectional view of the bonded structure 1 with a getter layer 34 disposed in the cavity 26. Unless otherwise noted, the components of FIG. 9 may be the same as or generally similar to like-numbered components of FIGS. 1-8. The embodiment illustrated in FIG. 9 is similar to the embodiment illustrated in FIG. 2 except the bonded structure 1 of FIG. 9 further includes the getter layer 34 in the cavity 26. As shown, the getter layer 34 can be provided along an inner wall 35 of the cavity 26. In some embodiments, the getter layer 34 can be activated when residual gas enters into the cavity 26 to absorb and/or occlude the residual gas to maintain ideal environment within the cavity 26. In some embodiments, the getter layer 34 can be used to selectively alter the pressure within the cavity 26. In some embodiments, the bonded structure can include more than one cavity 26 and each cavity may include different getter layer to alter the pressures in different cavities in the bonded structure 1. As with the getter materials disposed between at the bonding surface, the getter layer 34 can comprise one of or any two or more combination of Al, Ba, Ti, Mg, Cb, Zr, Th, P, V, Fe, and/or any other getter materials suitable.



FIGS. 10A-10C show steps for forming the first opening 18 in the first element 10 from the first bonding surface 28 and disposing the getter material 24 in the opening 18. In FIG. 10A, the first element can be provided. As shown in FIG. 10A, the cavity 26 may be formed in the element 10. The cavity 26 can be formed in any suitable way, e.g., by etching, drilling, etc. As shown in FIG. 10B the opening 18 can be formed by way of, for example, etching (wet or dry), drilling (e.g., mechanical drilling, laser drilling, etc.), and/or any other suitable processes. In the embodiment of FIG. 10A, the opening 18 can be formed after forming the cavity 26. In other embodiments, however, the cavity 26 can be formed before the opening 18, or the cavity 26 and opening 18 can be formed at the same time. Referring to FIG. 10C, after the opening 18 is formed, the getter material 24 can be disposed in the opening 18 by way of, for example, electrochemical deposition, sputter coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), screen printing, etc., and the process can vary depending on the particular material used as the getter material 24. The getter material 24 can be disposed in the opening completely or partially. It should be understood that a similar process can be applied to the second element 12 (see for example FIG. 2) to form openings in the second element 12. In some embodiments, after the getter material 24 is disposed in the opening 18, a second element can be provided on the first bonding surface 28 to define the space 22 (see for example FIG. 2).



FIGS. 11A-11D show steps for forming an trench 38 from a back surface 36 of the first element 10, disposing the getter material 24 in the trench 38, and forming the space or void 22. In FIG. 11A, a bonded structure 1 can be provided. As shown in FIG. 11B, the trench 38 can be formed by way of, for example, etching (wet, dry), drilling (e.g., mechanical drilling, laser drilling, etc.), and/or any other suitable processes. Referring to FIG. 11C, after the trench 38 is formed, the getter material 24 can be disposed in the trench 38 by way of, for example, electrochemical deposition, sputter coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), screen printing, but the process can vary depending on the particular material used as the getter material 24. Turning to FIG. 11D, a plug 56 can be provided to plug the trench 38 to define the space 22. The getter material 24 can fully or partially fill the space 22. The plug can comprise, for example, a polymer material (e.g., epoxy, resin, epoxy mold compound, etc.). It should be understood that a similar process can be applied from a back surface 37 of the second element 12.


In some embodiments, the bonded structure of FIG. 11A may already include the space 22 along the bonding interface 32 after bonding the first and second elements 10, 12. The space 22 may not have the getter material therein. In such embodiments, the trench 38 from the back surface 36 of the first element 10 can be provided only for disposing the getter material 24 into the space 22 already formed and not to form the openings for the space 22. This may allow the trench 38 for providing the getter material 24 to have more flexible dimensional configurations than what is illustrated in FIGS. 11B-11D because the opening 38 may not depend on the dimensions of the space 22 in which the getter material 24 is disposed. For example, the trench 38 may be narrower than the space 22. This can be beneficial, for example, when a thickness of the first element 10 from the front surface to the back surface is relatively thick (e.g., larger than 50 um), because forming the trench 38 in such thick element may create a relatively big trench. If the space 22 were already formed, opening 38 from a back surface 36 may be narrower than a diameter of the space 22, which reduces a dimension of the plug 56.



FIG. 12 is a schematic diagram of an electronic system 80 incorporating one or more bonded structures 1, according to various embodiments. The system 80 can comprise any suitable type of electronic device, such as a mobile electronic device (e.g., a smartphone, a tablet computing device, a laptop computer, etc.), a desktop computer, an automobile or components thereof, a stereo system, a medical device, a camera, or any other suitable type of system. In some embodiments, the electronic system 80 can comprise a microprocessor, a graphics processor, an electronic recording device, or digital memory. The system 80 can include one or more device packages 82 which are mechanically and electrically connected to the system 80, e.g., by way of one or more motherboards. Each package 82 can comprise one or more bonded structures 1. The system 80 shown in FIG. 8 can comprise any of the bonded structures 1 and associated seals shown and described herein.


In one aspect, a bonded structure is disclosed. The bonded structure can include a first element having a first bonding surface, a second element having a second bonding surface. The first and second bonding surfaces can be bonded to one another along a bonding interface. The bonded structure can further include an integrated device that is coupled to or formed with the first element or the second element. The bonded structure can also include a channel that is disposed along the bonding interface around the integrated device.


In some embodiments, the bonded structure can also include a getter material disposed in the channel. The getter material can be configured to reduce the diffusion of gas into an interior region of the bonded structure. The first and second bonding surfaces can be directly bonded without an intervening adhesive. In some embodiments, the bonding surface can have a dimension from an outer edge to the integrated device in a range of 10 μm to 600 μm. The channel can include a first trench disposed through the first bonding surface and a second trench disposed through the second bonding surface.


In some embodiments, the bonded structure can include a cavity and the integrated device can be disposed in the cavity. The channel and the getter material can be disposed around the cavity.


In some embodiments, the channel can comprise a continuous channel surrounding the integrated device. A first group of the channel portions can be filled with the getter material and a second group of the channel portions can be filled with a second getter material.


In some embodiments, the getter material can comprise at least one of titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), thorium (Th), niobium (Cb), zirconium (Zr), and phosphorus (P).


In some embodiments, the channel can be formed in only one of the first and second elements.


In some embodiments, the channel can comprise a first trench disposed through the first bonding surface and a second trench disposed through the second bonding surface. The channel can comprise a plurality of trenches that are offset laterally along the bonding interface.


In another aspect, a bonded structure is disclosed. The bonded structure can include a first element, a second element that is directly bonded to the first element along a bonding interface without an intervening adhesive, and a getter material that is disposed in a space along the bonding surface. The getter material is configured to reduce the diffusion of gas into an interior region of the bonded structure.


In some embodiments, the space can comprise a channel. In some embodiments, the space is enclosed. The bonded structure can also include an integrated device that is coupled to or formed with the first element or the second element. The channel can be disposed around the integrated device to define an effectively closed profile.


In another aspect a method of forming a bonded structure is disclosed. The method can include providing a first element that has a first bonding surface. An opening is disposed through a portion of the first bonding surface. The method also includes disposing a getter material in the opening. The method further includes bonding a second bonding surface of a second element to the first bonding surface of the first element. The first and second bonding surfaces are bonded such that the opening and a portion of the second element cooperate to define a space configured to receive the getter material.


In some embodiments, the opening can comprise a trench and the space can comprise a channel. In some embodiments, the opening can be provided by etching the first element from the first bonding surface to form a plurality of opening portions around the integrated device.


In some embodiments, the method can also include forming the opening and forming a second opening in the first element. The second opening are laterally offset from the opening. After the bonding, the second opening and a second portion of the second element can cooperate to define a second space configured to receive a second getter material.


In some embodiments, the method can also include forming the opening in the first element and forming a second opening in the second element through a portion of the second bonding surface. The opening and the second opening can cooperate to define the space.


In some embodiments, the method can also include forming the opening by removing a portion of the first element from a back surface of the first element opposite the first bonding surface. The method can also include filling at least a portion of the opening from the back surface after disposing the getter material to form the for the getter material.


In some embodiments, the method can also include defining a cavity between the first element and the second element. The integrated device can be disposed in the cavity.


For purposes of summarizing the disclosed embodiments and the advantages achieved over the prior art, certain objects and advantages have been described herein. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosed implementations may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.


All of these embodiments are intended to be within the scope of this disclosure. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the claims not being limited to any particular embodiment(s) disclosed. Although this certain embodiments and examples have been disclosed herein, it will be understood by those skilled in the art that the disclosed implementations extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations have been shown and described in detail, other modifications will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed implementations. Thus, it is intended that the scope of the subject matter herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. A method of forming a bonded structure, the method comprising: providing a first element having a first bonding surface and an opening disposed through a portion of the first bonding surface and extending around an integrated device coupled to or formed with the first element;disposing a getter material in the opening; andbonding a second bonding surface of a second element to the first bonding surface of the first element such that the opening and a portion of the second element cooperate to define a space to receive the getter material,wherein the second bonding surface of the second element is directly bonded to the first bonding surface of the first element, andwherein the first bonding surface comprises a first nonconductive layer and a first conductive feature, and the second bonding surface comprises a second nonconductive layer and a second conductive feature.
  • 2. The method of claim 1, wherein the opening comprises a trench and the space comprises a channel.
  • 3. The method of claim 2, wherein the channel comprises a plurality of channel portions around an integrated device coupled to or formed with the first element or the second element, the channel defining an effectively closed profile around the integrated device.
  • 4. The method of claim 1, further comprising forming the opening and forming a second opening in the first element, the second opening laterally offset from the opening.
  • 5. The method of claim 4, wherein, after the bonding, the second opening and a second portion of the second element cooperate to define a second space to receive a second getter material.
  • 6. The method of claim 5, wherein the first getter material and the second getter material comprise different materials.
  • 7. The method of claim 1, wherein the opening is provided by etching the first element from the first bonding surface to form a plurality of opening portions around the integrated device.
  • 8. The method of claim 1, further comprising defining a cavity between the first element and the second element, wherein the integrated device is disposed in the cavity.
  • 9. The method of claim 8, wherein the opening with the getter material extend around the integrated device in an effectively closed profile.
  • 10. A method of forming a bonded structure, the method comprising: providing a first element having a first bonding surface and an opening disposed through a portion of the first bonding surface, providing the first element comprising forming the opening in the first element and forming a second opening in the second element through a portion of a second bonding surface;disposing a getter material in the opening; andbonding the second bonding surface of a second element to the first bonding surface of the first element such that the opening and a portion of the second element cooperate to define a space to receive the getter material.
  • 11. The method of claim 10, wherein the opening and the second opening cooperate to define the space.
  • 12. A method of forming a bonded structure, the method comprising: providing a first element having a first bonding surface and an opening disposed through a portion of the first bonding surface and extending around an integrated device coupled to or formed with the first element, providing the first element comprising forming the opening by removing a portion of the first element from a back surface of the first element opposite the first bonding surface;disposing a getter material in the opening; andbonding a second bonding surface of a second element to the first bonding surface of the first element such that the opening and a portion of the second element cooperate to define a space to receive the getter material.
  • 13. The method of claim 12, further comprising filling at least a portion of the opening from the back surface after disposing the getter material.
  • 14. The method of claim 12, wherein the second bonding surface of the second element is directly bonded to the first bonding surface of the first element.
  • 15. The method of claim 14, wherein the first bonding surface comprises a first nonconductive layer and a first conductive feature, and the second bonding surface comprises a second nonconductive layer and a second conductive feature.
  • 16. A method of forming a bonded structure, the method comprising: directly bonding a front side of a first element to a front side of a second element, wherein an integrated device is coupled to or formed with the first element or the second element;forming a trench from a back surface of the first element opposite the front side of the first element, the trench extending through at least a portion of a thickness of the first element; andafter forming the trench, disposing a getter material in the trench, the trench and the getter material extending around the integrated device.
  • 17. The method of claim 16, further comprising plugging the trench after disposing the getter material.
  • 18. The method of claim 17, wherein plugging the trench comprises plugging the trench with a polymer material.
  • 19. The method of claim 16, wherein forming the trench comprising etching or drilling.
  • 20. The method of claim 16, wherein the trench extends at least partially through a thickness of the second element from the front side of the second element.
  • 21. The method of claim 16, further comprising defining a cavity between the first element and the second element, wherein the integrated device is disposed in the cavity.
  • 22. The method of claim 16, wherein the getter material comprises aluminum.
  • 23. The method of claim 16, wherein disposing the getter material comprises disposing the getter material on a floor and sidewalls of the trench.
  • 24. The method of claim 16, wherein disposing the getter material comprises partially filling the trench with the getter material.
  • 25. The method of claim 16, further comprising forming a plurality of trenches spaced apart from one another around the integrated device, the plurality of trenches including the trench.
  • 26. The method of claim 16, wherein the getter material comprises tantalum.
  • 27. The method of claim 16, wherein directly bonding comprises directly bonding a first nonconductive layer at the front side of the first element to a second nonconductive layer at the front side of the second element.
  • 28. The method of claim 27, wherein directly bonding comprises directly bonding first conductive features at the front side of the first element to second conductive features at the front side of the second element.
  • 29. The method of claim 28, wherein the first element comprises a substrate, the first nonconductive layer being disposed on the substrate, and wherein forming the trench comprises forming the trench to extend through the substrate.
  • 30. The method of claim 29, further comprising forming the trench to extend into the second element.
  • 31. The method of claim 16, wherein the integrated device is coupled to or formed with the first element, and wherein the second element comprises a processor die to process signals from the integrated device.
  • 32. The bonded structure of claim 16, wherein the getter material substantially seals the integrated device from moisture in the outside environment.
  • 33. The bonded structure of claim 16, wherein the getter material substantially seals the integrated device from gases in the outside environment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/011,525, filed Jun. 18, 2018, entitled “BONDED STRUCTURES” which claims the benefit of U.S. Provisional Application No. 62/609,683 entitled “BONDED STRUCTURES,” filed Dec. 22, 2017, the entire disclosure of which is incorporated herein by reference for all purposes.

US Referenced Citations (374)
Number Name Date Kind
4998665 Hayashi Mar 1991 A
5087585 Hayashi Feb 1992 A
5322593 Hasegawa et al. Jun 1994 A
5753536 Sugiyama et al. May 1998 A
5771555 Eda et al. Jun 1998 A
5985739 Plettner et al. Nov 1999 A
5998808 Matsushita Dec 1999 A
6008126 Leedy Dec 1999 A
6080640 Gardner et al. Jun 2000 A
6265775 Seyyedy Jul 2001 B1
6374770 Lee Apr 2002 B1
6423640 Lee et al. Jul 2002 B1
6465892 Suga Oct 2002 B1
6872984 Leung Mar 2005 B1
6876062 Lee et al. Apr 2005 B2
6887769 Kellar et al. May 2005 B2
6908027 Tolchinsky et al. Jun 2005 B2
6998712 Okada et al. Feb 2006 B2
7045453 Canaperi et al. May 2006 B2
7057274 Heschel Jun 2006 B2
7078811 Suga Jul 2006 B2
7105980 Abbott et al. Sep 2006 B2
7193423 Dalton et al. Mar 2007 B1
7354798 Pogge et al. Apr 2008 B2
7359591 Vandentop et al. Apr 2008 B2
7388281 Krueger et al. Jun 2008 B2
7467897 Hauffe et al. Dec 2008 B2
7622324 Enquist et al. Nov 2009 B2
7750488 Patti et al. Jul 2010 B2
7803693 Trezza Sep 2010 B2
7972683 Gudeman et al. Jul 2011 B2
8183127 Patti et al. May 2012 B2
8191756 Coppeta et al. Jun 2012 B2
8241961 Kim et al. Aug 2012 B2
8269671 Chen et al. Sep 2012 B2
8314007 Vaufredaz Nov 2012 B2
8349635 Gan et al. Jan 2013 B1
8357931 Schieck et al. Jan 2013 B2
8377798 Peng et al. Feb 2013 B2
8395229 Garcia-Blanco et al. Mar 2013 B2
8411444 Gaynes et al. Apr 2013 B2
8441131 Ryan May 2013 B2
8476146 Chen et al. Jul 2013 B2
8476165 Trickett et al. Jul 2013 B2
8482132 Yang et al. Jul 2013 B2
8501537 Sadaka et al. Aug 2013 B2
8524533 Tong et al. Sep 2013 B2
8530997 Yang et al. Sep 2013 B1
8546928 Merz et al. Oct 2013 B2
8620164 Heck et al. Dec 2013 B2
8647987 Yang et al. Feb 2014 B2
8669602 Hayashi Mar 2014 B2
8697493 Sadaka Apr 2014 B2
8716105 Sadaka et al. May 2014 B2
8802538 Liu Aug 2014 B1
8809123 Liu et al. Aug 2014 B2
8841002 Tong Sep 2014 B2
8916448 Cheng et al. Dec 2014 B2
8988299 Kam et al. Mar 2015 B2
9093350 Endo et al. Jul 2015 B2
9119313 Zhang et al. Aug 2015 B2
9142517 Liu et al. Sep 2015 B2
9142532 Suga et al. Sep 2015 B2
9171756 Enquist et al. Oct 2015 B2
9184125 Enquist et al. Nov 2015 B2
9224704 Landru Dec 2015 B2
9230941 Chen et al. Jan 2016 B2
9257399 Kuang et al. Feb 2016 B2
9299736 Chen et al. Mar 2016 B2
9312229 Chen et al. Apr 2016 B2
9318471 Kabe et al. Apr 2016 B2
9337235 Chen et al. May 2016 B2
9368866 Yu Jun 2016 B2
9385024 Tong et al. Jul 2016 B2
9386688 MacDonald et al. Jul 2016 B2
9391143 Tong et al. Jul 2016 B2
9394161 Cheng et al. Jul 2016 B2
9431368 Enquist et al. Aug 2016 B2
9437572 Chen et al. Sep 2016 B2
9443796 Chou et al. Sep 2016 B2
9461007 Chun et al. Oct 2016 B2
9496239 Edelstein et al. Nov 2016 B1
9536848 England et al. Jan 2017 B2
9559081 Lai et al. Jan 2017 B1
9601454 Zhao et al. Mar 2017 B2
9620464 Baks et al. Apr 2017 B2
9620481 Edelstein et al. Apr 2017 B2
9656852 Cheng et al. May 2017 B2
9723716 Meinhold Aug 2017 B2
9728521 Tsai et al. Aug 2017 B2
9741620 Uzoh et al. Aug 2017 B2
9768307 Yamazaki et al. Sep 2017 B2
9799587 Fujii et al. Oct 2017 B2
9834435 Liu et al. Dec 2017 B1
9852988 Enquist et al. Dec 2017 B2
9881882 Hsu et al. Jan 2018 B2
9893004 Yazdani Feb 2018 B2
9899442 Katkar Feb 2018 B2
9929050 Lin Mar 2018 B2
9941241 Edelstein et al. Apr 2018 B2
9941243 Kim et al. Apr 2018 B2
9953941 Enquist Apr 2018 B2
9960142 Chen et al. May 2018 B2
10002844 Wang et al. Jun 2018 B1
10026605 Doub et al. Jul 2018 B2
10075657 Fahim et al. Sep 2018 B2
10204893 Uzoh et al. Feb 2019 B2
10269756 Uzoh Apr 2019 B2
10276619 Kao et al. Apr 2019 B2
10276909 Huang et al. Apr 2019 B2
10418277 Cheng et al. Sep 2019 B2
10446456 Shen et al. Oct 2019 B2
10446487 Huang et al. Oct 2019 B2
10446532 Uzoh et al. Oct 2019 B2
10508030 Katkar et al. Dec 2019 B2
10522499 Enquist et al. Dec 2019 B2
10615133 Kamgaing et al. Apr 2020 B2
10658312 Kamgaing et al. May 2020 B2
10707087 Uzoh et al. Jul 2020 B2
10727219 Uzoh et al. Jul 2020 B2
10784191 Huang et al. Sep 2020 B2
10790262 Uzoh et al. Sep 2020 B2
10840135 Uzoh Nov 2020 B2
10840205 Fountain, Jr. et al. Nov 2020 B2
10854578 Morein Dec 2020 B2
10879212 Uzoh et al. Dec 2020 B2
10886177 DeLaCruz et al. Jan 2021 B2
10892246 Uzoh Jan 2021 B2
10923408 Huang et al. Feb 2021 B2
10923413 DeLaCruz Feb 2021 B2
10950547 Mohammed et al. Mar 2021 B2
10964664 Mandalapu et al. Mar 2021 B2
10985133 Uzoh Apr 2021 B2
10991804 DeLaCruz et al. Apr 2021 B2
10998292 Lee et al. May 2021 B2
11004757 Katkar et al. May 2021 B2
11011503 Wang et al. May 2021 B2
11031285 Katkar et al. Jun 2021 B2
11056348 Theil Jul 2021 B2
11088099 Katkar et al. Aug 2021 B2
11127738 DeLaCruz et al. Sep 2021 B2
11158606 Gao et al. Oct 2021 B2
11171117 Gao et al. Nov 2021 B2
11176450 Teig et al. Nov 2021 B2
11205600 Shen et al. Dec 2021 B2
11256004 Haba et al. Feb 2022 B2
11257727 Katkar et al. Feb 2022 B2
11264357 DeLaCruz et al. Mar 2022 B1
11276676 Enquist et al. Mar 2022 B2
11329034 Tao et al. May 2022 B2
11348898 DeLaCruz et al. May 2022 B2
11355443 Huang et al. Jun 2022 B2
11380597 Katkar et al. Jul 2022 B2
11417576 Katkar et al. Aug 2022 B2
11485670 Ruben et al. Nov 2022 B2
11600542 Huang et al. Mar 2023 B2
11670615 Wang et al. Jun 2023 B2
20020000328 Motomura et al. Jan 2002 A1
20020003307 Suga Jan 2002 A1
20020094608 Brooks Jul 2002 A1
20020179921 Cohr Dec 2002 A1
20030098060 Yoshimi May 2003 A1
20040084414 Sakai et al. May 2004 A1
20040259325 Gan Dec 2004 A1
20050009246 Enquist et al. Jan 2005 A1
20050082653 McWilliams et al. Apr 2005 A1
20050263866 Wan Dec 2005 A1
20060001123 Heck et al. Jan 2006 A1
20060057945 Hsu et al. Mar 2006 A1
20060097335 Kim et al. May 2006 A1
20060115323 Coppeta et al. Jun 2006 A1
20060197215 Potter Sep 2006 A1
20060208326 Nasiri et al. Sep 2006 A1
20070029562 Koizumi Feb 2007 A1
20070045781 Carlson et al. Mar 2007 A1
20070045795 McBean Mar 2007 A1
20070096294 Ikeda et al. May 2007 A1
20070111386 Kim et al. May 2007 A1
20070134891 Adetutu et al. Jun 2007 A1
20070188054 Hasken et al. Aug 2007 A1
20070222048 Huang Sep 2007 A1
20070295456 Gudeman et al. Dec 2007 A1
20080080832 Chen et al. Apr 2008 A1
20080124835 Chen et al. May 2008 A1
20080283995 Bucki et al. Nov 2008 A1
20080290490 Fujii et al. Nov 2008 A1
20080296709 Haba et al. Dec 2008 A1
20090053855 Summers Feb 2009 A1
20090186446 Kwon et al. Jul 2009 A1
20090267165 Okudo et al. Oct 2009 A1
20100078786 Maeda Apr 2010 A1
20100096713 Jung Apr 2010 A1
20100148341 Fuji et al. Jun 2010 A1
20100181676 Montez et al. Jul 2010 A1
20100288525 Basavanhally et al. Nov 2010 A1
20100301432 Kittilsland et al. Dec 2010 A1
20110031633 Hsu et al. Feb 2011 A1
20110115092 Tago May 2011 A1
20110147859 Tanaka et al. Jun 2011 A1
20110156242 Sakaguchi et al. Jun 2011 A1
20110180921 Loiselet Jul 2011 A1
20110290552 Palmateer et al. Dec 2011 A1
20120061776 Cheng et al. Mar 2012 A1
20120097733 Ebefors et al. Apr 2012 A1
20120100657 Di Cioccio et al. Apr 2012 A1
20120112335 Ebefors et al. May 2012 A1
20120142144 Taheri Jun 2012 A1
20120212384 Kam et al. Aug 2012 A1
20120267730 Renard et al. Oct 2012 A1
20120286380 Yazdi et al. Nov 2012 A1
20120326248 Daneman et al. Dec 2012 A1
20130099331 Chen et al. Apr 2013 A1
20130122702 Volant et al. May 2013 A1
20130187245 Chien et al. Jul 2013 A1
20130271066 Signorelli et al. Oct 2013 A1
20130277774 Frey et al. Oct 2013 A1
20130277777 Chang et al. Oct 2013 A1
20130293428 Souriau et al. Nov 2013 A1
20140042593 Mauder Feb 2014 A1
20140175655 Chen et al. Jun 2014 A1
20140197534 Partosa et al. Jul 2014 A1
20140217557 Chen et al. Aug 2014 A1
20140225206 Lin et al. Aug 2014 A1
20140225795 Yu Aug 2014 A1
20140264653 Cheng et al. Sep 2014 A1
20140361413 Chapelon Dec 2014 A1
20150001632 Liu et al. Jan 2015 A1
20150064498 Tong Mar 2015 A1
20150068666 Abe et al. Mar 2015 A1
20150091153 Liu et al. Apr 2015 A1
20150097215 Chu et al. Apr 2015 A1
20150137345 Choi et al. May 2015 A1
20150298965 Tsai et al. Oct 2015 A1
20150336790 Geen et al. Nov 2015 A1
20150336792 Huang et al. Nov 2015 A1
20160002029 Nasiri et al. Jan 2016 A1
20160107881 Thompson et al. Apr 2016 A1
20160137492 Cheng et al. May 2016 A1
20160146851 Kamisuki May 2016 A1
20160229685 Boysel Aug 2016 A1
20160240495 Lachner et al. Aug 2016 A1
20160318757 Chou et al. Nov 2016 A1
20160343682 Kawasaki Nov 2016 A1
20170001858 Adams et al. Jan 2017 A1
20170008757 Cheng et al. Jan 2017 A1
20170062366 Enquist Mar 2017 A1
20170081181 Zhang et al. Mar 2017 A1
20170137281 Favier et al. May 2017 A1
20170186732 Chu et al. Jun 2017 A1
20170194271 Hsu et al. Jul 2017 A1
20170200711 Uzoh et al. Jul 2017 A1
20170305738 Chang et al. Oct 2017 A1
20170338214 Uzoh et al. Nov 2017 A1
20180044175 Ogashiwa et al. Feb 2018 A1
20180047682 Chang et al. Feb 2018 A1
20180096931 Huang et al. Apr 2018 A1
20180174995 Wang et al. Jun 2018 A1
20180175012 Wu et al. Jun 2018 A1
20180182639 Uzoh et al. Jun 2018 A1
20180182666 Uzoh et al. Jun 2018 A1
20180190580 Haba et al. Jul 2018 A1
20180190583 DeLaCruz et al. Jul 2018 A1
20180191047 Huang et al. Jul 2018 A1
20180219038 Gambino et al. Aug 2018 A1
20180269161 Wu et al. Sep 2018 A1
20180273377 Katkar et al. Sep 2018 A1
20180286805 Huang et al. Oct 2018 A1
20180323177 Yu et al. Nov 2018 A1
20180323227 Zhang et al. Nov 2018 A1
20180331066 Uzoh et al. Nov 2018 A1
20180337157 Wang et al. Nov 2018 A1
20190051628 Liu et al. Feb 2019 A1
20190096741 Uzoh et al. Mar 2019 A1
20190115277 Yu et al. Apr 2019 A1
20190131277 Yang et al. May 2019 A1
20190164914 Hu et al. May 2019 A1
20190198407 Huang et al. Jun 2019 A1
20190265411 Huang et al. Aug 2019 A1
20190333550 Fisch Oct 2019 A1
20190348336 Katkar et al. Nov 2019 A1
20190363079 Thei et al. Nov 2019 A1
20190385935 Gao et al. Dec 2019 A1
20190385966 Gao et al. Dec 2019 A1
20200013637 Haba Jan 2020 A1
20200013765 Fountain, Jr. et al. Jan 2020 A1
20200035641 Fountain, Jr. et al. Jan 2020 A1
20200043817 Shen et al. Feb 2020 A1
20200075520 Gao et al. Mar 2020 A1
20200075534 Gao et al. Mar 2020 A1
20200075553 DeLaCruz et al. Mar 2020 A1
20200118973 Wang et al. Apr 2020 A1
20200126906 Uzoh et al. Apr 2020 A1
20200131028 Cheng et al. Apr 2020 A1
20200140267 Katkar et al. May 2020 A1
20200140268 Katkar et al. May 2020 A1
20200144217 Enquist et al. May 2020 A1
20200194396 Uzoh Jun 2020 A1
20200227367 Haba et al. Jul 2020 A1
20200243380 Uzoh et al. Jul 2020 A1
20200279821 Haba et al. Sep 2020 A1
20200294908 Haba et al. Sep 2020 A1
20200328162 Haba et al. Oct 2020 A1
20200328164 DeLaCruz et al. Oct 2020 A1
20200328165 DeLaCruz et al. Oct 2020 A1
20200335408 Gao et al. Oct 2020 A1
20200371154 DeLaCruz et al. Nov 2020 A1
20200395321 Katkar et al. Dec 2020 A1
20200411483 Uzoh et al. Dec 2020 A1
20210098412 Haba et al. Apr 2021 A1
20210118864 DeLaCruz et al. Apr 2021 A1
20210134689 Huang et al. May 2021 A1
20210143125 DeLaCruz et al. May 2021 A1
20210181510 Katkar et al. Jun 2021 A1
20210193603 Katkar et al. Jun 2021 A1
20210193624 DeLaCruz et al. Jun 2021 A1
20210193625 DeLaCruz et al. Jun 2021 A1
20210202428 Wang et al. Jul 2021 A1
20210242152 Fountain, Jr. et al. Aug 2021 A1
20210265227 Katkar et al. Aug 2021 A1
20210296282 Gao et al. Sep 2021 A1
20210305202 Uzoh et al. Sep 2021 A1
20210366820 Uzoh Nov 2021 A1
20210407941 Haba Dec 2021 A1
20220077063 Haba Mar 2022 A1
20220077087 Haba Mar 2022 A1
20220139867 Uzoh May 2022 A1
20220139869 Gao et al. May 2022 A1
20220208650 Gao et al. Jun 2022 A1
20220208702 Uzoh Jun 2022 A1
20220208723 Katkar et al. Jun 2022 A1
20220246497 Fountain, Jr. et al. Aug 2022 A1
20220285303 Mirkarimi et al. Sep 2022 A1
20220319901 Suwito et al. Oct 2022 A1
20220320035 Uzoh et al. Oct 2022 A1
20220320036 Gao et al. Oct 2022 A1
20220415734 Katkar et al. Dec 2022 A1
20230005850 Fountain, Jr. Jan 2023 A1
20230019869 Mirkarimi et al. Jan 2023 A1
20230036441 Haba et al. Feb 2023 A1
20230067677 Lee et al. Mar 2023 A1
20230069183 Haba Mar 2023 A1
20230100032 Haba et al. Mar 2023 A1
20230115122 Uzoh et al. Apr 2023 A1
20230122531 Uzoh Apr 2023 A1
20230123423 Gao et al. Apr 2023 A1
20230125395 Gao et al. Apr 2023 A1
20230130259 Haba et al. Apr 2023 A1
20230132632 Katkar et al. May 2023 A1
20230140107 Uzoh et al. May 2023 A1
20230142680 Guevara et al. May 2023 A1
20230154816 Haba et al. May 2023 A1
20230154828 Haba et al. May 2023 A1
20230187264 Uzoh et al. Jun 2023 A1
20230187317 Uzoh Jun 2023 A1
20230187412 Gao et al. Jun 2023 A1
20230197453 Fountain, Jr. et al. Jun 2023 A1
20230197496 Theil Jun 2023 A1
20230197559 Haba et al. Jun 2023 A1
20230197560 Katkar et al. Jun 2023 A1
20230197655 Theil et al. Jun 2023 A1
20230207402 Fountain, Jr. et al. Jun 2023 A1
20230207437 Haba Jun 2023 A1
20230207474 Uzoh et al. Jun 2023 A1
20230207514 Gao et al. Jun 2023 A1
20230215836 Haba et al. Jul 2023 A1
20230245950 Haba et al. Aug 2023 A1
20230260858 Huang et al. Aug 2023 A1
20230268300 Uzoh et al. Aug 2023 A1
20230343734 Uzoh et al. Oct 2023 A1
20230360950 Gao Nov 2023 A1
20230361072 Wang et al. Nov 2023 A1
20230361074 Uzoh et al. Nov 2023 A1
20230369136 Uzoh et al. Nov 2023 A1
20230375613 Haba et al. Nov 2023 A1
Foreign Referenced Citations (33)
Number Date Country
101554988 Oct 2009 CN
109390305 Feb 2019 CN
2813465 Dec 2014 EP
H10-112517 Apr 1998 JP
2000-100679 Apr 2000 JP
2001-102479 Apr 2001 JP
2001-148436 May 2001 JP
2002-353416 Dec 2002 JP
2008-130915 Jun 2008 JP
2009-039843 Feb 2009 JP
2009-238905 Oct 2009 JP
2010-199608 Sep 2010 JP
2011-131309 Jul 2011 JP
2013-33786 Feb 2013 JP
2013-513227 Apr 2013 JP
2013-243333 Dec 2013 JP
2014-219321 Nov 2014 JP
2015-100886 Jun 2015 JP
2015-153791 Aug 2015 JP
2016-099224 May 2016 JP
2018-160519 Oct 2018 JP
10-2005-0101324 Oct 2005 KR
10-2015-0097798 Aug 2015 KR
10-2017-0108143 Sep 2017 KR
201210098 Mar 2012 TW
I533399 May 2016 TW
WO 2005043584 May 2005 WO
WO 2006100444 Sep 2006 WO
WO 2007103224 Sep 2007 WO
WO 2012130730 Oct 2012 WO
WO 2014-074403 May 2014 WO
WO 2017100256 Jun 2017 WO
WO 2017151442 Sep 2017 WO
Non-Patent Literature Citations (81)
Entry
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of the Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698.
Beer et al., “Coplanar 122GHz Antenna Array With Air Cavity Reflector for Integration in Plastic Packages”, IEEE Antennas and Wireless Propagation Letters, 11:160-163, Jan. 2012.
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206.
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812.
Daneman, “Applying the CMOS Test Flow to MEMS Manufacturing”, InvenSense, Inc., accessed on Apr. 5, 2020.
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955.
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77.
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32.
Gu et al., “A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication”, IBM Research, pp. 1-3, 2017.
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258.
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. and Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206.
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7-pp.
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference on, pp. 272-275.
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066.
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118.
Inertial MEMS Manufacturing Trends 2014 Report by Yole Developpement Sample Report, Slide 11, https://www.slideshare.net/Yole_Developpement/yole-inertial-memsmanufacturingtrends2014sample.
International Search Report and Written Opinion dated Apr. 13, 2018 in International Application No. PCT/US2017/067742, 14 pages.
International Search Report and Written Opinion dated Apr. 16, 2018 in International Application No. PCT/US2017/067741, 17 pages.
International Search Report and Written Opinion dated May 31, 2018 in International Application No. PCT/US2018/022688, 2 pages.
International Search Report and Written Opinion dated Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages.
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages.
International Search Report and Written Opinion dated Aug. 26, 2019 in International Application No. PCT/US2019/031113, 14 pages.
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224.
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467.
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318.
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831.
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316.
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195.
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453.
Kim et al., “Wafer-scale activated bonding of Cu—Cu, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247.
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387.
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages.
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244.
Norton, Francis, “Permeation of gases through solids,” Journal of Applied Physics, Jan. 1957, vol. 28, No. 1.
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(l), 6 pages.
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12.
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages.
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444.
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606.
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852.
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760.
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Tranducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525.
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151.
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256.
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018.
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008.
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705.
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80.
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331.
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111.
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089.
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197.
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660.
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387.
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196.
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348.
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59.
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996).
Takagi et al, “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63.
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102.
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35.
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938.
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919.
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756.
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106.
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483.
Zhang et al., “Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications”, IEEE Transactions on Antennas and Propagation, 57(10):2830-2841, Oct. 2009.
Zhou et al., “A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications”, Wireless Engineering and Technology, 3:97-105, 2012.
Zoschke, K. et al., “Hermetic wafer level packaging of MEMS components using through silicon via and wafer to wafer bonding technologies,” 2013 Electronic Components & Technology Conference, 2013 IEEE, pp. 1500-1507.
“The Advantages of Integrated MEMS to Enable the Internet of Moving Things”, mCube, White Paper Jan. 2018.
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389.
Android Wiki, “Samsung Galaxy S2,” indicating that the Samsung Galaxy S2 was unveiled on Feb. 13, 2011 at the Mobile World Congress (MWC) in Barcelona, https://android.fandom.com/wiki/Samsung_Galaxy_S2 (downloaded Nov. 20, 2023).
Bush, Steve, “Electronica: Automotive power modules from On Semi,” ElectronicsWeekly.com, indicating an Onsemi AR0820 product was to be demonstrated at a Nov. 2018 trade show, https://www.electronicsweekly.com/news/products/power-supplies/electronica-automotive-power-modules-semi-2018-11/ (published Nov. 8, 2018; downloaded Jul. 26, 2023).
GADGETS360, “Sony Xperia S,” indicating that the Sony Xperia LT26i product was released on Feb. 12, 2012, https://www.gadgets360.com/sony-xperia-s-609 (downloaded Nov. 20, 2023).
Morrison, Jim et al., “Samsung Galaxy S7 Edge Teardown,” Tech Insights (posted Apr. 24, 2016), includes description of hybrid bonded Sony IMX260 dual-pixel sensor, https://www.techinsights.com/blog/samsung-galaxy-s7-edge-teardown, downloaded Jul. 11, 2023, 9 pages.
Omnivision OV20880 image, cross section of Omnivision product labeled OV20880, showing a hybrid bonded back side illuminated CMOS image sensor device with a pad opening to expose an aluminum bond pad. The part in the image was received on Sep. 24, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Omnivision Technologies, Inc. in PR Newswire (“PR Newswire article”); however the imaged part and the part shown in the PR Newsire article share the part name “OV20880.”
OmniVision Technologies, Inc., “OmniVision Announces New Family of 20-Megapixel PureCel® Plus-S Sensors for High-End Smartphones,” PR Newswire, https://www.prnewswire.com/news-releases/omnivision-announces-new-family-of-20-megapixel-purecelplus-s-sensors-for-high-end-smartphones-300358733.html (dated Nov. 7, 2016; downloaded Nov. 20, 2023).
Onsemi AR0820 image, cross section of a CMOS image sensor product. The part in the image was shipped on Sep. 16, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Bush, Nov. 8, 2018, ElectronicsWeekly.com (“BUSH article”); however, the imaged part and the part shown in the Bush article share the part No. “Onsemi AR0820.”
Samsung S5K3H2YX03 image, cross section of a back side illuminated CMOS image sensor (CIS) product, taken from Samsung Galaxy S2 phone. The part in the image was shipped on Nov. 25, 2011. The cross section shows tungsten and aluminum lining a trench formed in the back side of the sensor connecting a wire bond with a contact in the image sensor. The second image is a top-down view showing the wire bond pad and the trench that are depicted in the cross section. Applicant makes no representation that the part in the images is identical to image sensor products in the Galaxy S2 product identified in the separately submitted Android Wiki reference https://android.fandom.com/wiki/Samsung_Galaxy_S2 (“Android Wiki article”); however, the imaged sensor was obtained from a product named “Galaxy S2.”
Sony IMX260 image, a first cross section of Sony product labeled IMX260, showing a hybrid bonded back side illuminated CMOS image sensor with a pad opening for a wire bond. The second image shows a second cross-section with peripheral probe and wire bond pads in the bonded structure. The part in the images was shipped in Apr. 2016. Applicant makes no representation that the part in the images is identical to the part identified in the separately submitted reference Morrison et al. (Tech Insights article dated Apr. 24, 2016), describing and showing a similar sensor product within the Samsung Galaxy S7; however the imaged part and the part shown in the Morrison et al. article share the part name “Sony IMX260 image.”
Sony Xperia LT26i Sensor image, cross-section of a front side illuminated CMOS image sensor obtained from a Sony Xperia LT26i phone. The part in the image was received on Mar. 29, 2012. The cross section shows a metal line connecting a solder bump at the back side to a contact at the front side of the sensor, with non-conductive epoxy covering the metal. The second image is a bottom-up view of the image sensor. The third image is a bottom-up closeup view showing the edge of the sensor, with the solder bumps and metal line of the cross-section visible. Applicant makes no representation that the part in the images is identical to image sensor products in the Sony Xperia LT26i product identified in the separately submitted Gadgets360 reference https://www.gadgets360.com/sony-xperia-s-609 (“Gadgets360 article”); however, the imaged sensor was obtained from a product named “Sony Xperia LT26i.”
Related Publications (1)
Number Date Country
20220367302 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
62609683 Dec 2017 US
Continuations (1)
Number Date Country
Parent 16011525 Jun 2018 US
Child 17829185 US