The semiconductor industry has experienced rapid growth. Technological advances in semiconductor materials and design have produced generations of semiconductor devices where each generation has smaller and more complex circuits than the previous generation. In the course of integrated circuit (IC) evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs. But these advances have also increased the complexity of processing and manufacturing semiconductor devices.
Multi-gate transistors, such as gate-all-around (GAA) field-effect transistors (FETs), have been incorporated into various memory and core devices to reduce IC chip footprint while maintaining reasonable processing margins. In existing implementations, isolation structures in FETs may be formed by a doped layer within a device substrate to prevent punch-through of leakage current, which has been generally adequate. However, sub-channel leakage control remains a challenge for GAA FETs, especially in advanced generations of devices with scaled architecture. Thus, for at least this reason, improvements in methods of forming isolation structures for mitigating sub-channel leakage issues in GAA FETs are desired.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a feature on, connected to, and/or coupled to another feature in the present disclosure that follows may include embodiments in which the features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the features, such that the features may not be in direct contact. In addition, spatially relative terms, for example, “lower,” “upper,” “horizontal,” “vertical,” “above,” “over,” “below,” “beneath,” “up,” “down,” “top,” “bottom,” etc. as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) are used for ease of the present disclosure of one features relationship to another feature. The spatially relative terms are intended to cover different orientations of the device including the features.
Furthermore, when a number or a range of numbers is described with “about,” “approximate,” and the like, the term is intended to encompass numbers that are within a reasonable range including the number described, such as within +/−10% of the number described or other values as understood by person skilled in the art. For example, the term “about 5 nm” encompasses the dimension range from 4.5 nm to 5.5 nm. Still further, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
The present disclosure is generally directed to structures of and methods of forming multi-gate metal-oxide-semiconductor field-effect transistors (MOSFETs or FETs in the present disclosure), such as gate-all-around (GAA) FETs. More specifically, the present disclosure is directed to structures of and methods of forming multi-layer channel regions in n-channel or n-type GAA FETs (GAA NFETs) and p-channel or p-type GAA FETs (GAA PFETs) that together form a complementary MOSFET (CMOSFET). The GAA FETs provided herein may be nanosheet-based FETs, nanowire-based FETs, and/or nanorod-based FETs. In other words, the present disclosure does not limit the GAA FETs to have a specific configuration.
Generally, the channel region of a GAA NFET and the channel region of a GAA PFET each include a stack of silicon-based channel layers (Si layers) interleaved with a metal gate structure. While such structures are generally adequate for maintaining performance of the GAA devices, they are not entirely satisfactory in all aspects. For example, in existing implementations, isolation structures in FETs may be formed by punch-through stopper implantation, which has been generally adequate. However, sub-channel leakage control remains a challenge for GAA FETs, especially in advanced generations of devices with scaled architecture. The present embodiments provide methods of forming a bottom dielectric isolation structure below a channel and/or a source/drain region of a GAA FET for purposes of mitigating sub-channel leakage issues.
Referring now to
The device 200 may be an intermediate device fabricated during processing of an IC, or a portion thereof, that may comprise static random-access memory (SRAM) and/or other logic circuits, passive components such as resistors, capacitors, and inductors, and active components such as GAA FETs, FinFETs, MOSFETs, CMOSFETs, bipolar transistors, high voltage transistors, high frequency transistors, and/or other transistors. The present disclosure is not limited to any particular number of devices or device regions, or to any particular device configurations. Additional features can be added to the device 200, and some of the features described below can be replaced, modified, or eliminated in other embodiments of the device 200.
Referring to
In some examples where the substrate 202 includes FETs, various doped regions may be disposed in or on the substrate 202. The doped regions may be doped with n-type dopants, such as phosphorus or arsenic, and/or p-type dopants, such as boron or BF2, depending on design requirements. The doped regions may be formed directly on the substrate 202, in a p-well structure, in an n-well structure, in a dual-well structure, or in a raised structure. Doped regions may be formed by implantation of dopant atoms, in-situ doped epitaxial growth, and/or other suitable techniques. Of course, these examples are for illustrative purposes only and are not intended to be limiting.
In the present embodiments, the ML includes alternating silicon germanium (SiGe) and silicon (Si) layers arranged in a vertical stack along the Z axis and is configured to provide channel regions suitable for forming a GAA FET, such as a GAA NFET or a GAA PFET. In the depicted embodiments, the bottommost layer of the ML is a SiGe layer 203 and the subsequent layers of the ML include alternating SiGe layers 207 and Si layers 205, where the Si layers 205 are configured as the channel layers of the GAA FET and the SiGe layers 207 are considered non-channel layers to be replaced with a metal gate structure. In the present embodiments, the ML includes the same number of the Si layers 205 as the SiGe layers 207. In some examples, the ML may include three to ten Si layers 205 and, accordingly, three to ten SiGe layers 207. In the present embodiments, the ML includes only one SiGe layer 203 in the bottommost portion of the ML.
In the present embodiments, each Si layer 205 includes elemental Si and is substantially free of Ge, while the SiGe layer 203 and each SiGe layer 207 substantially include both Si and Ge, though the amount of Ge in the SiGe layer 203 is greater than that in each SiGe layer 207. In the present embodiments, the SiGe layer 207 has a composition that may be expressed as Si1-xGex, where x (or the amount of Ge) is at least about 0.15 (15%) but less than about 0.3 (30%), and accordingly, (1-x) is at least about 0.7 (70%) but less than about 0.85 (85%). The SiGe layer 203, on the other hand, has a composition that may be expressed as Si1-yGey, where y (or the amount of Ge) is generally greater than x. In the present embodiments, y is at least about 0.3 (30%) but does not exceed about 0.6 (60%). By comparison, the amount of Si in each Si layer 205 is at least about 0.95 (95%).
With respect to the Si layers 205, a minimum amount of Ge at about 15% in the SiGe layers 203 and 207 provides sufficient selectivity during an etching process to remove or release the channel layers, i.e., the Si layer 205, when forming the GAA FET. In other words, if the amount of Ge in the SiGe layers 207 (and 203) is less than about 15%, the Si layers 205 may be inadvertently damaged during the channel (or sheet) release process. On the other hand, according to some embodiments, a difference in the amount of Ge between the SiGe layers 203 and 207 provides selectivity during an etching process to selectively remove the SiGe layer 203 with respect to the SiGe layers 207 for forming a bottom (or buried) dielectric isolation structure (BDI) below the ML. In other words, if the amount of Ge in the SiGe layer 203 is similar to that of the SiGe layers 207, the SiGe layers 207 may be inadvertently damaged when forming the BDI. Because the SiGe layers 207 are configured to be replaced with a metal gate structure and inner spacers, the etching selectivity between the SiGe layer 203 and the SiGe layers 207 may vary based on a desired thickness of the resulting inner spacers. In some embodiments, adjusting the etching selectivity between the SiGe layer 203 and the SiGe layers 207 may affect structure of the resulting BDI as discussed in detail below.
In the present embodiments, forming the ML includes alternatingly growing a SiGe layer (i.e., the SiGe layer 203 or the SiGe layer 207) and a Si layer (i.e., the Si layer 205) in a series of epitaxy growth processes implementing chemical vapor deposition (CVD) techniques (for example, vapor-phase epitaxy (VPE), ultra-high vacuum CVD (UHV-CVD), low-pressure CVD (LP-CVD), and/or plasma-enhanced CVD (PE-CVD)), molecular beam epitaxy, other suitable selective epitaxial growth (SEG) processes, or combinations thereof. The epitaxy process may use a gaseous and/or liquid precursor that interacts with the composition of the underlying substrate. For example, the substrate 202, which includes Si, may interact with a Ge-containing precursor to form the SiGe layer 203 and the SiGe layer 207. In some examples, the SiGe layer 203, the Si layers 205, and the SiGe layers 207 may be formed into nanosheets, nanowires, or nanorods.
In some embodiments, referring to
In the present embodiments, the Si layers 205 are configured as channel layers for forming the FET of the device 200, while the SiGe layers 207 are considered the non-channel layers. A sheet (or wire) release process may be implemented after forming epitaxial source/drain (S/D) features, for example, to form multiple openings between the channel layers, and a metal gate structure is subsequently formed in the openings to complete fabrication of the FET. Furthermore, the SiGe layer 203 is configured as a placeholder (or dummy) layer for forming the BDI over a channel region and/or the S/D regions of the FET. Source/drain may refer to a source or a drain, individually or collectively, depending upon the context.
Still referring to
In the present embodiments, each fin 204 includes the ML disposed over a base fin 204′, where the base fin 204′ protrudes from the substrate 202. The fin 204 may be fabricated using suitable processes including photolithography and etch processes. The photolithography process may include forming a masking element having one or more hard mask layers (not depicted), a photoresist layer (or resist; not depicted) over the hard mask layers, patterning the photoresist layer, and patterning the hard mask layers using the patterned photoresist layer as an etch mask, thereby forming a patterned masking element. The patterned masking element is then used for etching recesses into the ML and portions of the substrate 202, leaving the fin 204, which includes the ML and the base fin 204′, protruding from the substrate 202. The hard mask layers may include silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, silicon oxycarbide, other suitable materials, or combinations thereof. The etching process may include dry etching, wet etching, reactive ion etching (RIE), other suitable processes, or combinations thereof.
Numerous other embodiments of methods for forming the fin 204 may be suitable. For example, the fin 204 may be patterned using double-patterning or multi-patterning processes. Generally, double-patterning or multi-patterning processes combine photolithography and self-aligned processes, allowing patterns to be created that have, for example, pitches smaller than what is otherwise obtainable using a single, direct photolithography process. For example, in one embodiment, a sacrificial layer is formed over a substrate and patterned using a photolithography process. Spacers are formed alongside the patterned sacrificial layer using a self-aligned process. The sacrificial layer is then removed, and the remaining spacers, or mandrels, may then be used to pattern the fin 204.
Still referring to
Referring to
In the present embodiments, method 100 at operation 106 first forms a dummy oxide layer 209 over the substrate 202 before forming the dummy gate stack 210. The dummy oxide layer 209 may include a suitable oxide material, such as silicon oxide, and may be formed by a suitable method, such as thermal oxidation, chemical oxidation, other suitable methods, or combinations thereof.
Subsequently, method 100 at operation 108 forms various isolation structures in the device 200. The various isolation structures include, for example, the BDI (e.g., BDI 224, BDI 226, or BDI 276), top gate spacers (e.g., top gate spacers 212), and inner spacers (e.g., inner spacers 240 or inner spacers 242). In the present embodiments, operation 108 is implemented by method 140 as depicted in
Now referring to
Referring to
In the present embodiments, referring to
In the present embodiments, the etching selectivity S1 is configured to be about 8 to about 100 for a value of x that is about 0.15 to about 0.3 to ensure the substantial removal of the SiGe layers 207 with respect to the Si layers (channel layers) 205 during the subsequent sheet release process. If the etching selectivity S1 is less than about 8, the Si layer 205 may be inadvertently etched during the sheet release process as the amount of Si in the SiGe layers 207 approaches that in the Si layers 205. If the etching selectivity S1 is greater than about 100, the etching selectivity S2 may be inadvertently reduced as the amount of Ge in the SiGe layers 207 may approach that of the SiGe layer 203, i.e., the value of x may approach the value of y.
In some embodiments, the width Ws may be less than or equal to about 40 nm, a length Ls of the ML along the X axis may be less than about 40 nm, a pitch between adjacent fins 204 may be about 70 nm, a gate length Lg of the dummy gate stack 210 may be less than or equal to about 14 nm, and a pitch between adjacent dummy gate stacks 210 may be about 44 nm. As a result, the width C1 may be less than or equal to about 20 nm. In some examples, the width B1 is less than or equal to about 1 nm.
In further embodiments, assuming the width B1 is less than or equal to about 1 nm, an etching selectivity S2 is at least about 15 for a value of y that is about 0.3 to about 0.6. Such level of selectivity ensures that the SiGe layer 203 is substantially etched without etching the SiGe layers 207 during the etching process 302. If the etching selectivity S2 is less than about 15, the SiGe layers 207 may be inadvertently damaged during the etching process 302.
The etching process 302 may be implemented using a dry etchant, a wet etchant, or a combination thereof. Examples of the dry etchant include halogen-containing (e.g., fluorine-containing and/or chlorine-containing) gaseous species such as HF, F2, CF4, CHxFy (where x and y are both positive integers and where y=3x), ClF3, NF3, SF6, Cl2, HCl, and BCl3, other gaseous species such as H2, O2, He, Ar, and N2, other suitable gaseous species, or combinations thereof. The example dry etchants may be applied at any suitable temperature, such as at room temperature to less than about 800° C., and at any suitable pressure, such as at about 10−3 Torr to about atmospheric pressure.
Examples of the wet etchant include alkaline solutions containing ammonium hydroxide (NH4OH) and hydrogen peroxide (H2O2), alkaline solutions containing tetramethylammonium hydroxide (TMAH) and H2O2, acidic solutions containing hydrofluoric acid (HF), H2O2, and acetic acid (CH3COOH), acidic solutions containing HF and HNO3, other suitable solutions, or combinations thereof. In some examples, H2O2 may be fully or partially replaced with ozone water in the example wet etchants. The example wet etchants may be applied at any suitable temperature, such as at room temperature to less than about 100° C., and at any suitable pressure, such as at atmospheric pressure.
In the present embodiments, choice(s) of the etchant used for the etching process 302 varies according to the content of Ge in the SiGe layer 203 and in the SiGe layer 207, respectively, for a target range of the etching selectivity S2. Table 1 below details example etchants configured to provide the target range of the etching selectivity S2 (e.g., at least about 15) at various amounts of Ge in the SiGe layer 203. Specifically, Etchant 1 includes 1:1 (28% NH4OH):(31% H2O2), Etchant 2 includes 1:2:3 (20%-50% HF):(30% H2O2):(99.5% CH3COOH), Etchant 3 includes plasmaless ClF3, and Etchant 4 includes gaseous HCl. The symbol “*” in Table 1 indicates that the example etchant is applicable for selectively etching the SiGe layer 203 at a given composition. For example, Etchant 3 and Etchant 4, alone or in combination, may be used to etch the SiGe layer 203 having at least 50% of Ge. It is noted that the present disclosure is not limited by the content of Table 1, which is provided for purposes of illustration only.
Referring to
Method 140 may deposit the dielectric layer 220 by any suitable process, such as an atomic layer deposition (ALD) process, a CVD process, other suitable processes, or combinations thereof. In the present embodiments, the dielectric layer 220 is deposited by an ALD process. In some embodiments, forming the dielectric layer 220 in the opening 211 using the ALD process results in a seam, or an air gap, 222 that extends across a width of the dielectric layer 220 (i.e., along the Y axis) in the opening 211 and along a length of the fin 204 (i.e., along the X axis). In the present embodiments, the seam 222 is substantially horizontal, i.e., substantially along the X axis. In some embodiments, however, the seam 222 does not necessarily appear as a result of the deposition process at operation 146.
Subsequently, referring to
Referring to
Still referring to
In some embodiments, referring to
Subsequently, referring to
The inner spacers 240 (i.e., the dielectric layer 236) may include any suitable dielectric material comprising silicon, carbon, oxygen, nitrogen, other elements, or combinations thereof. For example, the dielectric layer 236 may include silicon nitride, silicon carbide, silicon oxide, carbon-containing silicon nitride (SiCN), carbon-containing silicon oxide (SiOC), oxygen-containing silicon nitride (SiON), carbon-and-oxygen-doped silicon nitride (SiOCN), a low-k dielectric material, tetraethylorthosilicate (TEOS), doped silicon oxide (e.g., borophosphosilicate glass (BPSG), fluor-doped silicate glass (FSG), phosphosilicate glass (PSG), boron-doped silicate glass (BSG), etc.), air, other suitable dielectric material, or combination thereof. The inner spacers 240 may be configured as a single-layer structure or a multi-layer structure including a combination of the dielectric materials provided herein. In some embodiments, the inner spacers 240 have a different composition from that of the top gate spacers 212. In some embodiments, the inner spacers 240 and the top gate spacers 212 have the same composition. Furthermore, the inner spacers 240 and the BDI 224 may have different compositions.
In some embodiments, referring to
The etching process 308 differs from the etching process 304 in that the etching process 308 is selective to remove the dielectric layer 220 and is not configured to remove, or substantially remove, the Si layers 205, the SiGe layers 207, or other components of the device 200. In some embodiments, the etching process 308 is an anisotropic etching process, such as a dry etching process, and may be controlled by etching duration or by end-point detection. For example, with respect to forming the BDI 226 as depicted in
Subsequently, referring to
Thereafter, referring to
Method 100 may form the epitaxial S/D features 250 and 252 by implementing an epitaxy growth process as discussed above with respect to forming various layers of the ML. In some embodiments, the epitaxial material is doped in-situ by adding a dopant to a source material during the epitaxy growth process. In some embodiments, the epitaxial material is doped by an ion implantation process after performing a deposition process. In some embodiments, an annealing process is subsequently performed to activate the dopants in the epitaxial S/D features 250 and 252.
Still referring to
Subsequently, method 100 at operation 112 performs the sheet release process to form openings (not depicted) between the Si layers 205 in the fin 204. The sheet release process may be implemented by an etching process that does not, or does not substantially, remove the Si layers 205 and other surrounding dielectric features of the device 200. As discussed in detail above, a minimum Ge content of about 15% ensures sufficient etching selectivity S1 (e.g., about 8 to about 100 as discussed in detail above) for removing the SiGe layers 207 without damaging the Si layers 205. The etching process may be a dry etching process or a wet etching process selective to Ge included in the SiGe layers 207. The resulting openings provide space for forming the metal gate structure between the channel layers, i.e., the Si layers 205. In this regard, the terms “channel layers 205” and “Si layers 205” are interchangeable in the following discussion.
Example dry and wet etchants that may be used to selectively etch the SiGe layers 207 with respect to the Si layers 205 are discussed in detail above (see Table 1, for example). With respect to the dry etchants, halogen-containing (e.g., fluorine-containing and/or chlorine-containing) gaseous species may preferentially react with Si—Ge bonds than with Si—Si bonds to form Si—F bonds, Ge—F bonds, and reactive dangling bonds, which may further facilitate reactions with additional halogen atoms to completely remove the SiGe layers 207. With respect to alkaline-based wet etchants, although both the Si layers 205 and the SiGe layers 207 may be oxidized by an oxidizer (e.g., H2O2, HNO3, and ozone water) to form Si(OH)2 and Ge(OH)22+, respectively, the rates at which Si(OH)2 and Ge(OH)22+ are dissolved by hydroxide OH− ions may be tuned to achieve a target range of the etching selectivity S1. Similarly, as the Si layers 205 and the SiGe layers 207 may both be oxidized by an oxidizer and subsequently dissolved by an acid, such as HF, in an acid-based wet etchant, the etching selectivity S1 may be tuned by adjusting a ratio (by weight or by volume) of the oxidizer to the acid.
Thereafter, still referring to
Alternative to the example BDI-first process discussed above with respect to
Referring to
Still referring to
Referring to
In the present embodiments, referring to
Now referring to
Subsequently, referring to
Referring to
Thereafter, referring to
Alternative to operation 147, referring to
In the present embodiments, the etching process 318 is configured to completely remove the SiGe layer 203 while also partially removing the SiGe layers 207. In contrast, the etching processes 302 and 312 implemented at operations 144 and 147, respectively, are configured to completely remove the SiGe layer 203 without removing, or substantially removing, the SiGe layers 207. In other words, an etching selectivity S4 between the SiGe layer 203 and the SiGe layers 207 configured for the etching process 318 is less than the etching selectivity S2 and S3 configured for the etching processes 302 and 312, respectively. In this regard, instead of forming the opening for the BDI and the recesses for the inner spacers separately (e.g., via the etching processes 312 and 316), method 140 at operation 153 may do so in a one-step etching process using the same etchant(s). Such reduced etching selectivity lowers the requirement for the amount of Ge in the SiGe layer 203 with respect to the SiGe layers 207, thereby resulting in less structural defects (e.g., lattice mismatch at an interface between the SiGe layer 203 and the bottommost SiGe layer 207) during the epitaxial formation of the ML. In some embodiments, the etching process 318 may be implemented isotropically and may include a dry etching process, a wet etching process, an RIE process, other suitable processes, or combinations thereof.
Still referring to
In the present embodiments, the relatively lower value of the etching selectivity S4 is responsible for the vertical over-etching of the bottommost SiGe layer 207 that results in a tapered opening 270 as depicted in
In the present embodiments, considerations for tuning the etching selectivity S4 between the SiGe layer 203 and the SiGe layers 207 for the etching process 318 are two-fold. Firstly, the etching selectivity S4 should be sufficiently high to ensure that the SiGe layer 203 is etched substantially more than the SiGe layers 207. Secondly, the etching selectivity S4 should not exceed a threshold value to ensure that the resulting inner spacers (i.e., inner spacers 242 depicted in
In some embodiments, tuning the etching selectivity S4 may be achieved by using etchants that are different from those utilized for the etching processes 302 and 312. Alternatively or additionally, tuning the etching selectivity S4 may be achieved by decreasing the amount y of Ge in Si1-yGey of the SiGe layer 203, though the value of y remains greater than the value of x but less than about 0.6 (60%) as discussed in detail above.
Referring to Table 2 below, applicability of the same example etchants, namely Etchant 1, Etchant 2, Etchant 3, and Etchant 4, as those listed in Table 1 for the etching process 302 are provided. The symbol “#” indicates that usage of the example etchant is not applicable for achieving the target range of etching selectivity S4 according to the considerations stated above. For example, Etchant 1, which is applicable for yielding a relatively higher etching selectivity (i.e., the etching selectivity S2) for the etching process 302, may not sufficiently etch both the SiGe layer 203 and the SiGe layers 207 during the etching process 318 when the amount of Ge in the SiGe layer 203 exceeds about 30%. In contrast, Etchant 3 and Etchant 4, alone or in combination, are applicable for achieving the desired range of etching selectivity S4 when the amount of Ge in the SiGe layer 203 exceeds about 30%. It is noted that the present disclosure is not limited by the content of Table 2, which is provided for purposes of illustration only.
Subsequently, referring to
In some embodiments, forming the dielectric layer 272 in the opening 211 using the ALD process results in a seam, or an air gap, 274a extending lengthwise along the X axis. The seam 274a differs from the seam 222 in that the seam 274 is configured to have a slope equal to or less than the slope R of the tapered opening 270 depicted in
Referring to
Referring to
In the present embodiments, the differences between the device 200 depicted in
In some embodiments, referring to
Thereafter, method 100 at operation 116 may perform additional processing steps to the device 200. For example, method 100 may form S/D contacts (not depicted) over the epitaxial S/D features 250 (or 252). Each S/D contact may include any suitable conductive material, such as Co, W, Ru, Cu, Al, Ti, Ni, Au, Pt, Pd, other suitable conductive materials, or combinations thereof. Method 100 may form an S/D contact opening in the ILD layer 216 via a series of patterning and etching processes and subsequently deposit a conductive material in the S/D contact opening using any suitable method, such as CVD, ALD, PVD, plating, other suitable processes, or combinations thereof. In some embodiments, a silicide layer (not depicted) is formed between the epitaxial S/D features 250 (or 252) and their respective S/D contacts. The silicide layer may include nickel silicide, cobalt silicide, tungsten silicide, tantalum silicide, titanium silicide, platinum silicide, erbium silicide, palladium silicide, other suitable silicide, or combinations thereof. The silicide layer may be formed over the device 200 by a deposition process such as CVD, ALD, PVD, or combinations thereof. Subsequently, though not depicted, method 100 may form additional features over the device 200, such as additional ESLs and ILD layers, a gate contact over the metal gate structure 260, vertical interconnect features (e.g., vias), horizontal interconnect features (e.g., conductive lines), additional intermetal dielectric layers (e.g., ESLs and ILD layers), other suitable features, or combinations thereof.
Although not intended to be limiting, one or more embodiments of the present disclosure provide many benefits to a semiconductor device and the formation thereof. For example, the present disclosure provides methods of forming a GAA FET including a bottom (or buried) dielectric isolation structure (BDI) that may extend under a channel region or under both the channel and S/D regions of the GAA FET. In the present embodiments, forming the BDI includes forming a dummy SiGe layer and subsequently replacing it with a dielectric layer to form the BDI. In some embodiments, the BDI is formed in a BDI-first process before forming an S/D recess. Alternatively, the BDI is formed in a BDI-last process after forming the S/D recess. In some embodiments, the BDI and inner spacers of the GAA FET are formed together in a series of etching and deposition processes. In some embodiments, the BDI is formed to include a tapered top surface that interfaces with a bottommost portion of a gate structure of the GAA FET. Embodiments of the present disclosure may be suitable for improving control of sub-channel leakage by incorporating a buried dielectric layer under the channel and/or S/D regions of a GAA FET.
In one aspect, the present disclosure provides a semiconductor structure that includes a substrate and a plurality of semiconductor layers disposed over the substrate. The semiconductor structure also includes a gate structure disposed on and wrapping each of the semiconductor layers and a source/drain feature disposed over the substrate and adjacent the gate structure. The semiconductor structure further includes a dielectric layer disposed between a bottommost surface of the gate structure and the substrate.
In another aspect, the present disclosure provides a semiconductor structure that includes a substrate and a stacked structure including channel layers interleaved with a metal gate structure. The semiconductor structure also includes an isolation feature disposed between the stacked structure and the substrate, where a bottommost portion of the metal gate structure directly contacts the isolation feature. The semiconductor structure further includes a source/drain feature disposed adjacent the stacked structure and an inner spacer disposed between the metal gate structure and the source/drain feature.
In yet another aspect, the present disclosure provides a method that includes forming a fin protruding from a substrate, where the fin includes a first SiGe layer and a stacked structure over the first SiGe layer, where the stacked structure includes alternating second SiGe layers and Si layers, and where the first SiGe layer includes more Ge than each of the second SiGe layers; forming a dummy gate stack over a channel region of the fin; replacing the first SiGe layer with a dielectric layer to form an isolation feature; removing a portion of the fin to form a source/drain recess adjacent the dummy gate stack; forming inner spacers on sidewalls of the second SiGe layers exposed in the source/drain recess; forming a source/drain feature over the inner spacers; and forming a metal gate structure adjacent the source/drain feature to replace the dummy gate stack and the second SiGe layers, such that a bottommost portion of the metal gate structure directly contacts the isolation feature.
The foregoing outlines features of several embodiments so that those of ordinary skill in the art may better understand the aspects of the present disclosure. Those of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This is a non-provisional application of and claims priority to U.S. Provisional Patent Application Ser. No. 63/316,121, filed on Mar. 3, 2022, and titled “Bottom Dielectric Isolation and Methods of Forming the Same in Field-Effect Transistors,” the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63316121 | Mar 2022 | US |