Chemical control features in wafer process equipment

Abstract
Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
Description
TECHNICAL FIELD

The present technology relates to semiconductor processes and equipment. More specifically, the present technology relates to processing system plasma components.


BACKGROUND

Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.


Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, as integrated circuit technology continues to scale down in size, the equipment that delivers the precursors can impact the uniformity and quality of the precursors and plasma species used.


Thus, there is a need for improved system components that can be used in plasma environments effectively while providing suitable degradation profiles. These and other needs are addressed by the present technology.


SUMMARY

Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.


The assemblies may include an annular body having an inner annular wall located at an inner diameter, an outer annular wall located at an outer diameter, as well as an upper surface and a lower surface. The annular body may further include a first upper recess formed in the upper surface, a first lower recess formed in the lower surface at the inner annular wall, and a second lower recess formed in the lower surface below and radially outward of the first lower recess. The annular body may also define a first fluid channel in the upper surface that is located in the annular body radially inward of the first upper recess. The assemblies may include an upper plate coupled with the annular body at the first upper recess and covering the first fluid channel, and the upper plate may define a plurality of first apertures. The assemblies may also include a lower plate coupled with the annular body at the first lower recess and having a plurality of second apertures defined in the plate where the second apertures align with the first apertures defined in the upper plate. The lower plate may also define a plurality of third apertures located between the second apertures. The upper and lower plates may be coupled with one another such that the first and second apertures are aligned to form a channel through the upper and lower plates.


The upper and lower plates of the assemblies may be bonded together. The annular body of the assemblies may further define a second fluid channel in the upper surface that is located radially outward of the first fluid channel, and a plurality of ports may be defined in a portion of the annular body defining an outer wall of the first fluid channel and an inner wall of the second fluid channel. The second fluid channel may be located radially outward of the upper recess such that the second fluid channel is not covered by the upper plate. The annular body may define a second upper recess near the top of the second fluid channel in both the inner wall and an outer wall, and the gas distribution assembly may include an annular member positioned within the second upper recess so as to cover the second fluid channel. The upper recess may include a bottom portion that intersects the outer wall of the first fluid channel.


The assemblies may further include a pair of isolation channels, where one of the pair of isolation channels is defined in the upper surface of the annular body, and the other of the pair of isolation channels is defined in the lower surface of the annular body. The pair of isolation channels may be vertically aligned with one another. The second fluid channel may be located radially inward of the upper recess such that the second fluid channel is covered by the upper plate in embodiments. A portion of the upper plate may also extend into the second channel below a bottom of the upper recess. The plurality of ports may be angled upward from the second fluid channel to the first fluid channel such that the ports are fluidly accessible below the portion of the upper plate extending into the second channel. The isolation channels may be disposed in embodiments so that one of the pair of isolation channels is defined in the upper plate at a location radially inward from the upper recess, and the other of the pair of isolation channels is defined in the lower surface of the annular body so that the pair of isolation channels are vertically aligned with one another. The annular body may also define an annular temperature channel configured to receive a cooling fluid operable to maintain a temperature of the annular body. The temperature channel may also be configured to receive a heating element disposed within the channel and operable to maintain a temperature of the annular body.


Gas distribution assemblies are also described that may include an annular body. The annular body may include an inner annular wall located at an inner diameter, an outer annular wall located at an outer diameter, and an upper surface and a lower surface. An upper recess may be formed in the upper surface and a lower recess may be formed in the lower surface. A first fluid channel may be defined in the lower surface that is located in the annular body radially inward of the lower recess. The assemblies may also include an upper plate coupled with the annular body at the upper recess, where the upper plate defines a plurality of first apertures. The assemblies may also include a lower plate coupled with the annular body at the lower recess, and covering the first fluid channel. The lower plate may define a plurality of second apertures that align with the first apertures defined in the upper plate. The lower plate may further define a plurality of third apertures located between the second apertures. The upper and lower plates may be coupled with one another such that the first and second apertures are aligned to form a channel through the upper and lower plates.


The gas distribution assemblies may include a second fluid channel defined in the lower surface that is located in the annular body radially outward of the first fluid channel. A plurality of ports may be defined in a portion of the annular body defining an outer wall of the first fluid channel and an inner wall of the second fluid channel, and the plurality of ports may be configured to fluidly couple the second fluid channel with the first fluid channel. The second fluid channel may be located radially inward of the lower recess such that the second fluid channel may be covered by the lower plate, and where a portion of the lower plate extends into the second channel above a top of the lower recess. The plurality of ports may be angled downward from the second fluid channel to the first fluid channel such that the ports are fluidly accessible above the portion of the lower plate extending into the second channel. The first apertures may also have a conical shape of decreasing diameter as the first apertures extend through the upper plate. The second and third apertures may have a conical shape of increasing diameter as the second and third apertures extend through the lower plate. Each of the second and third apertures may also include at least three sections of different shape or diameter.


Gas distribution assemblies are also described having an annular body having an inner wall located at an inner diameter, an outer wall located at an outer diameter, an upper surface, and a lower surface. The assemblies may also include an upper plate coupled with the annular body, and the upper plate may define a plurality of first apertures. An intermediate plate may be coupled with the upper plate, and the intermediate plate may define a plurality of second and third apertures, where the second apertures align with the first apertures of the upper plate. The assemblies may also include a lower plate coupled with the annular body and the intermediate plate. The lower plate may define a plurality of fourth apertures that align with the first apertures of the upper plate and the second apertures of the intermediate plate to form a first set of fluid channels through the plates. The lower plate may also define a plurality of fifth apertures that align with the third apertures of the intermediate plate to form a second set of fluid channels through the intermediate and lower plates, where the second set of fluid channels are fluidly isolated from the first set of fluid channels. The lower plate may further define a sixth set of apertures that form a third set of fluid channels through the lower plate, where the third set of fluid channels are fluidly isolated from the first and second set of fluid channels.


The lower plate of the gas distribution assemblies may include an orientation of the fourth, fifth, and sixth apertures such that a majority of fourth apertures are each surrounded by at least four of the fifth apertures and four of the sixth apertures. The fifth apertures may be located around the fourth apertures with centers of the fifth apertures at about 90° intervals from one another about a center of the fourth apertures, and the sixth apertures may be located around the fourth apertures with centers of the sixth apertures at about 90° intervals from one another about the center of the fourth apertures and offset from the fifth apertures by about 45°. The fifth apertures may be located around the fourth apertures with centers of the fifth apertures at about 60° intervals from one another about a center of the fourth apertures, and where the sixth apertures are located around the fourth apertures with centers of the sixth apertures at about 60° intervals from one another about the center of the fourth apertures and offset from the fifth apertures by about 30°.


Such technology may provide numerous benefits over conventional systems and techniques. For example, leakage through the assembly may be minimized or avoided providing improved flow characteristics, which may lead to improved process uniformity. Additionally, multiple precursors may be delivered through the assembly while being maintained fluidly isolated from one another. These and other embodiments, along with many of their advantages and features, are described in more detail in conjunction with the below description and attached figures.





BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of the disclosed technology may be realized by reference to the remaining portions of the specification and the drawings.



FIG. 1 shows a top plan view of one embodiment of an exemplary processing tool.



FIGS. 2A-2E show schematic cross-sectional views of an exemplary processing chamber.



FIGS. 3A-3E show schematic views of exemplary showerhead configurations according to the disclosed technology.



FIGS. 4A-4B show additional schematic views of exemplary showerhead configurations according to the disclosed technology.



FIGS. 5A-5C show additional schematic views of exemplary showerhead configurations according to the disclosed technology.





In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.


DETAILED DESCRIPTION

The present technology includes improved gas distribution assembly or showerhead designs for distributing processing gases to produce flow patterns for forming deposition layers on a semiconductor substrate of a more uniform height and/or etching deposited layers in a more uniform fashion. While conventional showerhead designs may simply provide pass-through distribution systems for processing and precursor gases, the presently described technology allows for improved control of the flow characteristics of gases as they are delivered to a substrate processing chamber. In so doing, deposition operations may produce more accurate film profiles during manufacturing operations.


Although some conventional gas distribution assemblies or showerheads may include multiple fluid channels covered by a plate, for example, such designs routinely suffer from gaps along the intersections of the plate with the portions of the body located between the channels and the inner walls. When the plate is coupled with the body, for example via bonding, brazing, etc., the plate may warp. Because the coupling may be performed only around the outer edge, no additional bonding may exist at other interfaces of the plate and body. Even slight warping of the plate may produce an uneven surface at the interfaces between the upper plate and annular body, and interface locations where warping has occurred may not properly couple with the annular body. As such, in operation, fluid may leak between the first and second fluid channels, as well as between the first fluid channel and a central region. Such leakage can affect fluid delivery into the processing region, which can impact deposition or etching. Aspects of the present technology, however, overcome many if not all of these issues by providing components that are less likely to warp, and/or designs that are less impacted by warping.



FIG. 1 shows a top plan view of one embodiment of a processing tool 100 of deposition, etching, baking, and/or curing chambers according to disclosed embodiments. In the figure, a pair of FOUPs (front opening unified pods) 102 supply substrates (e.g., various specified diameter semiconductor wafers) that may be received by robotic arms 104 and placed into a low-pressure holding area 106 before being placed into one of the substrate processing sections 108a-f of the tandem process chambers 109a-c. A second robotic arm 110 may be used to transport the substrates from the holding area 106 to the processing chambers 108a-f and back.


The substrate processing sections 108a-f of the tandem process chambers 109a-c may include one or more system components for depositing, annealing, curing and/or etching substrates or films thereon. Exemplary films may be flowable dielectrics, but many types of films may be formed or processed with the processing tool. In one configuration, two pairs of the tandem processing sections of the processing chamber (e.g., 108c-d and 108e-f) may be used to deposit the dielectric material on the substrate, and the third pair of tandem processing sections (e.g., 108a-b) may be used to anneal the deposited dielectric. In another configuration, the two pairs of the tandem processing sections of processing chambers (e.g., 108c-d and 108e-f) may be configured to both deposit and anneal a dielectric film on the substrate, while the third pair of tandem processing sections (e.g., 108a-b) may be used for UV or E-beam curing of the deposited film. In still another configuration, all three pairs of tandem processing sections (e.g., 108a-f) may be configured to deposit and cure a dielectric film on the substrate or etch features into a deposited film.


In yet another configuration, two pairs of tandem processing sections (e.g., 108c-d and 108e-f) may be used for both deposition and UV or E-beam curing of the dielectric, while a third pair of tandem processing sections (e.g. 108a-b) may be used for annealing the dielectric film. In addition, one or more of the tandem processing sections 108a-f may be configured as a treatment chamber, and may be a wet or dry treatment chamber. These process chambers may include heating the dielectric film in an atmosphere that includes moisture. Thus, embodiments of system 100 may include wet treatment tandem processing sections 108a-b and anneal tandem processing sections 108c-d to perform both wet and dry anneals on the deposited dielectric film. It will be appreciated that additional configurations of deposition, annealing, and curing chambers for dielectric films are contemplated by system 100.



FIG. 2A is a cross-sectional view of an exemplary process chamber section 200 with partitioned plasma generation regions within the processing chambers. During film deposition (e.g., silicon oxide, silicon nitride, silicon oxynitride, or silicon oxycarbide), a process gas may be flowed into the first plasma region 215 through a gas inlet assembly 205. A remote plasma system (RPS) 201 may process a gas which then travels through gas inlet assembly 205. Two distinct gas supply channels are visible within the gas inlet assembly 205. A first channel 206 carries a gas that passes through the remote plasma system (RPS) 201, while a second channel 207 bypasses the RPS 201. The first channel 206 may be used for the process gas and the second channel 207 may be used for a treatment gas in disclosed embodiments. The process gas may be excited prior to entering the first plasma region 215 within a remote plasma system (RPS) 201. A lid 212, a showerhead 225, and a substrate support 265, having a substrate 255 disposed thereon, are shown according to disclosed embodiments. The lid 212 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion. Additional geometries of the lid 212 may also be used. The lid (or conductive top portion) 212 and showerhead 225 are shown with an insulating ring 220 in between, which allows an AC potential to be applied to the lid 212 relative to showerhead 225. The insulating ring 220 may be positioned between the lid 212 and the showerhead 225 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region. A baffle (not shown) may additionally be located in the first plasma region 215 to affect the flow of fluid into the region through gas inlet assembly 205.


A fluid, such as a precursor, for example a silicon-containing precursor, may be flowed into the processing region 233 by embodiments of the showerhead described herein. Excited species derived from the process gas in the plasma region 215 may travel through apertures in the showerhead 225 and react with the precursor flowing into the processing region 233 from the showerhead. Little or no plasma may be present in the processing region 233. Excited derivatives of the process gas and the precursor may combine in the region above the substrate and, on occasion, on the substrate to form a film on the substrate that may be flowable in disclosed applications. For flowable films, as the film grows, more recently added material may possess a higher mobility than underlying material. Mobility may decrease as organic content is reduced by evaporation. Gaps may be filled by the flowable film using this technique without leaving traditional densities of organic content within the film after deposition is completed. A curing step may still be used to further reduce or remove the organic content from a deposited film.


Exciting the process gas in the first plasma region 215 directly, exciting the process gas in the RPS, or both, may provide several benefits. The concentration of the excited species derived from the process gas may be increased within the processing region 233 due to the plasma in the first plasma region 215. This increase may result from the location of the plasma in the first plasma region 215. The processing region 233 may be located closer to the first plasma region 215 than the remote plasma system (RPS) 201, leaving less time for the excited species to leave excited states through collisions with other gas molecules, walls of the chamber, and surfaces of the showerhead.


The uniformity of the concentration of the excited species derived from the process gas may also be increased within the processing region 233. This may result from the shape of the first plasma region 215, which may be more similar to the shape of the processing region 233. Excited species created in the remote plasma system (RPS) 201 may travel greater distances in order to pass through apertures near the edges of the showerhead 225 relative to species that pass through apertures near the center of the showerhead 225. The greater distance may result in a reduced excitation of the excited species and, for example, may result in a slower growth rate near the edge of a substrate. Exciting the process gas in the first plasma region 215 may mitigate this variation.


The processing gas may be excited in the RPS 201 and may be passed through the showerhead 225 to the processing region 233 in the excited state. Alternatively, power may be applied to the first processing region to either excite a plasma gas or enhance an already exited process gas from the RPS. While a plasma may be generated in the processing region 233, a plasma may alternatively not be generated in the processing region. In one example, the only excitation of the processing gas or precursors may be from exciting the processing gas in the RPS 201 to react with the precursors in the processing region 233.


The processing chamber and this discussed tool are more fully described in patent application Ser. No. 12/210,940 filed on Sep. 15, 2008, and patent application Ser. No. 12/210,982 filed on Sep. 15, 2008, which are incorporated herein by reference to the extent not inconsistent with the claimed aspects and description herein.



FIGS. 2B-2C are side schematic views of one embodiment of the precursor flow processes in the processing chambers and the gas distribution assemblies described herein. The gas distribution assemblies for use in the processing chamber section 200 may be referred to as dual channel showerheads (DCSH) or triple channel showerheads (TCSH) and are detailed in the embodiments described in FIGS. 3A-3G, 4A-4B, and 5A-5C herein. The dual or triple channel showerhead may allow for flowable deposition of a dielectric material, and separation of precursor and processing fluids during operation. The showerhead may alternatively be utilized for etching processes that allow for separation of etchants outside of the reaction zone to provide limited interaction with chamber components.


Precursors may be introduced into the distribution zone by first being introduced into an internal showerhead volume 294 defined in the showerhead 225 by a first manifold 226, or upper plate, and second manifold 227, or lower plate. The manifolds may be perforated plates that define a plurality of apertures. The precursors in the internal showerhead volume 294 may flow 295 into the processing region 233 via apertures 296 formed in the lower plate. This flow path may be isolated from the rest of the process gases in the chamber, and may provide for the precursors to be in an unreacted or substantially unreacted state until entry into the processing region 233 defined between the substrate 217 and a bottom of the lower plate 227. Once in the processing region 233, the precursor may react with a processing gas. The precursor may be introduced into the internal showerhead volume 294 defined in the showerhead 225 through a side channel formed in the showerhead, such as channels 322, 422 as shown in the showerhead embodiments herein. The process gas may be in a plasma state including radicals from the RPS unit or from a plasma generated in the first plasma region. Additionally, a plasma may be generated in the processing region.


Processing gases may be provided into the first plasma region 215, or upper volume, defined by the faceplate 217 and the top of the showerhead 225. The processing gas may be plasma excited in the first plasma region 215 to produce process gas plasma and radicals. Alternatively, the processing gas may already be in a plasma state after passing through a remote plasma system prior to introduction to the first plasma processing region 215 defined by the faceplate 217 and the top of the showerhead 225.


The processing gas including plasma and radicals may then be delivered to the processing region 233 for reaction with the precursors though channels, such as channels 290, formed through the apertures in the showerhead plates or manifolds. The processing gasses passing though the channels may be fluidly isolated from the internal showerhead volume 294 and may not react with the precursors passing through the internal showerhead volume 294 as both the processing gas and the precursors pass through the showerhead 225. Once in the processing volume, the processing gas and precursors may mix and react.


In addition to the process gas and a dielectric material precursor, there may be other gases introduced at varied times for varied purposes. A treatment gas may be introduced to remove unwanted species from the chamber walls, the substrate, the deposited film and/or the film during deposition. A treatment gas may be excited in a plasma and then used to reduce or remove residual content inside the chamber. In other disclosed embodiments the treatment gas may be used without a plasma. When the treatment gas includes water vapor, the delivery may be achieved using a mass flow meter (MFM), an injection valve, or by commercially available water vapor generators. The treatment gas may be introduced from the first processing region, either through the RPS unit or bypassing the RPS unit, and may further be excited in the first plasma region.


The axis 292 of the opening of apertures 291 and the axis 297 of the opening of apertures 296 may be parallel or substantially parallel to one another. Alternatively, the axis 292 and axis 297 may be angled from each other, such as from about 1° to about 80°, for example, from about 1° to about 30°. Alternatively, each of the respective axes 292 may be angled from each other, such as from about 1° to about 80°, for example, from about 1° to about 30°, and each of the respective axis 297 may be angled from each other, such as from about 1° to about 80°, for example, from about 1° to about 30°.


The respective openings may be angled, such as shown for aperture 291 in FIG. 2B, with the opening having an angle from about 1° to about 80°, such as from about 1° to about 30°. The axis 292 of the opening of apertures 291 and the axis 297 of the opening of apertures 296 may be perpendicular or substantially perpendicular to the surface of the substrate 217. Alternatively, the axis 292 and axis 297 may be angled from the substrate surface, such as less than about 5°.



FIG. 2C illustrates a partial schematic view of the processing chamber 200 and showerhead 225 illustrating the precursor flow 295 from the internal volume 294 through apertures 296 into the processing region 233. The figure also illustrates an alternative embodiment showing axis 297 and 297′ of two apertures 296 being angled from one another.



FIG. 2D shows a simplified cross-sectional view of another exemplary processing system 200 according to embodiments of the present technology that may include an alternative fluid delivery system. Distribution of the processing gas may be achieved by use of a faceplate 217 as shown. Processing gases may be delivered through a fluid supply system 210, and the chamber may or may not include components as previously described including RPS 201, first plasma region 215, insulating ring 220, showerhead 225, processing region 233, pedestal 265, and substrate 255. The system may also include cooling plate 203 in the modified distribution system.


Plasma generating gases and/or plasma excited species, depending on use of the RPS 201, may pass through a plurality of holes, shown in FIG. 2E, in faceplate 217 for a more uniform delivery into the first plasma region 215. Exemplary configurations include having the gas inlet assembly 205 open into a gas supply region 258 partitioned from the first plasma region 215 by faceplate 217 so that the gases/species flow through the holes in the faceplate 217 into the first plasma region 215. Structural and operational features may be selected to prevent significant backflow of plasma from the first plasma region 215 back into the supply region 258, gas inlet assembly 205, and fluid supply system 210. The structural features may include the selection of dimensions and cross-sectional geometry of the apertures in faceplate 217 that deactivates back-streaming plasma. The operational features may include maintaining a pressure difference between the gas supply region 258 and first plasma region 215 that maintains a unidirectional flow of plasma through the showerhead 225.


The processing system may further include a power supply 240 electrically coupled with the processing chamber to provide electric power to the faceplate 217 and/or showerhead 225 to generate a plasma in the first plasma region 215 or processing region 233. The power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed.



FIG. 2E shows a detailed view of the features affecting the processing gas distribution through faceplate 217. As shown in FIGS. 2D and 2E, faceplate 217, cooling plate 203, and gas inlet assembly 205 intersect to define a gas supply region 258 into which process gases may be delivered from gas inlet 205. The gases may fill the gas supply region 258 and flow to first plasma region 215 through apertures 259 in faceplate 217. The apertures 259 may be configured to direct flow in a substantially unidirectional manner such that process gases may flow into processing region 233, but may be partially or fully prevented from backflow into the gas supply region 258 after traversing the faceplate 217.


An additional dual-channel showerhead, as well as this processing system and chamber, are more fully described in patent application Ser. No. 13/251,714 filed on Oct. 3, 2011, which is hereby incorporated by reference for all purposes to the extent not inconsistent with the claimed features and description herein.



FIG. 3A illustrates an upper perspective view of a gas distribution assembly 300. In usage, the gas distribution system 300 may have a substantially horizontal orientation such that an axis of the gas apertures formed therethrough may be perpendicular or substantially perpendicular to the plane of the substrate support (see substrate support 265 in FIG. 2A). FIG. 3B illustrates a bottom perspective view of the gas distribution assembly 300. FIG. 3C is a bottom plan view of the gas distribution assembly 300. FIGS. 3D and 3E are cross sectional views of disclosed embodiments of gas distribution assembly 300 taken along line A-A of FIG. 3C.


Referring to FIGS. 3A-3E, the gas distribution assembly 300 generally includes the annular body 340, the upper plate 320, and the lower plate 325. The annular body 340 may be a ring which has an inner annular wall 301 located at an inner diameter, an outer annular wall 305 located at an outer diameter, an upper surface 315, and a lower surface 310. The upper surface 315 and lower surface 310 define the thickness of the annular body 340. A conduit 350 or annular temperature channel may be defined within the annular body and may be configured to receive a cooling fluid or a heating element that may be used to maintain or regulate the temperature of the annular body. As shown in FIG. 3A, the cooling channel 350 may include an inlet and outlet on the outer diameter 305 of the annular body. This may provide access from the side of the processing chamber from which a cooling fluid may be flowed. An additional embodiment is shown in FIG. 3B, in which conduit 355 may be formed in the bottom surface 310 and a heating element may be disposed therein. A heater recess 342 may be formed in the bottom surface 310 and be adapted to hold the heating element, and which provides access for disposing the heating element within the annular temperature channel or conduit 355.


One or more recesses and/or channels may be formed in or defined by the annular body as shown in disclosed embodiments including that illustrated in FIG. 3D. The annular body may include an upper recess 303 formed in the upper surface, and a first lower recess 302 formed in the lower surface at the inner annular wall 301. The upper recess 303 may be a first upper recess formed in the annular body 340. The annular body may also include a second lower recess 304 formed in the lower surface 310 below and radially outward from the first lower recess 302. As shown in FIG. 3D, a first fluid channel 306 may be defined in the upper surface 315, and may be located in the annular body radially inward of the upper recess 303. The first fluid channel 306 may be annular in shape and be formed the entire distance around the annular body 340. In disclosed embodiments, a bottom portion of the upper recess 303 intersects an outer wall of the first fluid channel 306. The first fluid channel may also be at least partially radially outward of the second lower recess 304. A plurality of ports 312 may be defined in an inner wall of the first fluid channel, also the inner annular wall 301 of the annular body 340. The ports 312 may provide access between the first fluid channel and the internal volume defined between the upper plate 320 and lower plate 325. The ports may be defined around the circumference of the channel at specific intervals, and may facilitate distribution across the entire region of the volume defined between the upper and lower plates. The intervals of spacing between the ports 312 may be constant, or may be varied in different locations to affect the flow of fluid into the volume. The inner and outer walls, radially, of the first fluid channel 306 may be of similar or dissimilar height. For example, the inner wall may be formed higher than the outer wall to affect the distribution of fluids in the first fluid channel to avoid or substantially avoid the flow of fluid over the inner wall of the first fluid channel.


Again referring to FIG. 3D, a second fluid channel 308a may be defined in the upper surface 315 that is located in the annular body radially outward of the first fluid channel 306. Second fluid channel 308a may be an annular shape and be located radially outward from and concentric with first fluid channel 306. The second fluid channel 308a may also be located radially outward of the first upper recess 303 such that the second fluid channel 308a is not covered by the upper plate 320 as discussed below. A second plurality of ports 314 may be defined in the portion of the annular body 340 defining the outer wall of the first fluid channel 306 and the inner wall of the second fluid channel 308a. The second plurality of ports 314 may be located at intervals of a pre-defined distance around the channel to provide fluid access to the first fluid channel 306 at several locations about the second fluid channel 308a. A second upper recess 309 may be formed in a top portion of the second fluid channel 308a in both the inner wall and outer wall of the second fluid channel. The second upper recess may be configured to receive an annular member 316 that may be positioned to cover the second fluid channel by extending radially inward and outward into the annular body past the inner and outer walls of the channel into the recess spaces 309. The annular member 316 may be braised or bonded with the annular body 340 to fluidly isolate the second fluid channel 308a from above. In operation, a precursor may be flowed from outside the process chamber to a delivery channel 322 located in the side of the annular body 340. The fluid may flow into the second fluid channel 308a, through the second plurality of ports 314 into the first fluid channel 306, through the first plurality of ports 312 into the internal volume defined between the upper and lower plates, and through the third apertures 375 located in the bottom plate. As such, a fluid provided in such a fashion can be isolated or substantially isolated from any fluid delivered into the first plasma region through apertures 360 until the fluids separately exit the lower plate 325.


By providing annular member 316 to cover the second fluid channel 308a, leakage between the first and second fluid channels may be substantially eliminated, and in disclosed embodiments may be completely eliminated. Annular member 316 may be coupled with the annular body 340, such as by bonding for example, on both sides of the channel in both recesses 309. Because the annular member 316 does not extend radially beyond the width of the second fluid channel 308a and recesses 309, annular member 316 is less prone to radial warping. As such, an improved covering profile may be produced, and leakage from the second fluid channel may be substantially or completely prevented.


The upper plate 320 may be a disk-shaped body, and may be coupled with the annular body 340 at the first upper recess 303. The upper plate 320 may thus cover the first fluid channel 306 to prevent or substantially prevent fluid flow from the top of the first fluid channel 306. The upper plate may have a diameter selected to mate with the diameter of the upper recess 303, and the upper plate may comprise a plurality of first apertures 360 formed therethrough. The first apertures 360 may extend beyond a bottom surface of the upper plate 320 thereby forming a number of raised cylindrical bodies. In between each raised cylindrical body may be a gap. As seen in FIG. 3A, the first apertures 360 may be arranged in a polygonal pattern on the upper plate 320, such that an imaginary line drawn through the centers of the outermost first apertures 360 define or substantially define a polygonal figure, which may be for example, a six-sided polygon.


The pattern may also feature an array of staggered rows from about 5 to about 60 rows, such as from about 15 to about 25 rows of first apertures 360. Each row may have, along the y-axis, from about 5 to about 20 first apertures 360, with each row being spaced between about 0.4 and about 0.7 inches apart. Each first aperture 360 in a row may be displaced along the x-axis from a prior aperture between about 0.4 and about 0.8 inches from each respective diameter. The first apertures 360 may be staggered along the x-axis from an aperture in another row by between about 0.2 and about 0.4 inches from each respective diameter. The first apertures 360 may be equally spaced from one another in each row. Referring to FIG. 3D, an edge portion of the upper plate 320 may comprise a second thickness greater than a first thickness located more towards the central portion of the plate, and the second thickness may be equivalent or substantially equivalent to the height of the outer wall of first upper recess 303. The edge portion may extend radially inward from an outer edge a distance equivalent or substantially equivalent to a bottom portion of the upper recess. Accordingly, the edge portion may not extend radially inward past the inward most portion of first upper recess 303 in disclosed embodiments.


The lower plate 325 may have a disk-shaped body having a number of second apertures 365 and third apertures 375 formed therethrough, as especially seen in FIG. 3C. The lower plate 325 may have multiple thicknesses, with the thickness of defined portions greater than the central thickness of the upper plate 320, and in disclosed embodiments at least about twice the thickness of the upper plate 320. The lower plate 325 may also have a diameter that mates with the diameter of the inner annular wall 301 of the annular body 340 at the first lower recess 302. As mentioned, the lower plate 325 may comprise multiple thicknesses, and for example, a first thickness of the plate may be the thickness through which the third apertures 375 extend. A second thickness greater than the first may be the thickness of an edge region of the plate that intersects the first lower recess 302 of the annular body 340. The second thickness with respect to the first lower recess may be dimensioned similar to the edge portion of the upper plate with respect to the first upper recess. In disclosed embodiments, the first and second thicknesses are substantially similar. A third thickness greater than the second may be a thickness of the plate around the second apertures 365. For example, the second apertures 365 may be defined by the lower plate 325 as cylindrical bodies extending up to the upper plate 320. In this way, channels may be formed between the first and second apertures that are fluidly isolated from one another. Additionally, the volume formed between the upper and lower plates may be fluidly isolated from the channels formed between the first and second apertures. As such, a fluid flowing through the first apertures 360 will flow through the second apertures 365 and a fluid within the internal volume between the plates will flow through the third apertures 375, and the fluids will be fluidly isolated from one another until they exit the lower plate 325 through either the second or third apertures. This separation may provide numerous benefits including preventing a radical precursor from contacting a second precursor prior to reaching a reaction zone. By preventing the interaction of the gases, deposition within the chamber may be minimized prior to the processing region in which deposition is desired.


The second apertures 365 may be arranged in a pattern that aligns with the pattern of the first apertures 360 as described above. In one embodiment, when the upper plate 320 and bottom plate 325 are positioned one on top of the other, the axes of the first apertures 360 and second apertures 365 align. In disclosed embodiments, the upper and lower plates may be coupled with one another or directly bonded together. Under either scenario, the coupling of the plates may occur such that the first and second apertures are aligned to form a channel through the upper and lower plates. The plurality of first apertures 360 and the plurality of second apertures 365 may have their respective axes parallel or substantially parallel to each other, for example, the apertures 360, 365 may be concentric. Alternatively, the plurality of first apertures 360 and the plurality of second apertures 365 may have the respective axis disposed at an angle from about 1° to about 30° from one another. At the center of the bottom plate 325 there may be no second aperture 365.


As stated previously, the gas distribution assembly 300 generally consists of the annular body 340, the upper plate 320, and the lower plate 325. The lower plate 325 may be positioned within the first lower recess 303 with the raised cylindrical bodies facing toward the bottom surface of the upper plate 320, as shown in FIG. 3D. The bottom plate 325 may then be positioned in the first lower recess 304 and rotatably oriented so that the axes of the first and second apertures 360, 365 may be aligned. The upper plate 320 may be sealingly coupled with the bottom plate 325 to fluidly isolate the first and second apertures 360, 365 from the third apertures 375. For example, the upper plate 320 may be brazed to the bottom plate 325 such that a seal is created between a surface of the raised cylindrical bodies on the lower plate 325, and a surface of the bottom of the upper plate 320. The upper plate 320 and bottom plate 325 may then be E-beam welded or otherwise bonded to the annular body 340. The upper plate 320 may be E-beam welded such that a seal is created between an outer edge of the circular body and an inner edge of the upper recess 303. The bottom plate 325 may be E-beam welded such that a seal is created between an outer edge of the circular body and the inner annular wall 301. In disclosed embodiments, the surfaces of the gas distribution assembly 300 may be electro-polished, plated with metal, or coated with various metal-based substances or oxides.


The plurality of second apertures 365 and the plurality of third apertures 375 may form alternating staggered rows. The third apertures 375 may be arranged in between at least two of the second apertures 365 of the bottom plate 325. Between each second aperture 365 there may be a third aperture 375, which is evenly spaced between the two second apertures 365. There may also be a number of third apertures 375 positioned around the center of the bottom plate 325 in a hexagonal pattern, such as for example six third apertures, or a number of third apertures 375 forming another geometric shape. There may be no third aperture 375 formed in the center of the bottom plate 325. There may also be no third apertures 375 positioned between the perimeter second apertures 365 which form the vertices of the polygonal pattern of second apertures. Alternatively there may be third apertures 375 located between the perimeter second apertures 365, and there may also be additional third apertures 375 located outwardly from the perimeter second apertures 365 forming the outermost ring of apertures as shown, for example, in FIG. 3C.


Alternatively, the arrangement of the first and second apertures may make any other geometrical pattern, and may be distributed as rings of apertures located concentrically outward from each other and based on a centrally located position on the plate. As one example, and without limiting the scope of the technology, FIG. 3A shows a pattern formed by the apertures that includes concentric hexagonal rings extending outwardly from the center. Each outwardly located ring may have the same number, more, or less apertures than the preceding ring located inwardly. In one example, each concentric ring may have an additional number of apertures based on the geometric shape of each ring. In the example of a six-sided polygon, each ring moving outwardly may have six apertures more than the ring located directly inward, with the first internal ring having six apertures. With a first ring of apertures located nearest to the center of the upper and bottom plates, the upper and bottom plates may have more than two rings, and depending on the geometric pattern of apertures used, may have between about one and about fifty rings of apertures. Alternatively, the plates may have between about two and about forty rings, or up to about thirty rings, about twenty rings, about fifteen rings, about twelve rings, about ten rings, about nine rings, about eight rings, about seven rings, about six rings, etc. or less. In one example, as shown in FIG. 3A, there may be nine hexagonal rings on the exemplary upper plate.


The concentric rings of apertures may also not have one of the concentric rings of apertures, or may have one of the rings of apertures extending outward removed from between other rings. For example with reference to FIG. 3A, where an exemplary nine hexagonal rings are on the plate, the plate may instead have eight rings, but it may be ring four that is removed. In such an example, channels may not be formed where the fourth ring would otherwise be located which may redistribute the gas flow of a fluid being passed through the apertures. The rings may still also have certain apertures removed from the geometric pattern. For example again with reference to FIG. 3A, a tenth hexagonal ring of apertures may be formed on the plate shown as the outermost ring. However, the ring may not include apertures that would form the vertices of the hexagonal pattern, or other apertures within the ring.


The first, second, and third apertures 360, 365, 375 may all be adapted to allow the passage of fluid therethrough. The first and second apertures 360, 365 may have cylindrical shape and may, alternatively, have a varied cross-sectional shape including conical, cylindrical, or a combination of multiple shapes. In one example, as shown in FIG. 3D, the first and second apertures may have a substantially cylindrical shape, and the third apertures may be formed by a series of cylinders of different diameters. For example, the third apertures may comprise three cylinders where the second cylinder is of a diameter smaller than the diameters of the other cylinders. These and numerous other variations can be used to modulate the flow of fluid through the apertures.


When all first and second apertures are of the same diameter, the flow of gas through the channels may not be uniform. As process gases flow into the processing chamber, the flow of gas may be such as to preferentially flow a greater volume of gas through certain channels. As such, certain of the apertures may be reduced in diameter from certain other apertures in order to redistribute the precursor flow as it is delivered into a first plasma region. The apertures may be selectively reduced in diameter due to their relative position, such as near a baffle, and as such, apertures located near the baffle may be reduced in diameter to reduce the flow of process gas through those apertures. In one example, as shown in FIG. 3A, where nine hexagonal rings of first apertures are located concentrically on the plates, certain rings of apertures may have some or all of the apertures reduced in diameter. For example, ring four may include a subset of first apertures that have a smaller diameter than the first apertures in the other rings. Alternatively, rings two through eight, two through seven, two through six, two through five, two through four, three through seven, three through six, three through five, four through seven, four through six, two and three, three and four, four and five, five and six, etc., or some other combination of rings may have reduced aperture diameters for some or all of the apertures located in those rings.


Referring again to FIG. 3D, a pair of isolation channels, 318 may be formed in the annular body 340. One of the pair of isolation channels 318 may be defined in the upper surface 315 of the annular body 340, and the other of the pair of isolation channels 318 may be defined in the lower surface 310 of the annular body 340. The pair of isolation channels may be vertically aligned with one another, and in disclosed embodiments may be in direct vertical alignment. Alternatively, the pair of isolation channels may be offset from vertical alignment in either direction. The channels may provide locations for isolation barriers such as o-rings in disclosed embodiments.


Turning to FIG. 3E, additional features of gas distribution assemblies are shown according to disclosed embodiments, and may include many of the features described above with respect to FIG. 3D. The assembly 300 includes annular body 340 having inner annular wall 301, outer annular wall 305, upper surface 315, and lower surface 310. The annular body 340 may additionally include an upper recess 303, a first lower recess 302, and a second lower recess 304. The annular body may also have a first fluid channel 306 formed in the upper surface 315 with a plurality of ports 312 defined in the inner channel wall that provide fluid access to a volume formed between upper plate 320 and lower plate 325. Lower plate 325 may be coupled with annular body 340 at first lower recess 302. Lower plate 325 may additionally define first and second apertures as discussed above with regard to FIG. 3D.


Upper plate 320 may be coupled with annular body 340 at upper recess 303. First fluid channel 306 may be defined similar to first fluid channel 306 of FIG. 3D. Alternatively, the inner and outer walls of the first fluid channel 306 may be of substantially similar height, and in disclosed embodiments may be of identical height. Upper plate 320 may cover first fluid channel 306 in order to prevent a flow path from the top of the first fluid channel 306. The first plurality of ports 312 may be defined in the annular body similar to that of FIG. 3D. Alternatively, the first plurality of ports 312 may be partially formed in the upper surface 315 at the inner annular wall 301. When upper plate 320 is coupled with the annular body 340, the upper plate may further define the top of the plurality of ports 312.


A second fluid channel 308b may be formed in the upper surface 315 of annular body 340, and may be configured to receive a fluid delivered through fluid delivery channel 322 as previously described. Second fluid channel 308b, however, may be located radially inward of the first upper recess 303 such that the second fluid channel 308b is covered by the upper plate 320. An outer wall of second fluid channel 308b may intersect a bottom portion of upper recess 303. A second plurality of ports 314 may be defined by a portion of the annular body forming an inner wall of the second fluid channel 308b and the outer wall of first fluid channel 306. The ports may provide fluid communication between the first and second fluid channels, and may be located similarly as described above. Upper plate 320 may be configured to limit warping at each interface of contact with the annular body 340. For example, upper plate 320 may have a first thickness in the central portion of the upper plate 320 where the apertures are located, and may be a second thickness greater than the first thickness at the edge portions of the plate. These edge portions may extend from the upper recess 303 over the second fluid channel 308b, the first fluid channel 306, and the inner annular wall 301. The increased thickness of the upper plate 320 at the edge regions may better absorb the stress produced during the coupling of the upper plate to the annular body, and thereby reduce warping.


A portion of upper plate 320 may extend a distance into the second fluid channel 308b. The portion of the upper plate may extend into the second channel below a level of the bottom of the upper recess 303. In disclosed embodiments, second fluid channel 308b is formed to a greater depth in the upper surface 315 than the first fluid channel 306. The portion of upper plate 320 extending into the second fluid channel 308b may extend to a depth equivalent to the depth of the first fluid channel 306 within the annular body 340. By having a portion of the upper plate extend into the second fluid channel 308b, warping that may occur in the upper plate when it is coupled with the annular body 340 may not produce any leak paths between the first and second fluid channels as the extent of warping may be overcome by the amount of the upper plate 320 that extends into the second fluid channel 308b. The second plurality of ports 314 may be defined similar to those of FIG. 3D, or alternatively may be partially formed in the upper surface similar to the first plurality of ports 312. The top of the plurality of ports 314 may be defined by the bottom surface of the upper plate 320. The second plurality of ports 314 may be formed at an angle increasing vertically between the second fluid channel 308b and the first fluid channel 306. By forming the ports at an angle, the ports may not be blocked by the portion of the upper plate extending into the second fluid channel 308b. In disclosed embodiments the second plurality of ports 314 may be slots of various shapes or dimensions formed in the annular body. The slots may be formed at an angle increasing or upward from the second fluid channel 308b to the first fluid channel 306 such that the ports are fluidly accessible below the portion of the upper plate 320 extending into the second fluid channel 308b.


A pair of isolation channels 324 may be formed in the gas distribution assembly in disclosed embodiments where at least a portion of the isolation channels are vertically aligned with the portion of the annular body forming the inner wall of the second fluid channel 308b and the inner wall of the first fluid channel 306. To produce this configuration, one of the pair of isolation channels may be defined in the upper plate at a location radially inward from the first upper recess. The other of the pair of isolation channels may be defined in the lower surface 310 of the annular body, and the pair of isolation channels may be vertically aligned with one another. In disclosed embodiments the pair of isolation channels may be in direct vertical alignment. In operation, the isolation channels may receive o-rings, for example, or other isolation devices. By providing the isolation channels at a location that is at least partially aligned with the shared wall of the first and second fluid channels, the compression produced at the isolation channels may be used to offset, reduce, or remove warping that may have occurred at the interface of the upper plate 320 and the annular body.


Referring to FIGS. 4A-4B, gas distribution assembly 400, or showerhead, is provided including a first or upper plate 420 and a second or lower plate 425, and the top of the lower plate 425 may be configured to be coupled with the bottom of the upper plate 420. The upper and lower plates may be perforated plates with a plurality of apertures defined in each plate. In usage, the orientation of the showerhead 400 to the substrate may be done in such a way that the axis of any apertures formed in the showerhead may be perpendicular or substantially perpendicular to the substrate plane.


Referring to FIG. 4B, annular body 440 may include an upper recess 403 in upper surface 415, and a lower recess 402 in lower surface 410. A first fluid channel 406 may be defined in the lower surface 410 and may be located in the annular body radially inward of the lower recess 402. The first fluid channel may be annular in shape, and the channel may be covered by lower plate 425. A plurality of ports 412 may be at least partially defined in the annular body at the inner annular wall 401, and may be located along the entire channel at defined intervals that may be equal or modified across the plurality of ports. In disclosed embodiments, lower plate 425 may define a top portion of the plurality of ports 412. Upper plate 420 may be coupled with the annular body 440 at upper recess 403, and the upper plate 420 may define a plurality of first apertures 460. Lower plate 425 may be coupled with the annular body 440 at the lower recess 402, and may cover first fluid channel 406. Lower plate 425 may define a plurality of second apertures 465 that may align with the first apertures 460 defined in the upper plate 420 in order to form a first set of channels through the assembly 400. The lower plate 425 may also define a plurality of third apertures 475 that are located between and around the second apertures 465. The lower plate 425 may include raised portions around second apertures 465 that extend up to the upper plate 420 to produce fluidly isolated channels through the assembly.


The upper and lower plates may be sealingly coupled with one another such that the first and second apertures are aligned to form a channel through the upper and lower plates with the raised portions of the lower plate such that an internal volume is defined between the upper and lower plate. The volume may be fluidly accessed through the plurality of ports 412. The assembly may be configured such that a first fluid may flow through the first apertures and extend through the assembly 400 through the isolated channels formed between the first and second apertures. Additionally, a second fluid may be flowed through the assembly via the first fluid channel 406 and delivered into the volume defined between the upper and lower plates. The fluid flowing through the volume may flow through the third apertures and around the raised portions of the lower plate such that the first and second fluid may be fluidly isolated through the showerhead, and remain separated until they exit the lower plate through the second and third apertures respectively.


The first apertures 460 may be shaped to suppress the migration of ionically-charged species out of the first plasma region 215 described previously, while allowing uncharged neutral or radical species to pass through the showerhead 225, or gas distribution assembly 400. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the holes. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed. Controlling the amount of ionic species passing through the gas distribution assembly 400 may provide increased control over the gas mixture brought into contact with the underlying wafer substrate, which in turn increases control of the deposition and/or etch characteristics of the gas mixture. Accordingly, in disclosed embodiments, the first apertures may include a conical shape extending through the upper plate with decreasing diameter in order to control fluid characteristics. This upper plate may specifically act as an ion-suppression plate or ion blocker such that a configuration effectively combines ion-suppression directly into the showerhead design, and an additional suppression element may not be additionally required.


Each first aperture 460 may have a conical inlet portion tapering to a first cylindrical portion that intersects second apertures 465. The second apertures may include multiple sections of various shapes to further affect fluid flow through the channels formed between the first and second apertures. In an exemplary design, the second apertures 465 may include multiple cylindrical sections of increasing diameter leading to a conical section extending with increasing diameter to the bottom of the lower plate 425. Third apertures 475 may similarly include multiple sections of various shapes, and in an exemplary configuration the third apertures 475 may include multiple cylindrical sections of decreasing diameter leading to a conical section extending with increasing diameter to the bottom of the lower plate 425. In disclosed embodiments, the second and third apertures include at least three sections of different shape or diameter.


For ion-suppression assemblies such as exemplary configuration assembly 400, the number of apertures may be greater than the number of apertures in configurations such as exemplary assemblies of FIGS. 3D and 3E. Providing a greater number of apertures may increase the density of species delivered to the processing region of the chamber. FIG. 4A shows a bottom view of gas distribution assembly 400 including lower plate 425 with second apertures 465 and third apertures 475. Although only one quadrant of apertures is shown, it will be readily understood that the apertures are defined similarly in all four quadrants of the assembly. While FIG. 3A shows an exemplary nine hexagonal rings of apertures, a similarly sized gas distribution assembly such as shown in FIG. 4A may include between about eighteen and twenty-five rings of apertures. The total number of apertures in the high-density design illustrated in FIGS. 4A-4B may include between 2-10 times as many total second and third apertures. The high-density configuration as shown in FIG. 3E may include an additional second aperture 365 directly in the center of the plate.


Referring back to FIG. 4B, the gas distribution assembly may additionally include a second fluid channel 408 defined in the lower surface 410 that is located in the annular body 440 radially outward of the first fluid channel 406. The second fluid channel 408 may be formed around the entire annular body 360, and may also be concentric with the first fluid channel 406. A second plurality of ports 414 may be defined in at least a portion of the annular body defining an outer wall of the first fluid channel 406 and an inner wall of the second fluid channel 408. The second fluid channel 408 may also be located radially inward of the lower recess such that the second fluid channel is covered by the lower plate 425. Similar to the design described in FIG. 4E, a portion of the lower plate may extend up into the second fluid channel 408.


The portion of the lower plate 425 may extend into the second channel above a level of the top of the lower recess 402. In disclosed embodiments, second fluid channel 408 is formed to a greater height in the lower surface 410 than the first fluid channel 406. The portion of lower plate 425 extending into the second fluid channel 408 may extend to a height equivalent to the height of the first fluid channel 406 or less within the annular body 440, or to a height equivalent to about half of the height of first fluid channel 406. As explained above, a portion of the lower plate extending into the second fluid channel 408 may limit the effects of warping that may occur in the lower plate when it is coupled with the annular body 440. The second plurality of ports 414 may be defined similar to those of FIG. 3D or 3E but in the lower surface 410. The bottom of the plurality of ports 414 may be defined by the top surface of the lower plate 425.


The second plurality of ports 414 may be formed at an angle decreasing vertically between the second fluid channel 408 and the first fluid channel 406. By forming the ports at an angle, the ports may not be blocked by the portion of the lower plate extending into the second fluid channel 408. In disclosed embodiments the second plurality of ports 414 may be slots of various shapes or dimensions formed in the annular body, and may be angled downward from the second fluid channel 408 to the first fluid channel 406 such that the ports are fluidly accessible above the portion of the lower plate extending into the second fluid channel 408. In operation, a fluid may be delivered through the gas distribution assembly 400 through a side port in the chamber, for example, fluid delivery channel 422. The fluid may flow into second fluid channel 408 and then through the second plurality of ports 414 that may fluidly couple the second fluid channel 408 with the first fluid channel 406. The fluid may then flow through the first plurality of ports 412 that may fluidly couple the first fluid channel 406 with the volume defined between the upper plate 420 and lower plate 425. The fluid may continue to flow through third apertures 475 into the processing region. In this configuration, such a fluid may be fluidly isolated from the first and second apertures that form channels through the gas distribution assembly. In this way, the distribution assembly may prevent the flow of this fluid from accessing the first apertures, and may prevent the fluid from flowing through the top of the gas distribution assembly without a pressure differential or forced flow.



FIG. 5A shows an exemplary gas distribution assembly 500 configured to provide three isolated fluid paths to a processing region. The assembly 500 may include similar components as previously described including an annular body 540 having an inner annular wall 501 located at an inner diameter, an outer annular wall 505 located at an outer diameter, an upper surface 515, and a lower surface 510. Gas distribution assembly 500 may include an upper plate 520 coupled with the annular body 540 that defines a first set of apertures. Intermediate plate 530 may be coupled with the upper plate 520 and may comprise a plurality of second apertures and a plurality of third apertures. The intermediate plate 530 may be coupled such that the second apertures align with the first apertures of the upper plate. The assembly may additionally include a lower plate 525 coupled with the annular body 540 and the intermediate plate 530. The lower plate 525 may define a plurality of fourth apertures that align with the first apertures of the upper plate and the second apertures of the intermediate plate to form a first plurality of fluid channels 561 through the plates. The lower plate may also define a fifth set of apertures that align with the third apertures of the intermediate plate to form a second plurality of fluid channels 566 through the intermediate and lower plates. The second plurality of fluid channels 566 may be fluidly isolated from the first plurality of fluid channels 561. The lower plate may also define a sixth set of apertures that form a third plurality of fluid channels 576 through the lower plate. The third plurality of fluid channels 576 may be fluidly isolated from the first and second pluralities of fluid channels.


In operation, the gas distribution assembly may be configured such that two fluids may be delivered into the showerhead from the side, but maintained fluidly separate in two fluidly isolated volumes produced in the assembly. A first fluid may be delivered from above the gas distribution assembly 500 and may include radical species produced in an RPS or first plasma region, for example. The first fluid may flow through the first plurality of fluid channels 561 that may be individually isolated and may not be accessed from within the assembly volumes. A second fluid may be introduced into the showerhead from a side port or first delivery channel that delivers the second fluid between the upper plate 520 and intermediate plate 530. The second fluid may flow within this first defined volume and through the second plurality of fluid channels. These channels may also be fluidly isolated from the other channels formed through the assembly. A third fluid may be introduced into the showerhead from an additional side port or second delivery channel that delivers the third fluid between the intermediate plate 530 and lower plate 525. The third fluid may flow within this second defined volume and through the third plurality of fluid channels, which may be fluidly isolated from the other channels formed through the assembly. The additional side port or second delivery channel, as well as the second defined volume, may be fluidly isolated from the first delivery channel and first defined volume. In this way, three fluids may be delivered to a processing region through a single gas distribution assembly, but may be separated until they each exit the gas distribution assembly and enter the processing region.


Although a variety of aperture configurations are encompassed by the disclosed technology, FIGS. 5B and 5C illustrate two exemplary configurations of fourth apertures 567, fifth apertures 568, and sixth apertures 577. The figures show partial plan views of lower plate 525 and exemplary orientations of fourth, fifth, and sixth apertures. In some disclosed configurations, the lower plate may include an orientation of fourth, fifth, and sixth apertures such that a majority of fourth apertures 567 are each surrounded by at least four of the fifth apertures 568 and four of the sixth apertures 577.


As shown in FIG. 5B, fourth apertures 567 may have four of the fifth apertures 568 positioned around each of the fourth apertures 567. Additionally, four of the sixth apertures 577 may also be positioned around each of the fourth apertures 567. In this configuration, the fifth apertures 568a-d may be located around the fourth apertures 567 with the centers of the fifth apertures at about 90° intervals from one another as identified about a center of one of the fourth apertures 567. Similarly, the sixth apertures 577 may be located around the fourth apertures with centers of the sixth apertures at about 90° intervals from one another as identified about a center of the fourth apertures 577. The sixth apertures 577 may also be offset from fifth apertures 568 by about 45° as identified about a center of the fourth apertures 577. Each of the fifth apertures 568 may additionally have four of the sixth apertures 577 located around the fifth apertures 568 at about 90° intervals from one another as identified about a center of the fifth apertures 568. The apertures may also be considered as rows of apertures based on the fourth apertures 567 and fifth apertures 568. As shown in FIG. 5B, each horizontal row of fourth apertures 567 or fifth apertures 568 alternates sixth apertures 577 with each of the fourth or fifth apertures of the individual rows. The rows are additionally displaced by one aperture in alternating rows, such that each of the fourth or fifth apertures has a located sixth aperture above or below it in each alternating row.


As shown in FIG. 5C, fourth apertures 567 may have four or more of the fifth apertures 568 positioned around each of the fourth apertures 567. The sixth apertures 568 may be located in alternating columns with the fourth apertures 567. Additionally, six of the sixth apertures 577 may also be positioned around each of the fourth apertures 567. In this configuration, the fifth apertures 568 may be located around the fourth apertures 567 with the centers of the fifth apertures at about 60° intervals from one another as identified about a center of the fourth apertures 567. Similarly, the sixth apertures 577 may be located around the fourth apertures with centers of the sixth apertures at about 60° intervals from one another as identified about a center of the fourth apertures 577. The sixth apertures 577 may also be offset from fifth apertures 568 by about 30° as identified about a center of the fourth apertures 577. The fifth apertures 568 may be located a first radial distance from the center of each of the fourth apertures 567. Additionally, the sixth apertures 577 may be located a second radial distance from the center of each of the fourth apertures 567. As illustrated in FIG. 5C, the second radial distance may be less than the first radial distance. Other disclosed embodiments may have the second radial distance greater than the first radial distance. The apertures may again be considered as alternating horizontal rows of apertures of fourth or fifth apertures. As shown in the figure, each fourth or fifth aperture is separated from the next fourth or fifth aperture in a row by two sixth apertures. The rows of apertures may be offset such that each row is displaced by half the distance between any two fourth or fifth apertures such that every other row of apertures is aligned in terms of the sixth apertures 577.


In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present invention. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.


Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.


Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “an aperture” includes a plurality of such apertures, and reference to “the plate” includes reference to one or more plates and equivalents thereof known to those skilled in the art, and so forth.


Also, the words “comprise(s)”, “comprising”, “contain(s)”, “containing”, “include(s)”, and “including”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.

Claims
  • 1. A gas distribution assembly, comprising: an annular body comprising: an inner annular wall located at an inner diameter, an outer annular wall located at an outer diameter, an upper surface, and a lower surface;a first upper recess formed in the upper surface;a first lower recess formed in the lower surface at the inner annular wall;a second lower recess formed in the lower surface below and radially outward of the first lower recess;a first fluid channel defined in the upper surface that is located in the annular body radially inward of the first upper recess;an upper plate coupled with the annular body at the first upper recess and covering the first fluid channel, wherein the upper plate defines a plurality of first apertures; anda lower plate coupled with the annular body at the first lower recess, comprising: a plurality of second apertures defined therein, wherein the second apertures align with the first apertures defined in the upper plate;a plurality of third apertures defined therein and located between the second apertures;wherein the upper and lower plates are coupled with one another such that the first and second apertures are aligned to form a channel through the upper and lower plates.
  • 2. The gas distribution assembly of claim 1, wherein the upper and lower plates are bonded together.
  • 3. The gas distribution assembly of claim 1, further comprising a second fluid channel defined in the upper surface that is located in the annular body radially outward of the first fluid channel, wherein a plurality of ports are defined in a portion of the annular body defining an outer wall of the first fluid channel and an inner wall of the second fluid channel.
  • 4. The gas distribution assembly of claim 3, wherein the second fluid channel is located radially outward of the upper recess such that the second fluid channel is not covered by the upper plate.
  • 5. The gas distribution assembly of claim 4, wherein a second upper recess is defined by the annular body near the top of the second fluid channel in both the inner wall and an outer wall, and wherein the gas distribution assembly further comprises an annular member positioned within the second upper recess so as to cover the second fluid channel.
  • 6. The gas distribution assembly of claim 3, wherein the upper recess comprises a bottom portion that intersects the outer wall of the first fluid channel.
  • 7. The gas distribution assembly of claim 3, further comprising a pair of isolation channels wherein one of the pair of isolation channels is defined in the upper surface of the annular body, and the other of the pair of isolation channels is defined in the lower surface of the annular body, and wherein the pair of isolation channels are vertically aligned with one another.
  • 8. The gas distribution assembly of claim 3, wherein the second fluid channel is located radially inward of the upper recess such that the second fluid channel is covered by the upper plate.
  • 9. The gas distribution assembly of claim 8, wherein a portion of the upper plate extends into the second channel below a bottom of the upper recess.
  • 10. The gas distribution assembly of claim 9, wherein the plurality of ports are angled upward from the second fluid channel to the first fluid channel such that the ports are fluidly accessible below the portion of the upper plate extending into the second channel.
  • 11. The gas distribution assembly of claim 8, further comprising a pair of isolation channels wherein one of the pair of isolation channels is defined in the upper plate at a location radially inward from the upper recess, and the other of the pair of isolation channels is defined in the lower surface of the annular body, and wherein the pair of isolation channels are vertically aligned with one another.
  • 12. The gas distribution assembly of claim 1, further comprising an annular temperature channel defined in the annular body and configured to receive a cooling fluid operable to maintain a temperature of the annular body.
  • 13. The gas distribution assembly of claim 1, further comprising an annular temperature channel defined in the annular body and configured to receive a heating element disposed within the channel and operable to maintain a temperature of the annular body.
  • 14. A gas distribution assembly, comprising: an annular body comprising: an inner annular wall located at an inner diameter, an outer annular wall located at an outer diameter, an upper surface, and a lower surface;an upper recess formed in the upper surface;a lower recess formed in the lower surface;a first fluid channel defined in the lower surface that is located in the annular body radially inward of the lower recess;an upper plate coupled with the annular body at the upper recess, wherein the upper plate defines a plurality of first apertures; anda lower plate coupled with the annular body at the lower recess, and covering the first fluid channel, the lower plate comprising: a plurality of second apertures defined therein, wherein the second apertures align with the first apertures defined in the upper plate;a plurality of third apertures defined therein and located between the second apertures;wherein the upper and lower plates are coupled with one another such that the first and second apertures are aligned to form a channel through the upper and lower plates.
  • 15. The gas distribution assembly of claim 14, further comprising a second fluid channel defined in the lower surface that is located in the annular body radially outward of the first fluid channel, wherein a plurality of ports are defined in a portion of the annular body defining an outer wall of the first fluid channel and an inner wall of the second fluid channel, wherein the plurality of ports are configured to fluidly couple the second fluid channel with the first fluid channel.
  • 16. The gas distribution assembly of claim 15, wherein the second fluid channel is located radially inward of the lower recess such that the second fluid channel is covered by the lower plate, and wherein a portion of the lower plate extends into the second channel above a top of the lower recess.
  • 17. The gas distribution assembly of claim 16, wherein the plurality of ports are angled downward from the second fluid channel to the first fluid channel such that the ports are fluidly accessible above the portion of the lower plate extending into the second channel.
  • 18. The gas distribution assembly of claim 14, wherein the first apertures comprise a conical shape of decreasing diameter as the first apertures extend through the upper plate, and wherein the second and third apertures comprise a conical shape of increasing diameter as the second and third apertures extend through the lower plate.
  • 19. The gas distribution assembly of claim 14, wherein each of the second and third apertures comprise at least three sections of different shape or diameter.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/704,257, filed Sep. 21, 2012, entitled “Chemical Control Features in Wafer Process Equipment.” The entire disclosure of which is incorporated herein by reference for all purposes.

US Referenced Citations (764)
Number Name Date Kind
2369620 Sullivan et al. Feb 1945 A
3451840 Hough Jun 1969 A
3937857 Brummett et al. Feb 1976 A
4006047 Brummett et al. Feb 1977 A
4209357 Gorin et al. Jun 1980 A
4214946 Forget et al. Jul 1980 A
4232060 Mallory et al. Nov 1980 A
4234628 DuRose Nov 1980 A
4265943 Goldstein et al. May 1981 A
4364803 Nidola et al. Dec 1982 A
4368223 Kobayashi et al. Jan 1983 A
4397812 Mallory, Jr. Aug 1983 A
4468413 Bachmann Aug 1984 A
4565601 Kakehi et al. Jan 1986 A
4571819 Rogers et al. Feb 1986 A
4579618 Celestino et al. Apr 1986 A
4585920 Hoog et al. Apr 1986 A
4625678 Shloya et al. Dec 1986 A
4632857 Mallory, Jr. Dec 1986 A
4656052 Satou et al. Apr 1987 A
4690746 McInerney et al. Sep 1987 A
4714520 Gwozdz Dec 1987 A
4715937 Moslehi et al. Dec 1987 A
4749440 Blackwood et al. Jun 1988 A
4753898 Parrillo et al. Jun 1988 A
4786360 Cote et al. Nov 1988 A
4793897 Dunfield et al. Dec 1988 A
4807016 Douglas Feb 1989 A
4810520 Wu Mar 1989 A
4816638 Ukai et al. Mar 1989 A
4820377 Davis et al. Apr 1989 A
4851370 Doklan et al. Jul 1989 A
4865685 Palmour Sep 1989 A
4872947 Wang et al. Oct 1989 A
4878994 Jucha et al. Nov 1989 A
4886570 Davis et al. Dec 1989 A
4892753 Wang et al. Jan 1990 A
4894352 Lane et al. Jan 1990 A
4904341 Blaugher et al. Feb 1990 A
4904621 Loewenstein et al. Feb 1990 A
4913929 Moslehi et al. Apr 1990 A
4951601 Maydan et al. Aug 1990 A
4960488 Law et al. Oct 1990 A
4980018 Mu et al. Dec 1990 A
4981551 Palmour Jan 1991 A
4985372 Narita et al. Jan 1991 A
4992136 Tachi et al. Feb 1991 A
4994404 Sheng et al. Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013691 Lory et al. May 1991 A
5030319 Nishino et al. Jul 1991 A
5061838 Lane et al. Oct 1991 A
5089441 Moslehi Feb 1992 A
5089442 Olmer Feb 1992 A
5147692 Bengston Sep 1992 A
5156881 Okano et al. Oct 1992 A
5186718 Tepman et al. Feb 1993 A
5198034 deBoer et al. Mar 1993 A
5203911 Sricharoenchalkit et al. Apr 1993 A
5215787 Homma Jun 1993 A
5228501 Tepman et al. Jul 1993 A
5231690 Soma et al. Jul 1993 A
5235139 Bengston et al. Aug 1993 A
5238499 van de Ven et al. Aug 1993 A
5240497 Shacham et al. Aug 1993 A
5248527 Uchida et al. Sep 1993 A
5252178 Moslehi Oct 1993 A
5266157 Kadomura Nov 1993 A
5270125 America et al. Dec 1993 A
5271972 Kwok et al. Dec 1993 A
5275977 Otsubo et al. Jan 1994 A
5279865 Chebi et al. Jan 1994 A
5288518 Homma Feb 1994 A
5290382 Zarowin et al. Mar 1994 A
5300463 Cathey et al. Apr 1994 A
5302233 Kim et al. Apr 1994 A
5306530 Stronglin et al. Apr 1994 A
5314724 Tsukune et al. May 1994 A
5316804 Tomikawa et al. May 1994 A
5319247 Matsuura Jun 1994 A
5326427 Jerbic Jul 1994 A
5328558 Kawamura et al. Jul 1994 A
5328810 Lowrey et al. Jul 1994 A
5334552 Homma Aug 1994 A
5345999 Hosokawa Sep 1994 A
5352636 Beinglass Oct 1994 A
5356478 Chen et al. Oct 1994 A
5362526 Wang et al. Nov 1994 A
5368897 Kurihara et al. Nov 1994 A
5380560 Kaja et al. Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5384284 Doan et al. Jan 1995 A
5385763 Okano et al. Jan 1995 A
5399237 Keswick et al. Mar 1995 A
5399529 Homma Mar 1995 A
5403434 Moslehi Apr 1995 A
5413967 Matsuda et al. May 1995 A
5415890 Kloiber et al. May 1995 A
5416048 Blalock et al. May 1995 A
5420075 Homma et al. May 1995 A
5429995 Nishiyama et al. Jul 1995 A
5439553 Grant et al. Aug 1995 A
5451259 Krogh Sep 1995 A
5468342 Nulty et al. Nov 1995 A
5474589 Ohga et al. Dec 1995 A
5478403 Shinagawa et al. Dec 1995 A
5478462 Walsh Dec 1995 A
5483920 Pryor Jan 1996 A
5500249 Telford et al. Mar 1996 A
5505816 Barnes et al. Apr 1996 A
5510216 Calabrese et al. Apr 1996 A
5516367 Lei et al. May 1996 A
5531835 Fodor et al. Jul 1996 A
5534070 Okamura et al. Jul 1996 A
5536360 Nguyen et al. Jul 1996 A
5549780 Koinuma et al. Aug 1996 A
5558717 Zhao et al. Sep 1996 A
5560779 Knowles et al. Oct 1996 A
5563105 Dobuzinsky et al. Oct 1996 A
5571576 Qian et al. Nov 1996 A
5578130 Hayashi et al. Nov 1996 A
5578161 Auda Nov 1996 A
5580421 Hiatt et al. Dec 1996 A
5591269 Arami et al. Jan 1997 A
5599740 Jang et al. Feb 1997 A
5624582 Cain Apr 1997 A
5626922 Miyanaga et al. May 1997 A
5635086 Warren, Jr. Jun 1997 A
5645645 Zhang et al. Jul 1997 A
5648125 Cane Jul 1997 A
5648175 Russell et al. Jul 1997 A
5656093 Burkhart et al. Aug 1997 A
5661093 Ravi et al. Aug 1997 A
5674787 Zhao et al. Oct 1997 A
5679606 Wang et al. Oct 1997 A
5688331 Aruga et al. Nov 1997 A
5695810 Dubin et al. Dec 1997 A
5712185 Tsai et al. Jan 1998 A
5716500 Bardos et al. Feb 1998 A
5716506 Maclay et al. Feb 1998 A
5719085 Moon et al. Feb 1998 A
5733816 Iyer et al. Mar 1998 A
5747373 Yu May 1998 A
5755859 Brusic et al. May 1998 A
5756400 Ye et al. May 1998 A
5756402 Jimbo et al. May 1998 A
5772770 Suda et al. Jun 1998 A
5781693 Ballance et al. Jul 1998 A
5786276 Brooks et al. Jul 1998 A
5789300 Fulford Aug 1998 A
5800686 Littau et al. Sep 1998 A
5804259 Robles Sep 1998 A
5812403 Fong et al. Sep 1998 A
5820723 Benjamin et al. Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5830805 Shacham-Diamand et al. Nov 1998 A
5838055 Kleinhenz et al. Nov 1998 A
5843538 Ehrsam et al. Dec 1998 A
5844195 Fairbairn et al. Dec 1998 A
5846332 Zhao et al. Dec 1998 A
5846375 Gilchrist et al. Dec 1998 A
5846598 Semkow et al. Dec 1998 A
5849639 Molloy et al. Dec 1998 A
5850105 Dawson et al. Dec 1998 A
5855681 Maydan et al. Jan 1999 A
5856240 Sinha et al. Jan 1999 A
5858876 Chew Jan 1999 A
5872052 Iyer Feb 1999 A
5872058 Van Cleemput et al. Feb 1999 A
5882424 Taylor et al. Mar 1999 A
5882786 Nassau et al. Mar 1999 A
5885404 Kim et al. Mar 1999 A
5885749 Huggins et al. Mar 1999 A
5888906 Sandhu et al. Mar 1999 A
5891349 Tobe et al. Apr 1999 A
5891513 Dubin et al. Apr 1999 A
5897751 Makowiecki Apr 1999 A
5899752 Hey et al. May 1999 A
5904827 Reynolds May 1999 A
5907790 Kellam May 1999 A
5910340 Uchida et al. Jun 1999 A
5913140 Roche et al. Jun 1999 A
5913147 Dubin et al. Jun 1999 A
5915190 Pirkle Jun 1999 A
5918116 Chittipeddi Jun 1999 A
5920792 Lin Jul 1999 A
5932077 Reynolds et al. Aug 1999 A
5933757 Yoshikawa et al. Aug 1999 A
5935334 Fong et al. Aug 1999 A
5937323 Orczyk et al. Aug 1999 A
5939831 Fong et al. Aug 1999 A
5942075 Nagahata et al. Aug 1999 A
5944902 Redeker et al. Aug 1999 A
5951601 Lesinski et al. Sep 1999 A
5951776 Selyutin et al. Sep 1999 A
5953591 Ishihara et al. Sep 1999 A
5953635 Andideh Sep 1999 A
5968610 Liu et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5976327 Tanaka Nov 1999 A
5990000 Hong et al. Nov 1999 A
5990013 Berenguer et al. Nov 1999 A
5993916 Zhao et al. Nov 1999 A
6004884 Abraham Dec 1999 A
6010962 Liu et al. Jan 2000 A
6013191 Nasser-Faili et al. Jan 2000 A
6013584 M'Saad Jan 2000 A
6015724 Yamazaki et al. Jan 2000 A
6015747 Lopatin et al. Jan 2000 A
6020271 Yanagida Feb 2000 A
6030666 Lam et al. Feb 2000 A
6030881 Papasouliotis et al. Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6037018 Jang et al. Mar 2000 A
6037266 Tao et al. Mar 2000 A
6039851 Iyer Mar 2000 A
6053982 Halpin et al. Apr 2000 A
6059643 Hu et al. May 2000 A
6063683 Wu et al. May 2000 A
6063712 Gilton et al. May 2000 A
6065424 Shacham-Diamand et al. May 2000 A
6072227 Yau et al. Jun 2000 A
6077780 Dubin Jun 2000 A
6080529 Ye et al. Jun 2000 A
6083344 Hanawa et al. Jul 2000 A
6083844 Bui-Le et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6087278 Kim et al. Jul 2000 A
6093594 Yeap et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6107199 Allen et al. Aug 2000 A
6110530 Chen et al. Aug 2000 A
6110836 Cohen et al. Aug 2000 A
6110838 Loewenstein Aug 2000 A
6113771 Landau et al. Sep 2000 A
6117245 Mandrekar et al. Sep 2000 A
6136163 Cheung et al. Oct 2000 A
6136685 Narwankar et al. Oct 2000 A
6136693 Chan et al. Oct 2000 A
6140234 Uzoh et al. Oct 2000 A
6144099 Lopatin et al. Nov 2000 A
6147009 Grill et al. Nov 2000 A
6149828 Vaartstra Nov 2000 A
6150628 Smith et al. Nov 2000 A
6153935 Edelstein et al. Nov 2000 A
6165912 McConnell et al. Dec 2000 A
6167834 Wang et al. Jan 2001 B1
6169021 Akram et al. Jan 2001 B1
6170428 Redeker et al. Jan 2001 B1
6171661 Zheng et al. Jan 2001 B1
6174812 Hsiung et al. Jan 2001 B1
6176198 Kao et al. Jan 2001 B1
6177245 Ward et al. Jan 2001 B1
6179924 Zhao et al. Jan 2001 B1
6180523 Lee et al. Jan 2001 B1
6182602 Redeker et al. Feb 2001 B1
6189483 Ishikawa et al. Feb 2001 B1
6190233 Hong et al. Feb 2001 B1
6191026 Rana et al. Feb 2001 B1
6194038 Rossman Feb 2001 B1
6197181 Chen Mar 2001 B1
6197364 Paunovic et al. Mar 2001 B1
6197680 Lin et al. Mar 2001 B1
6197688 Simpson Mar 2001 B1
6197705 Vassiliev Mar 2001 B1
6203863 Liu et al. Mar 2001 B1
6204200 Shieh et al. Mar 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6228233 Lakshmikanthan et al. May 2001 B1
6228751 Yamazaki et al. May 2001 B1
6228758 Pellerin et al. May 2001 B1
6235643 Mui et al. May 2001 B1
6238513 Arnold et al. May 2001 B1
6238582 Williams et al. May 2001 B1
6241845 Gadgil et al. Jun 2001 B1
6242349 Nogami et al. Jun 2001 B1
6245396 Nogami Jun 2001 B1
6245670 Cheung et al. Jun 2001 B1
6251236 Stevens Jun 2001 B1
6251802 Moore et al. Jun 2001 B1
6258220 Dordi et al. Jul 2001 B1
6258223 Cheung et al. Jul 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6261637 Oberle Jul 2001 B1
6277733 Smith Aug 2001 B1
6277752 Chen Aug 2001 B1
6277763 Kugimiya et al. Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6291282 Wilk et al. Sep 2001 B1
6291348 Lopatin et al. Sep 2001 B1
6303418 Cha et al. Oct 2001 B1
6312995 Yu Nov 2001 B1
6313035 Sandhu et al. Nov 2001 B1
6319387 Krishnamoorthy et al. Nov 2001 B1
6323128 Sambucetti et al. Nov 2001 B1
6335261 Natzle et al. Jan 2002 B1
6335288 Kwan et al. Jan 2002 B1
6340435 Bjorkman et al. Jan 2002 B1
6342733 Hu et al. Jan 2002 B1
6344410 Lopatin et al. Feb 2002 B1
6350320 Sherstinsky et al. Feb 2002 B1
6351013 Luning et al. Feb 2002 B1
6352081 Lu et al. Mar 2002 B1
6364949 Or et al. Apr 2002 B1
6364954 Umotoy et al. Apr 2002 B2
6364957 Schneider et al. Apr 2002 B1
6372657 Hineman et al. Apr 2002 B1
6375748 Yudovsky et al. Apr 2002 B1
6379575 Yin et al. Apr 2002 B1
6383951 Li May 2002 B1
6387207 Janakiraman et al. May 2002 B1
6391753 Yu May 2002 B1
6395150 Van Cleemput et al. May 2002 B1
6403491 Liu et al. Jun 2002 B1
6415736 Hao et al. Jul 2002 B1
6416647 Dordi et al. Jul 2002 B1
6427623 Ko Aug 2002 B2
6432819 Pavate et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6436816 Lee et al. Aug 2002 B1
6440863 Tsai et al. Aug 2002 B1
6441492 Cunningham Aug 2002 B1
6446572 Brcka Sep 2002 B1
6448537 Nering Sep 2002 B1
6458718 Todd Oct 2002 B1
6461974 Ni et al. Oct 2002 B1
6462371 Weimer et al. Oct 2002 B1
6465366 Nemani et al. Oct 2002 B1
6477980 White et al. Nov 2002 B1
6479373 Dreybrodt et al. Nov 2002 B2
6488984 Wada et al. Dec 2002 B1
6494959 Samoilov et al. Dec 2002 B1
6499425 Sandhu et al. Dec 2002 B1
6500728 Wang Dec 2002 B1
6503843 Xia et al. Jan 2003 B1
6506291 Tsai et al. Jan 2003 B2
6516815 Stevens et al. Feb 2003 B1
6518548 Sugaya et al. Feb 2003 B2
6527968 Wang et al. Mar 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6531377 Knorr et al. Mar 2003 B2
6537733 Nemani et al. Mar 2003 B2
6541397 Bencher Apr 2003 B1
6541671 Martinez et al. Apr 2003 B1
6544340 Yudovsky Apr 2003 B2
6547977 Yan et al. Apr 2003 B1
6551924 Dalton et al. Apr 2003 B1
6565729 Chen et al. May 2003 B2
6569773 Gellrich et al. May 2003 B1
6573030 Fairbairn et al. Jun 2003 B1
6573606 Sambucetti et al. Jun 2003 B2
6586163 Okabe et al. Jul 2003 B1
6596602 Iizuka et al. Jul 2003 B2
6596654 Bayman et al. Jul 2003 B1
6602434 Hung et al. Aug 2003 B1
6603269 Vo et al. Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6616967 Test Sep 2003 B1
6627532 Gaillard et al. Sep 2003 B1
6635578 Xu et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6645301 Sainty et al. Nov 2003 B2
6645550 Cheung et al. Nov 2003 B1
6656831 Lee et al. Dec 2003 B1
6656837 Xu et al. Dec 2003 B2
6663715 Yuda et al. Dec 2003 B1
6677242 Liu et al. Jan 2004 B1
6677247 Yuan et al. Jan 2004 B2
6679981 Pan et al. Jan 2004 B1
6717189 Inoue et al. Apr 2004 B2
6720213 Gambino et al. Apr 2004 B1
6740585 Yoon et al. May 2004 B2
6743473 Parkhe et al. Jun 2004 B1
6743732 Lin et al. Jun 2004 B1
6756235 Liu et al. Jun 2004 B1
6759261 Shimokohbe et al. Jul 2004 B2
6762127 Boiteux et al. Jul 2004 B2
6762435 Towle Jul 2004 B2
6764958 Nemani et al. Jul 2004 B1
6765273 Chau et al. Jul 2004 B1
6772827 Keller et al. Aug 2004 B2
6794290 Papasouliotis et al. Sep 2004 B1
6794311 Huang et al. Sep 2004 B2
6796314 Graff et al. Sep 2004 B1
6797189 Hung et al. Sep 2004 B2
6800830 Mahawili Oct 2004 B2
6802944 Ahmad et al. Oct 2004 B2
6808564 Dietze Oct 2004 B2
6808748 Kapoor et al. Oct 2004 B2
6821571 Huang Nov 2004 B2
6823589 White et al. Nov 2004 B2
6830624 Janakiraman et al. Dec 2004 B2
6835995 Li Dec 2004 B2
6846745 Papasouliotis et al. Jan 2005 B1
6852550 Tuttle et al. Feb 2005 B2
6858153 Bjorkman et al. Feb 2005 B2
6867141 Jung et al. Mar 2005 B2
6869880 Krishnaraj et al. Mar 2005 B2
6878206 Tzu et al. Apr 2005 B2
6879981 Rothschild et al. Apr 2005 B2
6886491 Kim et al. May 2005 B2
6892669 Xu et al. May 2005 B2
6893967 Wright et al. May 2005 B1
6897532 Schwarz et al. May 2005 B1
6903031 Karim et al. Jun 2005 B2
6903511 Chistyakov Jun 2005 B2
6908862 Li et al. Jun 2005 B2
6911112 An et al. Jun 2005 B2
6911401 Khandan et al. Jun 2005 B2
6921556 Shimizu et al. Jul 2005 B2
6924191 Liu et al. Aug 2005 B2
6942753 Choi et al. Sep 2005 B2
6946033 Tsuei et al. Sep 2005 B2
6951821 Hamelin et al. Oct 2005 B2
6958175 Sakamoto et al. Oct 2005 B2
6958286 Chen et al. Oct 2005 B2
6974780 Schuegraf Dec 2005 B2
7017269 White et al. Mar 2006 B2
7018941 Cui et al. Mar 2006 B2
7030034 Fucsko et al. Apr 2006 B2
7049200 Arghavani et al. May 2006 B2
7078312 Sutanto et al. Jul 2006 B1
7081414 Zhang et al. Jul 2006 B2
7084070 Lee et al. Aug 2006 B1
7115525 Abatchev et al. Oct 2006 B2
7122949 Strikovski Oct 2006 B2
7148155 Tarafdar et al. Dec 2006 B1
7166233 Johnson et al. Jan 2007 B2
7183214 Nam et al. Feb 2007 B2
7196342 Ershov et al. Mar 2007 B2
7205240 Karim et al. Apr 2007 B2
7223701 Min et al. May 2007 B2
7226805 Hallin et al. Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7252716 Kim et al. Aug 2007 B2
7253123 Arghavani et al. Aug 2007 B2
7256370 Guiver Aug 2007 B2
7288482 Panda et al. Oct 2007 B2
7341633 Lubomirsky et al. Mar 2008 B2
7365016 Ouellet et al. Apr 2008 B2
7390710 Derderian et al. Jun 2008 B2
7396480 Kao et al. Jul 2008 B2
7416989 Liu et al. Aug 2008 B1
7465358 Weidman et al. Dec 2008 B2
7484473 Keller et al. Feb 2009 B2
7488688 Chung et al. Feb 2009 B2
7494545 Lam et al. Feb 2009 B2
7575007 Tang et al. Aug 2009 B2
7581511 Mardian et al. Sep 2009 B2
7628897 Mungekar et al. Dec 2009 B2
7708859 Huang et al. May 2010 B2
7709396 Bencher et al. May 2010 B2
7722925 White et al. May 2010 B2
7749326 Kim et al. Jul 2010 B2
7785672 Choi et al. Aug 2010 B2
7806078 Yoshida Oct 2010 B2
7807578 Bencher et al. Oct 2010 B2
7871926 Xia et al. Jan 2011 B2
7910491 Soo Kwon et al. Mar 2011 B2
7915139 Lang et al. Mar 2011 B1
7939422 Ingle et al. May 2011 B2
7968441 Xu Jun 2011 B2
7981806 Jung Jul 2011 B2
8008166 Sanchez et al. Aug 2011 B2
8058179 Draeger et al. Nov 2011 B1
8071482 Kawada Dec 2011 B2
8074599 Choi et al. Dec 2011 B2
8083853 Choi et al. Dec 2011 B2
8133349 Panagopoulos Mar 2012 B1
8187486 Liu et al. May 2012 B1
8211808 Sapre et al. Jul 2012 B2
8309440 Sanchez et al. Nov 2012 B2
8328939 Choi et al. Dec 2012 B2
8435902 Tang et al. May 2013 B2
8491805 Kushibiki et al. Jul 2013 B2
8506713 Takagi Aug 2013 B2
8512509 Bera et al. Aug 2013 B2
8642481 Wang et al. Feb 2014 B2
8772888 Jung et al. Jul 2014 B2
8778079 Begarney et al. Jul 2014 B2
8900364 Wright Dec 2014 B2
8956980 Chen et al. Feb 2015 B1
8980005 Carlson et al. Mar 2015 B2
9017481 Pettinger et al. Apr 2015 B1
20010008803 Takamatsu et al. Jul 2001 A1
20010015261 Kobayashi et al. Aug 2001 A1
20010028922 Sandhu Oct 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010034121 Fu et al. Oct 2001 A1
20010041444 Shields et al. Nov 2001 A1
20010047760 Moslehi Dec 2001 A1
20010053585 Kikuchi et al. Dec 2001 A1
20010054381 Umotoy et al. Dec 2001 A1
20010055842 Uh et al. Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020016080 Khan et al. Feb 2002 A1
20020016085 Huang et al. Feb 2002 A1
20020028582 Nallan et al. Mar 2002 A1
20020028585 Chung et al. Mar 2002 A1
20020029747 Powell et al. Mar 2002 A1
20020033233 Savas Mar 2002 A1
20020036143 Segawa et al. Mar 2002 A1
20020040764 Kwan et al. Apr 2002 A1
20020045966 Lee et al. Apr 2002 A1
20020054962 Huang May 2002 A1
20020069820 Yudovsky Jun 2002 A1
20020070414 Drescher et al. Jun 2002 A1
20020074573 Takeuchi et al. Jun 2002 A1
20020098681 Hu et al. Jul 2002 A1
20020124867 Kim et al. Sep 2002 A1
20020129769 Kim et al. Sep 2002 A1
20020177322 Li et al. Nov 2002 A1
20020187280 Johnson et al. Dec 2002 A1
20020187655 Tan et al. Dec 2002 A1
20020197823 Yoo et al. Dec 2002 A1
20030003757 Naltan et al. Jan 2003 A1
20030010645 Ting et al. Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030029566 Roth Feb 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030032284 Enomoto et al. Feb 2003 A1
20030038127 Liu et al. Feb 2003 A1
20030038305 Wasshuber Feb 2003 A1
20030054608 Tseng et al. Mar 2003 A1
20030072639 White et al. Apr 2003 A1
20030075808 Inoue et al. Apr 2003 A1
20030077909 Jiwari Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030087531 Kang et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030098125 An May 2003 A1
20030109143 Hsieh et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116439 Seo et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030124465 Lee et al. Jul 2003 A1
20030124842 Hytros et al. Jul 2003 A1
20030129106 Sorensen et al. Jul 2003 A1
20030129827 Lee et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030148035 Lingampalli Aug 2003 A1
20030173333 Wang et al. Sep 2003 A1
20030173347 Guiver Sep 2003 A1
20030181040 Ivanov et al. Sep 2003 A1
20030183244 Rossman Oct 2003 A1
20030190426 Padhi et al. Oct 2003 A1
20030199170 Li Oct 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224617 Baek et al. Dec 2003 A1
20040005726 Huang Jan 2004 A1
20040033678 Arghavani et al. Feb 2004 A1
20040050328 Kumagai et al. Mar 2004 A1
20040069225 Fairbairn et al. Apr 2004 A1
20040070346 Choi Apr 2004 A1
20040072446 Liu et al. Apr 2004 A1
20040101667 O'Loughlin et al. May 2004 A1
20040110354 Natzle et al. Jun 2004 A1
20040115876 Goundar et al. Jun 2004 A1
20040129224 Yamazaki Jul 2004 A1
20040137161 Segawa et al. Jul 2004 A1
20040144490 Zhao et al. Jul 2004 A1
20040147126 Yamashita et al. Jul 2004 A1
20040154535 Chen et al. Aug 2004 A1
20040175929 Schmitt et al. Sep 2004 A1
20040182315 Laflamme et al. Sep 2004 A1
20040192032 Ohmori et al. Sep 2004 A1
20040194799 Kim et al. Oct 2004 A1
20040211357 Gadgil et al. Oct 2004 A1
20040219789 Wood et al. Nov 2004 A1
20040245091 Karim et al. Dec 2004 A1
20050001276 Gao et al. Jan 2005 A1
20050003676 Ho et al. Jan 2005 A1
20050009358 Choi et al. Jan 2005 A1
20050026430 Kim et al. Feb 2005 A1
20050026431 Kazumi et al. Feb 2005 A1
20050035455 Hu et al. Feb 2005 A1
20050048801 Karim et al. Mar 2005 A1
20050073051 Yamamoto et al. Apr 2005 A1
20050090120 Hasegawa et al. Apr 2005 A1
20050098111 Shimizu et al. May 2005 A1
20050112901 Ji et al. May 2005 A1
20050121750 Chan et al. Jun 2005 A1
20050181588 Kim Aug 2005 A1
20050199489 Stevens et al. Sep 2005 A1
20050205110 Kao et al. Sep 2005 A1
20050214477 Hanawa et al. Sep 2005 A1
20050218507 Kao et al. Oct 2005 A1
20050221552 Kao et al. Oct 2005 A1
20050230350 Kao et al. Oct 2005 A1
20050236694 Wu et al. Oct 2005 A1
20050266622 Arghavani et al. Dec 2005 A1
20050266691 Gu et al. Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060000802 Kumar et al. Jan 2006 A1
20060000805 Todorow et al. Jan 2006 A1
20060011298 Lim et al. Jan 2006 A1
20060019456 Bu et al. Jan 2006 A1
20060019486 Yu et al. Jan 2006 A1
20060021574 Armour et al. Feb 2006 A1
20060024954 Wu et al. Feb 2006 A1
20060024956 Zhijian et al. Feb 2006 A1
20060033678 Lubomirsky et al. Feb 2006 A1
20060046419 Sandhu et al. Mar 2006 A1
20060046484 Abatchev et al. Mar 2006 A1
20060051966 Or et al. Mar 2006 A1
20060051968 Joshi et al. Mar 2006 A1
20060054184 Mozetic et al. Mar 2006 A1
20060093756 Rajagopalan et al. May 2006 A1
20060102076 Smith et al. May 2006 A1
20060130971 Chang et al. Jun 2006 A1
20060162661 Jung et al. Jul 2006 A1
20060166107 Chen et al. Jul 2006 A1
20060166515 Karim et al. Jul 2006 A1
20060178008 Yeh et al. Aug 2006 A1
20060185592 Matsuura Aug 2006 A1
20060191637 Zajac et al. Aug 2006 A1
20060207504 Hasebe et al. Sep 2006 A1
20060210723 Ishizaka Sep 2006 A1
20060211260 Tran et al. Sep 2006 A1
20060216923 Tran et al. Sep 2006 A1
20060226121 Aoi Oct 2006 A1
20060240661 Annapragada et al. Oct 2006 A1
20060246217 Weidman et al. Nov 2006 A1
20060251800 Weidman et al. Nov 2006 A1
20060251801 Weidman et al. Nov 2006 A1
20060252252 Zhu et al. Nov 2006 A1
20060261490 Su et al. Nov 2006 A1
20060264003 Eun Nov 2006 A1
20060264043 Stewart et al. Nov 2006 A1
20060266288 Choi Nov 2006 A1
20070071888 Shanmugasundram et al. Mar 2007 A1
20070072408 Enomoto et al. Mar 2007 A1
20070090325 Hwang et al. Apr 2007 A1
20070099428 Shamiryan et al. May 2007 A1
20070099431 Li May 2007 A1
20070099438 Ye et al. May 2007 A1
20070107750 Sawin et al. May 2007 A1
20070108404 Stewart et al. May 2007 A1
20070111519 Lubomirsky et al. May 2007 A1
20070117396 Wu et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070123051 Arghavani et al. May 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070181057 Lam et al. Aug 2007 A1
20070193515 Jeon et al. Aug 2007 A1
20070197028 Byun et al. Aug 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070238321 Futase et al. Oct 2007 A1
20070243685 Jiang et al. Oct 2007 A1
20070269976 Futase et al. Nov 2007 A1
20070281106 Lubomirsky et al. Dec 2007 A1
20080044990 Lee Feb 2008 A1
20080075668 Goldstein Mar 2008 A1
20080081483 Wu Apr 2008 A1
20080085604 Hoshino et al. Apr 2008 A1
20080099147 Myo et al. May 2008 A1
20080099431 Kumar et al. May 2008 A1
20080115726 Ingle et al. May 2008 A1
20080124919 Huang et al. May 2008 A1
20080124937 Xu et al. May 2008 A1
20080142483 Hua et al. Jun 2008 A1
20080142831 Su Jun 2008 A1
20080153306 Cho et al. Jun 2008 A1
20080160210 Yang et al. Jul 2008 A1
20080162781 Haller et al. Jul 2008 A1
20080182381 Kiyotoshi Jul 2008 A1
20080182382 Ingle et al. Jul 2008 A1
20080182383 Lee et al. Jul 2008 A1
20080202892 Smith et al. Aug 2008 A1
20080230519 Takahashi Sep 2008 A1
20080233709 Conti et al. Sep 2008 A1
20080261404 Kozuka et al. Oct 2008 A1
20080268645 Kao et al. Oct 2008 A1
20080292798 Huh et al. Nov 2008 A1
20090004849 Eun Jan 2009 A1
20090017227 Fu et al. Jan 2009 A1
20090045167 Maruyama Feb 2009 A1
20090081878 Dhindsa Mar 2009 A1
20090084317 Wu et al. Apr 2009 A1
20090104738 Ring et al. Apr 2009 A1
20090104764 Xia et al. Apr 2009 A1
20090104782 Lu et al. Apr 2009 A1
20090170221 Jacques et al. Jul 2009 A1
20090189246 Wu et al. Jul 2009 A1
20090202721 Nogami et al. Aug 2009 A1
20090255902 Satoh et al. Oct 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090275206 Katz et al. Nov 2009 A1
20090277874 Rui et al. Nov 2009 A1
20090280650 Lubomirsky et al. Nov 2009 A1
20100003824 Kadkhodayan et al. Jan 2010 A1
20100048027 Cheng et al. Feb 2010 A1
20100055917 Kim Mar 2010 A1
20100059889 Gosset et al. Mar 2010 A1
20100075503 Bencher et al. Mar 2010 A1
20100093151 Arghavani et al. Apr 2010 A1
20100098884 Balseanu et al. Apr 2010 A1
20100099236 Kwon et al. Apr 2010 A1
20100099263 Kao et al. Apr 2010 A1
20100101727 Ji Apr 2010 A1
20100105209 Winniczek et al. Apr 2010 A1
20100144140 Chandrashekar et al. Jun 2010 A1
20100173499 Tao et al. Jul 2010 A1
20100178755 Lee et al. Jul 2010 A1
20100187534 Nishi et al. Jul 2010 A1
20100187588 Kim et al. Jul 2010 A1
20100187694 Yu et al. Jul 2010 A1
20100190352 Jaiswal Jul 2010 A1
20100207205 Grebs et al. Aug 2010 A1
20100330814 Yokota et al. Dec 2010 A1
20110008950 Xu Jan 2011 A1
20110011338 Chuc et al. Jan 2011 A1
20110034035 Liang et al. Feb 2011 A1
20110053380 Sapre et al. Mar 2011 A1
20110081782 Liang et al. Apr 2011 A1
20110124144 Schlemm et al. May 2011 A1
20110143542 Feurprier et al. Jun 2011 A1
20110151674 Tang et al. Jun 2011 A1
20110151676 Ingle et al. Jun 2011 A1
20110151677 Wang et al. Jun 2011 A1
20110151678 Ashtiani et al. Jun 2011 A1
20110155181 Inatomi Jun 2011 A1
20110159690 Chandrashekar et al. Jun 2011 A1
20110165771 Ring et al. Jul 2011 A1
20110180847 Ikeda et al. Jul 2011 A1
20110195575 Wang Aug 2011 A1
20110217851 Liang et al. Sep 2011 A1
20110226734 Sumiya et al. Sep 2011 A1
20110230052 Tang et al. Sep 2011 A1
20110266252 Thadani et al. Nov 2011 A1
20110294300 Zhang et al. Dec 2011 A1
20120003782 Byun et al. Jan 2012 A1
20120009796 Cui et al. Jan 2012 A1
20120068242 Shin et al. Mar 2012 A1
20120135576 Lee et al. May 2012 A1
20120164839 Nishimura Jun 2012 A1
20120196447 Yang et al. Aug 2012 A1
20120211462 Zhang et al. Aug 2012 A1
20120238102 Zhang et al. Sep 2012 A1
20120238103 Zhang et al. Sep 2012 A1
20120285621 Tan Nov 2012 A1
20120292664 Kanike Nov 2012 A1
20120309204 Kang et al. Dec 2012 A1
20130005140 Jeng et al. Jan 2013 A1
20130034968 Zhang et al. Feb 2013 A1
20130045605 Wang et al. Feb 2013 A1
20130052827 Wang et al. Feb 2013 A1
20130052833 Ranjan et al. Feb 2013 A1
20130059440 Wang et al. Mar 2013 A1
20130089988 Wang et al. Apr 2013 A1
20130119483 Alptekin et al. May 2013 A1
20130187220 Surthi Jul 2013 A1
20130260533 Sapre et al. Oct 2013 A1
20130284369 Kobayashi et al. Oct 2013 A1
20130284370 Kobayashi et al. Oct 2013 A1
20130302980 Chandrashekar et al. Nov 2013 A1
20140099794 Ingle et al. Apr 2014 A1
20140262031 Belostotskiy et al. Sep 2014 A1
20140263272 Duan et al. Sep 2014 A1
20150011096 Chandrasekharan et al. Jan 2015 A1
Foreign Referenced Citations (99)
Number Date Country
1375575 Oct 2002 CN
1412861 Apr 2003 CN
101465386 Jun 2009 CN
0329406 Aug 1989 EP
0376252 Jul 1990 EP
0475567 Mar 1992 EP
0 496 543 Jul 1992 EP
0 658 928 Jun 1995 EP
0697467 Feb 1996 EP
0913498 May 1999 EP
1099776 May 2001 EP
1107288 Jun 2001 EP
1496542 Jan 2005 EP
1568797 Aug 2005 EP
2285174 Jun 1995 GB
61-276977 Dec 1986 JP
2058836 Feb 1990 JP
02-121330 May 1990 JP
02256235 Oct 1990 JP
4-239750 Jul 1992 JP
4-341568 Nov 1992 JP
07-130713 May 1995 JP
7-161703 Jun 1995 JP
7297543 Nov 1995 JP
08-306671 Nov 1996 JP
09-153481 Jun 1997 JP
09153481 Jun 1997 JP
09-205140 Aug 1997 JP
10-178004 Jun 1998 JP
11124682 May 1999 JP
H11-204442 Jul 1999 JP
2000-012514 Jan 2000 JP
2001-308023 Nov 2001 JP
2002-100578 Apr 2002 JP
2002-141349 May 2002 JP
2002-222861 Aug 2002 JP
2002-256235 Sep 2002 JP
2003-019433 Jan 2003 JP
2003-059914 Feb 2003 JP
2003-179038 Jun 2003 JP
2003-217898 Jul 2003 JP
2003-318158 Nov 2003 JP
2003-347278 Dec 2003 JP
2004-047956 Feb 2004 JP
2004-156143 Jun 2004 JP
04-239723 Aug 2004 JP
2005-033023 Feb 2005 JP
2007-173383 Jul 2007 JP
08-148470 Jun 2008 JP
2009-044129 Feb 2009 JP
2010-154699 Aug 2010 JP
10-0155601 Dec 1998 KR
10-0236219 Dec 1999 KR
1020000008278 Feb 2000 KR
2000-0044928 Jul 2000 KR
2001-0014064 Feb 2001 KR
10-2001-0049274 Jun 2001 KR
10-2001-0058774 Jul 2001 KR
10-2001-0082109 Aug 2001 KR
10-2003-0054726 Jul 2003 KR
1020030081177 Oct 2003 KR
20030096140 Dec 2003 KR
1020030096140 Dec 2003 KR
10-2004-0049739 Jun 2004 KR
10-2004-0096365 Nov 2004 KR
1020050042701 May 2005 KR
10-0681390 Sep 2006 KR
10-2008-0013174 Feb 2008 KR
1020080063988 Jul 2008 KR
10-2009-0080533 Jul 2009 KR
10-2010-0013980 Feb 2010 KR
10-2010-0074508 Jul 2010 KR
10-2010-0075957 Jul 2010 KR
1020100083629 Jul 2010 KR
10-2010-0099535 Sep 2010 KR
10-2011-0086540 Jul 2011 KR
10-1050454 Jul 2011 KR
1020110126675 Nov 2011 KR
1020120082640 Jul 2012 KR
9220833 Nov 1992 WO
9926277 May 1999 WO
9954920 Oct 1999 WO
9962108 Dec 1999 WO
0013225 Mar 2000 WO
0022671 Apr 2000 WO
0194719 Dec 2001 WO
02083981 Oct 2002 WO
03014416 Feb 2003 WO
2004006303 Jan 2004 WO
2004074932 Sep 2004 WO
2004114366 Dec 2004 WO
2005036615 Apr 2005 WO
2006069085 Jun 2006 WO
2009071627 Jun 2009 WO
2011087580 Jul 2011 WO
2011115761 Sep 2011 WO
2011139435 Nov 2011 WO
2012018449 Feb 2012 WO
2012125654 Sep 2012 WO
Non-Patent Literature Citations (82)
Entry
Abraham, “Reactive Facet Tapering of Plasma Oxide for Multilevel Interconnect Applications”, IEEE, V-MIC Conference, Jun. 15-16, 1987, pp. 115-121.
Applied Materials, Inc., “Applied Siconi™ Preclean,” printed on Aug. 7, 2009, 8 pages.
Carlson, et al., “A Negative Spacer Lithography Process for Sub-100nm Contact Holes and Vias”, University of California at Berkeley, Jun. 19, 2007, 4 pp.
Chang et al. “Frequency Effects and Properties of Plasma Deposited Fluorinated Silicon Nitride”, J. Vac Sci Technol B 6(2), Mar./Apr. 1988, pp. 524-532.
Cheng, et al., “New Test Structure to Identify Step Coverage Mechanisms in Chemical Vapor Deposition of Silicon Dioxide,” Appl. Phys. Lett., 58 (19), May 13, 1991, p. 2147-2149.
C.K. Hu, et al. “Reduced Electromigration of Cu Wires by Surface Coating” Applied Physics Letters, vol. 81, No. 10, Sep. 2, 2002—pp. 1782-1784.
European Search Report dated May 23, 2006 for EP Application No. 05251143.3.
European Examination Report dated Nov. 13, 2007 for EP Application No. 05251143.3
EP Partial Search Report, Application No. 08150111.601235/1944796, dated Aug. 22, 2008.
Examination Report dated Jun. 28, 2010 for European Patent Application No. 05251143.3.
Eze, F. C., “Eiectroless deposition of CoO thin films,” J. Phys. D: Appl. Phys. 32 (1999), pp. 533-540.
Fukada et al. “Preparation of SiOF Films with Low Dielectric Constant by ECR Plasma CVD”, ISMIC, DUMIC Conference, Feb. 21-22, 1995, pp. 43-49.
Galiano et al. “Stress-Temperature Behavior of Oxide Films Used for Intermetal Dielectric Applications”, VMIC Conference, Jun. 9-10, 1992, pp. 100-106.
Hashim et al.; Characterization of thin oxide removal by RTA Treatment; ICSE 1998 Proc. Nov. 1998, Rangi, Malaysia, pp. 213-216.
Hausmann, et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, Oct. 11, 2002, p. 402-406, vol. 298.
Hayasaka, N. et al. “High Quality Low Dielectric Constant SiO2 CVD Using High Density Plasma,” Proceedings of the Dry Process Symposium, 1993, pp. 163-168.
Hwang et al., “Smallest Bit-Line Contact of 76nm pitch on NAND Flash Cell by using Reversal PR (Photo Resist) and SADP (Self-Align Double Patterning) Process,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2007, 3 pages.
Iijima, et al., “Highly Selective SiO2 Etch Employing Inductively Coupled Hydro-Fluorocarbon Plasma Chemistry for Self Aligned Contact Etch”, Jpn. J. Appl. Phys., Sep. 1997, pp. 5498-5501, vol. 36, Part 1, No. 9A.
International Search Report and Written Opinion of the International Searching Authority mailed Jul. 3, 2008 (PCT/US05/46226.
International Search Report and Written Opinion for PCT Application No. PCT/US2011/027221, mailed on Nov. 1, 2011, 8 pages.
International Search Report and Written Opinion of PCT/US2010/057676 mailed on Jun. 27, 2011, 9 pages.
International Search Report and Written Opinion of PCT/US2011/030582 mailed Dec. 7, 2011, 9 pages.
International Search Report and Written Opinion of PCT/US2011/064724 mailed on Oct. 12, 2012, 8 pages.
International Search Report and Written Opinion of PCT/US2012/028952 mailed on Oct. 29, 2012, 9 pages.
International Search Report and Written Opinion of PCT/US2012/048842 mailed on Nov. 28, 2012, 10 pages.
International Search Report and Written Opinion of PCT/US2012/053329 mailed on Feb. 15, 2013, 8 pages.
International Search Report and Written Opinion of PCT/US2012/057294 mailed on Mar. 18, 2013, 12 pages.
International Search Report and Written Opinion of PCT/US2012/057358 mailed on Mar. 25, 2013, 10 pages.
International Search Report and Written Opinion of PCT/US2012/058818 mailed on Apr. 1, 2013, 9 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US2012/028957, mailed on Oct. 18, 2012, 9 pages.
International Search Report of PCT/US2009/059743 mailed on Apr. 26, 2010, 4 pages.
International Search report and Written Opinion of PCT/CN2010/000932 dated Mar. 31, 2011.
International Search report and Written Opinion of PCT/CN2012/061726 mailed on May 16, 2013, 3 pages.
Japanese Patent Office, Official Action for Application No. 2007-317207 mailed on Dec. 21, 2011, 2 pages.
Jung, et al., “Patterning with amorphous carbon spacer for expanding the resolution limit of current lithography tool”, Proc. SPIE , 2007, 9 pages, vol. 6520, 65201C.
Laxman, “Low ε Dielectrics: CVD Fluorinated Silicon Dioxides”, Semiconductor International, May 1995, pp. 71-74.
Lee, et al., “Dielectric Planarization Techniques for Narrow Pitch Multilevel Interconnects,” IEEE, V-MIC Conference Jun. 15-16, 1987, pp. 85-92 (1987).
Lin, et al., “Manufacturing of Cu Electroless Nickei/Sn—Pb Flip Chip Solder Bumps”, IEEE Transactions on Advanced Packaging, vol. 22, No. 4 (Nov. 1999), pp. 575-579.
Lopatin, et al., “Thin Electroless barrier for copper films”, Part of the SPIE Conference of Multilevel Interconnect technology II, SPIE vol. 3508 (1998), pp. 65-77.
Matsuda, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass Deposition for 0.25 um Interlevel Dielectrics”, ISMIC, DUMIC Conference Feb. 21-22, 1995, pp. 22-28.
Meeks, Ellen et al., “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements,” J. Vac. Sci. Technol. A, Mar./Apr. 1998, pp. 544-563, vol. 16(2).
Mukai, et al., “A Study of CD Budget in Spacer Patterning Process”, Toshiba, SPIE 2008, Feb. 26, 2008, 12 pages.
Musaka, “Single Step Gap Filling Technology fo Subhalf Micron Metal Spacings on Plasma Enhanced TEOS/O2 Chemical Vapor Deposition System,” Extended Abstracts of the 1993 International Conference on Solid State Devices and Materials pages, 1993, 510-512.
Nishino, et al.; Damage-Free Selective Etching of SI Native Oxides Using NH3/NF3 and SF6/H20 Down-Flow Etching, The Japanese Society of Applied Physics, vol. 74, No. 2, pp. 1345-1348, XP-002491959, Jul. 15, 1993.
Ogawa, et al., “Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure”, Japanese Journal of Applied Physics, pp. 5349-5358, Aug. 2002, vol. 41 Part 1, No. 8.
Ota, et al., “Stress Controlled Shallow Trench Isolation Technology to Suppress the Novel Anti-Isotropic Impurity Diffusion for 45nm-Node High Performance CMOSFETs,” Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 138-139.
Pearlstein, Fred. “Eiectroless Plating,” J. Res. Natl. Bur. Stan., Ch. 31 (1974), pp. 710-747.
Qian, et al., “High Density Plasma Deposition and Deep Submicron Gap Fill with Low Dielectric Constant SiOF Films,” ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995, pp. 50-56.
Robles, et al. “Effects of RF Frequency and Deposition Rates on the Moisture Resistance of PECVD TEOS-Based Oxide Films”, ECS Extended Abstracts, Abstract No. 129, May 1992, pp. 215-216, vol. 92-1.
Saito, et al., “Eiectroless deposition of Ni—B, Co—B and Ni—Co—B alloys using dimethylamineborane as a reducing agent,” Journal of Applied Electrochemistry 28 (1998), pp. 559-563.
Schacham-Diamond, et al., “Electrochemically deposited thin film alloys for ULSI and MEMS applications,” Microelectronic Engineering 50 (2000), pp. 525-531.
Schacham-Diamond, et al. “Material properties of electroless 100-200 nm thick CoWP films,” Electrochemical Society Proceedings, vol. 99-34, pp. 102-110.
Shapiro, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass: Water Absorption and Stability”, ISMIC, DUMIC Conference Feb. 21-22, 1995, pp. 118-123.
Smayling, et al., “APF® Pitch-Halving for 2nm Logic Cells using Gridded Design Rules”, proceedings of the SPIE, 2008, 8 pages.
S.M. Sze, VLSI Technology, McGraw-Hill Book Company, pp. 107, 108.
U.S. Appl. No. 60/803,499, filed May 30, 2006, 56 pages.
U.S. Appl. No. 11/875,250, filed Oct. 19, 2007, 36 pages.
Usami, et al., “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys., Jan. 19, 1994. pp. 408-412, vol. 33 Part 1, No. 1B.
Vassiliev, et al., “Trends in void-free pre-metal CVD dielectrics,” Solid State Technology, Mar. 2001, pp. 129-136.
Wang et al.; Ultra High-selectivity silicon nitride etch process using an inductively coupled plasma source; J. Vac. Sci. Techno!. A 16(3),May/Jun. 1998, pp. 1582-1587.
Weston, et al., “Ammonium Compounds,” Kirk-Othmer Encyclopedia of Chemical Technology, 2003,30 pages see pp. 717-718, John Wiley & Sons, Inc.
Wolf et al.; Silicon Processing for the VLSI Era; vol. 1; 1986; Lattice Press, pp. 546, 547, 618, 619.
Yosi Shacham-Diamond, et al. “High Aspect Ratio Quarter-Micron Electroless Copper Integrated Technology”, Microelectronic Engineering 37/38 (1997) pp. 77-88.
Yu, et al., “Step Coverage Study of Peteos Deposition for Intermetal Dielectric Applications,” abstract, VMIC conference, Jun. 12-13, 1990, 7 pages, No. 82.
Yutaka, et al., “Selective Etching of Silicon Native Oxide with Remote-Plasma-Excited Anhydrous Hydrogen Fluoride,” Japanese Journal of Applied Physics, 1998, vol. 37, pp. L536-L538.
International Search Report of PCT/2013/052039 mailed on Nov. 8, 2013, 9 pages.
International Search Report of PCT/2013/037202 mailed on Aug. 23, 2013, 11 pages.
Abe et al., “Developments of plasma etching technology for fabricating semiconductor devices,” Jpn. J. Appl. Phys., vol. 47, No. 3R, Mar. 2008, 21 pgs.
Cho et al., “Dual Discharge Modes Operation of an Argon Plasma Generated by Commercial Electronic Ballast for Remote Plasma Removal Process,” IEEE Transactions on Plasma Science, vol. 42, No. 6, , Jun. 2014, 4 pages.
Cho et al., “Dielectric-barrier microdischarge structure for effic ient positive-column plasma using a thick-film ceramic sheet,” IEEE Trans. Plasma Sci., vol. 37, No. 8, Aug. 2009, 4 pgs.
Cho et al., “Three-dimensional spatiotemporal behaviors of light emission from discharge plasma of alternating current plasma display panels,” Appl. Phys. Lett. , vol. 92, No. 22, Jun. 2008, 3pgs.
Cho et al., “Analysis of address discharge modes by using a three-dimensional plasma display panel,” IEEE Trans. Plasma Sci. , vol. 36, Oct. 2008, 4 pgs.
Derwent 2006-065772, Formation of multilayer enscapulating film over substrate, e.g. displace device, comprising delivering mixture precursors and hydrogen gas into substrate processing system, 2006.
Goebels, F.J. et al. “Arbitrary Polarization from Annular Slot Planar Antennas.” Ire Transactions on Antennas and Propagation, Jul. 1961, 8 pgs.
Kim et al., “Pendulum electrons in micro hollow cathode di scharges,” IEEE Trans. Plasma Sci. , vol. 36, No. 4, pp. Aug. 2008, 2 pgs.
Redolfi et al., “Bulk FinFET fabrication with new approaches for oxide topography control using dry removal techniques,” Solid-State Electron., vol. 71, May 2012, 7 pgs.
Schoenbach et al.,“High-pressure hollow cathode di scharges,” Plasma Sources Sci. Te chnol.,vol. 6, No. 4, Nov. 1997, 10 pgs.
International Search Report and Written Opinion of PCT/US2013/076217 mailed on Apr. 28, 2014, 11 pages.
C.C. Tang and D. W. Hess, Tungsten Etching in CF4 and SF6 Discharges, J. Electrochem. Soc., 1984, 131 (1984) p. 115-120.
Yang, R., “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules,” J. Vac. Sci., Technol. B, Microelectron. Nanometer Struct., vol. 28, No. 1, Jan. 2010, 6 pgs.
Yasaka, Y. et al. “Planar microwave discharges with active control of plasma uniformity”. Physics of Plasmas, vol. 9 No. 3, Mar. 2002, 7 pgs.
Yasuda et al., “Dual-function remote plasma etching/cleaning system applied to selective etching of Si02 and removal of polymeric residues,” J. Vac. Sci. Technol., A, vol. 11, No. 5, 1993, 12 pgs.
Related Publications (1)
Number Date Country
20140097270 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61704257 Sep 2012 US