The invention relates to a showerhead electrode assembly of a plasma processing chamber in which semiconductor components can be manufactured.
According to one embodiment, a showerhead electrode assembly comprises an inner electrode and an outer electrode clamped to a backing plate wherein the showerhead electrode assembly comprises an upper electrode of a capacitively coupled plasma processing chamber. The inner electrode is a circular plate having a plasma exposed surface on a lower face thereof and a mounting surface on an upper face thereof, the lower face including inner and outer steps at an outer periphery of the plate. The inner step has a smaller diameter than the outer step and the outer step is located between the inner step and the mounting surface. The outer step is configured to mate with an inwardly extending flange of a clamp ring and the inner step is configured to mate with an inner step of the outer electrode which surrounds the inner electrode such that an inner tapered surface of the outer electrode extends from the outer edge of the plasma exposed surface. The mounting surface includes a plurality of alignment pin recesses configured to receive alignment pins arranged in a pattern matching alignment pin holes in a backing plate against which the plate is held by the clamp ring and the plate includes process gas outlets arranged in a pattern matching gas supply holes in the backing plate.
The outer electrode comprises an annular plate having a plasma exposed surface on a lower face thereof and a mounting surface on an upper face thereof, the upper face including a planar annular surface between an inner step and an outer step, the plasma exposed surface including inner and outer inclined surfaces. A plurality of circumferentially spaced apart pockets in the planar annular surface are configured to receive locking pins therein adapted to clamp the outer electrode to a backing plate.
According to another embodiment, a showerhead electrode assembly of a capacitively coupled plasma processing chamber comprises a thermal control plate, a backing plate, a guard ring, an inner electrode, an outer electrode and a clamp ring. The thermal control plate is supported by a temperature controlled wall of the plasma processing chamber, the thermal control plate having a diameter larger than a wafer to be processed in the plasma processing chamber and including annular projections on a lower face thereof with gas plenums between the annular projections. The backing plate is supported by the thermal control plate and has a diameter smaller than the thermal control plate, gas passages therethrough, and cam locks in horizontally extending bores. The guard ring surrounds the backing plate and is rotatable to align an access bore therein with at least one of the cam locks. The inner electrode has gas passages therethrough in fluid communication with the gas passages in the backing plate and an outer periphery of the inner electrode includes inner and outer steps, the outer step being located between the inner step and a surface of the inner electrode facing the backing plate. The clamp ring has an inner flange overlying the outer step of the inner electrode with an optional compression ring therebetween, the clamp ring including vertically extending stepped openings, the stepped openings being aligned with threaded holes in the backing plate and fasteners in the stepped openings attaching the clamp ring to the backing plate and applying a compressive force on the outer step of the inner electrode. The outer electrode surrounds the inner electrode and includes vertically extending locking pins which engage the cam locks, the outer electrode supporting the guard ring and being removable by releasing the locking pins from the cam locks.
The fabrication of an integrated circuit chip typically begins with a thin, polished slice of high-purity, single-crystal semiconductor material substrate (such as silicon or germanium) called a “wafer.” Each wafer is subjected to a sequence of physical and chemical processing steps that form the various circuit structures on the wafer. During the fabrication process, various types of thin films may be deposited on the wafer using various techniques such as thermal oxidation to produce silicon dioxide films, chemical vapor deposition to produce silicon, silicon dioxide, and silicon nitride films, and sputtering or other techniques to produce other metal films.
After depositing a film on the semiconductor wafer, the unique electrical properties of semiconductors are produced by substituting selected impurities into the semiconductor crystal lattice using a process called doping. The doped silicon wafer may then be uniformly coated with a thin layer of photosensitive, or radiation sensitive material, called a “resist.” Small geometric patterns defining the electron paths in the circuit may then be transferred onto the resist using a process known as lithography. During the lithographic process, the integrated circuit pattern may be drawn on a glass plate called a “mask” and then optically reduced, projected, and transferred onto the photosensitive coating.
The lithographed resist pattern is then transferred onto the underlying crystalline surface of the semiconductor material through a process known as etching. Vacuum processing chambers are generally used for etching and chemical vapor deposition (CVD) of materials on substrates by supplying an etching or deposition gas to the vacuum chamber and application of a radio frequency (RF) field to the gas to energize the gas into a plasma state.
A reactive ion etching system typically consists of an etching chamber with an upper electrode or anode and a lower electrode or cathode positioned therein. The cathode is negatively biased with respect to the anode and the container walls. The wafer to be etched is covered by a suitable mask and placed directly on the cathode. A chemically reactive gas such as CF4, CHF3, CClF3, HBr, Cl2 and SF6 or mixtures thereof with O2, N2, He or Ar is introduced into the etching chamber and maintained at a pressure which is typically in the millitorr range. The upper electrode is provided with gas hole(s), which permit the gas to be uniformly dispersed through the electrode into the chamber. The electric field established between the anode and the cathode will dissociate the reactive gas forming plasma. The surface of the wafer is etched by chemical interaction with the active ions and by momentum transfer of the ions striking the surface of the wafer. The electric field created by the electrodes will attract the ions to the cathode, causing the ions to strike the surface in a predominantly vertical direction so that the process produces well-defined vertically etched sidewalls. The etching reactor electrodes may often be fabricated by bonding two or more dissimilar members with mechanically compliant and/or thermally conductive adhesives, allowing for a multiplicity of function.
The assembly 100 also includes a thermal control member 102, and an upper plate 104 having liquid flow channels therein and forming a temperature controlled wall of the chamber. The upper electrode 110 preferably includes an inner electrode 120, and an outer electrode 130. The inner electrode 120 is preferably a cylindrical plate and may be made of a conductive high purity material such as single crystal silicon, polycrystalline silicon, silicon carbide or other suitable material. The backing plate 140 is mechanically secured to the inner electrode 120 and the outer electrode 130 with mechanical fasteners described below. The guard ring 170 surrounds the backing plate 140 and provides access to cam locking members as described below.
The showerhead electrode assembly 100 as shown in
The upper electrode 110 is a consumable part which must be replaced periodically. To supply process gas to the gap between the wafer and the upper electrode, the upper electrode 110 is provided with a gas discharge passages 106, which are of a size and distribution suitable for supplying a process gas, which is energized by the electrode and forms plasma in a reaction zone beneath the upper electrode 110.
The showerhead electrode assembly 100 also includes a plasma confinement assembly (or wafer area plasma (WAP) assembly) 180, which surrounds the outer periphery of the upper electrode 110 and the backing plate 140. The plasma confinement assembly 180 is preferably comprised of a stack or plurality of spaced-apart quartz rings 190, which surrounds the outer periphery of upper electrode 110 and the backing plate 140. During processing, the plasma confinement assembly 180 causes a pressure differential in the reaction zone and increases the electrical resistance between the reaction chamber walls and the plasma thereby confining the plasma between the upper electrode 110 and the lower electrode (not shown).
During use, the confinement rings 190 confine the plasma to the chamber volume and controls the pressure of the plasma within the reaction chamber. The confinement of the plasma to the reaction chamber is a function of many factors including the spacing between the confinement rings 190, the pressure in the reaction chamber outside of the confinement rings and in the plasma, the type and flow rate of the gas, as well as the level and frequency of RF power. Confinement of the plasma is more easily accomplished if the spacing between the confinement rings 190 is very small. Typically, a spacing of 0.15 inches or less is required for confinement. However, the spacing of the confinement rings 190 also determines the pressure of the plasma, and it is desirable that the spacing can be adjusted to achieve the pressure required for optimal process performance while maintaining plasma. Process gas from a gas supply is supplied to electrode 110 through one or more passages in the upper plate 104 which permit process gas to be supplied to a single zone or multiple zones above the wafer.
The inner electrode 120 is preferably a planar disk or plate having a uniform thickness from center (not shown) to an outer edge. The inner electrode 120 can have a diameter smaller than, equal to, or larger than a wafer to be processed, e.g., up to 300 mm, if the plate is made of single crystal silicon, which is the diameter of currently available single crystal silicon material used for 300 mm wafers. For processing 300 mm wafers, the outer electrode 130 is adapted to expand the diameter of the upper electrode 110 from about 15 inches to about 17 inches. The outer electrode 130 can be a continuous member (e.g., a single crystal silicon, polycrystalline silicon, silicon carbide or other suitable material in the form of a ring) or a segmented member (e.g., 2-6 separate segments arranged in a ring configuration, such as segments of single crystal silicon, polycrystalline silicon, silicon carbide or other material). The inner electrode 120 preferably includes multiple gas passages 106 for injecting a process gas into a space in a plasma reaction chamber below the upper electrode 110.
Single crystal silicon is a preferred material for plasma exposed surfaces of the inner electrode 120 and the outer electrode 130. High-purity, single crystal silicon minimizes contamination of substrates during plasma processing as it introduces only a minimal amount of undesirable elements into the reaction chamber, and also wears smoothly during plasma processing, thereby minimizing particles. Alternative materials including composites of materials that can be used for plasma-exposed surfaces of the upper electrode 110 include SiC, SiN, and AlN, for example.
In configurations, the showerhead electrode assembly 100 is large enough for processing large substrates, such as semiconductor wafers having a diameter of 300 mm. For 300 mm wafers, the upper electrode 110 is at least 300 mm in diameter. However, the showerhead electrode assembly 100 can be sized to process other wafer sizes.
The backing plate 140 is preferably made of a material that is chemically compatible with process gases used for processing semiconductor substrates in the plasma processing chamber, have a coefficient of thermal expansion closely matching that of the electrode material, and/or are electrically and thermally conductive. Preferred materials that can be used to make the backing plate 140 include, but are not limited to, graphite, SiC, aluminum (Al), or other suitable materials.
The inner and the outer electrodes 120, 130 can be attached mechanically to the backing plate 140 without any adhesive bonding between the electrodes and backing plate, i.e., a thermally and electrically conductive elastomeric bonding material is not used to attach the electrodes to the backing plate.
The backing plate 140 is preferably attached to the thermal control member 102 with suitable mechanical fasteners, which can be threaded bolts, screws, or the like. For example, bolts (not shown) can be inserted in holes in the thermal control member 102 and screwed into threaded openings in the backing plate 140. The thermal control member 102 includes a flexure portion 184 and is preferably made of a machined metallic material, such as aluminum, an aluminum alloy or the like. The upper temperature controlled plate 104 is preferably made of aluminum or an aluminum alloy. The plasma confinement assembly (or wafer area plasma assembly (WAP)) 180 is positioned outwardly of the showerhead electrode assembly 100. The suitable plasma confinement assembly 180 including a plurality of vertically adjustable plasma confinement rings 190 is described in commonly owned U.S. Pat. No. 5,534,751, which is incorporated herein by reference in its entirety.
The outer electrode can be mechanically attached to the backing plate by a cam lock mechanism as described in commonly-assigned U.S. Application Ser. No. 61/036,862, filed Mar. 14, 2008, the disclosure of which is hereby incorporated by reference. With reference to
The electrode cam lock clamp includes a stud (locking pin) 205 mounted into a socket 213. The stud may be surrounded by a disc spring stack 215, such, for example, stainless steel Belleville washers. The stud 205 and disc spring stack 215 may then be press-fit or otherwise fastened into the socket 213 through the use of adhesives or mechanical fasteners. The stud 205 and the disc spring stack 215 are arranged into the socket 213 such that a limited amount of lateral movement is possible between the electrode 201 and the backing plate 203. Limiting the amount of lateral movement allows for a tight fit between the electrode 201 and the backing plate 203, thus ensuring good thermal contact, while still providing some movement to account for differences in thermal expansion between the two parts. Additional details on the limited lateral movement feature are discussed in more detail, below.
In a specific exemplary embodiment, the socket 213 is fabricated from bearing-grade Torlon®. Alternatively, the socket 213 may be fabricated from other materials possessing certain mechanical characteristics such as good strength and impact resistance, creep resistance, dimensional stability, radiation resistance, and chemical resistance may be readily employed. Various materials such as polyamides, polyimides, acetals, and ultra-high molecular weight polyethylene materials may all be suitable. High temperature-specific plastics and other related materials are not required for forming the socket 213 as 230° C. is a typical maximum temperature encountered in applications such as etch chambers. Generally, a typical operating temperature is closer to 130° C.
Other portions of the electrode cam lock clamp are comprised of a camshaft 207 surrounded at each end by a pair of camshaft bearings 209. The camshaft 207 and camshaft bearing assembly is mounted into a backing plate bore 211 machined into the backing plate 203. In a typical application for an etch chamber designed for 300 mm semiconductor wafers, eight or more of the electrode clamps may be spaced around the periphery of the electrode 201/backing plate 203 combination.
The camshaft bearings 209 may be machined from a variety of materials including Torlon®, Vespel®, Celcon®, Delrin®, Teflon®, Arlon®, or other materials such as fluoropolymers, acetals, polyamides, polyimides, polytetrafluoroethylenes, and polyetheretherketones (PEEK) having a low coefficient of friction and low particle shedding. The stud 205 and camshaft 207 may be machined from stainless steel (e.g., 316, 316L, 17-7, etc.) or any other material providing good strength and corrosion resistance.
Referring now to
In
The stud/socket assembly 303 illustrates an inside diameter in an upper portion of the socket 213 being larger than an outside diameter of a mid-section portion of the stud 205. The difference in diameters between the two portions allows for the limited lateral movement in the assembled electrode clamp as discussed above. The stud/disc spring assembly 301 is maintained in rigid contact with the socket 213 at a base portion of the socket 213 while the difference in diameters allows for some lateral movement. (See also,
With reference to
For example, with continued reference to
In an exemplary mode of operation, once the camshaft bearings are attached to the camshaft 207 and inserted into the backing plate bore 211, the camshaft 207 is rotated counterclockwise to its full rotational travel. The stud/socket assembly 303 (
With reference to
The electrode assembly 500 includes a thermal control plate 510 bolted from outside the chamber to a temperature controlled top wall 512 of the chamber. The outer electrode is releasably attached to the backing plate by cam locks 514 described earlier with reference to
In a preferred embodiment, the outer electrode 502 of the electrode assembly 500 can be disassembled by (a) rotating the guard ring 508 to a first position aligning four holes in the guard ring with four cam locks 514 located at spaced positions in the outer portion of the backing plate; (b) inserting an Allen wrench through each hole in the guard ring and rotating each cam lock to release a vertically extending locking pin of each respective cam lock; (c) rotating the guard ring 90° to a second position aligning the four holes in the guard ring with another four cam locks; and (d) inserting an Allen wrench through each hole in the guard ring and rotating each respective cam lock to release a locking pin of each respective cam lock; whereby the outer electrode 502 can be lowered and removed from the plasma chamber.
The upper face of the electrode includes 6 alignment pin holes 520 with 3 pin holes near the center and 3 pin holes near the outer edge of the electrode. The pin holes can have diameters of about 0.116 inch. The 3 central pin holes are radially aligned and include a pin hole about 0.160 inch deep at the center of the inner electrode and 2 pin holes about 0.200 inch deep located about 1.6 inches from the center pin hole at locations between the third and fourth row of gas holes. The outer pin holes are about 0.100 inch deep and include one pin hole radially aligned with the central pin holes about 6 inches from the center pin hole and two other pin holes offset 97.5° and 170° therefrom with the second and the third outer pin holes the same distance from the center pin hole but offset 92.5° from each other.
The outer steps include an inner step 532 and an outer step 534 machined into the silicon plate so as to extend completely around the silicon plate. In a preferred embodiment, the silicon plate has a thickness of about 0.400 inch and an outer diameter of about 12.560 inch, the inner step 532 has an inner diameter of about 12.004 inches, an outer diameter of about 12.135 inch and extends about 0.13 inch into the plasma exposed surface 530 and the outer step 534 has an inner diameter of about 12.135 inches and an outer diameter of about 12.560 inches and extends about 0.24 inch into the plasma exposed surface 530. The inner step 532 has a vertical surface 532a about 0.13 inch long and a horizontal surface 532b about 0.065 inch long and the outer step 534 has a vertical surface 534a about 0.11 inch long and a horizontal surface 534b about 0.218 inch long.
The outer electrode 502 includes an outer step 536 which supports the guard ring 508, an inner step 538 which overlies the clamp ring and the inner step of the inner electrode, an upper face (mounting surface) 540 which engages a lower surface of the backing plate 506, a lower face (plasma exposed stepped surface) 542 which includes inner tapered surface 544, a horizontal surface 546, and an outer tapered surface 548 and 8 pockets 550 in upper face 540 in which the locking pins are mounted.
The clamp ring 516 is bolted into the backing plate 506 and presses against a polymer compression ring 518 of high hardness. The polymer ring 518 presses against the outer step 534 of the inner electrode 504 and the inner step 538 of the outer electrode 502 fits over the clamp ring 516 and fits within the inner step 534 of the inner electrode with the inner tapered surface 544 extending from the planar exposed surface of the inner electrode 504. The mounting surface 540 of the outer electrode abuts an opposed surface of the backing plate 506 as a result of the clamping force exerted by the 8 locking pins held by the 8 cam locks in the backing plate. The guard ring 508 covers the mounting holes in the backing plate 506 and the access openings 524 in the guard ring are filled with removable inserts 571 made of plasma resistant polymer material such as Torlon®, Vespel®, Celcon®, Delrin®, Teflon®, Arlon®, or other materials such as fluoropolymers, acetals, polyamides, polyimides, polytetrafluoroethylenes, and polyetheretherketones (PEEK) having a low coefficient of friction and low particle shedding.
With reference to
As explained above, the clamp ring 516 can include lock washers to prevent the fasteners holding the clamp ring against the backing plate 506 from loosening due to differential thermal expansion and contraction. For example, lock washers comprising upper and lower washer halves having radial grooves on one side and a series of tapered steps on the opposite side are fitted on the screws with the tapered surfaces facing each other to maintain the grooved upper and lower surfaces parallel to each other during tightening of the screws. The differential thermal expansion and contraction could lead to backing out of the fasteners (e.g., screws or bolts) during sequential processing of individual wafers in the chamber. It would be desirable for the clamp ring to provide adequate clamping of the inner electrode for at least 500 RF hours (time during which plasma is generated in the chamber during wafer processing). Assuming plasma process time of 300 seconds per wafer, 500 RF hours would allow processing of 6000 wafers.
To compensate for the differential thermal expansion, the clamp ring 516 can be designed to absorb thermal load due to expansion by incorporating thermal expansion regions 577 which compress circumferentially to maintain a substantially constant clamp ring diameter during temperature cycling. A suitable clamp ring design is described in commonly-owned U.S. Pat. No. 6,200,415, which is hereby incorporated by reference in its entirety.
Another suitable clamp ring design is illustrated in
As shown in
For processing 300 mm wafers, the inner electrode has a diameter of 12 to 13 inches and the clamp ring has a slightly larger diameter with an inwardly extending flange 580 to engage the outer step 534 of the inner electrode 504. The clamp ring 576 can include at least 4 groups of slots, preferably at least 8 groups of slots, more preferably at least 16 groups of slots and most preferably 24 groups of slots. In a preferred embodiment, the slots have a width of about 0.03 to 0.1 inch, preferably about 0.05 to 0.09 inch and most preferably about 0.06 to 0.08 inch and the rounded end wall has a diameter larger than the slot width. Each stepped bore 582 for receipt of a clamping fastener can be located between each group of slots or if fewer fasteners are used than the number of groups of slots, the stepped bores 582 can be located between every other group of slots or located in any other desired arrangement.
To prevent backing out of the fasteners, the shaft of the fasteners can include a lock washer such as the paired lock washer halves described above. For example, one or more lock washers which are not rotatable due to the corresponding shape of the larger portion of the stepped bores can be used to engage the underside of the fastener head to prevent rotation of the fastener during temperature cycling of the clamp ring.
The upper face 584 of backing plate 506 engages three annular projections 511 (see
The lower face 586 includes annular regions 596 at which thermal interface material such as Q-pads are interposed between the backing plate and the inner electrode. Grooves 598 for receipt of gas seals (O-rings) separate the gas holes 590 into a central zone and an outer annular zone. Alignment pin holes 600 are sized to receive the alignment pins extending upwardly from the inner and outer electrodes with the alignment holes located further from the center pin hole being enlarged or elongated to accommodate differential thermal expansion and contraction between the electrodes and the backing plate. The lower face includes 8 vertically extending stepped bores 602 which receive the locking pins 562 extending upwardly from the outer electrode. Horizontally extending bores 604 receive the cylindrical cam locks 514 discussed above.
While the invention has been described in detail with reference to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made, and equivalents employed, without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3456549 | Horton | Jul 1969 | A |
4324036 | Reilly | Apr 1982 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4612077 | Tracy et al. | Sep 1986 | A |
4908095 | Kagatsume et al. | Mar 1990 | A |
5074456 | Degner et al. | Dec 1991 | A |
5200016 | Namose | Apr 1993 | A |
5356515 | Tahara et al. | Oct 1994 | A |
5423936 | Tomita et al. | Jun 1995 | A |
D363464 | Fukasawa | Oct 1995 | S |
5472565 | Mundt et al. | Dec 1995 | A |
5500256 | Watabe et al. | Mar 1996 | A |
5534751 | Lenz et al. | Jul 1996 | A |
5569356 | Lenz et al. | Oct 1996 | A |
5589002 | Su | Dec 1996 | A |
5590975 | Horntvedt | Jan 1997 | A |
5593540 | Tomita et al. | Jan 1997 | A |
5624498 | Lee et al. | Apr 1997 | A |
5740009 | Pu et al. | Apr 1998 | A |
5746875 | Maydan et al. | May 1998 | A |
5766364 | Ishida et al. | Jun 1998 | A |
5792269 | Deacon et al. | Aug 1998 | A |
D411516 | Imafuku et al. | Jun 1999 | S |
D412513 | Ooyabu | Aug 1999 | S |
5959409 | Dornfest et al. | Sep 1999 | A |
5993597 | Saito et al. | Nov 1999 | A |
5997649 | Hillman | Dec 1999 | A |
D420022 | Burkhart et al. | Feb 2000 | S |
6024799 | chen et al. | Feb 2000 | A |
6036782 | Tanaka et al. | Mar 2000 | A |
6039836 | Dhindsa et al. | Mar 2000 | A |
6050216 | Szapucki et al. | Apr 2000 | A |
6050506 | Guo et al. | Apr 2000 | A |
D425919 | Burkhart et al. | May 2000 | S |
6079356 | Umotoy et al. | Jun 2000 | A |
6086710 | Miyashita et al. | Jul 2000 | A |
6110287 | Arai et al. | Aug 2000 | A |
6110556 | Bang et al. | Aug 2000 | A |
6132512 | Horie et al. | Oct 2000 | A |
6170432 | Szapucki et al. | Jan 2001 | B1 |
6173673 | Golovato et al. | Jan 2001 | B1 |
6200415 | Maraschin | Mar 2001 | B1 |
6206972 | Dunham | Mar 2001 | B1 |
6207006 | Katoh | Mar 2001 | B1 |
D441348 | Todd et al. | May 2001 | S |
6228208 | Lill et al. | May 2001 | B1 |
6237528 | Szapucki et al. | May 2001 | B1 |
6245192 | Dhindsa et al. | Jun 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6368450 | Hayashi | Apr 2002 | B2 |
6389677 | Lenz | May 2002 | B1 |
6391787 | Dhindsa et al. | May 2002 | B1 |
6432261 | Watanabe et al. | Aug 2002 | B2 |
6444037 | Frankel et al. | Sep 2002 | B1 |
6461435 | Littau et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6495233 | Shmurun et al. | Dec 2002 | B1 |
6506686 | Masuda et al. | Jan 2003 | B2 |
6537928 | Matsuki et al. | Mar 2003 | B1 |
6550126 | Szettella et al. | Apr 2003 | B1 |
6553932 | Liu et al. | Apr 2003 | B2 |
6558506 | Freeman et al. | May 2003 | B1 |
6586886 | Katz et al. | Jul 2003 | B1 |
6653734 | Flanner et al. | Nov 2003 | B2 |
6700089 | Hirooka | Mar 2004 | B1 |
6723202 | Nagaiwa et al. | Apr 2004 | B2 |
D490450 | Hayashi et al. | May 2004 | S |
6753498 | Sirkis et al. | Jun 2004 | B2 |
D493873 | Hayashi | Aug 2004 | S |
6786175 | Dhindsa et al. | Sep 2004 | B2 |
6818096 | Barnes et al. | Nov 2004 | B2 |
6827815 | Hytros et al. | Dec 2004 | B2 |
6872258 | Park et al. | Mar 2005 | B2 |
6899786 | Senzaki et al. | May 2005 | B2 |
6936135 | Antolik | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
7083702 | Blonigan et al. | Aug 2006 | B2 |
7159537 | Wickramanayaka et al. | Jan 2007 | B2 |
7166200 | Saigusa et al. | Jan 2007 | B2 |
7196283 | Buchberger, Jr. et al. | Mar 2007 | B2 |
7270713 | Blonigan et al. | Sep 2007 | B2 |
7296534 | Fink | Nov 2007 | B2 |
7461614 | Fink et al. | Dec 2008 | B2 |
7481903 | Senzaki et al. | Jan 2009 | B2 |
7482550 | Larson et al. | Jan 2009 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7543547 | Kennedy et al. | Jun 2009 | B1 |
7641762 | Keller | Jan 2010 | B2 |
7645341 | Kennedy et al. | Jan 2010 | B2 |
7661386 | Kasai et al. | Feb 2010 | B2 |
7662254 | Sexton et al. | Feb 2010 | B2 |
7712434 | Dhindsa et al. | May 2010 | B2 |
7743730 | Kholodenko et al. | Jun 2010 | B2 |
7776178 | Keller | Aug 2010 | B2 |
7827657 | Kennedy et al. | Nov 2010 | B2 |
7827931 | Matsushima et al. | Nov 2010 | B2 |
7862682 | Stevenson et al. | Jan 2011 | B2 |
7875824 | Larson et al. | Jan 2011 | B2 |
20010000104 | Li et al. | Apr 2001 | A1 |
20020048963 | Campbell et al. | Apr 2002 | A1 |
20020069968 | Keller et al. | Jun 2002 | A1 |
20020139479 | Antolik | Oct 2002 | A1 |
20020150519 | Barnes et al. | Oct 2002 | A1 |
20020179245 | Masuda et al. | Dec 2002 | A1 |
20030066607 | White et al. | Apr 2003 | A1 |
20030127806 | Belchuk | Jul 2003 | A1 |
20030185729 | Ko et al. | Oct 2003 | A1 |
20040074609 | Fischer et al. | Apr 2004 | A1 |
20040108301 | Hao et al. | Jun 2004 | A1 |
20040173313 | Beach | Sep 2004 | A1 |
20040206305 | Choi et al. | Oct 2004 | A1 |
20050000430 | Jang et al. | Jan 2005 | A1 |
20050056218 | Sun et al. | Mar 2005 | A1 |
20050061445 | Koshiishi et al. | Mar 2005 | A1 |
20050116427 | Seidel et al. | Jun 2005 | A1 |
20050133160 | Kennedy et al. | Jun 2005 | A1 |
20050150456 | Senzaki et al. | Jul 2005 | A1 |
20050241765 | Dhindsa et al. | Nov 2005 | A1 |
20050276928 | Okumura et al. | Dec 2005 | A1 |
20060000803 | Koshiishi et al. | Jan 2006 | A1 |
20060016559 | Kobayashi et al. | Jan 2006 | A1 |
20060037701 | Koshiishi et al. | Feb 2006 | A1 |
20060042754 | Yoshida et al. | Mar 2006 | A1 |
20060043067 | Kadkhodayan et al. | Mar 2006 | A1 |
20060066247 | Koshiishi et al. | Mar 2006 | A1 |
20060075969 | Fischer | Apr 2006 | A1 |
20060090704 | Ide et al. | May 2006 | A1 |
20060108069 | Gernert | May 2006 | A1 |
20060207502 | Dhindsa et al. | Sep 2006 | A1 |
20060213617 | Fink | Sep 2006 | A1 |
20060225655 | Faguet et al. | Oct 2006 | A1 |
20060236934 | Choi et al. | Oct 2006 | A1 |
20060254512 | Fink | Nov 2006 | A1 |
20060283551 | Son | Dec 2006 | A1 |
20060283552 | Rogers | Dec 2006 | A1 |
20070032081 | Chang et al. | Feb 2007 | A1 |
20070044716 | Tetsuka et al. | Mar 2007 | A1 |
20070068629 | Shih et al. | Mar 2007 | A1 |
20070131350 | Ricci et al. | Jun 2007 | A1 |
20070137573 | Kholodenko et al. | Jun 2007 | A1 |
20070181868 | Fujiwara et al. | Aug 2007 | A1 |
20070187038 | Ren et al. | Aug 2007 | A1 |
20070215580 | Koshiishi et al. | Sep 2007 | A1 |
20070235660 | Hudson | Oct 2007 | A1 |
20070284045 | Fischer et al. | Dec 2007 | A1 |
20070284246 | Keil et al. | Dec 2007 | A1 |
20080087641 | La Llera et al. | Apr 2008 | A1 |
20080090417 | La Llera et al. | Apr 2008 | A1 |
20080099120 | Larson et al. | May 2008 | A1 |
20080099448 | Larson et al. | May 2008 | A1 |
20080141941 | Augustino et al. | Jun 2008 | A1 |
20080227301 | Fang et al. | Sep 2008 | A1 |
20080308228 | Stevenson et al. | Dec 2008 | A1 |
20080308229 | Patrick et al. | Dec 2008 | A1 |
20090081878 | Dhindsa | Mar 2009 | A1 |
20090095220 | Meinhold et al. | Apr 2009 | A1 |
20090095424 | Bettencourt et al. | Apr 2009 | A1 |
20090111276 | Dhindsa et al. | Apr 2009 | A1 |
20090127234 | Larson et al. | May 2009 | A1 |
20090163034 | Larson et al. | Jun 2009 | A1 |
20090211085 | Kennedy et al. | Aug 2009 | A1 |
20090223932 | Hida et al. | Sep 2009 | A1 |
20090305509 | Stevenson et al. | Dec 2009 | A1 |
20100000683 | Kadkhodayan et al. | Jan 2010 | A1 |
20100003824 | Kadkhodayan et al. | Jan 2010 | A1 |
20100003829 | Patrick et al. | Jan 2010 | A1 |
20100038033 | Hardin et al. | Feb 2010 | A1 |
20100065214 | Kennedy et al. | Mar 2010 | A1 |
20100184298 | Dhindsa | Jul 2010 | A1 |
20100252197 | Kadkhodayan et al. | Oct 2010 | A1 |
20100261354 | Bettencourt et al. | Oct 2010 | A1 |
20110067814 | Fischer et al. | Mar 2011 | A1 |
20110070740 | Bettencourt et al. | Mar 2011 | A1 |
20110081783 | Stevenson et al. | Apr 2011 | A1 |
20110083809 | de la Llera et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
56-087667 | Jul 1981 | JP |
07-066180 | Mar 1995 | JP |
09-013172 | Jan 1997 | JP |
09-245994 | Sep 1997 | JP |
2001085398 | Mar 2001 | JP |
WO2009114175 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100003824 A1 | Jan 2010 | US |